Sensor-fault tolerance in a wastewater treatment plant by means of ANFIS-based soft sensor and control reconfiguration

This work presents a sensor-fault-tolerant design applied to a decentralized dissolved oxygen control in an activated sludge process subject to sensor faults such as bias and slow drifts. The core idea is to use a data-driven soft sensor based on adaptive neuro-fuzzy inference system to act as a bac...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 30; no. 10; pp. 3265 - 3276
Main Authors Belchior, Carlos Alberto C., Araújo, Rui Alexandre M., Souza, Francisco Alexandre A., Landeck, Jorge Afonso C.
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-017-2901-3

Cover

Abstract This work presents a sensor-fault-tolerant design applied to a decentralized dissolved oxygen control in an activated sludge process subject to sensor faults such as bias and slow drifts. The core idea is to use a data-driven soft sensor based on adaptive neuro-fuzzy inference system to act as a backup of the joint sensor and controller block, and to exploit the data/analytical correlations existing in the system. After fault detection and isolation, a control reconfiguration technique takes action in order to surmount/counteract the effect of the fault until the faulty sensor is repaired. The approach presented here was applied to the Benchmark Simulation Model n.1 and was able to demonstrate the improvements on the control system dependability.
AbstractList This work presents a sensor-fault-tolerant design applied to a decentralized dissolved oxygen control in an activated sludge process subject to sensor faults such as bias and slow drifts. The core idea is to use a data-driven soft sensor based on adaptive neuro-fuzzy inference system to act as a backup of the joint sensor and controller block, and to exploit the data/analytical correlations existing in the system. After fault detection and isolation, a control reconfiguration technique takes action in order to surmount/counteract the effect of the fault until the faulty sensor is repaired. The approach presented here was applied to the Benchmark Simulation Model n.1 and was able to demonstrate the improvements on the control system dependability.
Author Belchior, Carlos Alberto C.
Araújo, Rui Alexandre M.
Landeck, Jorge Afonso C.
Souza, Francisco Alexandre A.
Author_xml – sequence: 1
  givenname: Carlos Alberto C.
  surname: Belchior
  fullname: Belchior, Carlos Alberto C.
  email: cabelchior@isr.uc.pt
  organization: Department of Electrical and Computer Engineering, ISR - Institute for Systems and Robotics, University of Coimbra
– sequence: 2
  givenname: Rui Alexandre M.
  surname: Araújo
  fullname: Araújo, Rui Alexandre M.
  organization: Department of Electrical and Computer Engineering, ISR - Institute for Systems and Robotics, University of Coimbra
– sequence: 3
  givenname: Francisco Alexandre A.
  surname: Souza
  fullname: Souza, Francisco Alexandre A.
  organization: Department of Electrical and Computer Engineering, ISR - Institute for Systems and Robotics, University of Coimbra
– sequence: 4
  givenname: Jorge Afonso C.
  surname: Landeck
  fullname: Landeck, Jorge Afonso C.
  organization: Instrumentation Center, Department of Physics, University of Coimbra
BookMark eNp9kE1LAzEQhoMoWD9-gLeA5-gk2c-jFKsF0YN6DrO7k7KyTWqSWvrv3VpBEPQyMzDvM_PynrBD5x0xdiHhSgKU1xEgV1KALIWqQQp9wCYy01poyKtDNoE6G7dFpo_ZSYxvAJAVVT5hH8_kog_C4npIPPmBArqWeO848g3GRBtMFHgKhGlJLvHVgGNttnxJ6CL3lt88zubPosFIHY_eJh6_bnJ0HW-9S8EPPNA42X6xDph6787YkcUh0vl3P2Wvs9uX6b14eLqbT28eRKuLLAmqZG5VVliwpWqrKm9aLUmqulBWKYBClx2iajqd57ZWHWisrWpsl2m0TU76lF3u766Cf19TTObNr4MbXxolNVS6LFQ1qsq9qg0-xkDWtH368pkC9oORYHYhm33IZgzZ7EI2eiTlL3IV-iWG7b-M2jNx1LoFhR9Pf0OfOwOR7Q
CitedBy_id crossref_primary_10_1007_s00521_024_10560_0
crossref_primary_10_1109_TCST_2023_3287758
crossref_primary_10_1016_j_jwpe_2024_105265
crossref_primary_10_23919_cje_2021_00_428
crossref_primary_10_1109_JAS_2023_123054
crossref_primary_10_1155_2021_5517289
crossref_primary_10_1109_TMECH_2019_2929224
crossref_primary_10_3390_bioengineering11020189
crossref_primary_10_1007_s10489_023_04828_6
crossref_primary_10_1016_j_arcontrol_2023_05_001
crossref_primary_10_1115_1_4048485
crossref_primary_10_3390_pr12030495
crossref_primary_10_1007_s00521_018_3706_8
crossref_primary_10_1016_j_sna_2020_111990
crossref_primary_10_1109_JSEN_2021_3102586
crossref_primary_10_1002_cjce_24246
Cites_doi 10.1016/j.chemolab.2015.12.011
10.1007/s00521-007-0159-x
10.1021/ie800098t
10.1109/IPMM.1999.792454
10.1016/j.conengprac.2003.07.001
10.1016/j.conengprac.2004.04.013
10.1109/FUZZY.1994.343644
10.3233/IFS-1994-2301
10.1016/j.compchemeng.2011.09.011
10.1016/j.jprocont.2013.09.027
10.1007/s00521-012-0912-7
10.1109/72.159070
10.1016/j.compeleceng.2014.12.015
10.1016/j.engappai.2014.04.005
10.1016/j.asoc.2015.08.036
10.1109/SYSTOL.2010.5675947
10.1007/s00521-015-1858-3
10.1016/j.jprocont.2012.02.016
10.1109/21.256541
10.1007/s00521-012-1290-x
10.1016/j.conengprac.2008.03.002
10.1016/j.asoc.2014.10.034
10.1016/j.compeleceng.2014.08.011
10.1016/j.compchemeng.2013.10.004
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Natural Computing Applications Forum 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00521-017-2901-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 3276
ExternalDocumentID 10_1007_s00521_017_2901_3
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  grantid: SFRH/BDE/33295/2008
  funderid: http://dx.doi.org/10.13039/501100001871
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c364t-e815f246f0f72c885bc31e12962f2200637daa2bd355f92d03a9f2bfd43afb5e3
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 05:35:43 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Wed Oct 01 02:25:48 EDT 2025
Fri Feb 21 02:35:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Data-driven soft sensor
Decentralized dissolved oxygen control
Activated sludge process
ANFIS
Sensor-fault-tolerant control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-e815f246f0f72c885bc31e12962f2200637daa2bd355f92d03a9f2bfd43afb5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2130837628
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_2130837628
crossref_citationtrail_10_1007_s00521_017_2901_3
crossref_primary_10_1007_s00521_017_2901_3
springer_journals_10_1007_s00521_017_2901_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References HongguiHYingLJunfeiQA fuzzy neural network approach for online fault detection in waste water treatment processComput Electr Eng20144072216222610.1016/j.compeleceng.2014.08.011
WangLXMendelJMFuzzy basis functions, universal approximation, and orthogonal least-squares learningIEEE Trans Neural Netw19923580781410.1109/72.159070
ErtuncHMOcakHAliustaogluCANN- and ANFIS-based multi-staged decision algorithm for the detection and diagnosis of bearing faultsNeural Comput Appl201322143544610.1007/s00521-012-0912-7
LinMJLuoFAn adaptive control method for the dissolved oxygen concentration in wastewater treatment plantsNeural Comput Appl20152682027203710.1007/s00521-015-1858-3
FortunaLGrazianiSXibiliaMSoft sensors for product quality monitoring in debutanizer distillation columnsControl Eng Pract200513449950810.1016/j.conengprac.2004.04.013
YagerRRFilevDPGeneration of fuzzy rules by mountain clusteringJ Intell Fuzzy Syst199423209219
ZumoffenDBasualdoMImprovements in fault tolerance characteristics for large chemical plants: 1. Waste water treatment plant with decentralized controlInd Eng Chem Res200847155464548110.1021/ie800098t
Niemann H (2010) A model-based approach for fault-tolerant control. In: 2010 conference on control and fault-tolerant systems (SysTol), pp 481–492. doi:10.1109/SYSTOL.2010.5675947
PostalcıoğluSErkanKSoft computing and signal processing based active fault tolerant control for benchmark processNeural Comput Appl2009181778510.1007/s00521-007-0159-x
JangJSRANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541
HuangMMaYWanJChenXA sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment processAppl Soft Comput20152711010.1016/j.asoc.2014.10.034
HenzeMGradyCJrGujerWMaraisGvRMatsuoTHenzeMGujerWMinoTvan LoosdrechtMActivated sludge model no. 1Activated sludge models ASM1, ASM2, ASM2d and ASM32000LondonIWA Publishing137
ShakerMSPattonRJActive sensor fault tolerant output feedback tracking control for wind turbine systems via T–S modelEng Appl Artif Intell20143411210.1016/j.engappai.2014.04.005
TanCPHabibMKTolerance towards sensor faults: an application to a flexible arm manipulatorInt J Adv Robot Syst20063434335010.5772/5720
LiuJChenDSFault isolation using modified contribution plotsComput Chem Eng2014611191910.1016/j.compchemeng.2013.10.004
Bolles S (2006) Modeling wastewater aeration systems to discover energy savings opportunities. Process Energy Services LLC
Copp JB (2002) The COST simulation benchmark: description and simulator manual. Directions in development (Washington): Environment, Directorate-General for Research
WimbergerDVerdeCFault diagnosticability for an aerobic batch wastewater treatment processControl Eng Pract200816111344135310.1016/j.conengprac.2008.03.002
JeppssonUPonsMNThe cost benchmark simulation model-current state and future perspectiveControl Eng Pract200412329930410.1016/j.conengprac.2003.07.001
KhalajGKhalajMJApplication of ANFIS for modeling of layer thickness of chromium carbonitride coatingNeural Comput Appl201424368569410.1007/s00521-012-1290-x
AouaoudaSChadliMKhadirMTBouararTRobust fault tolerant tracking controller design for unknown inputs T–S models with unmeasurable premise variablesJ Process Control201222586187210.1016/j.jprocont.2012.02.016
Alex J, Benedetti L, Copp J, Gernaey KV, Jeppsson U, Nopens I, Pons MN, Rieger L, Rosen C, Steyer JP, Vanrolleghem P, Winkler S (2008) Benchmark simulation model no. 1 (bsm1). Technical Report LTH-IEA-7229. Department of Industrial Electrical Engineering and Automation, Lund University, Lund
Nagy-KissAMSchutzGEstimation and diagnosis using multi-models with application to a wastewater treatment plantJ Process Control201323101528154410.1016/j.jprocont.2013.09.027
GilPSantosFPalmaLCardosoARecursive subspace system identification for parametric fault detection in nonlinear systemsAppl Soft Comput20153744445510.1016/j.asoc.2015.08.036
BelchiorCACAraújoRAMLandeckJACDissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy controlComput Chem Eng20123715216210.1016/j.compchemeng.2011.09.011
SouzaFAAraújoRMendesJReview of soft sensor methods for regression applicationsChemom Intell Lab Syst2016152697910.1016/j.chemolab.2015.12.011
KhoukhiAKhalidMHHybrid computing techniques for fault detection and isolation, a reviewComput Electr Eng201543173210.1016/j.compeleceng.2014.12.015
Chiu S (1994) A cluster extension method with extension to fuzzy model identification. In: Proceedings of the third IEEE conference on fuzzy systems, 1994 IEEE World congress on computational intelligence, vol 2, pp 1240–1245. doi:10.1109/FUZZY.1994.343644
Hamdan H (2003) An exploration of the adaptive neuro-fuzzy inference system (ANFIS) for modelling survival, Ph.D. thesis. The University of Nottingham
Gonzalez GD (1999) Soft-sensors for processing plants. In: Proceedings of the second international conference on intelligent processing and manufacturing of materials (IPMM 99), vol 1, pp 59–69. doi:10.1109/IPMM.1999.792454
P Gil (2901_CR9) 2015; 37
HM Ertunc (2901_CR7) 2013; 22
2901_CR11
2901_CR10
LX Wang (2901_CR27) 1992; 3
D Wimberger (2901_CR28) 2008; 16
S Postalcıoğlu (2901_CR23) 2009; 18
MJ Lin (2901_CR19) 2015; 26
CAC Belchior (2901_CR3) 2012; 37
AM Nagy-Kiss (2901_CR21) 2013; 23
H Honggui (2901_CR13) 2014; 40
J Liu (2901_CR20) 2014; 61
G Khalaj (2901_CR17) 2014; 24
RR Yager (2901_CR29) 1994; 2
D Zumoffen (2901_CR30) 2008; 47
S Aouaouda (2901_CR2) 2012; 22
FA Souza (2901_CR25) 2016; 152
CP Tan (2901_CR26) 2006; 3
2901_CR22
2901_CR5
2901_CR4
2901_CR1
M Henze (2901_CR12) 2000
A Khoukhi (2901_CR18) 2015; 43
M Huang (2901_CR14) 2015; 27
U Jeppsson (2901_CR16) 2004; 12
2901_CR6
MS Shaker (2901_CR24) 2014; 34
JSR Jang (2901_CR15) 1993; 23
L Fortuna (2901_CR8) 2005; 13
References_xml – reference: LiuJChenDSFault isolation using modified contribution plotsComput Chem Eng2014611191910.1016/j.compchemeng.2013.10.004
– reference: Bolles S (2006) Modeling wastewater aeration systems to discover energy savings opportunities. Process Energy Services LLC
– reference: Nagy-KissAMSchutzGEstimation and diagnosis using multi-models with application to a wastewater treatment plantJ Process Control201323101528154410.1016/j.jprocont.2013.09.027
– reference: SouzaFAAraújoRMendesJReview of soft sensor methods for regression applicationsChemom Intell Lab Syst2016152697910.1016/j.chemolab.2015.12.011
– reference: HongguiHYingLJunfeiQA fuzzy neural network approach for online fault detection in waste water treatment processComput Electr Eng20144072216222610.1016/j.compeleceng.2014.08.011
– reference: AouaoudaSChadliMKhadirMTBouararTRobust fault tolerant tracking controller design for unknown inputs T–S models with unmeasurable premise variablesJ Process Control201222586187210.1016/j.jprocont.2012.02.016
– reference: JeppssonUPonsMNThe cost benchmark simulation model-current state and future perspectiveControl Eng Pract200412329930410.1016/j.conengprac.2003.07.001
– reference: YagerRRFilevDPGeneration of fuzzy rules by mountain clusteringJ Intell Fuzzy Syst199423209219
– reference: JangJSRANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541
– reference: Hamdan H (2003) An exploration of the adaptive neuro-fuzzy inference system (ANFIS) for modelling survival, Ph.D. thesis. The University of Nottingham
– reference: GilPSantosFPalmaLCardosoARecursive subspace system identification for parametric fault detection in nonlinear systemsAppl Soft Comput20153744445510.1016/j.asoc.2015.08.036
– reference: FortunaLGrazianiSXibiliaMSoft sensors for product quality monitoring in debutanizer distillation columnsControl Eng Pract200513449950810.1016/j.conengprac.2004.04.013
– reference: ShakerMSPattonRJActive sensor fault tolerant output feedback tracking control for wind turbine systems via T–S modelEng Appl Artif Intell20143411210.1016/j.engappai.2014.04.005
– reference: WimbergerDVerdeCFault diagnosticability for an aerobic batch wastewater treatment processControl Eng Pract200816111344135310.1016/j.conengprac.2008.03.002
– reference: ZumoffenDBasualdoMImprovements in fault tolerance characteristics for large chemical plants: 1. Waste water treatment plant with decentralized controlInd Eng Chem Res200847155464548110.1021/ie800098t
– reference: HuangMMaYWanJChenXA sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment processAppl Soft Comput20152711010.1016/j.asoc.2014.10.034
– reference: TanCPHabibMKTolerance towards sensor faults: an application to a flexible arm manipulatorInt J Adv Robot Syst20063434335010.5772/5720
– reference: WangLXMendelJMFuzzy basis functions, universal approximation, and orthogonal least-squares learningIEEE Trans Neural Netw19923580781410.1109/72.159070
– reference: Alex J, Benedetti L, Copp J, Gernaey KV, Jeppsson U, Nopens I, Pons MN, Rieger L, Rosen C, Steyer JP, Vanrolleghem P, Winkler S (2008) Benchmark simulation model no. 1 (bsm1). Technical Report LTH-IEA-7229. Department of Industrial Electrical Engineering and Automation, Lund University, Lund
– reference: Gonzalez GD (1999) Soft-sensors for processing plants. In: Proceedings of the second international conference on intelligent processing and manufacturing of materials (IPMM 99), vol 1, pp 59–69. doi:10.1109/IPMM.1999.792454
– reference: KhalajGKhalajMJApplication of ANFIS for modeling of layer thickness of chromium carbonitride coatingNeural Comput Appl201424368569410.1007/s00521-012-1290-x
– reference: HenzeMGradyCJrGujerWMaraisGvRMatsuoTHenzeMGujerWMinoTvan LoosdrechtMActivated sludge model no. 1Activated sludge models ASM1, ASM2, ASM2d and ASM32000LondonIWA Publishing137
– reference: KhoukhiAKhalidMHHybrid computing techniques for fault detection and isolation, a reviewComput Electr Eng201543173210.1016/j.compeleceng.2014.12.015
– reference: Copp JB (2002) The COST simulation benchmark: description and simulator manual. Directions in development (Washington): Environment, Directorate-General for Research
– reference: BelchiorCACAraújoRAMLandeckJACDissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy controlComput Chem Eng20123715216210.1016/j.compchemeng.2011.09.011
– reference: LinMJLuoFAn adaptive control method for the dissolved oxygen concentration in wastewater treatment plantsNeural Comput Appl20152682027203710.1007/s00521-015-1858-3
– reference: Niemann H (2010) A model-based approach for fault-tolerant control. In: 2010 conference on control and fault-tolerant systems (SysTol), pp 481–492. doi:10.1109/SYSTOL.2010.5675947
– reference: PostalcıoğluSErkanKSoft computing and signal processing based active fault tolerant control for benchmark processNeural Comput Appl2009181778510.1007/s00521-007-0159-x
– reference: Chiu S (1994) A cluster extension method with extension to fuzzy model identification. In: Proceedings of the third IEEE conference on fuzzy systems, 1994 IEEE World congress on computational intelligence, vol 2, pp 1240–1245. doi:10.1109/FUZZY.1994.343644
– reference: ErtuncHMOcakHAliustaogluCANN- and ANFIS-based multi-staged decision algorithm for the detection and diagnosis of bearing faultsNeural Comput Appl201322143544610.1007/s00521-012-0912-7
– volume: 152
  start-page: 69
  year: 2016
  ident: 2901_CR25
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.12.011
– volume: 18
  start-page: 77
  issue: 1
  year: 2009
  ident: 2901_CR23
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0159-x
– volume: 47
  start-page: 5464
  issue: 15
  year: 2008
  ident: 2901_CR30
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie800098t
– ident: 2901_CR11
– ident: 2901_CR10
  doi: 10.1109/IPMM.1999.792454
– volume: 12
  start-page: 299
  issue: 3
  year: 2004
  ident: 2901_CR16
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2003.07.001
– volume: 13
  start-page: 499
  issue: 4
  year: 2005
  ident: 2901_CR8
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2004.04.013
– ident: 2901_CR5
  doi: 10.1109/FUZZY.1994.343644
– volume: 2
  start-page: 209
  issue: 3
  year: 1994
  ident: 2901_CR29
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-1994-2301
– volume: 37
  start-page: 152
  year: 2012
  ident: 2901_CR3
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2011.09.011
– volume: 23
  start-page: 1528
  issue: 10
  year: 2013
  ident: 2901_CR21
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2013.09.027
– volume: 22
  start-page: 435
  issue: 1
  year: 2013
  ident: 2901_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0912-7
– volume: 3
  start-page: 807
  issue: 5
  year: 1992
  ident: 2901_CR27
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.159070
– volume: 43
  start-page: 17
  year: 2015
  ident: 2901_CR18
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2014.12.015
– ident: 2901_CR4
– ident: 2901_CR6
– volume: 3
  start-page: 343
  issue: 4
  year: 2006
  ident: 2901_CR26
  publication-title: Int J Adv Robot Syst
– volume: 34
  start-page: 1
  year: 2014
  ident: 2901_CR24
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.04.005
– volume: 37
  start-page: 444
  year: 2015
  ident: 2901_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.08.036
– ident: 2901_CR22
  doi: 10.1109/SYSTOL.2010.5675947
– volume: 26
  start-page: 2027
  issue: 8
  year: 2015
  ident: 2901_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1858-3
– start-page: 1
  volume-title: Activated sludge models ASM1, ASM2, ASM2d and ASM3
  year: 2000
  ident: 2901_CR12
– volume: 22
  start-page: 861
  issue: 5
  year: 2012
  ident: 2901_CR2
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2012.02.016
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 2901_CR15
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 24
  start-page: 685
  issue: 3
  year: 2014
  ident: 2901_CR17
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1290-x
– volume: 16
  start-page: 1344
  issue: 11
  year: 2008
  ident: 2901_CR28
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2008.03.002
– volume: 27
  start-page: 1
  year: 2015
  ident: 2901_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.10.034
– ident: 2901_CR1
– volume: 40
  start-page: 2216
  issue: 7
  year: 2014
  ident: 2901_CR13
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2014.08.011
– volume: 61
  start-page: 9
  issue: 11
  year: 2014
  ident: 2901_CR20
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2013.10.004
SSID ssj0004685
Score 2.284179
Snippet This work presents a sensor-fault-tolerant design applied to a decentralized dissolved oxygen control in an activated sludge process subject to sensor faults...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3265
SubjectTerms Activated sludge process
Adaptive systems
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Correlation analysis
Data Mining and Knowledge Discovery
Fault detection
Fault tolerance
Fuzzy logic
Fuzzy systems
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
Reconfiguration
Sensors
Wastewater treatment
Title Sensor-fault tolerance in a wastewater treatment plant by means of ANFIS-based soft sensor and control reconfiguration
URI https://link.springer.com/article/10.1007/s00521-017-2901-3
https://www.proquest.com/docview/2130837628
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7xuHDh1VakQDQHTlSWgu19HdMq4SUiBI1ETyt714OQ0g1iNyD-PePNbmgrisRpDzueg2fsb8bzAjiwxmjSLhDOOCN0GCthGbgFkbWJlZGNer52-GIUnoz12U1w09Rxl222exuSrG_qRbGbf8H0rm8kfOxPqGVYDXw3L1bisez_UQxZz-Fkt8Wn9GjVhjLfYvE3GL1amP8ERWusGW7CemMkYn8u1S1YcsU2bLQDGLA5j5_g8Zqd0OmDIDObVFhNJ86PyXB4V6DBJ1P6hzG_YJFNjvcT3km0z_jbMUbhlLA_Gp5eCw9mOZZ8J2NZ80RT5NjksWPtNdPd7WyuLp9hPBz8_HEimkEKIlOhroSLjwKSOqQeRTKL48Bm6sgx0oeSpH9TUFFujLQ5Gx-UyLynTELSUq6VIRs49QVWimnhdgBVwO40sV3hC-SkCZnaaZKJzhgDKUw60Gt3NM2aLuN-2MUkXfRHroWQshBSL4RUdeBwseR-3mLjPeK9Vkxpc9rKVDIQs6MdyrgD31rRvf7-L7OvH6LehTW2luJ5IeIerFQPM7fPFkllu7AcD4-7sNo__nU-4O_3wejyqlvr5QvrANvc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7RcGgvpdBWTUvLHDi1Mgq293WMECG8ciFI9LSydz0INd0gdtOq_fWM9xEeapE4r215Pba_bzwvgG1rjCbtAuGMM0KHsRKWgVsQWZtYGdlo4GOHTyfh-FwfXQQXbRx32Xm7dybJ-qZeBrv5F0yv-kbC2_6EegGrmvUT2YPV4cH34_174ZB1JU5WXLxTj1adMfNfgzyEozuO-cgsWqPNaA2m3TwbJ5MfO4vK7mR_H6VwfOaPvIHXLfvEYbNd1mHFFRuw1lV2wPagv4VfZ6zdzm8EmcWswmo-c77-hsOrAg3-NqV_cfMdlm7qeD1jEaH9gz8dgx_OCYeT0eGZ8CiZY8mXPZb1mGiKHFsHeazVcbq6XDT78B2cj_ane2PRVmgQmQp1JVy8G5DUIQ0oklkcBzZTu44pRChJ-scKFeXGSJszq6FE5gNlEpKWcq0M2cCp99Ar5oX7AKgC1tOJCYuPvJMm5NZOk0x0xuBKYdKHQSeoNGvTl_sqGrN0mXi5XteU1zX165qqPnxddrlucnc81Xizk37aHuMylYzwrMGHMu7Dt06Yd5__O9jHZ7Xegpfj6elJenI4Of4Er5iSxU204yb0qpuF-8y0p7Jf2m1-C5gb92o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYoSFUvPPoQ4TmHnlpZJLb3dYyAVQJthJRG4raydz0VUrqJ2A2If894X1BUKnHe8Rw84_3mPYx9NVorVNbjVlvNlR9Kbgi4OaIxkRGBCfqud_jnxB_N1MW1d93sOS3aavc2JVn3NLgpTXl5sszwpGt8c9FM5wYH3OUBuXzHNpSbk0AKPRPDZ42R1U5OcmFceY-SbVrzXyz-BqYna_NFgrTCnXibbTYGIwxrCe-wNZt_ZFvtMgZo3uYndjclh3Rxy1Gv5iWUi7l1KzMs3OSg4V4XLkjmDnSV5bCc062CeYA_lvAKFgjDSTyecgdsGRT0f4ai4gk6z6CpaYfKg8ab36tadT6zWXz-63TEm6UKPJW-KrkNBx4K5WMfA5GGoWdSObCE-r5A4eILMsi0FiYjQwQjkfWljlAYzJTUaDwrv7D1fJHbXQbSI9caycZwzXJC-0RtFYpIpYSH6Ec91m9vNEmbieNu8cU86WYlV0JISAiJE0Iie-xbd2RZj9v4H_FBK6akeXlFIgiUyen2Rdhj31vRPX1-ldnem6iP2furszj5MZ5c7rMPZESFdX_iAVsvb1f2kAyV0hxVyvgIO7Le8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor-fault+tolerance+in+a+wastewater+treatment+plant+by+means+of+ANFIS-based+soft+sensor+and+control+reconfiguration&rft.jtitle=Neural+computing+%26+applications&rft.au=Belchior%2C+Carlos+Alberto+C.&rft.au=Ara%C3%BAjo%2C+Rui+Alexandre+M.&rft.au=Souza%2C+Francisco+Alexandre+A.&rft.au=Landeck%2C+Jorge+Afonso+C.&rft.date=2018-11-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=30&rft.issue=10&rft.spage=3265&rft.epage=3276&rft_id=info:doi/10.1007%2Fs00521-017-2901-3&rft.externalDocID=10_1007_s00521_017_2901_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon