Smooth over-parameterized solvers for non-smooth structured optimization

Non-smooth optimization is a core ingredient of many imaging or machine learning pipelines. Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank and sharp edges. It is also the basis for the definition of robust loss functions and scale-free func...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 201; no. 1-2; pp. 897 - 952
Main Authors Poon, Clarice, Peyré, Gabriel
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer
Springer Verlag
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-022-01923-3

Cover

Abstract Non-smooth optimization is a core ingredient of many imaging or machine learning pipelines. Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank and sharp edges. It is also the basis for the definition of robust loss functions and scale-free functionals such as square-root Lasso. Standard approaches to deal with non-smoothness leverage either proximal splitting or coordinate descent. These approaches are effective but usually require parameter tuning, preconditioning or some sort of support pruning. In this work, we advocate and study a different route, which operates a non-convex but smooth over-parameterization of the underlying non-smooth optimization problems. This generalizes quadratic variational forms that are at the heart of the popular Iterative Reweighted Least Squares. Our main theoretical contribution connects gradient descent on this reformulation to a mirror descent flow with a varying Hessian metric. This analysis is crucial to derive convergence bounds that are dimension-free. This explains the efficiency of the method when using small grid sizes in imaging. Our main algorithmic contribution is to apply the Variable Projection method which defines a new formulation by explicitly minimizing over part of the variables. This leads to a better conditioning of the minimized functional and improves the convergence of simple but very efficient gradient-based methods, for instance quasi-Newton solvers. We exemplify the use of this new solver for the resolution of regularized regression problems for inverse problems and supervised learning, including total variation prior and non-convex regularizers.
AbstractList Non-smooth optimization is a core ingredient of many imaging or machine learning pipelines. Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank and sharp edges. It is also the basis for the definition of robust loss functions and scale-free functionals such as square-root Lasso. Standard approaches to deal with non-smoothness leverage either proximal splitting or coordinate descent. These approaches are effective but usually require parameter tuning, preconditioning or some sort of support pruning. In this work, we advocate and study a different route, which operates a non-convex but smooth over-parameterization of the underlying non-smooth optimization problems. This generalizes quadratic variational forms that are at the heart of the popular Iterative Reweighted Least Squares. Our main theoretical contribution connects gradient descent on this reformulation to a mirror descent flow with a varying Hessian metric. This analysis is crucial to derive convergence bounds that are dimension-free. This explains the efficiency of the method when using small grid sizes in imaging. Our main algorithmic contribution is to apply the Variable Projection method which defines a new formulation by explicitly minimizing over part of the variables. This leads to a better conditioning of the minimized functional and improves the convergence of simple but very efficient gradient-based methods, for instance quasi-Newton solvers. We exemplify the use of this new solver for the resolution of regularized regression problems for inverse problems and supervised learning, including total variation prior and non-convex regularizers.
Audience Academic
Author Poon, Clarice
Peyré, Gabriel
Author_xml – sequence: 1
  givenname: Clarice
  surname: Poon
  fullname: Poon, Clarice
  organization: Department of Mathematical Sciences, University of Bath
– sequence: 2
  givenname: Gabriel
  surname: Peyré
  fullname: Peyré, Gabriel
  email: gabriel.peyre@ens.fr
  organization: CNRS and DMA, Ecole Normale Supérieure, PSL University
BackLink https://hal.science/hal-04289271$$DView record in HAL
BookMark eNp9kE1LwzAAhoMouE3_gKdePWTmq21yHEOdMPCgnkOWpFtG24wkG7hfb7aKBw8jkMDL--SFZwyue99bAB4wmmKE6qeIEUY1RIRAhAWhkF6BEWa0gqxi1TUYIURKWFYY3YJxjFuEEKacj8Dio_M-bQp_sAHuVFCdTTa4ozVF9G0OY9H4UOQ5GIdmTGGv0z7kht8l17mjSs73d-CmUW2097_vBHy9PH_OF3D5_vo2ny2hphVLUDecarMyK1WTyljBadnUWmtkKWOisorwmlGCVZlDg0VJhBCM2IoaQ_JFJ-Bx-HejWrkLrlPhW3rl5GK2lKcMMcIFqfEB5-506K5Va6XrG5-C0vkY2zmdDTYu57O65ExgTmkGyADo4GMMtvlbwEieRMtBtMyi5Vm0PEH8H6RdOjvJa669jNIBjXmnX9sgt34f-uzvEvUD7aiU-g
CitedBy_id crossref_primary_10_1137_24M1636186
Cites_doi 10.1051/cocv/2011205
10.1023/B:JMIV.0000011920.58935.9c
10.1016/0167-2789(92)90242-F
10.1007/978-3-030-01258-8_34
10.1137/18M1167152
10.1201/9781003158745
10.1002/cpa.21455
10.1002/cpa.20042
10.1007/s10107-010-0394-2
10.1090/S0002-9947-1956-0084194-4
10.1080/02331934.2012.733883
10.1137/0917016
10.1109/ICASSP.2008.4518498
10.1109/CVPR.2017.629
10.1137/080716542
10.1109/34.120331
10.18637/jss.v033.i01
10.1056/NEJMoa021967
10.1007/s10994-007-5040-8
10.1093/biomet/asr043
10.1137/070697835
10.1007/s002110050258
10.1088/0266-5611/19/2/201
10.1137/1027074
10.1016/j.acha.2021.07.003
10.1137/1022057
10.1016/S0167-6377(02)00231-6
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TIT.2005.862083
10.1111/j.1467-9868.2005.00532.x
10.1088/1742-6596/904/1/012006
10.1561/9781601985118
10.1287/moor.2016.0817
10.1137/0716071
10.1088/1361-6420/aa5e12
10.1017/CBO9780511730344
10.1145/1102351.1102441
10.1080/02331934.2018.1426584
10.1007/978-3-319-27099-9_13
10.1007/s10851-010-0251-1
10.1016/S0024-3795(02)00327-0
10.1145/1970392.1970395
10.1137/090763184
10.1093/imanum/8.1.141
10.1109/TNET.2015.2417809
10.1137/0710036
10.1007/BF00131148
10.1214/aos/1034276635
10.1007/s10208-013-9150-3
10.1007/s10444-011-9245-9
10.1002/cpa.20303
10.1137/17M1147342
10.1016/j.csda.2017.06.007
10.1007/BF00115697
10.1137/19M1240460
10.1007/s10957-017-1112-5
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s10107-022-01923-3
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 952
ExternalDocumentID oai:HAL:hal-04289271v1
A758491833
10_1007_s10107_022_01923_3
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: NORIA
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: Agence Nationale de la Recherche
  grantid: PRAIRIE
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
1XC
ID FETCH-LOGICAL-c364t-cf83cdbdba726de9835f7ccc0e34496ea2874321a5cccd195299942e63dd263d3
IEDL.DBID AGYKE
ISSN 0025-5610
IngestDate Tue Oct 28 06:32:54 EDT 2025
Mon Oct 20 16:59:57 EDT 2025
Wed Oct 01 02:58:29 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Fri Feb 21 02:42:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Mirror descent
68Q25
Non-convex optimization
Sparsity
Low-rank
68U05
68R10
Variable projection
Compressed sensing
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-cf83cdbdba726de9835f7ccc0e34496ea2874321a5cccd195299942e63dd263d3
ORCID 0000-0002-4477-0387
PageCount 56
ParticipantIDs hal_primary_oai_HAL_hal_04289271v1
gale_infotracacademiconefile_A758491833
crossref_primary_10_1007_s10107_022_01923_3
crossref_citationtrail_10_1007_s10107_022_01923_3
springer_journals_10_1007_s10107_022_01923_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Verlag
References BauschkeHHBolteJTeboulleMA descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applicationsMath. Oper. Res.201742233034836519941364.90251
StarckJLMurtaghFFadiliJMSparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity2010CambridgeCambridge University Press1196.94008
DaubechiesIDeVoreRFornasierMGüntürkCSIteratively reweighted least squares minimization for sparse recoveryCommun. Pure Appl. Math.201063113825883851202.65046
VogelCROmanMEIterative methods for total variation denoisingSIAM J. Sci. Comput.199617122723813752760847.65083
ChambolleAAn algorithm for total variation minimization and applicationsJ. Math. Imaging Vis.2004201899720497831366.94048
Azulay, S., Moroshko, E., Nacson, M.S., Woodworth, B., Srebro, N., Globerson, A., Soudry, D.: On the implicit bias of initialization shape: beyond infinitesimal mirror descent (2021). arXiv:2102.09769
CombettesPLVũBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146391289131832258451309.90109
Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties (2011). arXiv:1108.0775
Gunasekar, S., Lee, J., Soudry, D., Srebro, N.: Characterizing implicit bias in terms of optimization geometry. In: International Conference on Machine Learning, pp. 1832–1841. PMLR (2018)
Zach, C., Bourmaud, G.: Descending, lifting or smoothing: secrets of robust cost optimization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 547–562 (2018)
Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872. IEEE (2008)
CandesEJRombergJTaoTRobust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory2006522489509223617010.1109/TIT.2005.8620831231.94017
Van De VijverMJHeYDVan’t VeerLJDaiHHartAAVoskuilDWSchreiberGJPeterseJLRobertsCMartonMJA gene-expression signature as a predictor of survival in breast cancerN. Engl. J. Med.20023472519992009
HoffPDLasso, fractional norm and structured sparse estimation using a Hadamard product parametrizationComput. Stat. Data Anal.201711518619836831371466.62098
RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D1992601–425926833634010780.49028
GolubGHPereyraVThe differentiation of pseudo-inverses and nonlinear least squares problems whose variables separateSIAM J. Numer. Anal.19731024134323369800258.65045
Hong, J.H., Zach, C., Fitzgibbon, A.: Revisiting the variable projection method for separable nonlinear least squares problems. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–5947. IEEE (2017)
PongTKTsengPJiSYeJTrace norm regularization: reformulations, algorithms, and multi-task learningSIAM J. Optim.20102063465348927635121211.90129
NikolovaMA variational approach to remove outliers and impulse noiseJ. Math. Imaging Vis.20042019912020497841366.94065
van de Geer, S, Stucky, B.: χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} 2-confidence sets in high-dimensional regression. In: Frigessi, A., Bühlmann, P., Glad, I.K., Langaas, M., Richardson, S., Vannucci, M. (eds.) Statistical Analysis for High-Dimensional Data, pp. 279–306. Springer, Berlin (2016)
GolubGPereyraVSeparable nonlinear least squares: the variable projection method and its applicationsInverse Probl.2003192R119917861022.65014
DouglasJRachfordHHOn the numerical solution of heat conduction problems in two and three space variablesTrans. Am. Math. Soc.1956822421439841940070.35401
BarzilaiJBorweinJMTwo-point step size gradient methodsIMA J. Numer. Anal.1988811411489678480638.65055
RuheAWedinPÅAlgorithms for separable nonlinear least squares problemsSIAM Rev.19802233183375843800466.65039
Vaškevičius, T., Kanade, V., Rebeschini, P.: Implicit regularization for optimal sparse recovery (2019). arXiv:1909.05122
Silveti-FallsAMolinariCFadiliJGeneralized conditional gradient with augmented Lagrangian for composite minimizationSIAM J. Optim.20203042687272541559731450.65054
GeigerDYuilleAA common framework for image segmentationInt. J. Comput. Vis.199163227243
BeckATeboulleMMirror descent and nonlinear projected subgradient methods for convex optimizationOper. Res. Lett.200331316717519672861046.90057
BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.94009
MammenEvan de GeerSLocally adaptive regression splinesAnn. Stat.199725138741314299310871.62040
TsengPApproximation accuracy, gradient methods, and error bound for structured convex optimizationMath. Program.2010125226329527335651207.65084
ChambolleALionsPLImage recovery via total variation minimization and related problemsNumer. Math.199776216718814401190874.68299
GiraudCIntroduction to High-Dimensional Statistics2021Boca RatonChapman and Hall/CRC1341.62011
Zhao, P., Yang, Y., He, Q.C.: Implicit regularization via hadamard product over-parametrization in high-dimensional linear regression (2019). arXiv:1903.09367
HastieTMazumderRLeeJDZadehRMatrix completion and low-rank svd via fast alternating least squaresJ. Mach. Learn. Res.20151613367340234505421352.65117
BrediesKPikkarainenHKInverse problems in spaces of measuresESAIM Control Optim. Calc. Var.201319119021830230661266.65083
BrediesKSunHA proximal point analysis of the preconditioned alternating direction method of multipliersJ. Optim. Theory Appl.2017173387890736542611380.65101
Chizat, L.: Convergence rates of gradient methods for convex optimization in the space of measures (2021). arXiv:2105.08368
O’DonoghueBCandesEAdaptive restart for accelerated gradient schemesFound. Comput. Math.201515371573233481711320.90061
DaubechiesIDefriseMDe MolCAn iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.200457111413145720777041077.65055
RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001
NdiayeEFercoqOGramfortASalmonJGap safe screening rules for sparsity enforcing penaltiesJ. Mach. Learn. Res.20171814671470337637621442.62161
LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791669649795513190426.65050
BlackMJRangarajanAOn the unification of line processes, outlier rejection, and robust statistics with applications in early visionInt. J. Comput. Vis.19961915791
CandèsEJFernandez-GrandaCTowards a mathematical theory of super-resolutionCommun. Pure Appl. Math.201467690695631939631350.94011
LiangJFadiliJPeyréGLocal linear convergence analysis of primal-dual splitting methodsOptimization201867682185338033911400.90246
BlairCProblem complexity and method efficiency in optimization (as nemirovsky and db yudin)SIAM Rev.1985272264
MardaniMGiannakisGBEstimating traffic and anomaly maps via network tomographyIEEE/ACM Trans. Netw.201524315331547
BoydSParikhNChuEDistributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers2011DelftNow Publishers Inc1229.90122
Poon, C., Peyré, G.: Smooth bilevel programming for sparse regularization. In: Proceedings of NeurIPS’21 (2021). arxiv:2106.01429
BelloniAChernozhukovVWangLSquare-root lasso: pivotal recovery of sparse signals via conic programmingBiometrika201198479180628603241228.62083
Rennie, J.D., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 713–719 (2005)
CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM: JACM201158313728110001327.62369
FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103311
FanYSchur complements and its applications to symmetric nonnegative and z-matricesLinear Algebra Appl.20023531–328930719196431006.15020
Ghai, U., Hazan, E., Singer, Y.: Exponentiated gradient meets gradient descent. In: Kontorovich, A., Neu, G. (eds.) Algorithmic Learning Theory, pp. 386–407. PMLR, New York (2020)
GemanDReynoldsGConstrained restoration and the recovery of discontinuitiesIEEE Trans. Pattern Anal. Mach. Intell.1992143367383
Nemirovskij, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization. John Wiley, New York (1983)
NesterovYEA method for solving the convex programming problem with convergence rate o(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(1/k^{2})$$\end{document}Dokl. Akad. Nauk SSSR1983269543547701288
BeckerSFadiliJOchsPOn quasi-Newton forward-backward splitting: proximal calculus and convergenceSIAM J. Optim.20192942445248140147911461.65128
DriggsDBeckerSAravkinAAdapting regularized low-rank models for parallel architecturesSIAM J. Sci. Comput.2019411A163A18938953411405.65079
Massias, M., Gramfort, A., Salmon, J.: Celer: a fast solver for the lasso with dual extrapolation. In: International Conference on Machine Learning, pp. 3315–3324. PMLR (2018)
YuanMLinYModel selection and estimation in regression with grouped variablesJ. R. Stat. Soc. Ser. B (Stat. Methodol.)2006681496722125741141.62030
ChenXZhouWConvergence of Reweighted l1 Minimization Algorithms and Unique Solution of Truncated lp Minimization2010KowloonDepartment of Applied Mathematics, The Hong Kong Polytechnic University
Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications (1993). arXiv:funct-an/9311001
Gunasekar, S., Woodworth, B., Srebro, N.: Mirrorless mirror descent: A natural derivation of mirror descent. In: International Conference on Artificial Int
D Geman (1923_CR35) 1992; 14
CR Vogel (1923_CR73) 1996; 17
A Chambolle (1923_CR20) 2004; 20
RT Rockafellar (1923_CR63) 2009
J Liang (1923_CR46) 2018; 67
I Daubechies (1923_CR27) 2004; 57
A Argyriou (1923_CR2) 2008; 73
1923_CR70
G Golub (1923_CR39) 2003; 19
PD Hoff (1923_CR44) 2017; 115
A Beck (1923_CR8) 2003; 31
1923_CR23
1923_CR62
EJ Candès (1923_CR17) 2014; 67
T Hastie (1923_CR43) 2015; 16
PL Combettes (1923_CR26) 2014; 63
1923_CR25
R Tibshirani (1923_CR68) 1996; 58
D Batenkov (1923_CR6) 2021; 55
A Beck (1923_CR9) 2009; 2
J Friedman (1923_CR33) 2010; 33
Y Fan (1923_CR32) 2002; 353
B O’Donoghue (1923_CR58) 2015; 15
1923_CR76
A Chambolle (1923_CR22) 2011; 40
1923_CR72
1923_CR75
J Barzilai (1923_CR5) 1988; 8
C Blair (1923_CR13) 1985; 27
LI Rudin (1923_CR64) 1992; 60
E Ndiaye (1923_CR53) 2017; 18
YE Nesterov (1923_CR55) 1983; 269
1923_CR37
1923_CR36
J Douglas (1923_CR29) 1956; 82
TK Pong (1923_CR59) 2010; 20
A Belloni (1923_CR11) 2011; 98
D Geiger (1923_CR34) 1991; 6
MJ Black (1923_CR12) 1996; 19
M Mardani (1923_CR49) 2015; 24
K Bredies (1923_CR16) 2017; 173
1923_CR45
X Chen (1923_CR24) 2010
V Duval (1923_CR31) 2017; 33
1923_CR42
1923_CR41
A Chambolle (1923_CR21) 1997; 76
S Becker (1923_CR10) 2019; 29
GH Golub (1923_CR40) 1973; 10
JL Starck (1923_CR67) 2010
D Driggs (1923_CR30) 2019; 41
EJ Candes (1923_CR19) 2006; 52
1923_CR1
1923_CR4
1923_CR3
E Mammen (1923_CR48) 1997; 25
1923_CR60
A Ruhe (1923_CR65) 1980; 22
K Bredies (1923_CR15) 2013; 19
EJ Candès (1923_CR18) 2011; 58
MJ Van De Vijver (1923_CR71) 2002; 347
M Yuan (1923_CR74) 2006; 68
S Boyd (1923_CR14) 2011
PL Lions (1923_CR47) 1979; 16
1923_CR54
1923_CR57
C Giraud (1923_CR38) 2021
M Nikolova (1923_CR56) 2004; 20
I Daubechies (1923_CR28) 2010; 63
1923_CR50
1923_CR52
B Recht (1923_CR61) 2010; 52
HH Bauschke (1923_CR7) 2017; 42
CA Micchelli (1923_CR51) 2013; 38
A Silveti-Falls (1923_CR66) 2020; 30
P Tseng (1923_CR69) 2010; 125
References_xml – reference: Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties (2011). arXiv:1108.0775
– reference: Ghai, U., Hazan, E., Singer, Y.: Exponentiated gradient meets gradient descent. In: Kontorovich, A., Neu, G. (eds.) Algorithmic Learning Theory, pp. 386–407. PMLR, New York (2020)
– reference: DouglasJRachfordHHOn the numerical solution of heat conduction problems in two and three space variablesTrans. Am. Math. Soc.1956822421439841940070.35401
– reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791669649795513190426.65050
– reference: StarckJLMurtaghFFadiliJMSparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity2010CambridgeCambridge University Press1196.94008
– reference: GeigerDYuilleAA common framework for image segmentationInt. J. Comput. Vis.199163227243
– reference: Massias, M., Gramfort, A., Salmon, J.: Celer: a fast solver for the lasso with dual extrapolation. In: International Conference on Machine Learning, pp. 3315–3324. PMLR (2018)
– reference: ArgyriouAEvgeniouTPontilMConvex multi-task feature learningMach. Learn.20087332432721470.68073
– reference: MicchelliCAMoralesJMPontilMRegularizers for structured sparsityAdv. Comput. Math.201338345548930370261297.62153
– reference: TibshiraniRRegression shrinkage and selection via the lassoJ. R. Stat. Soc.: Ser. B (Methodol.)199658126728813792420850.62538
– reference: TsengPApproximation accuracy, gradient methods, and error bound for structured convex optimizationMath. Program.2010125226329527335651207.65084
– reference: Gunasekar, S., Lee, J., Soudry, D., Srebro, N.: Characterizing implicit bias in terms of optimization geometry. In: International Conference on Machine Learning, pp. 1832–1841. PMLR (2018)
– reference: DaubechiesIDefriseMDe MolCAn iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.200457111413145720777041077.65055
– reference: Hong, J.H., Zach, C., Fitzgibbon, A.: Revisiting the variable projection method for separable nonlinear least squares problems. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–5947. IEEE (2017)
– reference: RechtBFazelMParriloPAGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Rev.201052347150126805431198.90321
– reference: Chizat, L.: Convergence rates of gradient methods for convex optimization in the space of measures (2021). arXiv:2105.08368
– reference: RuheAWedinPÅAlgorithms for separable nonlinear least squares problemsSIAM Rev.19802233183375843800466.65039
– reference: Ndiaye, E., Fercoq, O., Gramfort, A., Leclère, V., Salmon, J.: Efficient smoothed concomitant lasso estimation for high dimensional regression. In: Journal of Physics: Conference Series, vol. 904, p. 012006. IOP Publishing (2017)
– reference: PongTKTsengPJiSYeJTrace norm regularization: reformulations, algorithms, and multi-task learningSIAM J. Optim.20102063465348927635121211.90129
– reference: Van De VijverMJHeYDVan’t VeerLJDaiHHartAAVoskuilDWSchreiberGJPeterseJLRobertsCMartonMJA gene-expression signature as a predictor of survival in breast cancerN. Engl. J. Med.20023472519992009
– reference: BarzilaiJBorweinJMTwo-point step size gradient methodsIMA J. Numer. Anal.1988811411489678480638.65055
– reference: Obozinski, G., Jacob, L., Vert, J.P.: Group lasso with overlaps: the latent group lasso approach (2011). arXiv:1110.0413
– reference: ChambolleAAn algorithm for total variation minimization and applicationsJ. Math. Imaging Vis.2004201899720497831366.94048
– reference: GolubGHPereyraVThe differentiation of pseudo-inverses and nonlinear least squares problems whose variables separateSIAM J. Numer. Anal.19731024134323369800258.65045
– reference: DaubechiesIDeVoreRFornasierMGüntürkCSIteratively reweighted least squares minimization for sparse recoveryCommun. Pure Appl. Math.201063113825883851202.65046
– reference: RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D1992601–425926833634010780.49028
– reference: CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM: JACM201158313728110001327.62369
– reference: RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001
– reference: Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications (1993). arXiv:funct-an/9311001
– reference: Zhao, P., Yang, Y., He, Q.C.: Implicit regularization via hadamard product over-parametrization in high-dimensional linear regression (2019). arXiv:1903.09367
– reference: MardaniMGiannakisGBEstimating traffic and anomaly maps via network tomographyIEEE/ACM Trans. Netw.201524315331547
– reference: DriggsDBeckerSAravkinAAdapting regularized low-rank models for parallel architecturesSIAM J. Sci. Comput.2019411A163A18938953411405.65079
– reference: Azulay, S., Moroshko, E., Nacson, M.S., Woodworth, B., Srebro, N., Globerson, A., Soudry, D.: On the implicit bias of initialization shape: beyond infinitesimal mirror descent (2021). arXiv:2102.09769
– reference: van de Geer, S, Stucky, B.: χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} 2-confidence sets in high-dimensional regression. In: Frigessi, A., Bühlmann, P., Glad, I.K., Langaas, M., Richardson, S., Vannucci, M. (eds.) Statistical Analysis for High-Dimensional Data, pp. 279–306. Springer, Berlin (2016)
– reference: DuvalVPeyréGSparse regularization on thin grids I: the lassoInverse Probl.201733536289041373.65039
– reference: MammenEvan de GeerSLocally adaptive regression splinesAnn. Stat.199725138741314299310871.62040
– reference: ChambolleALionsPLImage recovery via total variation minimization and related problemsNumer. Math.199776216718814401190874.68299
– reference: BoydSParikhNChuEDistributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers2011DelftNow Publishers Inc1229.90122
– reference: ChenXZhouWConvergence of Reweighted l1 Minimization Algorithms and Unique Solution of Truncated lp Minimization2010KowloonDepartment of Applied Mathematics, The Hong Kong Polytechnic University
– reference: FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103311
– reference: Silveti-FallsAMolinariCFadiliJGeneralized conditional gradient with augmented Lagrangian for composite minimizationSIAM J. Optim.20203042687272541559731450.65054
– reference: BlairCProblem complexity and method efficiency in optimization (as nemirovsky and db yudin)SIAM Rev.1985272264
– reference: BauschkeHHBolteJTeboulleMA descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applicationsMath. Oper. Res.201742233034836519941364.90251
– reference: BeckerSFadiliJOchsPOn quasi-Newton forward-backward splitting: proximal calculus and convergenceSIAM J. Optim.20192942445248140147911461.65128
– reference: Ghaoui, L.E., Viallon, V., Rabbani, T.: Safe feature elimination for the lasso and sparse supervised learning problems (2010). arXiv:1009.4219
– reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.94009
– reference: Poon, C., Peyré, G.: Smooth bilevel programming for sparse regularization. In: Proceedings of NeurIPS’21 (2021). arxiv:2106.01429
– reference: Rennie, J.D., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 713–719 (2005)
– reference: GolubGPereyraVSeparable nonlinear least squares: the variable projection method and its applicationsInverse Probl.2003192R119917861022.65014
– reference: YuanMLinYModel selection and estimation in regression with grouped variablesJ. R. Stat. Soc. Ser. B (Stat. Methodol.)2006681496722125741141.62030
– reference: Gunasekar, S., Woodworth, B., Srebro, N.: Mirrorless mirror descent: A natural derivation of mirror descent. In: International Conference on Artificial Intelligence and Statistics, pp. 2305–2313. PMLR (2021)
– reference: Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872. IEEE (2008)
– reference: NesterovYEA method for solving the convex programming problem with convergence rate o(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(1/k^{2})$$\end{document}Dokl. Akad. Nauk SSSR1983269543547701288
– reference: NikolovaMA variational approach to remove outliers and impulse noiseJ. Math. Imaging Vis.20042019912020497841366.94065
– reference: CandesEJRombergJTaoTRobust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory2006522489509223617010.1109/TIT.2005.8620831231.94017
– reference: Zach, C., Bourmaud, G.: Descending, lifting or smoothing: secrets of robust cost optimization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 547–562 (2018)
– reference: ChambolleAPockTA first-order primal-dual algorithm for convex problems with applications to imagingJ. Math. Imaging Vis.201140112014527821221255.68217
– reference: HastieTMazumderRLeeJDZadehRMatrix completion and low-rank svd via fast alternating least squaresJ. Mach. Learn. Res.20151613367340234505421352.65117
– reference: BrediesKSunHA proximal point analysis of the preconditioned alternating direction method of multipliersJ. Optim. Theory Appl.2017173387890736542611380.65101
– reference: Nemirovskij, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization. John Wiley, New York (1983)
– reference: O’DonoghueBCandesEAdaptive restart for accelerated gradient schemesFound. Comput. Math.201515371573233481711320.90061
– reference: BelloniAChernozhukovVWangLSquare-root lasso: pivotal recovery of sparse signals via conic programmingBiometrika201198479180628603241228.62083
– reference: BlackMJRangarajanAOn the unification of line processes, outlier rejection, and robust statistics with applications in early visionInt. J. Comput. Vis.19961915791
– reference: NdiayeEFercoqOGramfortASalmonJGap safe screening rules for sparsity enforcing penaltiesJ. Mach. Learn. Res.20171814671470337637621442.62161
– reference: CombettesPLVũBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146391289131832258451309.90109
– reference: FanYSchur complements and its applications to symmetric nonnegative and z-matricesLinear Algebra Appl.20023531–328930719196431006.15020
– reference: BeckATeboulleMMirror descent and nonlinear projected subgradient methods for convex optimizationOper. Res. Lett.200331316717519672861046.90057
– reference: Vaškevičius, T., Kanade, V., Rebeschini, P.: Implicit regularization for optimal sparse recovery (2019). arXiv:1909.05122
– reference: CandèsEJFernandez-GrandaCTowards a mathematical theory of super-resolutionCommun. Pure Appl. Math.201467690695631939631350.94011
– reference: LiangJFadiliJPeyréGLocal linear convergence analysis of primal-dual splitting methodsOptimization201867682185338033911400.90246
– reference: GiraudCIntroduction to High-Dimensional Statistics2021Boca RatonChapman and Hall/CRC1341.62011
– reference: GemanDReynoldsGConstrained restoration and the recovery of discontinuitiesIEEE Trans. Pattern Anal. Mach. Intell.1992143367383
– reference: VogelCROmanMEIterative methods for total variation denoisingSIAM J. Sci. Comput.199617122723813752760847.65083
– reference: HoffPDLasso, fractional norm and structured sparse estimation using a Hadamard product parametrizationComput. Stat. Data Anal.201711518619836831371466.62098
– reference: BatenkovDGoldmanGSingle-exponential bounds for the smallest singular value of Vandermonde matrices in the sub-Rayleigh regimeAppl. Comput. Harmon. Anal.20215542643942985981472.15026
– reference: BrediesKPikkarainenHKInverse problems in spaces of measuresESAIM Control Optim. Calc. Var.201319119021830230661266.65083
– volume: 19
  start-page: 190
  issue: 1
  year: 2013
  ident: 1923_CR15
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv/2011205
– volume: 20
  start-page: 99
  issue: 1
  year: 2004
  ident: 1923_CR56
  publication-title: J. Math. Imaging Vis.
  doi: 10.1023/B:JMIV.0000011920.58935.9c
– ident: 1923_CR57
– volume: 60
  start-page: 259
  issue: 1–4
  year: 1992
  ident: 1923_CR64
  publication-title: Phys. D
  doi: 10.1016/0167-2789(92)90242-F
– ident: 1923_CR75
  doi: 10.1007/978-3-030-01258-8_34
– volume: 29
  start-page: 2445
  issue: 4
  year: 2019
  ident: 1923_CR10
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1167152
– volume-title: Introduction to High-Dimensional Statistics
  year: 2021
  ident: 1923_CR38
  doi: 10.1201/9781003158745
– volume: 67
  start-page: 906
  issue: 6
  year: 2014
  ident: 1923_CR17
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21455
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  ident: 1923_CR27
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume: 125
  start-page: 263
  issue: 2
  year: 2010
  ident: 1923_CR69
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0394-2
– volume: 82
  start-page: 421
  issue: 2
  year: 1956
  ident: 1923_CR29
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1956-0084194-4
– volume: 63
  start-page: 1289
  issue: 9
  year: 2014
  ident: 1923_CR26
  publication-title: Optimization
  doi: 10.1080/02331934.2012.733883
– volume: 17
  start-page: 227
  issue: 1
  year: 1996
  ident: 1923_CR73
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0917016
– ident: 1923_CR23
  doi: 10.1109/ICASSP.2008.4518498
– ident: 1923_CR45
  doi: 10.1109/CVPR.2017.629
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1923_CR9
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 14
  start-page: 367
  issue: 3
  year: 1992
  ident: 1923_CR35
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.120331
– ident: 1923_CR3
– ident: 1923_CR76
– volume-title: Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers
  year: 2011
  ident: 1923_CR14
– ident: 1923_CR72
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 1923_CR33
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 347
  start-page: 1999
  issue: 25
  year: 2002
  ident: 1923_CR71
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa021967
– volume: 73
  start-page: 243
  issue: 3
  year: 2008
  ident: 1923_CR2
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5040-8
– volume: 98
  start-page: 791
  issue: 4
  year: 2011
  ident: 1923_CR11
  publication-title: Biometrika
  doi: 10.1093/biomet/asr043
– volume: 52
  start-page: 471
  issue: 3
  year: 2010
  ident: 1923_CR61
  publication-title: SIAM Rev.
  doi: 10.1137/070697835
– volume: 76
  start-page: 167
  issue: 2
  year: 1997
  ident: 1923_CR21
  publication-title: Numer. Math.
  doi: 10.1007/s002110050258
– volume: 19
  start-page: R1
  issue: 2
  year: 2003
  ident: 1923_CR39
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/19/2/201
– volume-title: Variational Analysis
  year: 2009
  ident: 1923_CR63
– volume: 27
  start-page: 264
  issue: 2
  year: 1985
  ident: 1923_CR13
  publication-title: SIAM Rev.
  doi: 10.1137/1027074
– volume: 55
  start-page: 426
  year: 2021
  ident: 1923_CR6
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2021.07.003
– volume: 22
  start-page: 318
  issue: 3
  year: 1980
  ident: 1923_CR65
  publication-title: SIAM Rev.
  doi: 10.1137/1022057
– ident: 1923_CR60
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  ident: 1923_CR8
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 1923_CR68
  publication-title: J. R. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  ident: 1923_CR19
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  ident: 1923_CR74
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: 1923_CR52
  doi: 10.1088/1742-6596/904/1/012006
– ident: 1923_CR4
  doi: 10.1561/9781601985118
– volume: 42
  start-page: 330
  issue: 2
  year: 2017
  ident: 1923_CR7
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0817
– volume: 20
  start-page: 89
  issue: 1
  year: 2004
  ident: 1923_CR20
  publication-title: J. Math. Imaging Vis.
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  ident: 1923_CR47
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 33
  issue: 5
  year: 2017
  ident: 1923_CR31
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa5e12
– volume-title: Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity
  year: 2010
  ident: 1923_CR67
  doi: 10.1017/CBO9780511730344
– ident: 1923_CR54
– ident: 1923_CR37
– ident: 1923_CR50
– volume: 18
  start-page: 4671
  issue: 1
  year: 2017
  ident: 1923_CR53
  publication-title: J. Mach. Learn. Res.
– ident: 1923_CR62
  doi: 10.1145/1102351.1102441
– volume: 67
  start-page: 821
  issue: 6
  year: 2018
  ident: 1923_CR46
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1426584
– volume: 269
  start-page: 543
  year: 1983
  ident: 1923_CR55
  publication-title: Dokl. Akad. Nauk SSSR
– volume-title: Convergence of Reweighted l1 Minimization Algorithms and Unique Solution of Truncated lp Minimization
  year: 2010
  ident: 1923_CR24
– ident: 1923_CR70
  doi: 10.1007/978-3-319-27099-9_13
– ident: 1923_CR42
– volume: 40
  start-page: 120
  issue: 1
  year: 2011
  ident: 1923_CR22
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 353
  start-page: 289
  issue: 1–3
  year: 2002
  ident: 1923_CR32
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(02)00327-0
– volume: 58
  start-page: 1
  issue: 3
  year: 2011
  ident: 1923_CR18
  publication-title: J. ACM: JACM
  doi: 10.1145/1970392.1970395
– volume: 20
  start-page: 3465
  issue: 6
  year: 2010
  ident: 1923_CR59
  publication-title: SIAM J. Optim.
  doi: 10.1137/090763184
– volume: 8
  start-page: 141
  issue: 1
  year: 1988
  ident: 1923_CR5
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/8.1.141
– volume: 24
  start-page: 1533
  issue: 3
  year: 2015
  ident: 1923_CR49
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2015.2417809
– ident: 1923_CR36
– volume: 10
  start-page: 413
  issue: 2
  year: 1973
  ident: 1923_CR40
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0710036
– ident: 1923_CR1
– volume: 19
  start-page: 57
  issue: 1
  year: 1996
  ident: 1923_CR12
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00131148
– volume: 25
  start-page: 387
  issue: 1
  year: 1997
  ident: 1923_CR48
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1034276635
– volume: 15
  start-page: 715
  issue: 3
  year: 2015
  ident: 1923_CR58
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-013-9150-3
– volume: 16
  start-page: 3367
  issue: 1
  year: 2015
  ident: 1923_CR43
  publication-title: J. Mach. Learn. Res.
– ident: 1923_CR25
– ident: 1923_CR41
– volume: 38
  start-page: 455
  issue: 3
  year: 2013
  ident: 1923_CR51
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-011-9245-9
– volume: 63
  start-page: 1
  issue: 1
  year: 2010
  ident: 1923_CR28
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20303
– volume: 41
  start-page: A163
  issue: 1
  year: 2019
  ident: 1923_CR30
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1147342
– volume: 115
  start-page: 186
  year: 2017
  ident: 1923_CR44
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2017.06.007
– volume: 6
  start-page: 227
  issue: 3
  year: 1991
  ident: 1923_CR34
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00115697
– volume: 30
  start-page: 2687
  issue: 4
  year: 2020
  ident: 1923_CR66
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1240460
– volume: 173
  start-page: 878
  issue: 3
  year: 2017
  ident: 1923_CR16
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1112-5
SSID ssj0001388
Score 2.5009859
Snippet Non-smooth optimization is a core ingredient of many imaging or machine learning pipelines. Non-smoothness encodes structural constraints on the solutions,...
SourceID hal
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 897
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Machine learning
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title Smooth over-parameterized solvers for non-smooth structured optimization
URI https://link.springer.com/article/10.1007/s10107-022-01923-3
https://hal.science/hal-04289271
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1436-4646
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AMVHM
  dateStart: 19711201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYuMCBN2I8pgohcYCgpeljOXbAmHhdYBKcojZJBYJtiA0O_HrsNR0wISQulVq5SRo7jtN8_gKwh5OkzXnWYDbWkgXWNljGCUwluTZoQ1xY2tG9uo463eD8LrxzSWHDEu1ebkmOPfW3ZDdOv9V8ghJgWMJEBWbHfFtVmE3O7i9OJx6Yi2azPKqV4gOXLPN7KT8mJOeWKw-EipzaGh3POO1F6JZtLYAmT0dvo-xIf0zROP73Y5ZgwYWgXlLYzDLM2P4KzH8jJsS7qwmb63AVOje9ASrUI7QnI67wHmFoHj-s8dByCdfhYejr9Qd9NiwkC1bat1eUGKBP6rlkzzXotk9vjzvMncDAtIiCEdN5U2iTmSyN_chYieFaHmutG1YEgYxsSmz5wudpiA8NlyFObjLwbSSM8fEi1qGKldsN8EJhRUR_nCwuKHOTZjKLYqPp_YDzPKwBL9WgtKMnp1MyntUXsTL1mcI-U-M-U6IGB5N3Xgpyjj-l90m7ikYulqxTl4CA7SMOLJXg0imQ6OJQchcNYFIkMXB3kktFz2iJKf2Yv_MaHJaqVW7cD_-offN_4lswRwfbF2i2baii2uwOhj-jrI7W3jpptevO6utQ6frJJxq0-oA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86H9QH8RPnZxHBBw0sTdouj0UcVbe9uMHeQpukKDgndvrgX-9dm84pMvCl0HJJyl1yuUvufkfIOWySNmdZi9pISyqsbdGMYTCVZNrAHGLc4o1urx8mQ3E3CkYuKayoo93rK8lSU88luzE8VvMxlADMEsqXyQoCWCFi_tCPZ_qX8Xa7LtSK1oFLlfm7jx_bkVPKy48YE_nrYrTcbzqbZMMZil5cSXaLLNmXbbI-Bx8Ib70Z5mqxQ5KH8QTY7mFMJkVE7zFGujx9WuPB_MLoCw8MVA_cfVpUlBV27PsbUExAc4xdSuYuGXZuBtcJdXUSqOahmFKdt7k2mcnSyA-NlWBU5ZHWumW5EDK0KWLac5-lAXw0TAawBUnh25Ab48OD75EGDG73iRdwy0M8F7Lg9uUmzWQWRkZje8FYHjQJq9mltAMRx1oWz-ob_hhZrIDFqmSx4k1yOWvzWkFoLKS-QCkoXF_Qs05dmgD8HyJVqRgcHCFBEQHlGQhq1iXiZCdxV-E3dASlH7EP1iRXtRyVW53FgtEP_kd-SlaTQa-rurf9-0OyhqXoq_izI9IAEdpjMFim2Uk5P78ADD7eHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9uguiD-Inzs4jgg4YtTdouj0UdVbch6GBvoU1SFNwHbvrgX-9dP-YUGfhSaLkkJXe5j-TuF0LOwEjalCUNagMtqbC2QROGyVSSaQMyxLjFE91O14964q7v9eeq-LNs9_JIMq9pQJSm4bQ-Nml9rvCN4Rabi2kF4KJQXiHLAoESQKJ7bjjTxYw3m-WlregpFGUzf_fxwzQVCrryjPmRvw5JM9vT2iDrhdPohDmXN8mSHW6RtTkoQXjrzPBXJ9skehyMgAUO5mdSRPceYNbLy6c1DsgaZmI44Kw6EPrTSU6Z48i-vwHFCLTIoCjP3CG91s3TVUSLOxOo5r6YUp02uTaJSeLA9Y2V4GClgda6YbkQ0rcx4ttzl8UefDRMemCOpHCtz41x4cF3SRUGt3vE8bjlPu4RWQgBUxMnMvEDo7G9YCz1aoSV06V0ASiO91q8qm8oZJxiBVOssilWvEYuZm3GOZzGQupz5ILCtQY967goGYD_Q9QqFUKwIyQoJaA8BUbNukTM7ChsK_yGQaF0A_bBauSy5KMqVupkwej7_yM_ISsP1y3Vvu3eH5BVvJU-T0U7JFXgoD0C32WaHGfi-QUXdOJZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smooth+over-parameterized+solvers+for+non-smooth+structured+optimization&rft.jtitle=Mathematical+programming&rft.au=Poon%2C+Clarice&rft.au=Peyr%C3%A9%2C+Gabriel&rft.date=2023-09-01&rft.pub=Springer+Verlag&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=201&rft.issue=1-2&rft.spage=897&rft.epage=952&rft_id=info:doi/10.1007%2Fs10107-022-01923-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04289271v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon