Systematic Comparison of Vectorization Methods in Classification Context
Natural language processing has been the subject of numerous studies in the last decade. These have focused on the various stages of text processing, from text preparation to vectorization to final text comprehension. The goal of vector space modeling is to project words in a language corpus into a...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 12; no. 10; p. 5119 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.05.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app12105119 | 
Cover
| Abstract | Natural language processing has been the subject of numerous studies in the last decade. These have focused on the various stages of text processing, from text preparation to vectorization to final text comprehension. The goal of vector space modeling is to project words in a language corpus into a vector space in such a way that words that are similar in meaning are close to each other. Currently, there are two commonly used approaches to the topic of vectorization. The first focuses on creating word vectors taking into account the entire linguistic context, while the second focuses on creating document vectors in the context of the linguistic corpus of the analyzed texts. The paper presents the comparison of different existing text vectorization methods in natural language processing, especially in Text Mining. The comparison of text vectorization methods is possible by checking the accuracy of classification; we used the methods NBC and k-NN, as they are some of the simplest methods. They were used for the classification in order to avoid the influence of the choice of the method itself on the final result. The conducted experiments provide a basis for further research for better automatic text analysis. | 
    
|---|---|
| AbstractList | Natural language processing has been the subject of numerous studies in the last decade. These have focused on the various stages of text processing, from text preparation to vectorization to final text comprehension. The goal of vector space modeling is to project words in a language corpus into a vector space in such a way that words that are similar in meaning are close to each other. Currently, there are two commonly used approaches to the topic of vectorization. The first focuses on creating word vectors taking into account the entire linguistic context, while the second focuses on creating document vectors in the context of the linguistic corpus of the analyzed texts. The paper presents the comparison of different existing text vectorization methods in natural language processing, especially in Text Mining. The comparison of text vectorization methods is possible by checking the accuracy of classification; we used the methods NBC and k-NN, as they are some of the simplest methods. They were used for the classification in order to avoid the influence of the choice of the method itself on the final result. The conducted experiments provide a basis for further research for better automatic text analysis. | 
    
| Author | Krzeszewska, Urszula Poniszewska-Marańda, Aneta Ochelska-Mierzejewska, Joanna  | 
    
| Author_xml | – sequence: 1 givenname: Urszula orcidid: 0000-0001-5774-3356 surname: Krzeszewska fullname: Krzeszewska, Urszula – sequence: 2 givenname: Aneta orcidid: 0000-0001-7596-0813 surname: Poniszewska-Marańda fullname: Poniszewska-Marańda, Aneta – sequence: 3 givenname: Joanna orcidid: 0000-0002-9295-3962 surname: Ochelska-Mierzejewska fullname: Ochelska-Mierzejewska, Joanna  | 
    
| BookMark | eNqFkE9LxDAQxYOs4Lp68gsUPOpq0jRtcpSi7oLiwT_XMJsmmqXb1CSLrp_eaEVEBOcyw8ybH7y3i0ad6zRCBwSfUCrwKfQ9yQlmhIgtNM5xVU5pQarRj3kH7YewxKkEoZzgMZrdbkLUK4hWZbVb9eBtcF3mTPagVXTevqVTWlzr-OSakNkuq1sIwRqrhkvtuqhf4x7aNtAGvf_VJ-j-4vyunk2vbi7n9dnVVNGyiNOGKUag4AJzssjNQvMKQ7kwpaAaA6ecLggTZU4qnB4IM6Bz0yisca6NxoJO0HzgNg6Wsvd2BX4jHVj5uXD-UYJPblotuaBckKJQrKKFaZhgoHJdVcqAYFgViXU8sNZdD5sXaNtvIMHyI1T5I9QkPxzkvXfPax2iXLq175JbmZcVTo4E_4AeDSrlXQhem3-Y5Jda2fgZbPRg2z9_3gFK_pW3 | 
    
| CitedBy_id | crossref_primary_10_1111_exsy_13470 crossref_primary_10_3390_app13020682 crossref_primary_10_1109_ACCESS_2024_3451516 crossref_primary_10_32628_CSEIT2390225 crossref_primary_10_1007_s11135_024_01882_1 crossref_primary_10_32604_csse_2023_038384 crossref_primary_10_3390_app142411519 crossref_primary_10_1109_ACCESS_2024_3440657 crossref_primary_10_2478_jec_2023_0007 crossref_primary_10_1386_iscc_00059_1 crossref_primary_10_1007_s10639_025_13361_7 crossref_primary_10_1016_j_prevetmed_2023_105932  | 
    
| Cites_doi | 10.1016/j.procs.2017.06.130 10.1016/j.autcon.2015.11.001 10.1016/j.autcon.2017.04.003 10.1080/03081079.2017.1291635 10.15439/2018F110 10.1371/journal.pone.0220976 10.1145/1143844.1143892 10.1145/361219.361220 10.5120/ijca2018917395 10.1108/00220410410560582 10.1088/1757-899X/261/1/012018  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app12105119 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_89389144c5734fd595ac2e77cfa950c4 10.3390/app12105119 10_3390_app12105119  | 
    
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c364t-d5c51a489081b2fbe870a6bf693e0a8383b15962170c3615fae2fdc0e02efe093 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Fri Oct 03 12:53:16 EDT 2025 Sun Oct 26 04:02:25 EDT 2025 Mon Jun 30 11:15:21 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Thu Oct 16 04:44:00 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c364t-d5c51a489081b2fbe870a6bf693e0a8383b15962170c3615fae2fdc0e02efe093 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9295-3962 0000-0001-5774-3356 0000-0001-7596-0813  | 
    
| OpenAccessLink | https://doaj.org/article/89389144c5734fd595ac2e77cfa950c4 | 
    
| PQID | 2670081984 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_89389144c5734fd595ac2e77cfa950c4 unpaywall_primary_10_3390_app12105119 proquest_journals_2670081984 crossref_primary_10_3390_app12105119 crossref_citationtrail_10_3390_app12105119  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-05-01 | 
    
| PublicationDateYYYYMMDD | 2022-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Zou (ref_2) 2017; 80 Jain (ref_3) 2018; 6 Havrlanta (ref_12) 2015; 46 ref_13 Tixier (ref_1) 2016; 62 ref_22 ref_10 ref_21 ref_20 Wang (ref_17) 2017; 261 ref_19 ref_18 ref_16 ref_15 ref_8 ref_5 Douzi (ref_14) 2017; 110 ref_4 Salton (ref_9) 1975; 18 Stephen (ref_11) 2004; 60 ref_7 ref_6  | 
    
| References_xml | – ident: ref_7 – ident: ref_6 – ident: ref_8 – volume: 110 start-page: 486 year: 2017 ident: ref_14 article-title: Towards A new Spam Filter Based on PV-DM (Paragraph Vector-Distributed Memory Approach) publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.06.130 – volume: 62 start-page: 45 year: 2016 ident: ref_1 article-title: Automated content analysis for construction safety: A natural language processing system to extract precursors and outcomes from unstructured injury reports publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.11.001 – ident: ref_4 – ident: ref_5 – volume: 80 start-page: 66 year: 2017 ident: ref_2 article-title: Retrieving similar cases for construction project risk management using Natural Language Processing techniques publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.04.003 – volume: 46 start-page: 27 year: 2015 ident: ref_12 article-title: A Simple Probabilistic Explanation of Term Frequency-InverseDocument Frequency (tf-idf ) Heuristic (and Variations Motivatedby This Explanation) publication-title: Int. J. Gen. Syst. doi: 10.1080/03081079.2017.1291635 – ident: ref_22 doi: 10.15439/2018F110 – ident: ref_16 doi: 10.1371/journal.pone.0220976 – ident: ref_15 doi: 10.1145/1143844.1143892 – volume: 18 start-page: 613 year: 1975 ident: ref_9 article-title: A vector space model for automatic indexing publication-title: Commun. ACM doi: 10.1145/361219.361220 – ident: ref_10 doi: 10.5120/ijca2018917395 – ident: ref_13 – volume: 6 start-page: 161 year: 2018 ident: ref_3 article-title: Natural Language Processing publication-title: Int. J. Comput. Sci. Eng. – ident: ref_18 – ident: ref_19 – ident: ref_21 – ident: ref_20 – volume: 60 start-page: 503 year: 2004 ident: ref_11 article-title: Understanding Inverse Document Frequency: On Theoretical Arguments for IDF publication-title: J. Doc. doi: 10.1108/00220410410560582 – volume: 261 start-page: 012018 year: 2017 ident: ref_17 article-title: Comparisons and Selections of Features and Classifiers for Short Text Classification publication-title: Iop Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/261/1/012018  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.3619435 | 
    
| Snippet | Natural language processing has been the subject of numerous studies in the last decade. These have focused on the various stages of text processing, from text... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 5119 | 
    
| SubjectTerms | Algorithms Artificial intelligence Automatic text analysis Classification Continuous Bag of Words k-nearest neighbors Language Machine learning Methods Naive Bayesian Classifier Natural language processing skip-gram Statistical analysis text vectorization  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_s-dD2ofjR4rVa8mBBC0uz2WQ_HoqoKEfBo9hafFuS7ESEY-_qnVT_-2Zy2e0JxdfdybLMZJKZZOb3A9hXWJaZ5i7RaHkiG6O8z1WYaGEbFFluTKh2vxjnoyv57Vpdr8G464WhsspuTQwLdTO1dEb-RVA_id--Snk0-50QaxTdrnYUGjpSKzRfA8TYC1gXhIw1gPWTs_H3y_7UhVAwy5QvG_Uyn-_TPTFJ0nXak60pIPg_CTtf3rcz_fhHTyYrO9D5BryJoSM7Xtp6E9aw3YLXK4CCW7AZXXXODiKe9OE2jH70aM3stKcdZFPHfoUj-9iJyS4CmfSc3bYsUGVSEdHyTYCweli8havzs5-noyQSKCQ2y-UiaZRVqZZl5RVnhDPonVPnxuVVhlyXPjk1KbHvpAX3A1LlNArXWI5coENeZe9g0E5b3AFWKVP44AQLw41EZ43MpBJGWh_OoCnKIXzudFfbiC5OJBeT2mcZpOh6RdFD2O-FZ0tQjf-LnZARehFCwg4Ppnc3dXSs2sdbZeWzQquKTLpGVUpbgUVhna4Ut3IIu50J6-ie8_rfZBrCp96sz_3L--c_8wFeCeqLCJWQuzBY3N3jno9WFuZjnIJ_AUf26ZM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB7q9UF9qG1VPK2ShwoqbC-bTTa7T1KL5RBaBD2pT0uSTaR47B29PW37651kc8tVRAp93SRLlplJvtmZ-QZgX9iiyBR1ibKGJrzWAm2utIliprYsy7UO2e4np_l4wj-dibO1Kn6fVomu-Hk4pBk62Qkes3KUMjTvkY95jea1e_8r_ktKcx-nkggh7sFmLhCND2Bzcvr58LvvKbda3ZXlZejd-6iwZ8zyL7pxEQW-_hsg8_6ymaur32o6Xbtvjh-BWu20SzP5ebBs9YG5_ovE8S6fsg1bEYySw057dmDDNrvwcI2icBd2ovEvyJvIUP32MYy_9PzP5KhvZEhmjnwLQYBY20lOQnvqBTlvSGi-6dOSupFAinXZPoHJ8cevR-MktmRITJbzNqmFEaniRYlIQjOnLZq7yrXLy8xSVaC7q1PfzyeVFBekwinLXG2opcw6S8vsKQyaWWOfASmFlgh3rNRUc-uM5hkXTHODAMlqWQzh3Uo-lYl85b5txrRCv8ULs1oT5hD2-8nzjqbj39M-eEH3Uzy3dngwu_hRRVOtEMEVJfqZRsiMu1qUQhlmpTROlYIaPoS9lZpU0eAXFfPlToiuChx-3avO__by_JbzXsAD5ksuQpLlHgzai6V9iUCo1a-irv8BR2MBbQ priority: 102 providerName: Unpaywall  | 
    
| Title | Systematic Comparison of Vectorization Methods in Classification Context | 
    
| URI | https://www.proquest.com/docview/2670081984 https://www.mdpi.com/2076-3417/12/10/5119/pdf?version=1652957226 https://doaj.org/article/89389144c5734fd595ac2e77cfa950c4  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB9a-9D6IH60eH4ceVCowtJsNtlNHlU8D8FD2l6xT0uSnYBwrOKdqP-9SXZdVpD2xcfdZCFMZjIzm5nfD2BPoJSZpi7RaGnCKyO8zSlMNLMVsiw3Jla7X0zy8ZSfX4mrHtVXqAlr4IEbwf3w_lQqH_VbUWTcVUIJbRkWhXVaCWojEiiVqpdMxTNYpQG6qmnIy3xeH-6DA1ZWuDZ75YIiUv-r8PLzfX2rnx70bNbzNKNVWGlDRHLULG0NPmC9Dss94MB1WGtNck6-t7jRBxsw_tWhMpOTjl6Q3DjyJ_6abzsuyUUkjZ6T65pESsxQLNSMRKiqx8VXmI5Of5-Mk5YoIbFZzhdJJaxINZfK-3fDnEFvhDo3LlcZUi19EmrSwLKTFtR_kAqnkbnKUqQMHVKVfYOl-qbGTSBKmMIHIVgYajg6a3jGBTPc-rAFTSEHcPgiu9K2KOKBzGJW-mwiCLrsCXoAe93k2wY84-1px2ETuikB8Tq-8HpQtnpQ_k8PBrDzsoVla4bzkoUmJB_zSD-8323rv9ay9R5r2YYvLHRJxLrIHVha3N3jro9dFmYIH-XobAifjk8nlz-HUWn903RyefT3GcEG70I | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7aFwQLSAWCitD60ESBGOYyfxoUL0pS3trhC0qLdgO2OEtMou3a1K_xy_DdvrpFsJ9dZr4ljR2J6HZ-b7ALYFlmWmqE0UGprwWgt35iQmipkaWZZrHardB8O8f84_X4iLJfjb9sL4sspWJwZFXY-NvyP_wHw_iTNfJf84-Z141iifXW0pNFSkVqh3A8RYbOw4wZtrF8JNd48P3HrvMHZ0eLbfTyLLQGKynM-SWhiRKl5KN7tmVqPbwSrXNpcZUlW6CE6nnqImLaj7IBVWIbO1oUgZWgxgTM4ErPCMSxf8rewdDr987W55POpmmdJ5Y2CWSerz0h6zy6fv7pjCwBhwx81dvWom6uZajUYLFu_oKTyJrir5NN9ba7CEzTo8XgAwXIe1qBqm5G3Er373DPrfOnRost_RHJKxJd9DiiB2fpJBIK-ekl8NCdScvmhp_iZAZv2ZPYfzBxHlC1huxg2-BCKFLpwzhIWmmqM12slXMM2Nc59QF2UP3reyq0xEM_ekGqPKRTVe0NWCoHuw3Q2ezEE8_j9szy9CN8Qjb4cH48ufVTzIlfPvSumiUCOKjNtaSKEMw6IwVklBDe_BRruEVVQH0-p28_Zgp1vW-_7l1f3TbMFq_2xwWp0eD09ewyPmezJCFeYGLM8ur_CN85RmejNuRwI_HvoE_ANfziZQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8QTPx4MIIaD1D7AImabOh22_14IEbB8xAhJorhbW27U0Ny2Tu4I8C_5l9np_vhkRjeeN3tNpvOdDrTmfn9ADYV5nmiuYs0Wh7Jyii_5wqMtLAViiQ1JlS7Hx6lo2P55USdLMGfrheGyio7mxgMdTWxdEe-LaifxB9fudx2bVnEt73h--lZRAxSlGnt6DQaFTnA60sfvs129ve8rLeEGH76sTuKWoaByCapnEeVsirWMi_8zEY4g157dWpcWiTIde6jNxMTPU2ccf9BrJxG4SrLkQt0GICYvPm_lxGKO3WpDz_39zuEt5nHvGkJTJKCU0aa0LoocXfjEAxcATcc3AcX9VRfX-rxeOGsGz6Bx62Tyj40WrUCS1ivwqMF6MJVWGmNwoy9aZGr3z6F0fceF5rt9gSHbOLYz5AcaHs-2WGgrZ6x05oFUk4qV2reBLCsq_kzOL6ThXwOy_WkxhfACmUy7wZhZriR6KyRiVTCSOsdJzRZPoB33dqVtsUxJzqNcenjGVrocmGhB7DZD5428B3_H_aRhNAPIczt8GBy_rtst3DpPbu88PGnVVkiXaUKpa3ALLNOF4pbOYCNToRlawhm5T-1HcBWL9bb_mXt9mlew32v9-XX_aODdXgoqBkjlF9uwPL8_AJfehdpbl4FXWTw666V_y9RtCPq | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB7q9UF9qG1VPK2ShwoqbC-bTTa7T1KL5RBaBD2pT0uSTaR47B29PW37651kc8tVRAp93SRLlplJvtmZ-QZgX9iiyBR1ibKGJrzWAm2utIliprYsy7UO2e4np_l4wj-dibO1Kn6fVomu-Hk4pBk62Qkes3KUMjTvkY95jea1e_8r_ktKcx-nkggh7sFmLhCND2Bzcvr58LvvKbda3ZXlZejd-6iwZ8zyL7pxEQW-_hsg8_6ymaur32o6Xbtvjh-BWu20SzP5ebBs9YG5_ovE8S6fsg1bEYySw057dmDDNrvwcI2icBd2ovEvyJvIUP32MYy_9PzP5KhvZEhmjnwLQYBY20lOQnvqBTlvSGi-6dOSupFAinXZPoHJ8cevR-MktmRITJbzNqmFEaniRYlIQjOnLZq7yrXLy8xSVaC7q1PfzyeVFBekwinLXG2opcw6S8vsKQyaWWOfASmFlgh3rNRUc-uM5hkXTHODAMlqWQzh3Uo-lYl85b5txrRCv8ULs1oT5hD2-8nzjqbj39M-eEH3Uzy3dngwu_hRRVOtEMEVJfqZRsiMu1qUQhlmpTROlYIaPoS9lZpU0eAXFfPlToiuChx-3avO__by_JbzXsAD5ksuQpLlHgzai6V9iUCo1a-irv8BR2MBbQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Comparison+of+Vectorization+Methods+in+Classification+Context&rft.jtitle=Applied+sciences&rft.au=Urszula+Krzeszewska&rft.au=Aneta+Poniszewska-Mara%C5%84da&rft.au=Joanna+Ochelska-Mierzejewska&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=10&rft.spage=5119&rft_id=info:doi/10.3390%2Fapp12105119&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_89389144c5734fd595ac2e77cfa950c4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |