FastRealBoostBins: An ensemble classifier for fast predictions implemented in Python via numba.jit and numba.cuda
Taking advantage of Numba (a high-performance just-in-time Python compiler), we provide a fast operating implementation of a boosting algorithm in which bins with logit transform values play the role of “weak learners”. The software comes as a Python class compliant with scikit-learn library. It all...
Saved in:
| Published in | SoftwareX Vol. 26; p. 101644 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.05.2024
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2352-7110 2352-7110 |
| DOI | 10.1016/j.softx.2024.101644 |
Cover
| Abstract | Taking advantage of Numba (a high-performance just-in-time Python compiler), we provide a fast operating implementation of a boosting algorithm in which bins with logit transform values play the role of “weak learners”. The software comes as a Python class compliant with scikit-learn library. It allows to choose between CPU and GPU computations for each of the two stages: fit and predict (decision function). The efficiency of implementation has been confirmed on large data sets where the total of array entries (sample size × features count) was of order 1010 at fit stage and 108 at predict stage. In the case of GPU-based fit, the main boosting loop is designed as five CUDA kernels responsible for: weights binning, computing logits, computing exponential errors, finding the error minimizer, and examples reweighting. The GPU-based predict is computed by a single CUDA kernel. We apply suitable reduction patterns and mutexes to carry out summations and ‘argmin’ operations. To test the predict stage performance, we compare FastRealBoostBins against state-of-the-art classifiers from sklearn.ensemble using large data sets and focusing on response times. In an additional experiment, we make our classifiers operate as object detectors under heavy computational load (over 60k queries per a video frame using ensembles of size 2048). |
|---|---|
| AbstractList | Taking advantage of Numba (a high-performance just-in-time Python compiler), we provide a fast operating implementation of a boosting algorithm in which bins with logit transform values play the role of “weak learners”. The software comes as a Python class compliant with scikit-learn library. It allows to choose between CPU and GPU computations for each of the two stages: fit and predict (decision function). The efficiency of implementation has been confirmed on large data sets where the total of array entries (sample size × features count) was of order 1010 at fit stage and 108 at predict stage. In the case of GPU-based fit, the main boosting loop is designed as five CUDA kernels responsible for: weights binning, computing logits, computing exponential errors, finding the error minimizer, and examples reweighting. The GPU-based predict is computed by a single CUDA kernel. We apply suitable reduction patterns and mutexes to carry out summations and ‘argmin’ operations. To test the predict stage performance, we compare FastRealBoostBins against state-of-the-art classifiers from sklearn.ensemble using large data sets and focusing on response times. In an additional experiment, we make our classifiers operate as object detectors under heavy computational load (over 60k queries per a video frame using ensembles of size 2048). |
| ArticleNumber | 101644 |
| Author | Klęsk, Przemysław |
| Author_xml | – sequence: 1 givenname: Przemysław orcidid: 0000-0002-5579-187X surname: Klęsk fullname: Klęsk, Przemysław email: pklesk@zut.edu.pl organization: Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in Szczecin, ul. Żołnierska 49, 71-210 Szczecin, Poland |
| BookMark | eNqNkd9qFTEQxhepYK19Am_yAueYf7vdFbxoi9VCQRG9DrOTiWbZTY5JTut5e9OzRbwSL8Jkhvl-DN_3sjkJMVDTvBZ8K7jo3kzbHF35tZVc6uNE62fNqVSt3FwIwU_--r9oznOeOOeilX0r9Wnz8wZy-UIwX8WYy5UP-S27DIxCpmWcieEMOXvnKTEX66vbbJfIeiw-hsz8sptpoVDIMh_Y50P5EQO798DCfhlhO_nCINinDvcWXjXPHcyZzp_qWfPt5v3X64-bu08fbq8v7zaoOl02TjktsUPZatXhIMZ-IETg1NI4tgRCCuckOoF20Kj6cejtMPDeCddq5J06a25Xro0wmV3yC6SDieDNcRDTdwOpeJzJCFshStNFj6SthWF0oGrlgnQ_alFZemXtww4ODzDPf4CCm0fPzWSOKZjHFMyaQpWpVYYp5pzI_afq3aqi6s59dd5k9BSwmp4ISz3f_1P_G1EXpts |
| Cites_doi | 10.1109/IVS.2006.1689652 10.3390/info11040193 10.1016/j.eswa.2021.115895 10.1109/TNNLS.2021.3059653 10.1109/ACCESS.2022.3207287 10.1023/A:1007614523901 10.1109/MSP.2012.2211477 10.1109/TPAMI.2018.2803828 10.1145/2786984.2786995 10.3389/fonc.2023.1184428 10.1007/978-3-030-50423-6_2 10.1007/s10462-022-10283-5 10.1214/aos/1016218223 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.softx.2024.101644 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2352-7110 |
| ExternalDocumentID | oai_doaj_org_article_1dcd934e78ce4dda9bfa3dda01e48b41 10.1016/j.softx.2024.101644 10_1016_j_softx_2024_101644 S2352711024000153 |
| GroupedDBID | 0R~ 457 5VS 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ IXB KQ8 M~E O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c364t-f3f42c6c25436c91b89ecca0e5ebb5ea121ff2cf1cd94c38b98d9908f1f54c063 |
| IEDL.DBID | IXB |
| ISSN | 2352-7110 |
| IngestDate | Fri Oct 03 12:45:46 EDT 2025 Tue Aug 19 22:04:28 EDT 2025 Wed Oct 01 06:34:06 EDT 2025 Sat Apr 19 15:58:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CUDA Numba Just-in-time compilation RealBoost Object detection Ensemble learning Logit transform binning Python |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-f3f42c6c25436c91b89ecca0e5ebb5ea121ff2cf1cd94c38b98d9908f1f54c063 |
| ORCID | 0000-0002-5579-187X |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352711024000153 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1dcd934e78ce4dda9bfa3dda01e48b41 unpaywall_primary_10_1016_j_softx_2024_101644 crossref_primary_10_1016_j_softx_2024_101644 elsevier_sciencedirect_doi_10_1016_j_softx_2024_101644 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | SoftwareX |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Konstantinov, Utkin (b5) 2020 Sychel, Klęsk, Bera (b21) 2020 Sychel, Klęsk, Bera (b20) 2020 Raschka, Patterson, Nolet (b10) 2020; 11 Klęsk, Korzeń (b22) 2021; 32 Yang, Lv, Chen (b2) 2023; 56 Varoquaux (b9) 2015; 19 Mungoli (b4) 2023 Klęsk (b14) 2017; vol. 10245 Krizhevsky, Nair, Hinton (b16) 2010 Friedman, Hastie, Tibshirani (b11) 2000; 28 Schapire, Singer (b12) 1999; 37 Hrinivich, Wang, Wang (b8) 2023; 13 Jain, Learned-Miller (b18) 2010 Redmon (b23) 2016 Mienye, Sun (b1) 2022; 10 Alsahaf (b6) 2022; 187 Li (b17) 2012; 29 Zhang, Liu, Shen (b3) 2022; 12 Rasolzadeh B, et al. Response Binning: Improved Weak Classifiers for Boosting. In: IEEE Intelligent Vehicles Symposium. 2006, p. 344–9. Bera, Klęsk, Sychel (b15) 2019; 41 Kapitanov, Makhlyarchuk, Kvanchiani (b19) 2022 Sapoval (b7) 2022; 13 Klęsk (10.1016/j.softx.2024.101644_b14) 2017; vol. 10245 Sychel (10.1016/j.softx.2024.101644_b21) 2020 Mienye (10.1016/j.softx.2024.101644_b1) 2022; 10 Schapire (10.1016/j.softx.2024.101644_b12) 1999; 37 Jain (10.1016/j.softx.2024.101644_b18) 2010 Friedman (10.1016/j.softx.2024.101644_b11) 2000; 28 Raschka (10.1016/j.softx.2024.101644_b10) 2020; 11 Konstantinov (10.1016/j.softx.2024.101644_b5) 2020 Yang (10.1016/j.softx.2024.101644_b2) 2023; 56 Li (10.1016/j.softx.2024.101644_b17) 2012; 29 Sychel (10.1016/j.softx.2024.101644_b20) 2020 Hrinivich (10.1016/j.softx.2024.101644_b8) 2023; 13 Varoquaux (10.1016/j.softx.2024.101644_b9) 2015; 19 Mungoli (10.1016/j.softx.2024.101644_b4) 2023 Bera (10.1016/j.softx.2024.101644_b15) 2019; 41 Redmon (10.1016/j.softx.2024.101644_b23) 2016 10.1016/j.softx.2024.101644_b13 Sapoval (10.1016/j.softx.2024.101644_b7) 2022; 13 Alsahaf (10.1016/j.softx.2024.101644_b6) 2022; 187 Krizhevsky (10.1016/j.softx.2024.101644_b16) 2010 Zhang (10.1016/j.softx.2024.101644_b3) 2022; 12 Kapitanov (10.1016/j.softx.2024.101644_b19) 2022 Klęsk (10.1016/j.softx.2024.101644_b22) 2021; 32 |
| References_xml | – volume: vol. 10245 start-page: 530 year: 2017 end-page: 543 ident: b14 article-title: Constant-time Fourier moments for face detection — Can accuracy of Haar-like features be beaten? publication-title: Artificial Intelligence and Soft Computing: 16th International Conference, ICAISC 2017, Zakopane, Poland, June 11–15, 2017, Proceedings, Part I – volume: 29 start-page: 141 year: 2012 end-page: 142 ident: b17 article-title: The MNIST database of handwritten digit images for machine learning research publication-title: IEEE Signal Process Mag – start-page: 18 year: 2020 end-page: 34 ident: b20 article-title: Branch-and-bound search for training cascades of classifiers publication-title: Computational Science — ICCS 2020 – volume: 56 start-page: 5545 year: 2023 end-page: 5589 ident: b2 article-title: A survey on ensemble learning under the era of deep learning publication-title: Artif Intell Rev – volume: 37 start-page: 297 year: 1999 end-page: 336 ident: b12 article-title: Improved boosting using confidence-rated predictions publication-title: Mach Learn – volume: 12 year: 2022 ident: b3 article-title: A review of ensemble learning algorithms used in remote sensing applications publication-title: Appl Sci – volume: 187 year: 2022 ident: b6 article-title: A framework for feature selection through boosting publication-title: Expert Syst Appl – year: 2020 ident: b5 article-title: Interpretable machine learning with an ensemble of gradient boosting machines – start-page: 1523 year: 2020 end-page: 1530 ident: b21 article-title: Relaxed per-stage requirements for training cascades of classifiers publication-title: Frontiers in Artificial Intelligence and Applications — ECAI 2020, vol. 325 – year: 2016 ident: b23 article-title: You only look once: Unified, real-time object detection – volume: 32 start-page: 3798 year: 2021 end-page: 3818 ident: b22 article-title: Can boosted randomness mimic learning algorithms of geometric nature? Example of a simple algorithm that converges in probability to hard-margin SVM publication-title: IEEE Trans Neural Netw Learn Syst – year: 2010 ident: b16 article-title: CIFAR-10 (Canadian Institute for Advanced Research) – volume: 13 year: 2022 ident: b7 article-title: Current progress and open challenges for applying deep learning across the biosciences publication-title: Nature Commun – year: 2023 ident: b4 article-title: Adaptive ensemble learning: Boosting model performance through intelligent feature fusion in deep neural networks – volume: 19 start-page: 29 year: 2015 end-page: 33 ident: b9 article-title: Scikit-learn: Machine learning without learning the machinery publication-title: GetMobile Mob. Comput. Commun. – volume: 28 start-page: 337 year: 2000 end-page: 407 ident: b11 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann Statist – volume: 10 start-page: 99129 year: 2022 end-page: 99149 ident: b1 article-title: A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects publication-title: IEEE Access – volume: 11 year: 2020 ident: b10 article-title: Machine learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence publication-title: Information – year: 2022 ident: b19 article-title: HaGRID — Hand gesture recognition image dataset – volume: 41 start-page: 537 year: 2019 end-page: 551 ident: b15 article-title: Constant-time calculation of Zernike moments for detection with rotational invariance publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2010 ident: b18 article-title: FDDB: A benchmark for face detection in unconstrained settings – volume: 13 year: 2023 ident: b8 article-title: Interpretable and explainable machine learning models in oncology publication-title: Front. Oncol. – reference: Rasolzadeh B, et al. Response Binning: Improved Weak Classifiers for Boosting. In: IEEE Intelligent Vehicles Symposium. 2006, p. 344–9. – volume: 12 year: 2022 ident: 10.1016/j.softx.2024.101644_b3 article-title: A review of ensemble learning algorithms used in remote sensing applications publication-title: Appl Sci – ident: 10.1016/j.softx.2024.101644_b13 doi: 10.1109/IVS.2006.1689652 – volume: 11 issue: 4 year: 2020 ident: 10.1016/j.softx.2024.101644_b10 article-title: Machine learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence publication-title: Information doi: 10.3390/info11040193 – volume: 187 year: 2022 ident: 10.1016/j.softx.2024.101644_b6 article-title: A framework for feature selection through boosting publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115895 – volume: 13 issue: 1728 year: 2022 ident: 10.1016/j.softx.2024.101644_b7 article-title: Current progress and open challenges for applying deep learning across the biosciences publication-title: Nature Commun – volume: 32 start-page: 3798 issue: 9 year: 2021 ident: 10.1016/j.softx.2024.101644_b22 article-title: Can boosted randomness mimic learning algorithms of geometric nature? Example of a simple algorithm that converges in probability to hard-margin SVM publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3059653 – year: 2016 ident: 10.1016/j.softx.2024.101644_b23 – year: 2022 ident: 10.1016/j.softx.2024.101644_b19 – volume: 10 start-page: 99129 year: 2022 ident: 10.1016/j.softx.2024.101644_b1 article-title: A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3207287 – volume: 37 start-page: 297 issue: 3 year: 1999 ident: 10.1016/j.softx.2024.101644_b12 article-title: Improved boosting using confidence-rated predictions publication-title: Mach Learn doi: 10.1023/A:1007614523901 – year: 2010 ident: 10.1016/j.softx.2024.101644_b16 – volume: 29 start-page: 141 issue: 6 year: 2012 ident: 10.1016/j.softx.2024.101644_b17 article-title: The MNIST database of handwritten digit images for machine learning research publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2211477 – volume: 41 start-page: 537 issue: 3 year: 2019 ident: 10.1016/j.softx.2024.101644_b15 article-title: Constant-time calculation of Zernike moments for detection with rotational invariance publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2803828 – volume: vol. 10245 start-page: 530 year: 2017 ident: 10.1016/j.softx.2024.101644_b14 article-title: Constant-time Fourier moments for face detection — Can accuracy of Haar-like features be beaten? – volume: 19 start-page: 29 issue: 1 year: 2015 ident: 10.1016/j.softx.2024.101644_b9 article-title: Scikit-learn: Machine learning without learning the machinery publication-title: GetMobile Mob. Comput. Commun. doi: 10.1145/2786984.2786995 – start-page: 1523 year: 2020 ident: 10.1016/j.softx.2024.101644_b21 article-title: Relaxed per-stage requirements for training cascades of classifiers – volume: 13 year: 2023 ident: 10.1016/j.softx.2024.101644_b8 article-title: Interpretable and explainable machine learning models in oncology publication-title: Front. Oncol. doi: 10.3389/fonc.2023.1184428 – start-page: 18 year: 2020 ident: 10.1016/j.softx.2024.101644_b20 article-title: Branch-and-bound search for training cascades of classifiers doi: 10.1007/978-3-030-50423-6_2 – year: 2020 ident: 10.1016/j.softx.2024.101644_b5 – volume: 56 start-page: 5545 year: 2023 ident: 10.1016/j.softx.2024.101644_b2 article-title: A survey on ensemble learning under the era of deep learning publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10283-5 – volume: 28 start-page: 337 issue: 2 year: 2000 ident: 10.1016/j.softx.2024.101644_b11 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann Statist doi: 10.1214/aos/1016218223 – year: 2010 ident: 10.1016/j.softx.2024.101644_b18 – year: 2023 ident: 10.1016/j.softx.2024.101644_b4 |
| SSID | ssj0001528524 |
| Score | 2.2667036 |
| Snippet | Taking advantage of Numba (a high-performance just-in-time Python compiler), we provide a fast operating implementation of a boosting algorithm in which bins... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 101644 |
| SubjectTerms | CUDA Ensemble learning Just-in-time compilation Logit transform binning Numba Object detection Python RealBoost |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvRCeRSxvORDj6QkziTrcGMRK4RUhKoicYv8GiloyS5slse_Z-wkaLnQHnpKbDm2Nd_E81kezzD2gyht7FDQ6ifiNALp0kjHmEVprqmAgHk4Pf91lV_cwOVtdruU6sv7hLXhgVvBHSfW2CIFN5TGgbWq0KhSesaJA6nDlXURy2JpM9XeDxYyE9CHGQoOXXNa115oRygg1AB8MEUhYv8Hi7S6qGfq9VlNJksWZ7zO1jqqyE_bKW6wL67eZN_6NAy8-yu32MNYzZvfRPhG0-m8GVX1_ISf1pz2p-5eTxw3niBXSKNxYqgcqTWfPfoDmqBzvLrvfMid5VXNr199OAH-VCnu04Won3dVw1Vtu5JZWPWd3YzP_5xdRF0mhcikOTQRpgjC5MbffM9NkWhZeOhilzmtM6cSkSAKgwnJGkwqdSEtmSmJCWZgiMVss5V6Wrsdxi3g0GGRIeYKMkPfSwOA9FoQQEMzYEe9UMtZGzCj7D3J7sqAQekxKFsMBmzkBf_e1Ee7DhWkA2WnA-XfdGDA8h62siMOLSGgrqrPR4_eQf6X2e7-j9nusa--y9Zrcp-tNI8Ld0DMptGHQYnfAET8-3c priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge-BEy0ssgsoHjmSVx9ib9LaLuqqQqCrESuUU-TVSyja7bbKU8usZO0nVRQiVUxLLjkeeseezPP6GsfcEaWOHKa1-aZxFkLss0jGKKJOaPhBQhtPzz6fyZAmfzsV5z7Pt78LsnN-HOKyGlqOftJFLIZQAPGZ7UhDwHrG95enZ7FtIHycIJ5InG3iF_t5yx_cEiv4dF_RkW2_U7Y1are65mMV-d3e7CcyEPrLk-2Tb6on59Qdv4wOlP2BPe6jJZ51tPGOPXP2c7Q9pHHg_q1-wq4Vq2i8EGOfrddPOq7o54rOa0_7WXeqV48YD7ApJeE4IlyPV5ptrf8ATbJZXl30MurO8qvnZracj4D8qxX26ETW5qFquatt_ma1VL9lycfz140nUZ2KITCahjTBDSI00_ua8NEWi88KrPnbCaS2cStIEMTWYGFuAyXJd5JbcXI4JCjCEgl6xUb2u3WvGLeDUYSEQpQJhqH1uAJBeC-Ngasbsw6CjctMRbpRDJNpFGYaz9MNZdsM5ZnOvx7uqni07FJAayn7ylYkluTJw05y6sFYVGlVGzzhxkGtIxkwOVlD2wKMDFPSr6t-9R3c28xBp3_xn_bds1F5v3TvCPa0-7O39N3QSA5o priority: 102 providerName: Unpaywall |
| Title | FastRealBoostBins: An ensemble classifier for fast predictions implemented in Python via numba.jit and numba.cuda |
| URI | https://dx.doi.org/10.1016/j.softx.2024.101644 https://doi.org/10.1016/j.softx.2024.101644 https://doaj.org/article/1dcd934e78ce4dda9bfa3dda01e48b41 |
| UnpaywallVersion | publishedVersion |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: KQ8 dateStart: 20150901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: IXB dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: AKRWK dateStart: 20150901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8QAvfCMKrPIDj4Tm45I6vLUT1UBimoBK5Sny16FMXdq1KbD_fmfHGevLhHhKbNk5y3e5-9k-3zH2liBtbDEl7ZfGWQTCZpGKMY-yQlEBAQt_ev7ltDiZw-dFvjhgx_1dGOdWGXR_p9O9tg41ozCbo3Vdj76lhB3GZL2cFyQZNRfxMwPh0jd8Wkz_7rPkqch9blvXPnId-uBD3s1rS9ruD60TU_A1AHsGysfx37NT93fNWl79lsvlLTs0e8weBgDJJ90Yn7AD2zxlj_rkDDz8q8_Y5Uxu268EA6er1bad1s32A580nFat9kItLdcONtdI1DjhVo7Umq837tjGSyKvL4JnuTW8bvjZlQsywH_VkrskIvL9ed1y2ZhQ0jsjn7P57OP345Mo5FeIdFZAG2GGkOpCu_vwhS4TJUrH0NjmVqncyiRNEFONiTYl6EyoUhgyXgITzEETtnnBDptVY18ybgDHFsscsZCQa-ovNADSa6ktjPWAvesntVp3YTSq3r_svPI8qBwPqo4HAzZ1E3_T1MXA9hWrzc8qCEGVGBpXBnYsiIQxslQoM3rGiQWhIBmwomdbtSdS9Kn6burRDZP_ZbSv_pfQa_bAlTr_yTfssN3s7BFhnFYN_d7A0IvykN2bn55NflwDOvv-pw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeBgvfCMKG_iBR0KT-Jwme1snqgLbhGCT-mbZjg9l6tLSpsD--52dZNAXhHhK7Ng5y3e5-zk-3zH2hiBt7DAl7ZfGIoLcicjEKCORGSogYBZ2z0_PsukFfJzJ2Q477s_CeLfKTve3Oj1o665m2M3mcFlVw68pYYcRWS_vBUlGTdxhd0ESOvGn-Gbj3z9aZJrLkNzWd4h8jz76UPDzWpO6-0ULxRRCDcCWhQqB_LcM1d6mXurrn3o-_8MQTR6y-x2C5EftIB-xHVc_Zg_67Ay8-1ifsO8TvW6-EA4cLxbrZlzV60N-VHNatrorM3fcetxcIVHjBFw5Umu-XPl9myCKvLrqXMtdyauaf772UQb4j0pzn0VEv7usGq7rsivZTamfsovJ-_PjadQlWIisyKCJUCCkNrP-QHxmi8Tkhedo7KQzRjqdpAliajGxZQFW5KbIS7JeOSYowRK4ecZ260XtnjNeAo4cFhIx0yAt9c8tANJtYR2M7IC97SdVLds4Gqp3MLtUgQfK80C1PBiwsZ_426Y-CHaoWKy-qU4KVFLSuAS4UU4kylIXBrWga5w4yA0kA5b1bFNbMkWvqv5OPbpl8r-M9sX_EnrN9qbnpyfq5MPZp5fsnn_SOlPus91mtXEHBHga8yoI9A0iG_8o |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge-BEy0ssgsoHjmSVx9ib9LaLuqqQqCrESuUU-TVSyja7bbKU8usZO0nVRQiVUxLLjkeeseezPP6GsfcEaWOHKa1-aZxFkLss0jGKKJOaPhBQhtPzz6fyZAmfzsV5z7Pt78LsnN-HOKyGlqOftJFLIZQAPGZ7UhDwHrG95enZ7FtIHycIJ5InG3iF_t5yx_cEiv4dF_RkW2_U7Y1are65mMV-d3e7CcyEPrLk-2Tb6on59Qdv4wOlP2BPe6jJZ51tPGOPXP2c7Q9pHHg_q1-wq4Vq2i8EGOfrddPOq7o54rOa0_7WXeqV48YD7ApJeE4IlyPV5ptrf8ATbJZXl30MurO8qvnZracj4D8qxX26ETW5qFquatt_ma1VL9lycfz140nUZ2KITCahjTBDSI00_ua8NEWi88KrPnbCaS2cStIEMTWYGFuAyXJd5JbcXI4JCjCEgl6xUb2u3WvGLeDUYSEQpQJhqH1uAJBeC-Ngasbsw6CjctMRbpRDJNpFGYaz9MNZdsM5ZnOvx7uqni07FJAayn7ylYkluTJw05y6sFYVGlVGzzhxkGtIxkwOVlD2wKMDFPSr6t-9R3c28xBp3_xn_bds1F5v3TvCPa0-7O39N3QSA5o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FastRealBoostBins%3A+An+ensemble+classifier+for+fast+predictions+implemented+in+Python+via+numba.jit+and+numba.cuda&rft.jtitle=SoftwareX&rft.au=Kl%C4%99sk%2C+Przemys%C5%82aw&rft.date=2024-05-01&rft.pub=Elsevier+B.V&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=26&rft_id=info:doi/10.1016%2Fj.softx.2024.101644&rft.externalDocID=S2352711024000153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon |