An optimal brain tumor detection by convolutional neural network and Enhanced Sparrow Search Algorithm
Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process during treatment. Existing algorithms for brain tumor diagnosis have problems in terms of better performance on various brain images with diffe...
Saved in:
| Published in | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Vol. 235; no. 4; p. 459 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
01.04.2021
|
| Subjects | |
| Online Access | Get more information |
| ISSN | 2041-3033 |
| DOI | 10.1177/0954411920987964 |
Cover
| Abstract | Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process during treatment. Existing algorithms for brain tumor diagnosis have problems in terms of better performance on various brain images with different qualities, low sensitivity of the results to the parameters introduced in the algorithm and also reliable diagnosis of tumors in the early stages of formation. A computer aided system is proposed in this research for automatic brain tumors diagnosis. The method includes four main parts: pre-processing and segmentation techniques, features extraction and final categorization. Gray-level co-occurrence matrix (GLCM) and Discrete Wavelet Transform (DWT) were applied for characteristic extraction of the MR images which are then injected to an optimized convolutional neural network (CNN) for the final diagnosis. The CNN is optimized by a new design of Sparrow Search Algorithm classification (ESSA). Finally, a comparison of the results of the method with three state of the art technique on the Whole Brain Atlas (WBA) database to show its higher efficiency. |
|---|---|
| AbstractList | Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process during treatment. Existing algorithms for brain tumor diagnosis have problems in terms of better performance on various brain images with different qualities, low sensitivity of the results to the parameters introduced in the algorithm and also reliable diagnosis of tumors in the early stages of formation. A computer aided system is proposed in this research for automatic brain tumors diagnosis. The method includes four main parts: pre-processing and segmentation techniques, features extraction and final categorization. Gray-level co-occurrence matrix (GLCM) and Discrete Wavelet Transform (DWT) were applied for characteristic extraction of the MR images which are then injected to an optimized convolutional neural network (CNN) for the final diagnosis. The CNN is optimized by a new design of Sparrow Search Algorithm classification (ESSA). Finally, a comparison of the results of the method with three state of the art technique on the Whole Brain Atlas (WBA) database to show its higher efficiency. |
| Author | Badami, Benjamin Liu, Tingting Wu, Li Yuan, Zhi |
| Author_xml | – sequence: 1 givenname: Tingting surname: Liu fullname: Liu, Tingting organization: Department of Oncology - Cardiology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China – sequence: 2 givenname: Zhi surname: Yuan fullname: Yuan, Zhi organization: Engineering Research Center of Renewable Energy Power Generation and Grid-Connected Control, Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China – sequence: 3 givenname: Li surname: Wu fullname: Wu, Li organization: Department of Oncology - Cardiology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China – sequence: 4 givenname: Benjamin orcidid: 0000-0003-0963-0626 surname: Badami fullname: Badami, Benjamin organization: University of Georgia, Athens, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33435847$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1j8tKAzEYRoMo9qJ7V5IXGM39siylXkBwUV2XTPKPHZ1JhjRj6dtbb6vDBx8HzgydxhQBoStKbijV-pZYKQSllhFrtFXiBE0ZEbTihPMJmu1274QQSok6RxPOBZdG6ClqFhGnobS963CdXRtxGfuUcYACvrQp4vqAfYqfqRu_5_EWYcw_KPuUP7CLAa_i1kUPAa8Hl3Pa4zW47Ld40b2l3JZtf4HOGtft4PKPc_R6t3pZPlRPz_ePy8VT5bmSpWKByUA9sTZI5kE50L4JWupABTHSSQ60piCAKtNooaTVQRvJwBJjVB3YHF3_eoex7iFshnwsy4fNfzD7AoARWRA |
| CitedBy_id | crossref_primary_10_1007_s11831_023_09887_z crossref_primary_10_3390_fire6100380 crossref_primary_10_1007_s10586_023_04200_w crossref_primary_10_1016_j_jobe_2023_105980 crossref_primary_10_1016_j_knosys_2022_110117 crossref_primary_10_1155_2022_8171164 crossref_primary_10_3390_machines9120341 crossref_primary_10_3390_electronics12183967 crossref_primary_10_1109_ACCESS_2024_3359418 crossref_primary_10_1088_1742_6596_2254_1_012051 crossref_primary_10_1007_s10462_023_10435_1 crossref_primary_10_1155_2022_2839834 crossref_primary_10_1155_2022_9051058 crossref_primary_10_1007_s10462_022_10337_8 crossref_primary_10_3390_biomedicines11010184 crossref_primary_10_1016_j_bspc_2024_106091 crossref_primary_10_3390_en15145174 crossref_primary_10_1109_ACCESS_2022_3204798 crossref_primary_10_1016_j_heliyon_2024_e34050 crossref_primary_10_1364_AO_462436 crossref_primary_10_3233_JIFS_221990 crossref_primary_10_1049_hve2_12408 crossref_primary_10_1155_2023_5187602 crossref_primary_10_1109_ACCESS_2022_3178790 crossref_primary_10_3390_sym15020316 crossref_primary_10_1109_TIM_2022_3228003 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1007_s13204_021_01906_4 crossref_primary_10_1177_1045389X241300727 crossref_primary_10_3390_biomimetics8020235 crossref_primary_10_3390_s22228787 crossref_primary_10_1007_s11831_022_09804_w crossref_primary_10_1142_S0218126625501014 crossref_primary_10_3390_app112311192 crossref_primary_10_1109_ACCESS_2023_3287855 crossref_primary_10_3788_LOP231279 crossref_primary_10_1109_ACCESS_2021_3129255 crossref_primary_10_1007_s12652_023_04725_3 crossref_primary_10_1016_j_ipm_2021_102854 crossref_primary_10_1177_09544119211028380 |
| ContentType | Journal Article |
| DBID | NPM |
| DOI | 10.1177/0954411920987964 |
| DatabaseName | PubMed |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 2041-3033 |
| ExternalDocumentID | 33435847 |
| Genre | Journal Article |
| GroupedDBID | --- -TN -~X .DC 0R~ 123 29P 3V. 4.4 53G 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFNC AALXP AAOTM AAPFT AAQDB AAWTL ABJCF ABUBZ ABUJY ABUWG ACGFS ACGOD ACIWK ACPRK ACRPL ADBBV ADNMO ADQAE ADYCS AEDFJ AEWDL AFKRA AFKRG AFRAH AFWMB AHDMH AHMBA AIOMO AJCXD AJUZI AKDDG ALIPV ALMA_UNASSIGNED_HOLDINGS ARTOV ASPBG AVWKF AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BPACV BPHCQ BVXVI CAG CCPQU COF CS3 DWQXO EBS EJD F5P FEDTE FHBDP FYUFA GNUQQ H13 HCIFZ HMCUK HVGLF HZ~ I6U IL9 J8X L6V LK8 M0L M1P M2P M4V M7P M7S NPM O9- P.B PKN PQQKQ PRI PROAC PSQYO PTHSS Q1R Q2X Q7S SAUOL SCNPE SFC UKHRP YNT ~33 |
| ID | FETCH-LOGICAL-c365t-2d25d1c099d52ce6ae7cfd757d14085a53e1b1e4e168f746597d7852e90886bd2 |
| IngestDate | Wed Feb 19 02:28:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Brain tumor DWT Enhanced Sparrow Search Algorithm convolutional neural network GLCM |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c365t-2d25d1c099d52ce6ae7cfd757d14085a53e1b1e4e168f746597d7852e90886bd2 |
| ORCID | 0000-0003-0963-0626 |
| PMID | 33435847 |
| ParticipantIDs | pubmed_primary_33435847 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Apr |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-Apr |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine |
| PublicationTitleAlternate | Proc Inst Mech Eng H |
| PublicationYear | 2021 |
| SSID | ssj0001106 |
| Score | 2.513593 |
| Snippet | Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process... |
| SourceID | pubmed |
| SourceType | Index Database |
| StartPage | 459 |
| Title | An optimal brain tumor detection by convolutional neural network and Enhanced Sparrow Search Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33435847 |
| Volume | 235 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FVkJwqCjlVdpqD9wi03izazvHUIGiqkFIBQlxQV7vmARhJwrOAX4jP6qzL8dNQW252JbXsaydLzvfzM6DkIOeAjS4QhHopMWAQ8yCFO2gIE9R12hKm5tcmOFpNLjg3y_FZav11IhamlfyMHt8Nq_kNVLFeyhXnSX7H5KtX4o38Brli0eUMB7_ScZ95Hr4ly9wmqVu9dCu5sVEd_yuwHYAR26pw8rdR-BjunylOZngb7NzcFyObBTAz6kpyNi2Ecjt_t3NZDauRkWTv57V-u7eRxf4cAPHPIegc4mN6H2tw_tDJKqzqj2w7vqaAcOiFqJ2uyxv8_8Yzy2aypvKK1jTQsz6bK9G41qjzK17YeGWVWlhwhSOoLzFy7Lp3GBhIyYGzCLIOlz7x2yxDL9iM1vhxEGTN9ZfbsuL_6kXzM400klkf8hpO71Ep-A2H0XJTguDky7CVm8e_310qVK3H1ohK3Gs24icas-RYwUI_cY2-dflT1kjq_7nSwaOITrnG-Sdkw_tW7i9Jy0oN8l6o27lJlkdOlF9IHm_pA6D1GCQGgzSGoNUPtDfMEgtBqnDIEUMUo9B6jBILQZpjcEtcnFyfP5tELjeHUHWjUQVMMWECjO0P5RgGUQpxFmuYhGrUNfUS0UXQhkChzBK8phHaNeqOBEMdNxdJBXbJm_KSQm7hEoBnUyh8pFhjyecJ1Ih54c05xJfy-Qe2bHzdT21BVqu_Ux-fHFkn6wt4PaJvM1xRYDPSC8r-cXI7ReoBX0G |
| linkProvider | National Library of Medicine |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+brain+tumor+detection+by+convolutional+neural+network+and+Enhanced+Sparrow+Search+Algorithm&rft.jtitle=Proceedings+of+the+Institution+of+Mechanical+Engineers.+Part+H%2C+Journal+of+engineering+in+medicine&rft.au=Liu%2C+Tingting&rft.au=Yuan%2C+Zhi&rft.au=Wu%2C+Li&rft.au=Badami%2C+Benjamin&rft.date=2021-04-01&rft.eissn=2041-3033&rft.volume=235&rft.issue=4&rft.spage=459&rft_id=info:doi/10.1177%2F0954411920987964&rft_id=info%3Apmid%2F33435847&rft_id=info%3Apmid%2F33435847&rft.externalDocID=33435847 |