A Pivotal Allocation-Based Algorithm for Solving the Label-Switching Problem in Bayesian Mixture Models

In Bayesian analysis of mixture models, the label-switching problem occurs as a result of the posterior distribution being invariant to any permutation of cluster indices under symmetric priors. To solve this problem, we propose a novel relabeling algorithm and its variants by investigating an appro...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 25; no. 1; pp. 266 - 283
Main Authors Li, Han, Fan, Xiaodan
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.01.2016
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2014.983643

Cover

More Information
Summary:In Bayesian analysis of mixture models, the label-switching problem occurs as a result of the posterior distribution being invariant to any permutation of cluster indices under symmetric priors. To solve this problem, we propose a novel relabeling algorithm and its variants by investigating an approximate posterior distribution of the latent allocation variables instead of dealing with the component parameters directly. We demonstrate that our relabeling algorithm can be formulated in a rigorous framework based on information theory. Under some circumstances, it is shown to resemble the classical Kullback-Leibler relabeling algorithm and include the recently proposed equivalence classes representatives relabeling algorithm as a special case. Using simulation studies and real data examples, we illustrate the efficiency of our algorithm in dealing with various label-switching phenomena. Supplemental materials for this article are available online.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.2014.983643