FastRealBoostBins: An ensemble classifier for fast predictions implemented in Python via numba.jit and numba.cuda

Taking advantage of Numba (a high-performance just-in-time Python compiler), we provide a fast operating implementation of a boosting algorithm in which bins with logit transform values play the role of “weak learners”. The software comes as a Python class compliant with scikit-learn library. It all...

Full description

Saved in:
Bibliographic Details
Published inSoftwareX Vol. 26; p. 101644
Main Author Klęsk, Przemysław
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2352-7110
2352-7110
DOI10.1016/j.softx.2024.101644

Cover

Abstract Taking advantage of Numba (a high-performance just-in-time Python compiler), we provide a fast operating implementation of a boosting algorithm in which bins with logit transform values play the role of “weak learners”. The software comes as a Python class compliant with scikit-learn library. It allows to choose between CPU and GPU computations for each of the two stages: fit and predict (decision function). The efficiency of implementation has been confirmed on large data sets where the total of array entries (sample size × features count) was of order 1010 at fit stage and 108 at predict stage. In the case of GPU-based fit, the main boosting loop is designed as five CUDA kernels responsible for: weights binning, computing logits, computing exponential errors, finding the error minimizer, and examples reweighting. The GPU-based predict is computed by a single CUDA kernel. We apply suitable reduction patterns and mutexes to carry out summations and ‘argmin’ operations. To test the predict stage performance, we compare FastRealBoostBins against state-of-the-art classifiers from sklearn.ensemble using large data sets and focusing on response times. In an additional experiment, we make our classifiers operate as object detectors under heavy computational load (over 60k queries per a video frame using ensembles of size 2048).
AbstractList Taking advantage of Numba (a high-performance just-in-time Python compiler), we provide a fast operating implementation of a boosting algorithm in which bins with logit transform values play the role of “weak learners”. The software comes as a Python class compliant with scikit-learn library. It allows to choose between CPU and GPU computations for each of the two stages: fit and predict (decision function). The efficiency of implementation has been confirmed on large data sets where the total of array entries (sample size × features count) was of order 1010 at fit stage and 108 at predict stage. In the case of GPU-based fit, the main boosting loop is designed as five CUDA kernels responsible for: weights binning, computing logits, computing exponential errors, finding the error minimizer, and examples reweighting. The GPU-based predict is computed by a single CUDA kernel. We apply suitable reduction patterns and mutexes to carry out summations and ‘argmin’ operations. To test the predict stage performance, we compare FastRealBoostBins against state-of-the-art classifiers from sklearn.ensemble using large data sets and focusing on response times. In an additional experiment, we make our classifiers operate as object detectors under heavy computational load (over 60k queries per a video frame using ensembles of size 2048).
ArticleNumber 101644
Author Klęsk, Przemysław
Author_xml – sequence: 1
  givenname: Przemysław
  orcidid: 0000-0002-5579-187X
  surname: Klęsk
  fullname: Klęsk, Przemysław
  email: pklesk@zut.edu.pl
  organization: Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in Szczecin, ul. Żołnierska 49, 71-210 Szczecin, Poland
BookMark eNqNkd9qFTEQxhepYK19Am_yAueYf7vdFbxoi9VCQRG9DrOTiWbZTY5JTut5e9OzRbwSL8Jkhvl-DN_3sjkJMVDTvBZ8K7jo3kzbHF35tZVc6uNE62fNqVSt3FwIwU_--r9oznOeOOeilX0r9Wnz8wZy-UIwX8WYy5UP-S27DIxCpmWcieEMOXvnKTEX66vbbJfIeiw-hsz8sptpoVDIMh_Y50P5EQO798DCfhlhO_nCINinDvcWXjXPHcyZzp_qWfPt5v3X64-bu08fbq8v7zaoOl02TjktsUPZatXhIMZ-IETg1NI4tgRCCuckOoF20Kj6cejtMPDeCddq5J06a25Xro0wmV3yC6SDieDNcRDTdwOpeJzJCFshStNFj6SthWF0oGrlgnQ_alFZemXtww4ODzDPf4CCm0fPzWSOKZjHFMyaQpWpVYYp5pzI_afq3aqi6s59dd5k9BSwmp4ISz3f_1P_G1EXpts
Cites_doi 10.1109/IVS.2006.1689652
10.3390/info11040193
10.1016/j.eswa.2021.115895
10.1109/TNNLS.2021.3059653
10.1109/ACCESS.2022.3207287
10.1023/A:1007614523901
10.1109/MSP.2012.2211477
10.1109/TPAMI.2018.2803828
10.1145/2786984.2786995
10.3389/fonc.2023.1184428
10.1007/978-3-030-50423-6_2
10.1007/s10462-022-10283-5
10.1214/aos/1016218223
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.softx.2024.101644
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2352-7110
ExternalDocumentID oai_doaj_org_article_1dcd934e78ce4dda9bfa3dda01e48b41
10.1016/j.softx.2024.101644
10_1016_j_softx_2024_101644
S2352711024000153
GroupedDBID 0R~
457
5VS
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
IXB
KQ8
M~E
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c364t-f3f42c6c25436c91b89ecca0e5ebb5ea121ff2cf1cd94c38b98d9908f1f54c063
IEDL.DBID IXB
ISSN 2352-7110
IngestDate Fri Oct 03 12:45:46 EDT 2025
Tue Aug 19 22:04:28 EDT 2025
Wed Oct 01 06:34:06 EDT 2025
Sat Apr 19 15:58:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CUDA
Numba
Just-in-time compilation
RealBoost
Object detection
Ensemble learning
Logit transform binning
Python
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-f3f42c6c25436c91b89ecca0e5ebb5ea121ff2cf1cd94c38b98d9908f1f54c063
ORCID 0000-0002-5579-187X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352711024000153
ParticipantIDs doaj_primary_oai_doaj_org_article_1dcd934e78ce4dda9bfa3dda01e48b41
unpaywall_primary_10_1016_j_softx_2024_101644
crossref_primary_10_1016_j_softx_2024_101644
elsevier_sciencedirect_doi_10_1016_j_softx_2024_101644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle SoftwareX
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Konstantinov, Utkin (b5) 2020
Sychel, Klęsk, Bera (b21) 2020
Sychel, Klęsk, Bera (b20) 2020
Raschka, Patterson, Nolet (b10) 2020; 11
Klęsk, Korzeń (b22) 2021; 32
Yang, Lv, Chen (b2) 2023; 56
Varoquaux (b9) 2015; 19
Mungoli (b4) 2023
Klęsk (b14) 2017; vol. 10245
Krizhevsky, Nair, Hinton (b16) 2010
Friedman, Hastie, Tibshirani (b11) 2000; 28
Schapire, Singer (b12) 1999; 37
Hrinivich, Wang, Wang (b8) 2023; 13
Jain, Learned-Miller (b18) 2010
Redmon (b23) 2016
Mienye, Sun (b1) 2022; 10
Alsahaf (b6) 2022; 187
Li (b17) 2012; 29
Zhang, Liu, Shen (b3) 2022; 12
Rasolzadeh B, et al. Response Binning: Improved Weak Classifiers for Boosting. In: IEEE Intelligent Vehicles Symposium. 2006, p. 344–9.
Bera, Klęsk, Sychel (b15) 2019; 41
Kapitanov, Makhlyarchuk, Kvanchiani (b19) 2022
Sapoval (b7) 2022; 13
Klęsk (10.1016/j.softx.2024.101644_b14) 2017; vol. 10245
Sychel (10.1016/j.softx.2024.101644_b21) 2020
Mienye (10.1016/j.softx.2024.101644_b1) 2022; 10
Schapire (10.1016/j.softx.2024.101644_b12) 1999; 37
Jain (10.1016/j.softx.2024.101644_b18) 2010
Friedman (10.1016/j.softx.2024.101644_b11) 2000; 28
Raschka (10.1016/j.softx.2024.101644_b10) 2020; 11
Konstantinov (10.1016/j.softx.2024.101644_b5) 2020
Yang (10.1016/j.softx.2024.101644_b2) 2023; 56
Li (10.1016/j.softx.2024.101644_b17) 2012; 29
Sychel (10.1016/j.softx.2024.101644_b20) 2020
Hrinivich (10.1016/j.softx.2024.101644_b8) 2023; 13
Varoquaux (10.1016/j.softx.2024.101644_b9) 2015; 19
Mungoli (10.1016/j.softx.2024.101644_b4) 2023
Bera (10.1016/j.softx.2024.101644_b15) 2019; 41
Redmon (10.1016/j.softx.2024.101644_b23) 2016
10.1016/j.softx.2024.101644_b13
Sapoval (10.1016/j.softx.2024.101644_b7) 2022; 13
Alsahaf (10.1016/j.softx.2024.101644_b6) 2022; 187
Krizhevsky (10.1016/j.softx.2024.101644_b16) 2010
Zhang (10.1016/j.softx.2024.101644_b3) 2022; 12
Kapitanov (10.1016/j.softx.2024.101644_b19) 2022
Klęsk (10.1016/j.softx.2024.101644_b22) 2021; 32
References_xml – volume: vol. 10245
  start-page: 530
  year: 2017
  end-page: 543
  ident: b14
  article-title: Constant-time Fourier moments for face detection — Can accuracy of Haar-like features be beaten?
  publication-title: Artificial Intelligence and Soft Computing: 16th International Conference, ICAISC 2017, Zakopane, Poland, June 11–15, 2017, Proceedings, Part I
– volume: 29
  start-page: 141
  year: 2012
  end-page: 142
  ident: b17
  article-title: The MNIST database of handwritten digit images for machine learning research
  publication-title: IEEE Signal Process Mag
– start-page: 18
  year: 2020
  end-page: 34
  ident: b20
  article-title: Branch-and-bound search for training cascades of classifiers
  publication-title: Computational Science — ICCS 2020
– volume: 56
  start-page: 5545
  year: 2023
  end-page: 5589
  ident: b2
  article-title: A survey on ensemble learning under the era of deep learning
  publication-title: Artif Intell Rev
– volume: 37
  start-page: 297
  year: 1999
  end-page: 336
  ident: b12
  article-title: Improved boosting using confidence-rated predictions
  publication-title: Mach Learn
– volume: 12
  year: 2022
  ident: b3
  article-title: A review of ensemble learning algorithms used in remote sensing applications
  publication-title: Appl Sci
– volume: 187
  year: 2022
  ident: b6
  article-title: A framework for feature selection through boosting
  publication-title: Expert Syst Appl
– year: 2020
  ident: b5
  article-title: Interpretable machine learning with an ensemble of gradient boosting machines
– start-page: 1523
  year: 2020
  end-page: 1530
  ident: b21
  article-title: Relaxed per-stage requirements for training cascades of classifiers
  publication-title: Frontiers in Artificial Intelligence and Applications — ECAI 2020, vol. 325
– year: 2016
  ident: b23
  article-title: You only look once: Unified, real-time object detection
– volume: 32
  start-page: 3798
  year: 2021
  end-page: 3818
  ident: b22
  article-title: Can boosted randomness mimic learning algorithms of geometric nature? Example of a simple algorithm that converges in probability to hard-margin SVM
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2010
  ident: b16
  article-title: CIFAR-10 (Canadian Institute for Advanced Research)
– volume: 13
  year: 2022
  ident: b7
  article-title: Current progress and open challenges for applying deep learning across the biosciences
  publication-title: Nature Commun
– year: 2023
  ident: b4
  article-title: Adaptive ensemble learning: Boosting model performance through intelligent feature fusion in deep neural networks
– volume: 19
  start-page: 29
  year: 2015
  end-page: 33
  ident: b9
  article-title: Scikit-learn: Machine learning without learning the machinery
  publication-title: GetMobile Mob. Comput. Commun.
– volume: 28
  start-page: 337
  year: 2000
  end-page: 407
  ident: b11
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann Statist
– volume: 10
  start-page: 99129
  year: 2022
  end-page: 99149
  ident: b1
  article-title: A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects
  publication-title: IEEE Access
– volume: 11
  year: 2020
  ident: b10
  article-title: Machine learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
  publication-title: Information
– year: 2022
  ident: b19
  article-title: HaGRID — Hand gesture recognition image dataset
– volume: 41
  start-page: 537
  year: 2019
  end-page: 551
  ident: b15
  article-title: Constant-time calculation of Zernike moments for detection with rotational invariance
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2010
  ident: b18
  article-title: FDDB: A benchmark for face detection in unconstrained settings
– volume: 13
  year: 2023
  ident: b8
  article-title: Interpretable and explainable machine learning models in oncology
  publication-title: Front. Oncol.
– reference: Rasolzadeh B, et al. Response Binning: Improved Weak Classifiers for Boosting. In: IEEE Intelligent Vehicles Symposium. 2006, p. 344–9.
– volume: 12
  year: 2022
  ident: 10.1016/j.softx.2024.101644_b3
  article-title: A review of ensemble learning algorithms used in remote sensing applications
  publication-title: Appl Sci
– ident: 10.1016/j.softx.2024.101644_b13
  doi: 10.1109/IVS.2006.1689652
– volume: 11
  issue: 4
  year: 2020
  ident: 10.1016/j.softx.2024.101644_b10
  article-title: Machine learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
  publication-title: Information
  doi: 10.3390/info11040193
– volume: 187
  year: 2022
  ident: 10.1016/j.softx.2024.101644_b6
  article-title: A framework for feature selection through boosting
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115895
– volume: 13
  issue: 1728
  year: 2022
  ident: 10.1016/j.softx.2024.101644_b7
  article-title: Current progress and open challenges for applying deep learning across the biosciences
  publication-title: Nature Commun
– volume: 32
  start-page: 3798
  issue: 9
  year: 2021
  ident: 10.1016/j.softx.2024.101644_b22
  article-title: Can boosted randomness mimic learning algorithms of geometric nature? Example of a simple algorithm that converges in probability to hard-margin SVM
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3059653
– year: 2016
  ident: 10.1016/j.softx.2024.101644_b23
– year: 2022
  ident: 10.1016/j.softx.2024.101644_b19
– volume: 10
  start-page: 99129
  year: 2022
  ident: 10.1016/j.softx.2024.101644_b1
  article-title: A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3207287
– volume: 37
  start-page: 297
  issue: 3
  year: 1999
  ident: 10.1016/j.softx.2024.101644_b12
  article-title: Improved boosting using confidence-rated predictions
  publication-title: Mach Learn
  doi: 10.1023/A:1007614523901
– year: 2010
  ident: 10.1016/j.softx.2024.101644_b16
– volume: 29
  start-page: 141
  issue: 6
  year: 2012
  ident: 10.1016/j.softx.2024.101644_b17
  article-title: The MNIST database of handwritten digit images for machine learning research
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2211477
– volume: 41
  start-page: 537
  issue: 3
  year: 2019
  ident: 10.1016/j.softx.2024.101644_b15
  article-title: Constant-time calculation of Zernike moments for detection with rotational invariance
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2803828
– volume: vol. 10245
  start-page: 530
  year: 2017
  ident: 10.1016/j.softx.2024.101644_b14
  article-title: Constant-time Fourier moments for face detection — Can accuracy of Haar-like features be beaten?
– volume: 19
  start-page: 29
  issue: 1
  year: 2015
  ident: 10.1016/j.softx.2024.101644_b9
  article-title: Scikit-learn: Machine learning without learning the machinery
  publication-title: GetMobile Mob. Comput. Commun.
  doi: 10.1145/2786984.2786995
– start-page: 1523
  year: 2020
  ident: 10.1016/j.softx.2024.101644_b21
  article-title: Relaxed per-stage requirements for training cascades of classifiers
– volume: 13
  year: 2023
  ident: 10.1016/j.softx.2024.101644_b8
  article-title: Interpretable and explainable machine learning models in oncology
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2023.1184428
– start-page: 18
  year: 2020
  ident: 10.1016/j.softx.2024.101644_b20
  article-title: Branch-and-bound search for training cascades of classifiers
  doi: 10.1007/978-3-030-50423-6_2
– year: 2020
  ident: 10.1016/j.softx.2024.101644_b5
– volume: 56
  start-page: 5545
  year: 2023
  ident: 10.1016/j.softx.2024.101644_b2
  article-title: A survey on ensemble learning under the era of deep learning
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10283-5
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 10.1016/j.softx.2024.101644_b11
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann Statist
  doi: 10.1214/aos/1016218223
– year: 2010
  ident: 10.1016/j.softx.2024.101644_b18
– year: 2023
  ident: 10.1016/j.softx.2024.101644_b4
SSID ssj0001528524
Score 2.2667036
Snippet Taking advantage of Numba (a high-performance just-in-time Python compiler), we provide a fast operating implementation of a boosting algorithm in which bins...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 101644
SubjectTerms CUDA
Ensemble learning
Just-in-time compilation
Logit transform binning
Numba
Object detection
Python
RealBoost
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvRCeRSxvORDj6QkziTrcGMRK4RUhKoicYv8GiloyS5slse_Z-wkaLnQHnpKbDm2Nd_E81kezzD2gyht7FDQ6ifiNALp0kjHmEVprqmAgHk4Pf91lV_cwOVtdruU6sv7hLXhgVvBHSfW2CIFN5TGgbWq0KhSesaJA6nDlXURy2JpM9XeDxYyE9CHGQoOXXNa115oRygg1AB8MEUhYv8Hi7S6qGfq9VlNJksWZ7zO1jqqyE_bKW6wL67eZN_6NAy8-yu32MNYzZvfRPhG0-m8GVX1_ISf1pz2p-5eTxw3niBXSKNxYqgcqTWfPfoDmqBzvLrvfMid5VXNr199OAH-VCnu04Won3dVw1Vtu5JZWPWd3YzP_5xdRF0mhcikOTQRpgjC5MbffM9NkWhZeOhilzmtM6cSkSAKgwnJGkwqdSEtmSmJCWZgiMVss5V6Wrsdxi3g0GGRIeYKMkPfSwOA9FoQQEMzYEe9UMtZGzCj7D3J7sqAQekxKFsMBmzkBf_e1Ee7DhWkA2WnA-XfdGDA8h62siMOLSGgrqrPR4_eQf6X2e7-j9nusa--y9Zrcp-tNI8Ld0DMptGHQYnfAET8-3c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge-BEy0ssgsoHjmSVx9ib9LaLuqqQqCrESuUU-TVSyja7bbKU8usZO0nVRQiVUxLLjkeeseezPP6GsfcEaWOHKa1-aZxFkLss0jGKKJOaPhBQhtPzz6fyZAmfzsV5z7Pt78LsnN-HOKyGlqOftJFLIZQAPGZ7UhDwHrG95enZ7FtIHycIJ5InG3iF_t5yx_cEiv4dF_RkW2_U7Y1are65mMV-d3e7CcyEPrLk-2Tb6on59Qdv4wOlP2BPe6jJZ51tPGOPXP2c7Q9pHHg_q1-wq4Vq2i8EGOfrddPOq7o54rOa0_7WXeqV48YD7ApJeE4IlyPV5ptrf8ATbJZXl30MurO8qvnZracj4D8qxX26ETW5qFquatt_ma1VL9lycfz140nUZ2KITCahjTBDSI00_ua8NEWi88KrPnbCaS2cStIEMTWYGFuAyXJd5JbcXI4JCjCEgl6xUb2u3WvGLeDUYSEQpQJhqH1uAJBeC-Ngasbsw6CjctMRbpRDJNpFGYaz9MNZdsM5ZnOvx7uqni07FJAayn7ylYkluTJw05y6sFYVGlVGzzhxkGtIxkwOVlD2wKMDFPSr6t-9R3c28xBp3_xn_bds1F5v3TvCPa0-7O39N3QSA5o
  priority: 102
  providerName: Unpaywall
Title FastRealBoostBins: An ensemble classifier for fast predictions implemented in Python via numba.jit and numba.cuda
URI https://dx.doi.org/10.1016/j.softx.2024.101644
https://doi.org/10.1016/j.softx.2024.101644
https://doaj.org/article/1dcd934e78ce4dda9bfa3dda01e48b41
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: KQ8
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: IXB
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: AKRWK
  dateStart: 20150901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8QAvfCMKrPIDj4Tm45I6vLUT1UBimoBK5Sny16FMXdq1KbD_fmfHGevLhHhKbNk5y3e5-9k-3zH2liBtbDEl7ZfGWQTCZpGKMY-yQlEBAQt_ev7ltDiZw-dFvjhgx_1dGOdWGXR_p9O9tg41ozCbo3Vdj76lhB3GZL2cFyQZNRfxMwPh0jd8Wkz_7rPkqch9blvXPnId-uBD3s1rS9ruD60TU_A1AHsGysfx37NT93fNWl79lsvlLTs0e8weBgDJJ90Yn7AD2zxlj_rkDDz8q8_Y5Uxu268EA6er1bad1s32A580nFat9kItLdcONtdI1DjhVo7Umq837tjGSyKvL4JnuTW8bvjZlQsywH_VkrskIvL9ed1y2ZhQ0jsjn7P57OP345Mo5FeIdFZAG2GGkOpCu_vwhS4TJUrH0NjmVqncyiRNEFONiTYl6EyoUhgyXgITzEETtnnBDptVY18ybgDHFsscsZCQa-ovNADSa6ktjPWAvesntVp3YTSq3r_svPI8qBwPqo4HAzZ1E3_T1MXA9hWrzc8qCEGVGBpXBnYsiIQxslQoM3rGiQWhIBmwomdbtSdS9Kn6burRDZP_ZbSv_pfQa_bAlTr_yTfssN3s7BFhnFYN_d7A0IvykN2bn55NflwDOvv-pw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeBgvfCMKG_iBR0KT-Jwme1snqgLbhGCT-mbZjg9l6tLSpsD--52dZNAXhHhK7Ng5y3e5-zk-3zH2hiBt7DAl7ZfGIoLcicjEKCORGSogYBZ2z0_PsukFfJzJ2Q477s_CeLfKTve3Oj1o665m2M3mcFlVw68pYYcRWS_vBUlGTdxhd0ESOvGn-Gbj3z9aZJrLkNzWd4h8jz76UPDzWpO6-0ULxRRCDcCWhQqB_LcM1d6mXurrn3o-_8MQTR6y-x2C5EftIB-xHVc_Zg_67Ay8-1ifsO8TvW6-EA4cLxbrZlzV60N-VHNatrorM3fcetxcIVHjBFw5Umu-XPl9myCKvLrqXMtdyauaf772UQb4j0pzn0VEv7usGq7rsivZTamfsovJ-_PjadQlWIisyKCJUCCkNrP-QHxmi8Tkhedo7KQzRjqdpAliajGxZQFW5KbIS7JeOSYowRK4ecZ260XtnjNeAo4cFhIx0yAt9c8tANJtYR2M7IC97SdVLds4Gqp3MLtUgQfK80C1PBiwsZ_426Y-CHaoWKy-qU4KVFLSuAS4UU4kylIXBrWga5w4yA0kA5b1bFNbMkWvqv5OPbpl8r-M9sX_EnrN9qbnpyfq5MPZp5fsnn_SOlPus91mtXEHBHga8yoI9A0iG_8o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge-BEy0ssgsoHjmSVx9ib9LaLuqqQqCrESuUU-TVSyja7bbKU8usZO0nVRQiVUxLLjkeeseezPP6GsfcEaWOHKa1-aZxFkLss0jGKKJOaPhBQhtPzz6fyZAmfzsV5z7Pt78LsnN-HOKyGlqOftJFLIZQAPGZ7UhDwHrG95enZ7FtIHycIJ5InG3iF_t5yx_cEiv4dF_RkW2_U7Y1are65mMV-d3e7CcyEPrLk-2Tb6on59Qdv4wOlP2BPe6jJZ51tPGOPXP2c7Q9pHHg_q1-wq4Vq2i8EGOfrddPOq7o54rOa0_7WXeqV48YD7ApJeE4IlyPV5ptrf8ATbJZXl30MurO8qvnZracj4D8qxX26ETW5qFquatt_ma1VL9lycfz140nUZ2KITCahjTBDSI00_ua8NEWi88KrPnbCaS2cStIEMTWYGFuAyXJd5JbcXI4JCjCEgl6xUb2u3WvGLeDUYSEQpQJhqH1uAJBeC-Ngasbsw6CjctMRbpRDJNpFGYaz9MNZdsM5ZnOvx7uqni07FJAayn7ylYkluTJw05y6sFYVGlVGzzhxkGtIxkwOVlD2wKMDFPSr6t-9R3c28xBp3_xn_bds1F5v3TvCPa0-7O39N3QSA5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FastRealBoostBins%3A+An+ensemble+classifier+for+fast+predictions+implemented+in+Python+via+numba.jit+and+numba.cuda&rft.jtitle=SoftwareX&rft.au=Kl%C4%99sk%2C+Przemys%C5%82aw&rft.date=2024-05-01&rft.pub=Elsevier+B.V&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=26&rft_id=info:doi/10.1016%2Fj.softx.2024.101644&rft.externalDocID=S2352711024000153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon