Systematic Comparison of Vectorization Methods in Classification Context

Natural language processing has been the subject of numerous studies in the last decade. These have focused on the various stages of text processing, from text preparation to vectorization to final text comprehension. The goal of vector space modeling is to project words in a language corpus into a...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 10; p. 5119
Main Authors Krzeszewska, Urszula, Poniszewska-Marańda, Aneta, Ochelska-Mierzejewska, Joanna
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app12105119

Cover

Abstract Natural language processing has been the subject of numerous studies in the last decade. These have focused on the various stages of text processing, from text preparation to vectorization to final text comprehension. The goal of vector space modeling is to project words in a language corpus into a vector space in such a way that words that are similar in meaning are close to each other. Currently, there are two commonly used approaches to the topic of vectorization. The first focuses on creating word vectors taking into account the entire linguistic context, while the second focuses on creating document vectors in the context of the linguistic corpus of the analyzed texts. The paper presents the comparison of different existing text vectorization methods in natural language processing, especially in Text Mining. The comparison of text vectorization methods is possible by checking the accuracy of classification; we used the methods NBC and k-NN, as they are some of the simplest methods. They were used for the classification in order to avoid the influence of the choice of the method itself on the final result. The conducted experiments provide a basis for further research for better automatic text analysis.
AbstractList Natural language processing has been the subject of numerous studies in the last decade. These have focused on the various stages of text processing, from text preparation to vectorization to final text comprehension. The goal of vector space modeling is to project words in a language corpus into a vector space in such a way that words that are similar in meaning are close to each other. Currently, there are two commonly used approaches to the topic of vectorization. The first focuses on creating word vectors taking into account the entire linguistic context, while the second focuses on creating document vectors in the context of the linguistic corpus of the analyzed texts. The paper presents the comparison of different existing text vectorization methods in natural language processing, especially in Text Mining. The comparison of text vectorization methods is possible by checking the accuracy of classification; we used the methods NBC and k-NN, as they are some of the simplest methods. They were used for the classification in order to avoid the influence of the choice of the method itself on the final result. The conducted experiments provide a basis for further research for better automatic text analysis.
Author Krzeszewska, Urszula
Poniszewska-Marańda, Aneta
Ochelska-Mierzejewska, Joanna
Author_xml – sequence: 1
  givenname: Urszula
  orcidid: 0000-0001-5774-3356
  surname: Krzeszewska
  fullname: Krzeszewska, Urszula
– sequence: 2
  givenname: Aneta
  orcidid: 0000-0001-7596-0813
  surname: Poniszewska-Marańda
  fullname: Poniszewska-Marańda, Aneta
– sequence: 3
  givenname: Joanna
  orcidid: 0000-0002-9295-3962
  surname: Ochelska-Mierzejewska
  fullname: Ochelska-Mierzejewska, Joanna
BookMark eNqFkE9LxDAQxYOs4Lp68gsUPOpq0jRtcpSi7oLiwT_XMJsmmqXb1CSLrp_eaEVEBOcyw8ybH7y3i0ad6zRCBwSfUCrwKfQ9yQlmhIgtNM5xVU5pQarRj3kH7YewxKkEoZzgMZrdbkLUK4hWZbVb9eBtcF3mTPagVXTevqVTWlzr-OSakNkuq1sIwRqrhkvtuqhf4x7aNtAGvf_VJ-j-4vyunk2vbi7n9dnVVNGyiNOGKUag4AJzssjNQvMKQ7kwpaAaA6ecLggTZU4qnB4IM6Bz0yisca6NxoJO0HzgNg6Wsvd2BX4jHVj5uXD-UYJPblotuaBckKJQrKKFaZhgoHJdVcqAYFgViXU8sNZdD5sXaNtvIMHyI1T5I9QkPxzkvXfPax2iXLq175JbmZcVTo4E_4AeDSrlXQhem3-Y5Jda2fgZbPRg2z9_3gFK_pW3
CitedBy_id crossref_primary_10_1111_exsy_13470
crossref_primary_10_3390_app13020682
crossref_primary_10_1109_ACCESS_2024_3451516
crossref_primary_10_32628_CSEIT2390225
crossref_primary_10_1007_s11135_024_01882_1
crossref_primary_10_32604_csse_2023_038384
crossref_primary_10_3390_app142411519
crossref_primary_10_1109_ACCESS_2024_3440657
crossref_primary_10_2478_jec_2023_0007
crossref_primary_10_1386_iscc_00059_1
crossref_primary_10_1007_s10639_025_13361_7
crossref_primary_10_1016_j_prevetmed_2023_105932
Cites_doi 10.1016/j.procs.2017.06.130
10.1016/j.autcon.2015.11.001
10.1016/j.autcon.2017.04.003
10.1080/03081079.2017.1291635
10.15439/2018F110
10.1371/journal.pone.0220976
10.1145/1143844.1143892
10.1145/361219.361220
10.5120/ijca2018917395
10.1108/00220410410560582
10.1088/1757-899X/261/1/012018
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app12105119
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_89389144c5734fd595ac2e77cfa950c4
10.3390/app12105119
10_3390_app12105119
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-d5c51a489081b2fbe870a6bf693e0a8383b15962170c3615fae2fdc0e02efe093
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Fri Oct 03 12:53:16 EDT 2025
Sun Oct 26 04:02:25 EDT 2025
Mon Jun 30 11:15:21 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Thu Oct 16 04:44:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-d5c51a489081b2fbe870a6bf693e0a8383b15962170c3615fae2fdc0e02efe093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9295-3962
0000-0001-5774-3356
0000-0001-7596-0813
OpenAccessLink https://doaj.org/article/89389144c5734fd595ac2e77cfa950c4
PQID 2670081984
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_89389144c5734fd595ac2e77cfa950c4
unpaywall_primary_10_3390_app12105119
proquest_journals_2670081984
crossref_primary_10_3390_app12105119
crossref_citationtrail_10_3390_app12105119
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zou (ref_2) 2017; 80
Jain (ref_3) 2018; 6
Havrlanta (ref_12) 2015; 46
ref_13
Tixier (ref_1) 2016; 62
ref_22
ref_10
ref_21
ref_20
Wang (ref_17) 2017; 261
ref_19
ref_18
ref_16
ref_15
ref_8
ref_5
Douzi (ref_14) 2017; 110
ref_4
Salton (ref_9) 1975; 18
Stephen (ref_11) 2004; 60
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_6
– ident: ref_8
– volume: 110
  start-page: 486
  year: 2017
  ident: ref_14
  article-title: Towards A new Spam Filter Based on PV-DM (Paragraph Vector-Distributed Memory Approach)
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.06.130
– volume: 62
  start-page: 45
  year: 2016
  ident: ref_1
  article-title: Automated content analysis for construction safety: A natural language processing system to extract precursors and outcomes from unstructured injury reports
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.11.001
– ident: ref_4
– ident: ref_5
– volume: 80
  start-page: 66
  year: 2017
  ident: ref_2
  article-title: Retrieving similar cases for construction project risk management using Natural Language Processing techniques
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.04.003
– volume: 46
  start-page: 27
  year: 2015
  ident: ref_12
  article-title: A Simple Probabilistic Explanation of Term Frequency-InverseDocument Frequency (tf-idf ) Heuristic (and Variations Motivatedby This Explanation)
  publication-title: Int. J. Gen. Syst.
  doi: 10.1080/03081079.2017.1291635
– ident: ref_22
  doi: 10.15439/2018F110
– ident: ref_16
  doi: 10.1371/journal.pone.0220976
– ident: ref_15
  doi: 10.1145/1143844.1143892
– volume: 18
  start-page: 613
  year: 1975
  ident: ref_9
  article-title: A vector space model for automatic indexing
  publication-title: Commun. ACM
  doi: 10.1145/361219.361220
– ident: ref_10
  doi: 10.5120/ijca2018917395
– ident: ref_13
– volume: 6
  start-page: 161
  year: 2018
  ident: ref_3
  article-title: Natural Language Processing
  publication-title: Int. J. Comput. Sci. Eng.
– ident: ref_18
– ident: ref_19
– ident: ref_21
– ident: ref_20
– volume: 60
  start-page: 503
  year: 2004
  ident: ref_11
  article-title: Understanding Inverse Document Frequency: On Theoretical Arguments for IDF
  publication-title: J. Doc.
  doi: 10.1108/00220410410560582
– volume: 261
  start-page: 012018
  year: 2017
  ident: ref_17
  article-title: Comparisons and Selections of Features and Classifiers for Short Text Classification
  publication-title: Iop Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/261/1/012018
SSID ssj0000913810
Score 2.3619435
Snippet Natural language processing has been the subject of numerous studies in the last decade. These have focused on the various stages of text processing, from text...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5119
SubjectTerms Algorithms
Artificial intelligence
Automatic text analysis
Classification
Continuous Bag of Words
k-nearest neighbors
Language
Machine learning
Methods
Naive Bayesian Classifier
Natural language processing
skip-gram
Statistical analysis
text vectorization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_s-dD2ofjR4rVa8mBBC0uz2WQ_HoqoKEfBo9hafFuS7ESEY-_qnVT_-2Zy2e0JxdfdybLMZJKZZOb3A9hXWJaZ5i7RaHkiG6O8z1WYaGEbFFluTKh2vxjnoyv57Vpdr8G464WhsspuTQwLdTO1dEb-RVA_id--Snk0-50QaxTdrnYUGjpSKzRfA8TYC1gXhIw1gPWTs_H3y_7UhVAwy5QvG_Uyn-_TPTFJ0nXak60pIPg_CTtf3rcz_fhHTyYrO9D5BryJoSM7Xtp6E9aw3YLXK4CCW7AZXXXODiKe9OE2jH70aM3stKcdZFPHfoUj-9iJyS4CmfSc3bYsUGVSEdHyTYCweli8havzs5-noyQSKCQ2y-UiaZRVqZZl5RVnhDPonVPnxuVVhlyXPjk1KbHvpAX3A1LlNArXWI5coENeZe9g0E5b3AFWKVP44AQLw41EZ43MpBJGWh_OoCnKIXzudFfbiC5OJBeT2mcZpOh6RdFD2O-FZ0tQjf-LnZARehFCwg4Ppnc3dXSs2sdbZeWzQquKTLpGVUpbgUVhna4Ut3IIu50J6-ie8_rfZBrCp96sz_3L--c_8wFeCeqLCJWQuzBY3N3jno9WFuZjnIJ_AUf26ZM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB7q9UF9qG1VPK2ShwoqbC-bTTa7T1KL5RBaBD2pT0uSTaR47B29PW37651kc8tVRAp93SRLlplJvtmZ-QZgX9iiyBR1ibKGJrzWAm2utIliprYsy7UO2e4np_l4wj-dibO1Kn6fVomu-Hk4pBk62Qkes3KUMjTvkY95jea1e_8r_ktKcx-nkggh7sFmLhCND2Bzcvr58LvvKbda3ZXlZejd-6iwZ8zyL7pxEQW-_hsg8_6ymaur32o6Xbtvjh-BWu20SzP5ebBs9YG5_ovE8S6fsg1bEYySw057dmDDNrvwcI2icBd2ovEvyJvIUP32MYy_9PzP5KhvZEhmjnwLQYBY20lOQnvqBTlvSGi-6dOSupFAinXZPoHJ8cevR-MktmRITJbzNqmFEaniRYlIQjOnLZq7yrXLy8xSVaC7q1PfzyeVFBekwinLXG2opcw6S8vsKQyaWWOfASmFlgh3rNRUc-uM5hkXTHODAMlqWQzh3Uo-lYl85b5txrRCv8ULs1oT5hD2-8nzjqbj39M-eEH3Uzy3dngwu_hRRVOtEMEVJfqZRsiMu1qUQhlmpTROlYIaPoS9lZpU0eAXFfPlToiuChx-3avO__by_JbzXsAD5ksuQpLlHgzai6V9iUCo1a-irv8BR2MBbQ
  priority: 102
  providerName: Unpaywall
Title Systematic Comparison of Vectorization Methods in Classification Context
URI https://www.proquest.com/docview/2670081984
https://www.mdpi.com/2076-3417/12/10/5119/pdf?version=1652957226
https://doaj.org/article/89389144c5734fd595ac2e77cfa950c4
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB9a-9D6IH60eH4ceVCowtJsNtlNHlU8D8FD2l6xT0uSnYBwrOKdqP-9SXZdVpD2xcfdZCFMZjIzm5nfD2BPoJSZpi7RaGnCKyO8zSlMNLMVsiw3Jla7X0zy8ZSfX4mrHtVXqAlr4IEbwf3w_lQqH_VbUWTcVUIJbRkWhXVaCWojEiiVqpdMxTNYpQG6qmnIy3xeH-6DA1ZWuDZ75YIiUv-r8PLzfX2rnx70bNbzNKNVWGlDRHLULG0NPmC9Dss94MB1WGtNck6-t7jRBxsw_tWhMpOTjl6Q3DjyJ_6abzsuyUUkjZ6T65pESsxQLNSMRKiqx8VXmI5Of5-Mk5YoIbFZzhdJJaxINZfK-3fDnEFvhDo3LlcZUi19EmrSwLKTFtR_kAqnkbnKUqQMHVKVfYOl-qbGTSBKmMIHIVgYajg6a3jGBTPc-rAFTSEHcPgiu9K2KOKBzGJW-mwiCLrsCXoAe93k2wY84-1px2ETuikB8Tq-8HpQtnpQ_k8PBrDzsoVla4bzkoUmJB_zSD-8323rv9ay9R5r2YYvLHRJxLrIHVha3N3jro9dFmYIH-XobAifjk8nlz-HUWn903RyefT3GcEG70I
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7aFwQLSAWCitD60ESBGOYyfxoUL0pS3trhC0qLdgO2OEtMou3a1K_xy_DdvrpFsJ9dZr4ljR2J6HZ-b7ALYFlmWmqE0UGprwWgt35iQmipkaWZZrHardB8O8f84_X4iLJfjb9sL4sspWJwZFXY-NvyP_wHw_iTNfJf84-Z141iifXW0pNFSkVqh3A8RYbOw4wZtrF8JNd48P3HrvMHZ0eLbfTyLLQGKynM-SWhiRKl5KN7tmVqPbwSrXNpcZUlW6CE6nnqImLaj7IBVWIbO1oUgZWgxgTM4ErPCMSxf8rewdDr987W55POpmmdJ5Y2CWSerz0h6zy6fv7pjCwBhwx81dvWom6uZajUYLFu_oKTyJrir5NN9ba7CEzTo8XgAwXIe1qBqm5G3Er373DPrfOnRost_RHJKxJd9DiiB2fpJBIK-ekl8NCdScvmhp_iZAZv2ZPYfzBxHlC1huxg2-BCKFLpwzhIWmmqM12slXMM2Nc59QF2UP3reyq0xEM_ekGqPKRTVe0NWCoHuw3Q2ezEE8_j9szy9CN8Qjb4cH48ufVTzIlfPvSumiUCOKjNtaSKEMw6IwVklBDe_BRruEVVQH0-p28_Zgp1vW-_7l1f3TbMFq_2xwWp0eD09ewyPmezJCFeYGLM8ur_CN85RmejNuRwI_HvoE_ANfziZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8QTPx4MIIaD1D7AImabOh22_14IEbB8xAhJorhbW27U0Ny2Tu4I8C_5l9np_vhkRjeeN3tNpvOdDrTmfn9ADYV5nmiuYs0Wh7Jyii_5wqMtLAViiQ1JlS7Hx6lo2P55USdLMGfrheGyio7mxgMdTWxdEe-LaifxB9fudx2bVnEt73h--lZRAxSlGnt6DQaFTnA60sfvs129ve8rLeEGH76sTuKWoaByCapnEeVsirWMi_8zEY4g157dWpcWiTIde6jNxMTPU2ccf9BrJxG4SrLkQt0GICYvPm_lxGKO3WpDz_39zuEt5nHvGkJTJKCU0aa0LoocXfjEAxcATcc3AcX9VRfX-rxeOGsGz6Bx62Tyj40WrUCS1ivwqMF6MJVWGmNwoy9aZGr3z6F0fceF5rt9gSHbOLYz5AcaHs-2WGgrZ6x05oFUk4qV2reBLCsq_kzOL6ThXwOy_WkxhfACmUy7wZhZriR6KyRiVTCSOsdJzRZPoB33dqVtsUxJzqNcenjGVrocmGhB7DZD5428B3_H_aRhNAPIczt8GBy_rtst3DpPbu88PGnVVkiXaUKpa3ALLNOF4pbOYCNToRlawhm5T-1HcBWL9bb_mXt9mlew32v9-XX_aODdXgoqBkjlF9uwPL8_AJfehdpbl4FXWTw666V_y9RtCPq
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB7q9UF9qG1VPK2ShwoqbC-bTTa7T1KL5RBaBD2pT0uSTaR47B29PW37651kc8tVRAp93SRLlplJvtmZ-QZgX9iiyBR1ibKGJrzWAm2utIliprYsy7UO2e4np_l4wj-dibO1Kn6fVomu-Hk4pBk62Qkes3KUMjTvkY95jea1e_8r_ktKcx-nkggh7sFmLhCND2Bzcvr58LvvKbda3ZXlZejd-6iwZ8zyL7pxEQW-_hsg8_6ymaur32o6Xbtvjh-BWu20SzP5ebBs9YG5_ovE8S6fsg1bEYySw057dmDDNrvwcI2icBd2ovEvyJvIUP32MYy_9PzP5KhvZEhmjnwLQYBY20lOQnvqBTlvSGi-6dOSupFAinXZPoHJ8cevR-MktmRITJbzNqmFEaniRYlIQjOnLZq7yrXLy8xSVaC7q1PfzyeVFBekwinLXG2opcw6S8vsKQyaWWOfASmFlgh3rNRUc-uM5hkXTHODAMlqWQzh3Uo-lYl85b5txrRCv8ULs1oT5hD2-8nzjqbj39M-eEH3Uzy3dngwu_hRRVOtEMEVJfqZRsiMu1qUQhlmpTROlYIaPoS9lZpU0eAXFfPlToiuChx-3avO__by_JbzXsAD5ksuQpLlHgzai6V9iUCo1a-irv8BR2MBbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Comparison+of+Vectorization+Methods+in+Classification+Context&rft.jtitle=Applied+sciences&rft.au=Urszula+Krzeszewska&rft.au=Aneta+Poniszewska-Mara%C5%84da&rft.au=Joanna+Ochelska-Mierzejewska&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=10&rft.spage=5119&rft_id=info:doi/10.3390%2Fapp12105119&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_89389144c5734fd595ac2e77cfa950c4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon