Smooth over-parameterized solvers for non-smooth structured optimization
Non-smooth optimization is a core ingredient of many imaging or machine learning pipelines. Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank and sharp edges. It is also the basis for the definition of robust loss functions and scale-free func...
Saved in:
| Published in | Mathematical programming Vol. 201; no. 1-2; pp. 897 - 952 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2023
Springer Springer Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0025-5610 1436-4646 |
| DOI | 10.1007/s10107-022-01923-3 |
Cover
| Abstract | Non-smooth optimization is a core ingredient of many imaging or machine learning pipelines. Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank and sharp edges. It is also the basis for the definition of robust loss functions and scale-free functionals such as square-root Lasso. Standard approaches to deal with non-smoothness leverage either proximal splitting or coordinate descent. These approaches are effective but usually require parameter tuning, preconditioning or some sort of support pruning. In this work, we advocate and study a different route, which operates a non-convex but smooth over-parameterization of the underlying non-smooth optimization problems. This generalizes quadratic variational forms that are at the heart of the popular Iterative Reweighted Least Squares. Our main theoretical contribution connects gradient descent on this reformulation to a mirror descent flow with a varying Hessian metric. This analysis is crucial to derive convergence bounds that are dimension-free. This explains the efficiency of the method when using small grid sizes in imaging. Our main algorithmic contribution is to apply the Variable Projection method which defines a new formulation by explicitly minimizing over part of the variables. This leads to a better conditioning of the minimized functional and improves the convergence of simple but very efficient gradient-based methods, for instance quasi-Newton solvers. We exemplify the use of this new solver for the resolution of regularized regression problems for inverse problems and supervised learning, including total variation prior and non-convex regularizers. |
|---|---|
| AbstractList | Non-smooth optimization is a core ingredient of many imaging or machine learning pipelines. Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank and sharp edges. It is also the basis for the definition of robust loss functions and scale-free functionals such as square-root Lasso. Standard approaches to deal with non-smoothness leverage either proximal splitting or coordinate descent. These approaches are effective but usually require parameter tuning, preconditioning or some sort of support pruning. In this work, we advocate and study a different route, which operates a non-convex but smooth over-parameterization of the underlying non-smooth optimization problems. This generalizes quadratic variational forms that are at the heart of the popular Iterative Reweighted Least Squares. Our main theoretical contribution connects gradient descent on this reformulation to a mirror descent flow with a varying Hessian metric. This analysis is crucial to derive convergence bounds that are dimension-free. This explains the efficiency of the method when using small grid sizes in imaging. Our main algorithmic contribution is to apply the Variable Projection method which defines a new formulation by explicitly minimizing over part of the variables. This leads to a better conditioning of the minimized functional and improves the convergence of simple but very efficient gradient-based methods, for instance quasi-Newton solvers. We exemplify the use of this new solver for the resolution of regularized regression problems for inverse problems and supervised learning, including total variation prior and non-convex regularizers. |
| Audience | Academic |
| Author | Poon, Clarice Peyré, Gabriel |
| Author_xml | – sequence: 1 givenname: Clarice surname: Poon fullname: Poon, Clarice organization: Department of Mathematical Sciences, University of Bath – sequence: 2 givenname: Gabriel surname: Peyré fullname: Peyré, Gabriel email: gabriel.peyre@ens.fr organization: CNRS and DMA, Ecole Normale Supérieure, PSL University |
| BackLink | https://hal.science/hal-04289271$$DView record in HAL |
| BookMark | eNp9kE1LwzAAhoMouE3_gKdePWTmq21yHEOdMPCgnkOWpFtG24wkG7hfb7aKBw8jkMDL--SFZwyue99bAB4wmmKE6qeIEUY1RIRAhAWhkF6BEWa0gqxi1TUYIURKWFYY3YJxjFuEEKacj8Dio_M-bQp_sAHuVFCdTTa4ozVF9G0OY9H4UOQ5GIdmTGGv0z7kht8l17mjSs73d-CmUW2097_vBHy9PH_OF3D5_vo2ny2hphVLUDecarMyK1WTyljBadnUWmtkKWOisorwmlGCVZlDg0VJhBCM2IoaQ_JFJ-Bx-HejWrkLrlPhW3rl5GK2lKcMMcIFqfEB5-506K5Va6XrG5-C0vkY2zmdDTYu57O65ExgTmkGyADo4GMMtvlbwEieRMtBtMyi5Vm0PEH8H6RdOjvJa669jNIBjXmnX9sgt34f-uzvEvUD7aiU-g |
| CitedBy_id | crossref_primary_10_1137_24M1636186 |
| Cites_doi | 10.1051/cocv/2011205 10.1023/B:JMIV.0000011920.58935.9c 10.1016/0167-2789(92)90242-F 10.1007/978-3-030-01258-8_34 10.1137/18M1167152 10.1201/9781003158745 10.1002/cpa.21455 10.1002/cpa.20042 10.1007/s10107-010-0394-2 10.1090/S0002-9947-1956-0084194-4 10.1080/02331934.2012.733883 10.1137/0917016 10.1109/ICASSP.2008.4518498 10.1109/CVPR.2017.629 10.1137/080716542 10.1109/34.120331 10.18637/jss.v033.i01 10.1056/NEJMoa021967 10.1007/s10994-007-5040-8 10.1093/biomet/asr043 10.1137/070697835 10.1007/s002110050258 10.1088/0266-5611/19/2/201 10.1137/1027074 10.1016/j.acha.2021.07.003 10.1137/1022057 10.1016/S0167-6377(02)00231-6 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TIT.2005.862083 10.1111/j.1467-9868.2005.00532.x 10.1088/1742-6596/904/1/012006 10.1561/9781601985118 10.1287/moor.2016.0817 10.1137/0716071 10.1088/1361-6420/aa5e12 10.1017/CBO9780511730344 10.1145/1102351.1102441 10.1080/02331934.2018.1426584 10.1007/978-3-319-27099-9_13 10.1007/s10851-010-0251-1 10.1016/S0024-3795(02)00327-0 10.1145/1970392.1970395 10.1137/090763184 10.1093/imanum/8.1.141 10.1109/TNET.2015.2417809 10.1137/0710036 10.1007/BF00131148 10.1214/aos/1034276635 10.1007/s10208-013-9150-3 10.1007/s10444-011-9245-9 10.1002/cpa.20303 10.1137/17M1147342 10.1016/j.csda.2017.06.007 10.1007/BF00115697 10.1137/19M1240460 10.1007/s10957-017-1112-5 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1007/s10107-022-01923-3 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 952 |
| ExternalDocumentID | oai:HAL:hal-04289271v1 A758491833 10_1007_s10107_022_01923_3 |
| GrantInformation_xml | – fundername: H2020 European Research Council grantid: NORIA funderid: http://dx.doi.org/10.13039/100010663 – fundername: Agence Nationale de la Recherche grantid: PRAIRIE funderid: http://dx.doi.org/10.13039/501100001665 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 1XC |
| ID | FETCH-LOGICAL-c364t-cf83cdbdba726de9835f7ccc0e34496ea2874321a5cccd195299942e63dd263d3 |
| IEDL.DBID | AGYKE |
| ISSN | 0025-5610 |
| IngestDate | Tue Oct 28 06:32:54 EDT 2025 Mon Oct 20 16:59:57 EDT 2025 Wed Oct 01 02:58:29 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Fri Feb 21 02:42:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Mirror descent 68Q25 Non-convex optimization Sparsity Low-rank 68U05 68R10 Variable projection Compressed sensing |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-cf83cdbdba726de9835f7ccc0e34496ea2874321a5cccd195299942e63dd263d3 |
| ORCID | 0000-0002-4477-0387 |
| PageCount | 56 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04289271v1 gale_infotracacademiconefile_A758491833 crossref_primary_10_1007_s10107_022_01923_3 crossref_citationtrail_10_1007_s10107_022_01923_3 springer_journals_10_1007_s10107_022_01923_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Verlag |
| References | BauschkeHHBolteJTeboulleMA descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applicationsMath. Oper. Res.201742233034836519941364.90251 StarckJLMurtaghFFadiliJMSparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity2010CambridgeCambridge University Press1196.94008 DaubechiesIDeVoreRFornasierMGüntürkCSIteratively reweighted least squares minimization for sparse recoveryCommun. Pure Appl. Math.201063113825883851202.65046 VogelCROmanMEIterative methods for total variation denoisingSIAM J. Sci. Comput.199617122723813752760847.65083 ChambolleAAn algorithm for total variation minimization and applicationsJ. Math. Imaging Vis.2004201899720497831366.94048 Azulay, S., Moroshko, E., Nacson, M.S., Woodworth, B., Srebro, N., Globerson, A., Soudry, D.: On the implicit bias of initialization shape: beyond infinitesimal mirror descent (2021). arXiv:2102.09769 CombettesPLVũBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146391289131832258451309.90109 Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties (2011). arXiv:1108.0775 Gunasekar, S., Lee, J., Soudry, D., Srebro, N.: Characterizing implicit bias in terms of optimization geometry. In: International Conference on Machine Learning, pp. 1832–1841. PMLR (2018) Zach, C., Bourmaud, G.: Descending, lifting or smoothing: secrets of robust cost optimization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 547–562 (2018) Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872. IEEE (2008) CandesEJRombergJTaoTRobust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory2006522489509223617010.1109/TIT.2005.8620831231.94017 Van De VijverMJHeYDVan’t VeerLJDaiHHartAAVoskuilDWSchreiberGJPeterseJLRobertsCMartonMJA gene-expression signature as a predictor of survival in breast cancerN. Engl. J. Med.20023472519992009 HoffPDLasso, fractional norm and structured sparse estimation using a Hadamard product parametrizationComput. Stat. Data Anal.201711518619836831371466.62098 RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D1992601–425926833634010780.49028 GolubGHPereyraVThe differentiation of pseudo-inverses and nonlinear least squares problems whose variables separateSIAM J. Numer. Anal.19731024134323369800258.65045 Hong, J.H., Zach, C., Fitzgibbon, A.: Revisiting the variable projection method for separable nonlinear least squares problems. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–5947. IEEE (2017) PongTKTsengPJiSYeJTrace norm regularization: reformulations, algorithms, and multi-task learningSIAM J. Optim.20102063465348927635121211.90129 NikolovaMA variational approach to remove outliers and impulse noiseJ. Math. Imaging Vis.20042019912020497841366.94065 van de Geer, S, Stucky, B.: χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} 2-confidence sets in high-dimensional regression. In: Frigessi, A., Bühlmann, P., Glad, I.K., Langaas, M., Richardson, S., Vannucci, M. (eds.) Statistical Analysis for High-Dimensional Data, pp. 279–306. Springer, Berlin (2016) GolubGPereyraVSeparable nonlinear least squares: the variable projection method and its applicationsInverse Probl.2003192R119917861022.65014 DouglasJRachfordHHOn the numerical solution of heat conduction problems in two and three space variablesTrans. Am. Math. Soc.1956822421439841940070.35401 BarzilaiJBorweinJMTwo-point step size gradient methodsIMA J. Numer. Anal.1988811411489678480638.65055 RuheAWedinPÅAlgorithms for separable nonlinear least squares problemsSIAM Rev.19802233183375843800466.65039 Vaškevičius, T., Kanade, V., Rebeschini, P.: Implicit regularization for optimal sparse recovery (2019). arXiv:1909.05122 Silveti-FallsAMolinariCFadiliJGeneralized conditional gradient with augmented Lagrangian for composite minimizationSIAM J. Optim.20203042687272541559731450.65054 GeigerDYuilleAA common framework for image segmentationInt. J. Comput. Vis.199163227243 BeckATeboulleMMirror descent and nonlinear projected subgradient methods for convex optimizationOper. Res. Lett.200331316717519672861046.90057 BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.94009 MammenEvan de GeerSLocally adaptive regression splinesAnn. Stat.199725138741314299310871.62040 TsengPApproximation accuracy, gradient methods, and error bound for structured convex optimizationMath. Program.2010125226329527335651207.65084 ChambolleALionsPLImage recovery via total variation minimization and related problemsNumer. Math.199776216718814401190874.68299 GiraudCIntroduction to High-Dimensional Statistics2021Boca RatonChapman and Hall/CRC1341.62011 Zhao, P., Yang, Y., He, Q.C.: Implicit regularization via hadamard product over-parametrization in high-dimensional linear regression (2019). arXiv:1903.09367 HastieTMazumderRLeeJDZadehRMatrix completion and low-rank svd via fast alternating least squaresJ. Mach. Learn. Res.20151613367340234505421352.65117 BrediesKPikkarainenHKInverse problems in spaces of measuresESAIM Control Optim. Calc. Var.201319119021830230661266.65083 BrediesKSunHA proximal point analysis of the preconditioned alternating direction method of multipliersJ. Optim. Theory Appl.2017173387890736542611380.65101 Chizat, L.: Convergence rates of gradient methods for convex optimization in the space of measures (2021). arXiv:2105.08368 O’DonoghueBCandesEAdaptive restart for accelerated gradient schemesFound. Comput. Math.201515371573233481711320.90061 DaubechiesIDefriseMDe MolCAn iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.200457111413145720777041077.65055 RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001 NdiayeEFercoqOGramfortASalmonJGap safe screening rules for sparsity enforcing penaltiesJ. Mach. Learn. Res.20171814671470337637621442.62161 LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791669649795513190426.65050 BlackMJRangarajanAOn the unification of line processes, outlier rejection, and robust statistics with applications in early visionInt. J. Comput. Vis.19961915791 CandèsEJFernandez-GrandaCTowards a mathematical theory of super-resolutionCommun. Pure Appl. Math.201467690695631939631350.94011 LiangJFadiliJPeyréGLocal linear convergence analysis of primal-dual splitting methodsOptimization201867682185338033911400.90246 BlairCProblem complexity and method efficiency in optimization (as nemirovsky and db yudin)SIAM Rev.1985272264 MardaniMGiannakisGBEstimating traffic and anomaly maps via network tomographyIEEE/ACM Trans. Netw.201524315331547 BoydSParikhNChuEDistributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers2011DelftNow Publishers Inc1229.90122 Poon, C., Peyré, G.: Smooth bilevel programming for sparse regularization. In: Proceedings of NeurIPS’21 (2021). arxiv:2106.01429 BelloniAChernozhukovVWangLSquare-root lasso: pivotal recovery of sparse signals via conic programmingBiometrika201198479180628603241228.62083 Rennie, J.D., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 713–719 (2005) CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM: JACM201158313728110001327.62369 FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103311 FanYSchur complements and its applications to symmetric nonnegative and z-matricesLinear Algebra Appl.20023531–328930719196431006.15020 Ghai, U., Hazan, E., Singer, Y.: Exponentiated gradient meets gradient descent. In: Kontorovich, A., Neu, G. (eds.) Algorithmic Learning Theory, pp. 386–407. PMLR, New York (2020) GemanDReynoldsGConstrained restoration and the recovery of discontinuitiesIEEE Trans. Pattern Anal. Mach. Intell.1992143367383 Nemirovskij, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization. John Wiley, New York (1983) NesterovYEA method for solving the convex programming problem with convergence rate o(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(1/k^{2})$$\end{document}Dokl. Akad. Nauk SSSR1983269543547701288 BeckerSFadiliJOchsPOn quasi-Newton forward-backward splitting: proximal calculus and convergenceSIAM J. Optim.20192942445248140147911461.65128 DriggsDBeckerSAravkinAAdapting regularized low-rank models for parallel architecturesSIAM J. Sci. Comput.2019411A163A18938953411405.65079 Massias, M., Gramfort, A., Salmon, J.: Celer: a fast solver for the lasso with dual extrapolation. In: International Conference on Machine Learning, pp. 3315–3324. PMLR (2018) YuanMLinYModel selection and estimation in regression with grouped variablesJ. R. Stat. Soc. Ser. B (Stat. Methodol.)2006681496722125741141.62030 ChenXZhouWConvergence of Reweighted l1 Minimization Algorithms and Unique Solution of Truncated lp Minimization2010KowloonDepartment of Applied Mathematics, The Hong Kong Polytechnic University Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications (1993). arXiv:funct-an/9311001 Gunasekar, S., Woodworth, B., Srebro, N.: Mirrorless mirror descent: A natural derivation of mirror descent. In: International Conference on Artificial Int D Geman (1923_CR35) 1992; 14 CR Vogel (1923_CR73) 1996; 17 A Chambolle (1923_CR20) 2004; 20 RT Rockafellar (1923_CR63) 2009 J Liang (1923_CR46) 2018; 67 I Daubechies (1923_CR27) 2004; 57 A Argyriou (1923_CR2) 2008; 73 1923_CR70 G Golub (1923_CR39) 2003; 19 PD Hoff (1923_CR44) 2017; 115 A Beck (1923_CR8) 2003; 31 1923_CR23 1923_CR62 EJ Candès (1923_CR17) 2014; 67 T Hastie (1923_CR43) 2015; 16 PL Combettes (1923_CR26) 2014; 63 1923_CR25 R Tibshirani (1923_CR68) 1996; 58 D Batenkov (1923_CR6) 2021; 55 A Beck (1923_CR9) 2009; 2 J Friedman (1923_CR33) 2010; 33 Y Fan (1923_CR32) 2002; 353 B O’Donoghue (1923_CR58) 2015; 15 1923_CR76 A Chambolle (1923_CR22) 2011; 40 1923_CR72 1923_CR75 J Barzilai (1923_CR5) 1988; 8 C Blair (1923_CR13) 1985; 27 LI Rudin (1923_CR64) 1992; 60 E Ndiaye (1923_CR53) 2017; 18 YE Nesterov (1923_CR55) 1983; 269 1923_CR37 1923_CR36 J Douglas (1923_CR29) 1956; 82 TK Pong (1923_CR59) 2010; 20 A Belloni (1923_CR11) 2011; 98 D Geiger (1923_CR34) 1991; 6 MJ Black (1923_CR12) 1996; 19 M Mardani (1923_CR49) 2015; 24 K Bredies (1923_CR16) 2017; 173 1923_CR45 X Chen (1923_CR24) 2010 V Duval (1923_CR31) 2017; 33 1923_CR42 1923_CR41 A Chambolle (1923_CR21) 1997; 76 S Becker (1923_CR10) 2019; 29 GH Golub (1923_CR40) 1973; 10 JL Starck (1923_CR67) 2010 D Driggs (1923_CR30) 2019; 41 EJ Candes (1923_CR19) 2006; 52 1923_CR1 1923_CR4 1923_CR3 E Mammen (1923_CR48) 1997; 25 1923_CR60 A Ruhe (1923_CR65) 1980; 22 K Bredies (1923_CR15) 2013; 19 EJ Candès (1923_CR18) 2011; 58 MJ Van De Vijver (1923_CR71) 2002; 347 M Yuan (1923_CR74) 2006; 68 S Boyd (1923_CR14) 2011 PL Lions (1923_CR47) 1979; 16 1923_CR54 1923_CR57 C Giraud (1923_CR38) 2021 M Nikolova (1923_CR56) 2004; 20 I Daubechies (1923_CR28) 2010; 63 1923_CR50 1923_CR52 B Recht (1923_CR61) 2010; 52 HH Bauschke (1923_CR7) 2017; 42 CA Micchelli (1923_CR51) 2013; 38 A Silveti-Falls (1923_CR66) 2020; 30 P Tseng (1923_CR69) 2010; 125 |
| References_xml | – reference: Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties (2011). arXiv:1108.0775 – reference: Ghai, U., Hazan, E., Singer, Y.: Exponentiated gradient meets gradient descent. In: Kontorovich, A., Neu, G. (eds.) Algorithmic Learning Theory, pp. 386–407. PMLR, New York (2020) – reference: DouglasJRachfordHHOn the numerical solution of heat conduction problems in two and three space variablesTrans. Am. Math. Soc.1956822421439841940070.35401 – reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.19791669649795513190426.65050 – reference: StarckJLMurtaghFFadiliJMSparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity2010CambridgeCambridge University Press1196.94008 – reference: GeigerDYuilleAA common framework for image segmentationInt. J. Comput. Vis.199163227243 – reference: Massias, M., Gramfort, A., Salmon, J.: Celer: a fast solver for the lasso with dual extrapolation. In: International Conference on Machine Learning, pp. 3315–3324. PMLR (2018) – reference: ArgyriouAEvgeniouTPontilMConvex multi-task feature learningMach. Learn.20087332432721470.68073 – reference: MicchelliCAMoralesJMPontilMRegularizers for structured sparsityAdv. Comput. Math.201338345548930370261297.62153 – reference: TibshiraniRRegression shrinkage and selection via the lassoJ. R. Stat. Soc.: Ser. B (Methodol.)199658126728813792420850.62538 – reference: TsengPApproximation accuracy, gradient methods, and error bound for structured convex optimizationMath. Program.2010125226329527335651207.65084 – reference: Gunasekar, S., Lee, J., Soudry, D., Srebro, N.: Characterizing implicit bias in terms of optimization geometry. In: International Conference on Machine Learning, pp. 1832–1841. PMLR (2018) – reference: DaubechiesIDefriseMDe MolCAn iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.200457111413145720777041077.65055 – reference: Hong, J.H., Zach, C., Fitzgibbon, A.: Revisiting the variable projection method for separable nonlinear least squares problems. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–5947. IEEE (2017) – reference: RechtBFazelMParriloPAGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Rev.201052347150126805431198.90321 – reference: Chizat, L.: Convergence rates of gradient methods for convex optimization in the space of measures (2021). arXiv:2105.08368 – reference: RuheAWedinPÅAlgorithms for separable nonlinear least squares problemsSIAM Rev.19802233183375843800466.65039 – reference: Ndiaye, E., Fercoq, O., Gramfort, A., Leclère, V., Salmon, J.: Efficient smoothed concomitant lasso estimation for high dimensional regression. In: Journal of Physics: Conference Series, vol. 904, p. 012006. IOP Publishing (2017) – reference: PongTKTsengPJiSYeJTrace norm regularization: reformulations, algorithms, and multi-task learningSIAM J. Optim.20102063465348927635121211.90129 – reference: Van De VijverMJHeYDVan’t VeerLJDaiHHartAAVoskuilDWSchreiberGJPeterseJLRobertsCMartonMJA gene-expression signature as a predictor of survival in breast cancerN. Engl. J. Med.20023472519992009 – reference: BarzilaiJBorweinJMTwo-point step size gradient methodsIMA J. Numer. Anal.1988811411489678480638.65055 – reference: Obozinski, G., Jacob, L., Vert, J.P.: Group lasso with overlaps: the latent group lasso approach (2011). arXiv:1110.0413 – reference: ChambolleAAn algorithm for total variation minimization and applicationsJ. Math. Imaging Vis.2004201899720497831366.94048 – reference: GolubGHPereyraVThe differentiation of pseudo-inverses and nonlinear least squares problems whose variables separateSIAM J. Numer. Anal.19731024134323369800258.65045 – reference: DaubechiesIDeVoreRFornasierMGüntürkCSIteratively reweighted least squares minimization for sparse recoveryCommun. Pure Appl. Math.201063113825883851202.65046 – reference: RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D1992601–425926833634010780.49028 – reference: CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM: JACM201158313728110001327.62369 – reference: RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001 – reference: Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications (1993). arXiv:funct-an/9311001 – reference: Zhao, P., Yang, Y., He, Q.C.: Implicit regularization via hadamard product over-parametrization in high-dimensional linear regression (2019). arXiv:1903.09367 – reference: MardaniMGiannakisGBEstimating traffic and anomaly maps via network tomographyIEEE/ACM Trans. Netw.201524315331547 – reference: DriggsDBeckerSAravkinAAdapting regularized low-rank models for parallel architecturesSIAM J. Sci. Comput.2019411A163A18938953411405.65079 – reference: Azulay, S., Moroshko, E., Nacson, M.S., Woodworth, B., Srebro, N., Globerson, A., Soudry, D.: On the implicit bias of initialization shape: beyond infinitesimal mirror descent (2021). arXiv:2102.09769 – reference: van de Geer, S, Stucky, B.: χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} 2-confidence sets in high-dimensional regression. In: Frigessi, A., Bühlmann, P., Glad, I.K., Langaas, M., Richardson, S., Vannucci, M. (eds.) Statistical Analysis for High-Dimensional Data, pp. 279–306. Springer, Berlin (2016) – reference: DuvalVPeyréGSparse regularization on thin grids I: the lassoInverse Probl.201733536289041373.65039 – reference: MammenEvan de GeerSLocally adaptive regression splinesAnn. Stat.199725138741314299310871.62040 – reference: ChambolleALionsPLImage recovery via total variation minimization and related problemsNumer. Math.199776216718814401190874.68299 – reference: BoydSParikhNChuEDistributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers2011DelftNow Publishers Inc1229.90122 – reference: ChenXZhouWConvergence of Reweighted l1 Minimization Algorithms and Unique Solution of Truncated lp Minimization2010KowloonDepartment of Applied Mathematics, The Hong Kong Polytechnic University – reference: FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103311 – reference: Silveti-FallsAMolinariCFadiliJGeneralized conditional gradient with augmented Lagrangian for composite minimizationSIAM J. Optim.20203042687272541559731450.65054 – reference: BlairCProblem complexity and method efficiency in optimization (as nemirovsky and db yudin)SIAM Rev.1985272264 – reference: BauschkeHHBolteJTeboulleMA descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applicationsMath. Oper. Res.201742233034836519941364.90251 – reference: BeckerSFadiliJOchsPOn quasi-Newton forward-backward splitting: proximal calculus and convergenceSIAM J. Optim.20192942445248140147911461.65128 – reference: Ghaoui, L.E., Viallon, V., Rabbani, T.: Safe feature elimination for the lasso and sparse supervised learning problems (2010). arXiv:1009.4219 – reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.94009 – reference: Poon, C., Peyré, G.: Smooth bilevel programming for sparse regularization. In: Proceedings of NeurIPS’21 (2021). arxiv:2106.01429 – reference: Rennie, J.D., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 713–719 (2005) – reference: GolubGPereyraVSeparable nonlinear least squares: the variable projection method and its applicationsInverse Probl.2003192R119917861022.65014 – reference: YuanMLinYModel selection and estimation in regression with grouped variablesJ. R. Stat. Soc. Ser. B (Stat. Methodol.)2006681496722125741141.62030 – reference: Gunasekar, S., Woodworth, B., Srebro, N.: Mirrorless mirror descent: A natural derivation of mirror descent. In: International Conference on Artificial Intelligence and Statistics, pp. 2305–2313. PMLR (2021) – reference: Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872. IEEE (2008) – reference: NesterovYEA method for solving the convex programming problem with convergence rate o(1/k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(1/k^{2})$$\end{document}Dokl. Akad. Nauk SSSR1983269543547701288 – reference: NikolovaMA variational approach to remove outliers and impulse noiseJ. Math. Imaging Vis.20042019912020497841366.94065 – reference: CandesEJRombergJTaoTRobust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory2006522489509223617010.1109/TIT.2005.8620831231.94017 – reference: Zach, C., Bourmaud, G.: Descending, lifting or smoothing: secrets of robust cost optimization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 547–562 (2018) – reference: ChambolleAPockTA first-order primal-dual algorithm for convex problems with applications to imagingJ. Math. Imaging Vis.201140112014527821221255.68217 – reference: HastieTMazumderRLeeJDZadehRMatrix completion and low-rank svd via fast alternating least squaresJ. Mach. Learn. Res.20151613367340234505421352.65117 – reference: BrediesKSunHA proximal point analysis of the preconditioned alternating direction method of multipliersJ. Optim. Theory Appl.2017173387890736542611380.65101 – reference: Nemirovskij, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization. John Wiley, New York (1983) – reference: O’DonoghueBCandesEAdaptive restart for accelerated gradient schemesFound. Comput. Math.201515371573233481711320.90061 – reference: BelloniAChernozhukovVWangLSquare-root lasso: pivotal recovery of sparse signals via conic programmingBiometrika201198479180628603241228.62083 – reference: BlackMJRangarajanAOn the unification of line processes, outlier rejection, and robust statistics with applications in early visionInt. J. Comput. Vis.19961915791 – reference: NdiayeEFercoqOGramfortASalmonJGap safe screening rules for sparsity enforcing penaltiesJ. Mach. Learn. Res.20171814671470337637621442.62161 – reference: CombettesPLVũBCVariable metric forward-backward splitting with applications to monotone inclusions in dualityOptimization20146391289131832258451309.90109 – reference: FanYSchur complements and its applications to symmetric nonnegative and z-matricesLinear Algebra Appl.20023531–328930719196431006.15020 – reference: BeckATeboulleMMirror descent and nonlinear projected subgradient methods for convex optimizationOper. Res. Lett.200331316717519672861046.90057 – reference: Vaškevičius, T., Kanade, V., Rebeschini, P.: Implicit regularization for optimal sparse recovery (2019). arXiv:1909.05122 – reference: CandèsEJFernandez-GrandaCTowards a mathematical theory of super-resolutionCommun. Pure Appl. Math.201467690695631939631350.94011 – reference: LiangJFadiliJPeyréGLocal linear convergence analysis of primal-dual splitting methodsOptimization201867682185338033911400.90246 – reference: GiraudCIntroduction to High-Dimensional Statistics2021Boca RatonChapman and Hall/CRC1341.62011 – reference: GemanDReynoldsGConstrained restoration and the recovery of discontinuitiesIEEE Trans. Pattern Anal. Mach. Intell.1992143367383 – reference: VogelCROmanMEIterative methods for total variation denoisingSIAM J. Sci. Comput.199617122723813752760847.65083 – reference: HoffPDLasso, fractional norm and structured sparse estimation using a Hadamard product parametrizationComput. Stat. Data Anal.201711518619836831371466.62098 – reference: BatenkovDGoldmanGSingle-exponential bounds for the smallest singular value of Vandermonde matrices in the sub-Rayleigh regimeAppl. Comput. Harmon. Anal.20215542643942985981472.15026 – reference: BrediesKPikkarainenHKInverse problems in spaces of measuresESAIM Control Optim. Calc. Var.201319119021830230661266.65083 – volume: 19 start-page: 190 issue: 1 year: 2013 ident: 1923_CR15 publication-title: ESAIM Control Optim. Calc. Var. doi: 10.1051/cocv/2011205 – volume: 20 start-page: 99 issue: 1 year: 2004 ident: 1923_CR56 publication-title: J. Math. Imaging Vis. doi: 10.1023/B:JMIV.0000011920.58935.9c – ident: 1923_CR57 – volume: 60 start-page: 259 issue: 1–4 year: 1992 ident: 1923_CR64 publication-title: Phys. D doi: 10.1016/0167-2789(92)90242-F – ident: 1923_CR75 doi: 10.1007/978-3-030-01258-8_34 – volume: 29 start-page: 2445 issue: 4 year: 2019 ident: 1923_CR10 publication-title: SIAM J. Optim. doi: 10.1137/18M1167152 – volume-title: Introduction to High-Dimensional Statistics year: 2021 ident: 1923_CR38 doi: 10.1201/9781003158745 – volume: 67 start-page: 906 issue: 6 year: 2014 ident: 1923_CR17 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21455 – volume: 57 start-page: 1413 issue: 11 year: 2004 ident: 1923_CR27 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20042 – volume: 125 start-page: 263 issue: 2 year: 2010 ident: 1923_CR69 publication-title: Math. Program. doi: 10.1007/s10107-010-0394-2 – volume: 82 start-page: 421 issue: 2 year: 1956 ident: 1923_CR29 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1956-0084194-4 – volume: 63 start-page: 1289 issue: 9 year: 2014 ident: 1923_CR26 publication-title: Optimization doi: 10.1080/02331934.2012.733883 – volume: 17 start-page: 227 issue: 1 year: 1996 ident: 1923_CR73 publication-title: SIAM J. Sci. Comput. doi: 10.1137/0917016 – ident: 1923_CR23 doi: 10.1109/ICASSP.2008.4518498 – ident: 1923_CR45 doi: 10.1109/CVPR.2017.629 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1923_CR9 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 14 start-page: 367 issue: 3 year: 1992 ident: 1923_CR35 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.120331 – ident: 1923_CR3 – ident: 1923_CR76 – volume-title: Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers year: 2011 ident: 1923_CR14 – ident: 1923_CR72 – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 1923_CR33 publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – volume: 347 start-page: 1999 issue: 25 year: 2002 ident: 1923_CR71 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa021967 – volume: 73 start-page: 243 issue: 3 year: 2008 ident: 1923_CR2 publication-title: Mach. Learn. doi: 10.1007/s10994-007-5040-8 – volume: 98 start-page: 791 issue: 4 year: 2011 ident: 1923_CR11 publication-title: Biometrika doi: 10.1093/biomet/asr043 – volume: 52 start-page: 471 issue: 3 year: 2010 ident: 1923_CR61 publication-title: SIAM Rev. doi: 10.1137/070697835 – volume: 76 start-page: 167 issue: 2 year: 1997 ident: 1923_CR21 publication-title: Numer. Math. doi: 10.1007/s002110050258 – volume: 19 start-page: R1 issue: 2 year: 2003 ident: 1923_CR39 publication-title: Inverse Probl. doi: 10.1088/0266-5611/19/2/201 – volume-title: Variational Analysis year: 2009 ident: 1923_CR63 – volume: 27 start-page: 264 issue: 2 year: 1985 ident: 1923_CR13 publication-title: SIAM Rev. doi: 10.1137/1027074 – volume: 55 start-page: 426 year: 2021 ident: 1923_CR6 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2021.07.003 – volume: 22 start-page: 318 issue: 3 year: 1980 ident: 1923_CR65 publication-title: SIAM Rev. doi: 10.1137/1022057 – ident: 1923_CR60 – volume: 31 start-page: 167 issue: 3 year: 2003 ident: 1923_CR8 publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(02)00231-6 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 1923_CR68 publication-title: J. R. Stat. Soc.: Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 52 start-page: 489 issue: 2 year: 2006 ident: 1923_CR19 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862083 – volume: 68 start-page: 49 issue: 1 year: 2006 ident: 1923_CR74 publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2005.00532.x – ident: 1923_CR52 doi: 10.1088/1742-6596/904/1/012006 – ident: 1923_CR4 doi: 10.1561/9781601985118 – volume: 42 start-page: 330 issue: 2 year: 2017 ident: 1923_CR7 publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0817 – volume: 20 start-page: 89 issue: 1 year: 2004 ident: 1923_CR20 publication-title: J. Math. Imaging Vis. – volume: 16 start-page: 964 issue: 6 year: 1979 ident: 1923_CR47 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – volume: 33 issue: 5 year: 2017 ident: 1923_CR31 publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa5e12 – volume-title: Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity year: 2010 ident: 1923_CR67 doi: 10.1017/CBO9780511730344 – ident: 1923_CR54 – ident: 1923_CR37 – ident: 1923_CR50 – volume: 18 start-page: 4671 issue: 1 year: 2017 ident: 1923_CR53 publication-title: J. Mach. Learn. Res. – ident: 1923_CR62 doi: 10.1145/1102351.1102441 – volume: 67 start-page: 821 issue: 6 year: 2018 ident: 1923_CR46 publication-title: Optimization doi: 10.1080/02331934.2018.1426584 – volume: 269 start-page: 543 year: 1983 ident: 1923_CR55 publication-title: Dokl. Akad. Nauk SSSR – volume-title: Convergence of Reweighted l1 Minimization Algorithms and Unique Solution of Truncated lp Minimization year: 2010 ident: 1923_CR24 – ident: 1923_CR70 doi: 10.1007/978-3-319-27099-9_13 – ident: 1923_CR42 – volume: 40 start-page: 120 issue: 1 year: 2011 ident: 1923_CR22 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – volume: 353 start-page: 289 issue: 1–3 year: 2002 ident: 1923_CR32 publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(02)00327-0 – volume: 58 start-page: 1 issue: 3 year: 2011 ident: 1923_CR18 publication-title: J. ACM: JACM doi: 10.1145/1970392.1970395 – volume: 20 start-page: 3465 issue: 6 year: 2010 ident: 1923_CR59 publication-title: SIAM J. Optim. doi: 10.1137/090763184 – volume: 8 start-page: 141 issue: 1 year: 1988 ident: 1923_CR5 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/8.1.141 – volume: 24 start-page: 1533 issue: 3 year: 2015 ident: 1923_CR49 publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2015.2417809 – ident: 1923_CR36 – volume: 10 start-page: 413 issue: 2 year: 1973 ident: 1923_CR40 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0710036 – ident: 1923_CR1 – volume: 19 start-page: 57 issue: 1 year: 1996 ident: 1923_CR12 publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00131148 – volume: 25 start-page: 387 issue: 1 year: 1997 ident: 1923_CR48 publication-title: Ann. Stat. doi: 10.1214/aos/1034276635 – volume: 15 start-page: 715 issue: 3 year: 2015 ident: 1923_CR58 publication-title: Found. Comput. Math. doi: 10.1007/s10208-013-9150-3 – volume: 16 start-page: 3367 issue: 1 year: 2015 ident: 1923_CR43 publication-title: J. Mach. Learn. Res. – ident: 1923_CR25 – ident: 1923_CR41 – volume: 38 start-page: 455 issue: 3 year: 2013 ident: 1923_CR51 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-011-9245-9 – volume: 63 start-page: 1 issue: 1 year: 2010 ident: 1923_CR28 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20303 – volume: 41 start-page: A163 issue: 1 year: 2019 ident: 1923_CR30 publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1147342 – volume: 115 start-page: 186 year: 2017 ident: 1923_CR44 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2017.06.007 – volume: 6 start-page: 227 issue: 3 year: 1991 ident: 1923_CR34 publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00115697 – volume: 30 start-page: 2687 issue: 4 year: 2020 ident: 1923_CR66 publication-title: SIAM J. Optim. doi: 10.1137/19M1240460 – volume: 173 start-page: 878 issue: 3 year: 2017 ident: 1923_CR16 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-017-1112-5 |
| SSID | ssj0001388 |
| Score | 2.5009859 |
| Snippet | Non-smooth optimization is a core ingredient of many imaging or machine learning pipelines. Non-smoothness encodes structural constraints on the solutions,... |
| SourceID | hal gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 897 |
| SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Machine learning Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| Title | Smooth over-parameterized solvers for non-smooth structured optimization |
| URI | https://link.springer.com/article/10.1007/s10107-022-01923-3 https://hal.science/hal-04289271 |
| Volume | 201 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1436-4646 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1436-4646 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AMVHM dateStart: 19711201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AFBBN dateStart: 19711201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYuMCBN2I8pgohcYCgpeljOXbAmHhdYBKcojZJBYJtiA0O_HrsNR0wISQulVq5SRo7jtN8_gKwh5OkzXnWYDbWkgXWNljGCUwluTZoQ1xY2tG9uo463eD8LrxzSWHDEu1ebkmOPfW3ZDdOv9V8ghJgWMJEBWbHfFtVmE3O7i9OJx6Yi2azPKqV4gOXLPN7KT8mJOeWKw-EipzaGh3POO1F6JZtLYAmT0dvo-xIf0zROP73Y5ZgwYWgXlLYzDLM2P4KzH8jJsS7qwmb63AVOje9ASrUI7QnI67wHmFoHj-s8dByCdfhYejr9Qd9NiwkC1bat1eUGKBP6rlkzzXotk9vjzvMncDAtIiCEdN5U2iTmSyN_chYieFaHmutG1YEgYxsSmz5wudpiA8NlyFObjLwbSSM8fEi1qGKldsN8EJhRUR_nCwuKHOTZjKLYqPp_YDzPKwBL9WgtKMnp1MyntUXsTL1mcI-U-M-U6IGB5N3Xgpyjj-l90m7ikYulqxTl4CA7SMOLJXg0imQ6OJQchcNYFIkMXB3kktFz2iJKf2Yv_MaHJaqVW7cD_-offN_4lswRwfbF2i2baii2uwOhj-jrI7W3jpptevO6utQ6frJJxq0-oA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86H9QH8RPnZxHBBw0sTdouj0UcVbe9uMHeQpukKDgndvrgX-9dm84pMvCl0HJJyl1yuUvufkfIOWySNmdZi9pISyqsbdGMYTCVZNrAHGLc4o1urx8mQ3E3CkYuKayoo93rK8lSU88luzE8VvMxlADMEsqXyQoCWCFi_tCPZ_qX8Xa7LtSK1oFLlfm7jx_bkVPKy48YE_nrYrTcbzqbZMMZil5cSXaLLNmXbbI-Bx8Ib70Z5mqxQ5KH8QTY7mFMJkVE7zFGujx9WuPB_MLoCw8MVA_cfVpUlBV27PsbUExAc4xdSuYuGXZuBtcJdXUSqOahmFKdt7k2mcnSyA-NlWBU5ZHWumW5EDK0KWLac5-lAXw0TAawBUnh25Ab48OD75EGDG73iRdwy0M8F7Lg9uUmzWQWRkZje8FYHjQJq9mltAMRx1oWz-ob_hhZrIDFqmSx4k1yOWvzWkFoLKS-QCkoXF_Qs05dmgD8HyJVqRgcHCFBEQHlGQhq1iXiZCdxV-E3dASlH7EP1iRXtRyVW53FgtEP_kd-SlaTQa-rurf9-0OyhqXoq_izI9IAEdpjMFim2Uk5P78ADD7eHQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9uguiD-Inzs4jgg4YtTdouj0UdVbch6GBvoU1SFNwHbvrgX-9dP-YUGfhSaLkkJXe5j-TuF0LOwEjalCUNagMtqbC2QROGyVSSaQMyxLjFE91O14964q7v9eeq-LNs9_JIMq9pQJSm4bQ-Nml9rvCN4Rabi2kF4KJQXiHLAoESQKJ7bjjTxYw3m-WlregpFGUzf_fxwzQVCrryjPmRvw5JM9vT2iDrhdPohDmXN8mSHW6RtTkoQXjrzPBXJ9skehyMgAUO5mdSRPceYNbLy6c1DsgaZmI44Kw6EPrTSU6Z48i-vwHFCLTIoCjP3CG91s3TVUSLOxOo5r6YUp02uTaJSeLA9Y2V4GClgda6YbkQ0rcx4ttzl8UefDRMemCOpHCtz41x4cF3SRUGt3vE8bjlPu4RWQgBUxMnMvEDo7G9YCz1aoSV06V0ASiO91q8qm8oZJxiBVOssilWvEYuZm3GOZzGQupz5ILCtQY967goGYD_Q9QqFUKwIyQoJaA8BUbNukTM7ChsK_yGQaF0A_bBauSy5KMqVupkwej7_yM_ISsP1y3Vvu3eH5BVvJU-T0U7JFXgoD0C32WaHGfi-QUXdOJZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smooth+over-parameterized+solvers+for+non-smooth+structured+optimization&rft.jtitle=Mathematical+programming&rft.au=Poon%2C+Clarice&rft.au=Peyr%C3%A9%2C+Gabriel&rft.date=2023-09-01&rft.pub=Springer+Verlag&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=201&rft.issue=1-2&rft.spage=897&rft.epage=952&rft_id=info:doi/10.1007%2Fs10107-022-01923-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04289271v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |