An optimal brain tumor detection by convolutional neural network and Enhanced Sparrow Search Algorithm

Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process during treatment. Existing algorithms for brain tumor diagnosis have problems in terms of better performance on various brain images with diffe...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Vol. 235; no. 4; p. 459
Main Authors Liu, Tingting, Yuan, Zhi, Wu, Li, Badami, Benjamin
Format Journal Article
LanguageEnglish
Published England 01.04.2021
Subjects
Online AccessGet more information
ISSN2041-3033
DOI10.1177/0954411920987964

Cover

Abstract Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process during treatment. Existing algorithms for brain tumor diagnosis have problems in terms of better performance on various brain images with different qualities, low sensitivity of the results to the parameters introduced in the algorithm and also reliable diagnosis of tumors in the early stages of formation. A computer aided system is proposed in this research for automatic brain tumors diagnosis. The method includes four main parts: pre-processing and segmentation techniques, features extraction and final categorization. Gray-level co-occurrence matrix (GLCM) and Discrete Wavelet Transform (DWT) were applied for characteristic extraction of the MR images which are then injected to an optimized convolutional neural network (CNN) for the final diagnosis. The CNN is optimized by a new design of Sparrow Search Algorithm classification (ESSA). Finally, a comparison of the results of the method with three state of the art technique on the Whole Brain Atlas (WBA) database to show its higher efficiency.
AbstractList Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process during treatment. Existing algorithms for brain tumor diagnosis have problems in terms of better performance on various brain images with different qualities, low sensitivity of the results to the parameters introduced in the algorithm and also reliable diagnosis of tumors in the early stages of formation. A computer aided system is proposed in this research for automatic brain tumors diagnosis. The method includes four main parts: pre-processing and segmentation techniques, features extraction and final categorization. Gray-level co-occurrence matrix (GLCM) and Discrete Wavelet Transform (DWT) were applied for characteristic extraction of the MR images which are then injected to an optimized convolutional neural network (CNN) for the final diagnosis. The CNN is optimized by a new design of Sparrow Search Algorithm classification (ESSA). Finally, a comparison of the results of the method with three state of the art technique on the Whole Brain Atlas (WBA) database to show its higher efficiency.
Author Badami, Benjamin
Liu, Tingting
Wu, Li
Yuan, Zhi
Author_xml – sequence: 1
  givenname: Tingting
  surname: Liu
  fullname: Liu, Tingting
  organization: Department of Oncology - Cardiology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
– sequence: 2
  givenname: Zhi
  surname: Yuan
  fullname: Yuan, Zhi
  organization: Engineering Research Center of Renewable Energy Power Generation and Grid-Connected Control, Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
– sequence: 3
  givenname: Li
  surname: Wu
  fullname: Wu, Li
  organization: Department of Oncology - Cardiology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
– sequence: 4
  givenname: Benjamin
  orcidid: 0000-0003-0963-0626
  surname: Badami
  fullname: Badami, Benjamin
  organization: University of Georgia, Athens, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33435847$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKAzEYRoMo9qJ7V5IXGM39siylXkBwUV2XTPKPHZ1JhjRj6dtbb6vDBx8HzgydxhQBoStKbijV-pZYKQSllhFrtFXiBE0ZEbTihPMJmu1274QQSok6RxPOBZdG6ClqFhGnobS963CdXRtxGfuUcYACvrQp4vqAfYqfqRu_5_EWYcw_KPuUP7CLAa_i1kUPAa8Hl3Pa4zW47Ld40b2l3JZtf4HOGtft4PKPc_R6t3pZPlRPz_ePy8VT5bmSpWKByUA9sTZI5kE50L4JWupABTHSSQ60piCAKtNooaTVQRvJwBJjVB3YHF3_eoex7iFshnwsy4fNfzD7AoARWRA
CitedBy_id crossref_primary_10_1007_s11831_023_09887_z
crossref_primary_10_3390_fire6100380
crossref_primary_10_1007_s10586_023_04200_w
crossref_primary_10_1016_j_jobe_2023_105980
crossref_primary_10_1016_j_knosys_2022_110117
crossref_primary_10_1155_2022_8171164
crossref_primary_10_3390_machines9120341
crossref_primary_10_3390_electronics12183967
crossref_primary_10_1109_ACCESS_2024_3359418
crossref_primary_10_1088_1742_6596_2254_1_012051
crossref_primary_10_1007_s10462_023_10435_1
crossref_primary_10_1155_2022_2839834
crossref_primary_10_1155_2022_9051058
crossref_primary_10_1007_s10462_022_10337_8
crossref_primary_10_3390_biomedicines11010184
crossref_primary_10_1016_j_bspc_2024_106091
crossref_primary_10_3390_en15145174
crossref_primary_10_1109_ACCESS_2022_3204798
crossref_primary_10_1016_j_heliyon_2024_e34050
crossref_primary_10_1364_AO_462436
crossref_primary_10_3233_JIFS_221990
crossref_primary_10_1049_hve2_12408
crossref_primary_10_1155_2023_5187602
crossref_primary_10_1109_ACCESS_2022_3178790
crossref_primary_10_3390_sym15020316
crossref_primary_10_1109_TIM_2022_3228003
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1007_s13204_021_01906_4
crossref_primary_10_1177_1045389X241300727
crossref_primary_10_3390_biomimetics8020235
crossref_primary_10_3390_s22228787
crossref_primary_10_1007_s11831_022_09804_w
crossref_primary_10_1142_S0218126625501014
crossref_primary_10_3390_app112311192
crossref_primary_10_1109_ACCESS_2023_3287855
crossref_primary_10_3788_LOP231279
crossref_primary_10_1109_ACCESS_2021_3129255
crossref_primary_10_1007_s12652_023_04725_3
crossref_primary_10_1016_j_ipm_2021_102854
crossref_primary_10_1177_09544119211028380
ContentType Journal Article
DBID NPM
DOI 10.1177/0954411920987964
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2041-3033
ExternalDocumentID 33435847
Genre Journal Article
GroupedDBID ---
-TN
-~X
.DC
0R~
123
29P
3V.
4.4
53G
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFNC
AALXP
AAOTM
AAPFT
AAQDB
AAWTL
ABJCF
ABUBZ
ABUJY
ABUWG
ACGFS
ACGOD
ACIWK
ACPRK
ACRPL
ADBBV
ADNMO
ADQAE
ADYCS
AEDFJ
AEWDL
AFKRA
AFKRG
AFRAH
AFWMB
AHDMH
AHMBA
AIOMO
AJCXD
AJUZI
AKDDG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARTOV
ASPBG
AVWKF
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPACV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DWQXO
EBS
EJD
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
H13
HCIFZ
HMCUK
HVGLF
HZ~
I6U
IL9
J8X
L6V
LK8
M0L
M1P
M2P
M4V
M7P
M7S
NPM
O9-
P.B
PKN
PQQKQ
PRI
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7S
SAUOL
SCNPE
SFC
UKHRP
YNT
~33
ID FETCH-LOGICAL-c365t-2d25d1c099d52ce6ae7cfd757d14085a53e1b1e4e168f746597d7852e90886bd2
IngestDate Wed Feb 19 02:28:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Brain tumor
DWT
Enhanced Sparrow Search Algorithm
convolutional neural network
GLCM
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-2d25d1c099d52ce6ae7cfd757d14085a53e1b1e4e168f746597d7852e90886bd2
ORCID 0000-0003-0963-0626
PMID 33435847
ParticipantIDs pubmed_primary_33435847
PublicationCentury 2000
PublicationDate 2021-Apr
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-Apr
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
PublicationTitleAlternate Proc Inst Mech Eng H
PublicationYear 2021
SSID ssj0001106
Score 2.513593
Snippet Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process...
SourceID pubmed
SourceType Index Database
StartPage 459
Title An optimal brain tumor detection by convolutional neural network and Enhanced Sparrow Search Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/33435847
Volume 235
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FVkJwqCjlVdpqD9wi03izazvHUIGiqkFIBQlxQV7vmARhJwrOAX4jP6qzL8dNQW252JbXsaydLzvfzM6DkIOeAjS4QhHopMWAQ8yCFO2gIE9R12hKm5tcmOFpNLjg3y_FZav11IhamlfyMHt8Nq_kNVLFeyhXnSX7H5KtX4o38Brli0eUMB7_ScZ95Hr4ly9wmqVu9dCu5sVEd_yuwHYAR26pw8rdR-BjunylOZngb7NzcFyObBTAz6kpyNi2Ecjt_t3NZDauRkWTv57V-u7eRxf4cAPHPIegc4mN6H2tw_tDJKqzqj2w7vqaAcOiFqJ2uyxv8_8Yzy2aypvKK1jTQsz6bK9G41qjzK17YeGWVWlhwhSOoLzFy7Lp3GBhIyYGzCLIOlz7x2yxDL9iM1vhxEGTN9ZfbsuL_6kXzM400klkf8hpO71Ep-A2H0XJTguDky7CVm8e_310qVK3H1ohK3Gs24icas-RYwUI_cY2-dflT1kjq_7nSwaOITrnG-Sdkw_tW7i9Jy0oN8l6o27lJlkdOlF9IHm_pA6D1GCQGgzSGoNUPtDfMEgtBqnDIEUMUo9B6jBILQZpjcEtcnFyfP5tELjeHUHWjUQVMMWECjO0P5RgGUQpxFmuYhGrUNfUS0UXQhkChzBK8phHaNeqOBEMdNxdJBXbJm_KSQm7hEoBnUyh8pFhjyecJ1Ih54c05xJfy-Qe2bHzdT21BVqu_Ux-fHFkn6wt4PaJvM1xRYDPSC8r-cXI7ReoBX0G
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+brain+tumor+detection+by+convolutional+neural+network+and+Enhanced+Sparrow+Search+Algorithm&rft.jtitle=Proceedings+of+the+Institution+of+Mechanical+Engineers.+Part+H%2C+Journal+of+engineering+in+medicine&rft.au=Liu%2C+Tingting&rft.au=Yuan%2C+Zhi&rft.au=Wu%2C+Li&rft.au=Badami%2C+Benjamin&rft.date=2021-04-01&rft.eissn=2041-3033&rft.volume=235&rft.issue=4&rft.spage=459&rft_id=info:doi/10.1177%2F0954411920987964&rft_id=info%3Apmid%2F33435847&rft_id=info%3Apmid%2F33435847&rft.externalDocID=33435847