Rice-SVBDete: a detection algorithm for small vascular bundles in rice stem’s cross-sections

Vascular bundles play a vital role in the growth, development, and yield formation of rice. Accurate measurement of their structure and distribution is essential for improving rice breeding and cultivation strategies. However, the detection of small vascular bundles from cross-sectional images is ch...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 16; p. 1589161
Main Authors Zhu, Xiaoying, Zhou, Weiyu, Li, Jianguo, Yang, Mingchong, Zhou, Haiyu, Huang, Jiada, Shi, Jiahua, Shen, Jun, Pang, Guangyao, Wang, Lingqiang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2025
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2025.1589161

Cover

Abstract Vascular bundles play a vital role in the growth, development, and yield formation of rice. Accurate measurement of their structure and distribution is essential for improving rice breeding and cultivation strategies. However, the detection of small vascular bundles from cross-sectional images is challenging due to their tiny size and the noisy background typically present in microscopy images. To address these challenges, we propose Rice-SVBDete, a specialized deep learning-based detection algorithm for small vascular bundles in rice stem cross-sections. Our approach enhances the YOLOv8 architecture by incorporating three key innovations: Dynamic Snake-shaped Convolution (DSConv) in the Backbone network to adaptively capture intricate structural details of small targets. A Multi-scale Feature Fusion (MFF) mechanism, combining features from the Backbone, Feature Pyramid Network (FPN), and Path Aggregation Network (PAN), to better handle objects at multiple scales. A new Powerful Intersection over Union (PIoU) loss function that emphasizes spatial consistency and positional accuracy, replacing the standard CIoU loss. Experimental evaluations show that Rice-SVBDete achieves a precision of 0.789, recall of 0.771, and mean Average Precision (mAP@.5) of 0.728 at an IoU threshold of 0.50. Compared to the baseline YOLOv8, Rice-SVBDete improves precision by 0.179, recall by 0.201, and mAP@.5 by 0.227, demonstrating its effectiveness in small object detection. These results highlight Rice-SVBDete's potential for accurately identifying small vascular bundles in complex backgrounds, providing a valuable tool for rice anatomical analysis and supporting advancements in precision agriculture and plant science research.
AbstractList IntroductionVascular bundles play a vital role in the growth, development, and yield formation of rice. Accurate measurement of their structure and distribution is essential for improving rice breeding and cultivation strategies. However, the detection of small vascular bundles from cross-sectional images is challenging due to their tiny size and the noisy background typically present in microscopy images.MethodsTo address these challenges, we propose Rice-SVBDete, a specialized deep learning-based detection algorithm for small vascular bundles in rice stem cross-sections. Our approach enhances the YOLOv8 architecture by incorporating three key innovations: Dynamic Snake-shaped Convolution (DSConv) in the Backbone network to adaptively capture intricate structural details of small targets. A Multi-scale Feature Fusion (MFF) mechanism, combining features from the Backbone, Feature Pyramid Network (FPN), and Path Aggregation Network (PAN), to better handle objects at multiple scales. A new Powerful Intersection over Union (PIoU) loss function that emphasizes spatial consistency and positional accuracy, replacing the standard CIoU loss.ResultsExperimental evaluations show that Rice-SVBDete achieves a precision of 0.789, recall of 0.771, and mean Average Precision (mAP@.5) of 0.728 at an IoU threshold of 0.50. Compared to the baseline YOLOv8, Rice-SVBDete improves precision by 0.179, recall by 0.201, and mAP@.5 by 0.227, demonstrating its effectiveness in small object detection.DiscussionThese results highlight Rice-SVBDete's potential for accurately identifying small vascular bundles in complex backgrounds, providing a valuable tool for rice anatomical analysis and supporting advancements in precision agriculture and plant science research.
Vascular bundles play a vital role in the growth, development, and yield formation of rice. Accurate measurement of their structure and distribution is essential for improving rice breeding and cultivation strategies. However, the detection of small vascular bundles from cross-sectional images is challenging due to their tiny size and the noisy background typically present in microscopy images. To address these challenges, we propose Rice-SVBDete, a specialized deep learning-based detection algorithm for small vascular bundles in rice stem cross-sections. Our approach enhances the YOLOv8 architecture by incorporating three key innovations: Dynamic Snake-shaped Convolution (DSConv) in the Backbone network to adaptively capture intricate structural details of small targets. A Multi-scale Feature Fusion (MFF) mechanism, combining features from the Backbone, Feature Pyramid Network (FPN), and Path Aggregation Network (PAN), to better handle objects at multiple scales. A new Powerful Intersection over Union (PIoU) loss function that emphasizes spatial consistency and positional accuracy, replacing the standard CIoU loss. Experimental evaluations show that Rice-SVBDete achieves a precision of 0.789, recall of 0.771, and mean Average Precision (mAP@.5) of 0.728 at an IoU threshold of 0.50. Compared to the baseline YOLOv8, Rice-SVBDete improves precision by 0.179, recall by 0.201, and mAP@.5 by 0.227, demonstrating its effectiveness in small object detection. These results highlight Rice-SVBDete's potential for accurately identifying small vascular bundles in complex backgrounds, providing a valuable tool for rice anatomical analysis and supporting advancements in precision agriculture and plant science research.
Vascular bundles play a vital role in the growth, development, and yield formation of rice. Accurate measurement of their structure and distribution is essential for improving rice breeding and cultivation strategies. However, the detection of small vascular bundles from cross-sectional images is challenging due to their tiny size and the noisy background typically present in microscopy images.IntroductionVascular bundles play a vital role in the growth, development, and yield formation of rice. Accurate measurement of their structure and distribution is essential for improving rice breeding and cultivation strategies. However, the detection of small vascular bundles from cross-sectional images is challenging due to their tiny size and the noisy background typically present in microscopy images.To address these challenges, we propose Rice-SVBDete, a specialized deep learning-based detection algorithm for small vascular bundles in rice stem cross-sections. Our approach enhances the YOLOv8 architecture by incorporating three key innovations: Dynamic Snake-shaped Convolution (DSConv) in the Backbone network to adaptively capture intricate structural details of small targets. A Multi-scale Feature Fusion (MFF) mechanism, combining features from the Backbone, Feature Pyramid Network (FPN), and Path Aggregation Network (PAN), to better handle objects at multiple scales. A new Powerful Intersection over Union (PIoU) loss function that emphasizes spatial consistency and positional accuracy, replacing the standard CIoU loss.MethodsTo address these challenges, we propose Rice-SVBDete, a specialized deep learning-based detection algorithm for small vascular bundles in rice stem cross-sections. Our approach enhances the YOLOv8 architecture by incorporating three key innovations: Dynamic Snake-shaped Convolution (DSConv) in the Backbone network to adaptively capture intricate structural details of small targets. A Multi-scale Feature Fusion (MFF) mechanism, combining features from the Backbone, Feature Pyramid Network (FPN), and Path Aggregation Network (PAN), to better handle objects at multiple scales. A new Powerful Intersection over Union (PIoU) loss function that emphasizes spatial consistency and positional accuracy, replacing the standard CIoU loss.Experimental evaluations show that Rice-SVBDete achieves a precision of 0.789, recall of 0.771, and mean Average Precision (mAP@.5) of 0.728 at an IoU threshold of 0.50. Compared to the baseline YOLOv8, Rice-SVBDete improves precision by 0.179, recall by 0.201, and mAP@.5 by 0.227, demonstrating its effectiveness in small object detection.ResultsExperimental evaluations show that Rice-SVBDete achieves a precision of 0.789, recall of 0.771, and mean Average Precision (mAP@.5) of 0.728 at an IoU threshold of 0.50. Compared to the baseline YOLOv8, Rice-SVBDete improves precision by 0.179, recall by 0.201, and mAP@.5 by 0.227, demonstrating its effectiveness in small object detection.These results highlight Rice-SVBDete's potential for accurately identifying small vascular bundles in complex backgrounds, providing a valuable tool for rice anatomical analysis and supporting advancements in precision agriculture and plant science research.DiscussionThese results highlight Rice-SVBDete's potential for accurately identifying small vascular bundles in complex backgrounds, providing a valuable tool for rice anatomical analysis and supporting advancements in precision agriculture and plant science research.
Author Yang, Mingchong
Zhou, Haiyu
Shen, Jun
Wang, Lingqiang
Li, Jianguo
Pang, Guangyao
Zhou, Weiyu
Zhu, Xiaoying
Huang, Jiada
Shi, Jiahua
Author_xml – sequence: 1
  givenname: Xiaoying
  surname: Zhu
  fullname: Zhu, Xiaoying
– sequence: 2
  givenname: Weiyu
  surname: Zhou
  fullname: Zhou, Weiyu
– sequence: 3
  givenname: Jianguo
  surname: Li
  fullname: Li, Jianguo
– sequence: 4
  givenname: Mingchong
  surname: Yang
  fullname: Yang, Mingchong
– sequence: 5
  givenname: Haiyu
  surname: Zhou
  fullname: Zhou, Haiyu
– sequence: 6
  givenname: Jiada
  surname: Huang
  fullname: Huang, Jiada
– sequence: 7
  givenname: Jiahua
  surname: Shi
  fullname: Shi, Jiahua
– sequence: 8
  givenname: Jun
  surname: Shen
  fullname: Shen, Jun
– sequence: 9
  givenname: Guangyao
  surname: Pang
  fullname: Pang, Guangyao
– sequence: 10
  givenname: Lingqiang
  surname: Wang
  fullname: Wang, Lingqiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40491816$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1TAQhi1UREvpA7BBXrLJwbc4DjsoFCpVQuImVlgTe1xSOfHBTqi64zV4PZ6EnOZQscSbsUb_fCN_fkgOxjQiIY8520hp2mdhG8tGMFFveG1arvk9csS1VpXS4svBP_dDclLKFVtOzVjbNg_IoWKq5YbrI_L1fe-w-vD55Suc8DkF6pfqpj6NFOJlyv30baAhZVoGiJH-gOLmCJl28-gjFtqPNC8EWiYcfv_8VajLqZSqrIzyiNwPEAue7Osx-XT2-uPp2-ri3Zvz0xcXlZNaTVWQ3LTSBNDeQe0kohZOA-OBSdEZVAGMA-yM9tAYaBsmG6kk-KXrjAB5TM5Xrk9wZbe5HyDf2AS9vW2kfGkhT72LaEUnlFSdR9ai0qzuVAgenEcIrXZMLSyxsuZxCzfXy7PvgJzZnXu7c2937u3e_TL0dB3a5vR9xjLZoS8OY4QR01ysFLzhpjGNWKJP9tG5G9Dfwf9-yhLga-DWZcbwH_v_AK3-opU
Cites_doi 10.1109/ICASSP48485.2024.10446391
10.1038/s41586-018-0063-9
10.1007/978-3-030-58555-6_16
10.3390/machines11070677
10.1016/j.neucom.2020.01.085
10.1007/s11760-023-02941-0
10.1007/s11760-024-03520-7
10.1016/j.imavis.2024.105057
10.1007/978-3-319-46448-0_2
10.1109/ICASSP48485.2024.10446452
10.48550/arXiv.1905.05055
10.1109/TGRS.2024.3376425
10.48550/arXiv.2408.04786
10.1109/TGRS.2024.3485721
10.1109/TPAMI.2016.2577031
10.1007/s11263-019-01247-4
10.3390/agronomy13030858
10.1111/gcb.16562
10.1109/TGRS.2024.3383649
10.1016/j.patrec.2022.01.021
10.1111/tpj.16872
ContentType Journal Article
Copyright Copyright © 2025 Zhu, Zhou, Li, Yang, Zhou, Huang, Shi, Shen, Pang and Wang.
Copyright_xml – notice: Copyright © 2025 Zhu, Zhou, Li, Yang, Zhou, Huang, Shi, Shen, Pang and Wang.
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.3389/fpls.2025.1589161
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_2b2434bde09e4605b4ffdacdeaf96c04
10.3389/fpls.2025.1589161
40491816
10_3389_fpls_2025_1589161
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
M48
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c364t-f318938fa6dca5c3ee62c6a01f032b8e4fa8caeb86da78a97037343ad8cac82a3
IEDL.DBID DOA
ISSN 1664-462X
IngestDate Fri Oct 03 12:33:12 EDT 2025
Sun Oct 26 04:07:39 EDT 2025
Fri Sep 05 15:57:02 EDT 2025
Thu Jun 12 01:50:02 EDT 2025
Wed Oct 01 06:05:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords YOLO
deep learning
small object detection
rice vascular bundles
deformable convolution
Language English
License Copyright © 2025 Zhu, Zhou, Li, Yang, Zhou, Huang, Shi, Shen, Pang and Wang.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-f318938fa6dca5c3ee62c6a01f032b8e4fa8caeb86da78a97037343ad8cac82a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/2b2434bde09e4605b4ffdacdeaf96c04
PMID 40491816
PQID 3217187872
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2b2434bde09e4605b4ffdacdeaf96c04
unpaywall_primary_10_3389_fpls_2025_1589161
proquest_miscellaneous_3217187872
pubmed_primary_40491816
crossref_primary_10_3389_fpls_2025_1589161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Nendel (B18) 2023; 29
Chen (B5) 2024
Li (B13) 2024
Hussain (B7) 2023; 11
Zhang (B26) 2020
Ross (B20) 2017
Liu (B16) 2016
Yuan (B25) 2024; 62
Zhu (B30) 2024
Kang (B9) 2024; 147
Zhao (B28) 2024; 18
Khalili (B10) 2024; 24
Li (B14) 2024; 119
Liu (B17) 2020; 128
Wu (B24) 2022; 156
Chen (B2) 2024
Zhu (B29) 2020
Wu (B23) 2020; 396
Ren (B19) 2016; 39
Khanam (B11) 2024
Bapat (B1) 2023; 13
B8
Girshick (B6) 2014
Zou (B31) 2023; 111
Chen (B4) 2024; 62
Zhang (B27) 2024
Wang (B22) 2018; 557
Lin (B15) 2017
Li (B12) 2024; 62
Chen (B3) 2024; 18
Wang (B21) 2024
References_xml – start-page: 4315
  volume-title: ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2024
  ident: B2
  article-title: Local contrast prior-guided cross aggregation model for effective infrared small target detection
  doi: 10.1109/ICASSP48485.2024.10446391
– volume: 557
  start-page: 43
  year: 2018
  ident: B22
  article-title: Genomic variation in 3,010 diverse accessions of asian cultivated rice
  publication-title: Nature
  doi: 10.1038/s41586-018-0063-9
– start-page: 260
  volume-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16
  year: 2020
  ident: B26
  article-title: Dynamic r-cnn: Towards high quality object detection via dynamic training
  doi: 10.1007/978-3-030-58555-6_16
– volume: 11
  year: 2023
  ident: B7
  article-title: Yolo-v1 to yolo-v8, the rise of yolo and its complementary nature toward digital manufacturing and industrial defect detection
  publication-title: Machines
  doi: 10.3390/machines11070677
– volume: 396
  start-page: 39
  year: 2020
  ident: B23
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.085
– start-page: 233
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: B27
  article-title: Irsam: Advancing segment anything model for infrared small target detection
– volume: 18
  start-page: 2695
  year: 2024
  ident: B3
  article-title: Small object detection model for uav aerial image based on yolov7
  publication-title: Signal. Image Video Process.
  doi: 10.1007/s11760-023-02941-0
– volume: 18
  start-page: 8949
  year: 2024
  ident: B28
  article-title: Subtle-yolov8: a detection algorithm for tiny and complex targets in uav aerial imagery
  publication-title: Signal. Image Video Process.
  doi: 10.1007/s11760-024-03520-7
– volume: 147
  start-page: 105057
  year: 2024
  ident: B9
  article-title: Asf-yolo: A novel yolo model with attentional scale sequence fusion for cell instance segmentation
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2024.105057
– start-page: 21
  volume-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14
  year: 2016
  ident: B16
  article-title: Ssd: Single shot multibox detector
  doi: 10.1007/978-3-319-46448-0_2
– start-page: 2980
  volume-title: Proceedings of the IEEE international conference on computer vision
  year: 2017
  ident: B15
  article-title: Focal loss for dense object detection
– volume-title: arXiv preprint arXiv:2010.04159
  year: 2020
  ident: B29
  article-title: Deformable detr: Deformable transformers for end-to-end object detection
– start-page: 4425
  volume-title: ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2024
  ident: B13
  article-title: Local information guided global integration for infrared small target detection
  doi: 10.1109/ICASSP48485.2024.10446452
– volume: 111
  start-page: 257
  year: 2023
  ident: B31
  article-title: Object detection in 20 years: A survey
  publication-title: Proc. IEEE
  doi: 10.48550/arXiv.1905.05055
– volume: 62
  start-page: 1
  year: 2024
  ident: B12
  article-title: Infrared small target detection based on adaptive region growing algorithm with iterative threshold analysis
  publication-title: IEEE Trans. Geosci. Remote Sens
  doi: 10.1109/TGRS.2024.3376425
– ident: B8
– volume: 24
  start-page: 6209
  year: 2024
  ident: B10
  article-title: Sod-yolov8—enhancing yolov8 for small object detection in aerial imagery and traffic scenes
  publication-title: Sensors
  doi: 10.48550/arXiv.2408.04786
– volume-title: arXiv preprint arXiv:2405.14458
  year: 2024
  ident: B21
  article-title: Yolov10: Real-time end-to-end object detection
– volume-title: arXiv preprint arXiv:2411.11477
  year: 2024
  ident: B5
  article-title: SL-YOLO: A stronger and lighter drone target detection model
– volume: 62
  start-page: 1
  year: 2024
  ident: B4
  article-title: Mim-istd: Mamba-in-mamba for efficient infrared small target detection
  publication-title: IEEE Trans. Geosci. Remote Sens
  doi: 10.1109/TGRS.2024.3485721
– volume: 39
  start-page: 1137
  year: 2016
  ident: B19
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 580
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition.
  year: 2014
  ident: B6
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 128
  start-page: 261
  year: 2020
  ident: B17
  article-title: Deep learning for generic object detection: A survey
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-019-01247-4
– volume: 13
  year: 2023
  ident: B1
  article-title: Plant cell cultures: biofactories for the production of bioactive compounds
  publication-title: Agronomy
  doi: 10.3390/agronomy13030858
– start-page: 2980
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2017
  ident: B20
  article-title: Focal loss for dense object detection
– volume-title: arXiv preprint arXiv:2412.05837
  year: 2024
  ident: B30
  article-title: Tiny Object Detection With Single Point Supervision
– volume: 29
  start-page: 1340
  year: 2023
  ident: B18
  article-title: Future area expansion outweighs increasing drought risk for soybean in europe
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.16562
– volume: 62
  start-page: 1
  year: 2024
  ident: B25
  article-title: Sctransnet: Spatial-channel cross transformer network for infrared small target detection
  publication-title: IEEE Trans. Geosci. Remote Sens
  doi: 10.1109/TGRS.2024.3383649
– volume: 156
  start-page: 96
  year: 2022
  ident: B24
  article-title: Iou-balanced loss functions for single-stage object detection
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2022.01.021
– volume-title: arXiv preprint arXiv:2410.17725
  year: 2024
  ident: B11
  article-title: Yolov11: An overview of the key architectural enhancements
– volume: 119
  start-page: 2080
  year: 2024
  ident: B14
  article-title: Genome-wide association study of stem structural characteristics that extracted by a high-throughput phenotypic analysis “labelmep rice” in rice
  publication-title: Plant J
  doi: 10.1111/tpj.16872
SSID ssj0000500997
Score 2.3914206
Snippet Vascular bundles play a vital role in the growth, development, and yield formation of rice. Accurate measurement of their structure and distribution is...
IntroductionVascular bundles play a vital role in the growth, development, and yield formation of rice. Accurate measurement of their structure and...
SourceID doaj
unpaywall
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1589161
SubjectTerms deep learning
deformable convolution
rice vascular bundles
small object detection
YOLO
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqggQ9oPLZLR8yEieQSxI7XgcJVSxQVUjlACzqiWgc26VSmmw3WcHe-Bv8PX4JM0l2BdJKXLhaiW3NZDzvZaw3jD1JjTaQpE4oSINQRoEAHYHQkZdx6rJgO92Ck_f6eKrenaanW2zV3mowYLOR2lE_qem8PPh-uTzEgH9JjBPz7fMwK0l4O0kPYuqRR2ToCiaqjDo5nAxov5f6Jjw07mubm9_8Kzt1Iv6bkOcOu7aoZrD8BmX5RzY62mU3BhjJX_V-v8m2fHWLXZ3UCPWWt9mXDxj-4uPnyRuExC84cOfb7spVxaE8q-fn7dcLjmiVNxc4N1_dRuV2QZILDT-vOGkNcRJ5_vXjZ8O73Yqmn6O5w6ZHbz-9PhZDIwVRSK1aETBwM2kCaFdAWkjvdVJoiOIQycQarwKYArw12sHYQIanwFgqCQ5HC5OAvMu2q7rye4x7qZwnnSyDed2ZYPEEsEUWkCci9YrViD1dGTCf9XoZOfIMsnZO1s7J2vlg7RGbkInXD5LUdTdQz8_yIXLyxCZKKut8lHkq4loVgoPCeQiZLiJc8fHKQTmGBtU7oPL1oskl0q3Y4ImUjNi93nPrpRQyIwQ3esSerV357w3v_48N32fXac7-P84Dtt3OF_4hIpvWPuq-1981PvgZ
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKFgk48H4sLxmJE8i7Sey4DrcuUFVIVAhYtL0QjV-wIs2umkSoPfE3-Hv8EsZ5rABVQhw4xrLjzNgef5MZfybkcaqkgiS1TEDqmVACGMgImIwcj1Obed3yFrw-kPtz8WqRLrbI4XAWJqRV-nB0P1wEvSzbWH6v1Wq6LrA31m8N0yFzLCx8dLSyqV8XgYA7SSdxuCtPxtO19efItkwRpo_I9vzgze5hcMCkFEzIZNFFOc9u-9s-1dL5n4VBL5ELTbmGk69QFL_sS3tXyOkgUZeO8mXS1HpiTv8ge_wvIl8ll3s0S3e7BtfIliuvk_OzFSLOkxvk41u0Quzdh9kLRObPKFDr6jbzq6RQfFodL-vPRxRBM62OUDA6JMVS3QTmh4ouSxooj2jgmv7x7XtFW1WxqntHdZPM916-f77P-vscmOFS1Myj_ci48iCtgdRw52RiJESxj3iilRMelAGnlbSwoyBDY7TDBQeLpUYlwG-RUbkq3R1CHRfWBbouhfDCKq_REGmTeXRX0QOMxZg8GUYvX3e0HTm6O0FnedBZHnSW9zobk1kY303FwLjdFuBI5L3K80QnggttXZS5EEvWwnsLxjrwmTQR9vhomB05rtAQdoHSrZoq5-j1xQoNYzImt7tps-lKoIOGGEuOydPNPPr7B9_9p9r3yMXw2P03uk9G9XHjHiCSqvXDfk38BOoWHxk
  priority: 102
  providerName: Unpaywall
Title Rice-SVBDete: a detection algorithm for small vascular bundles in rice stem’s cross-sections
URI https://www.ncbi.nlm.nih.gov/pubmed/40491816
https://www.proquest.com/docview/3217187872
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1589161/pdf
https://doaj.org/article/2b2434bde09e4605b4ffdacdeaf96c04
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M48
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFL1IFdQHqV91rJYIPimxM5NMNtO3brUWoUXUlfXFcDNJVNjOLs4u0jf_hn_PX-LNZHdZQeiLL3kIQ-Zybu7knEk4AXhaaaWxrByXWAUutUSOKkeuci-KytXB9r4Fp2fqZCTfjKvxxlVf8UxYsgdOwO2XtpRCWufz2sc9PCtDcNg4j6FWTXICzXW9IaaSq3ekPoO0jUkqrN4Ps0l05y6rF0W8SE8Vfy1EvV__v0jmTbi-aGd48QMnk42F53gbbi0ZIztMkd6GK769A9eGU2J1F3fh8zuqdP7-4_Alsd8Dhsz5eX-6qmU4-TIl6f_1nBExZd05jc1WB0-ZXUR3hY59a1m0FWLRz_n3z18d66PlXRqjuwej41cfjk748s4E3ggl5zxQjdZCB1SuwaoR3quyUZgXIRel1V4G1A16q5XDgcaaCn4gpEBHvY0uUdyHrXba-gfAvJDOR0ssTUu408FSsdumDiQJSWUVMoNnKwDNLFljGJIUEW0T0TYRbbNEO4NhhHj9YHS17jso12aZa3NZrjN4skqQoSqIWxvY-umiM4KUVaHp41NmsJMyt36VJBFEPEZl8HydyssDfvg_At6FG3HM9MvmEWzNvy_8YyIxc7vXz1dqX48Lak-l3oOro7O3h5_-ADmw9Co
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKFgk48H4sLxmJE8i7Sey4DrcuUFVIVAhYtL0QjV-wIs2umkSoPfE3-Hv8EsZ5rABVQhw4xrLjzNgef5MZfybkcaqkgiS1TEDqmVACGMgImIwcj1Obed3yFrw-kPtz8WqRLrbI4XAWJqRV-nB0P1wEvSzbWH6v1Wq6LrA31m8N0yFzLCx8dLSyqV8XgYA7SSdxuCtPxtO19efItkwRpo_I9vzgze5hcMCkFEzIZNFFOc9u-9s-1dL5n4VBL5ELTbmGk69QFL_sS3tXyOkgUZeO8mXS1HpiTv8ge_wvIl8ll3s0S3e7BtfIliuvk_OzFSLOkxvk41u0Quzdh9kLRObPKFDr6jbzq6RQfFodL-vPRxRBM62OUDA6JMVS3QTmh4ouSxooj2jgmv7x7XtFW1WxqntHdZPM916-f77P-vscmOFS1Myj_ci48iCtgdRw52RiJESxj3iilRMelAGnlbSwoyBDY7TDBQeLpUYlwG-RUbkq3R1CHRfWBbouhfDCKq_REGmTeXRX0QOMxZg8GUYvX3e0HTm6O0FnedBZHnSW9zobk1kY303FwLjdFuBI5L3K80QnggttXZS5EEvWwnsLxjrwmTQR9vhomB05rtAQdoHSrZoq5-j1xQoNYzImt7tps-lKoIOGGEuOydPNPPr7B9_9p9r3yMXw2P03uk9G9XHjHiCSqvXDfk38BOoWHxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice-SVBDete%3A+a+detection+algorithm+for+small+vascular+bundles+in+rice+stem%E2%80%99s+cross-sections&rft.jtitle=Frontiers+in+plant+science&rft.au=Xiaoying+Zhu&rft.au=Weiyu+Zhou&rft.au=Jianguo+Li&rft.au=Jianguo+Li&rft.date=2025&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=16&rft_id=info:doi/10.3389%2Ffpls.2025.1589161&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2b2434bde09e4605b4ffdacdeaf96c04
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon