Research on Failure Pressure Prediction of Water Supply Pipe Based on GA-BP Neural Network
The water supply pipeline is regarded as the “lifeline” of the city. In recent years, pipeline accidents caused by aging and other factors are common and have caused large economic losses. Therefore, in order to avoid large economic losses, it is necessary to analyze the failure prediction of pipeli...
Saved in:
| Published in | Water (Basel) Vol. 16; no. 18; p. 2659 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4441 2073-4441 |
| DOI | 10.3390/w16182659 |
Cover
| Abstract | The water supply pipeline is regarded as the “lifeline” of the city. In recent years, pipeline accidents caused by aging and other factors are common and have caused large economic losses. Therefore, in order to avoid large economic losses, it is necessary to analyze the failure prediction of pipelines so that the pipelines that are going to fail can be replaced in a timely manner. In this paper, we propose a method for predicting the failure pressure of pipelines, i.e., a genetic algorithm was used to optimize the weights and thresholds of a BP neural network. The first step was to determine the topology of the neural network and the number of input and output variables. The second step was to optimize the weights and thresholds initially set for the back propagation neural network using a genetic algorithm. Finally, the optimized back-propagation neural network was used to simulate and predict pipeline failures. It was proved by examples that compared with the separate back propagation neural network model and the optimized and trained genetic algorithm-back propagation neural network, the model performed better in simulation prediction, and the prediction accuracy could reach up to 91%, whereas the unoptimized back propagation neural network model could only reach 85%. It is feasible to apply this model for fault prediction of pipelines. |
|---|---|
| AbstractList | The water supply pipeline is regarded as the “lifeline” of the city. In recent years, pipeline accidents caused by aging and other factors are common and have caused large economic losses. Therefore, in order to avoid large economic losses, it is necessary to analyze the failure prediction of pipelines so that the pipelines that are going to fail can be replaced in a timely manner. In this paper, we propose a method for predicting the failure pressure of pipelines, i.e., a genetic algorithm was used to optimize the weights and thresholds of a BP neural network. The first step was to determine the topology of the neural network and the number of input and output variables. The second step was to optimize the weights and thresholds initially set for the back propagation neural network using a genetic algorithm. Finally, the optimized back-propagation neural network was used to simulate and predict pipeline failures. It was proved by examples that compared with the separate back propagation neural network model and the optimized and trained genetic algorithm-back propagation neural network, the model performed better in simulation prediction, and the prediction accuracy could reach up to 91%, whereas the unoptimized back propagation neural network model could only reach 85%. It is feasible to apply this model for fault prediction of pipelines. |
| Audience | Academic |
| Author | Li, Qingfu Li, Zeyi |
| Author_xml | – sequence: 1 givenname: Qingfu surname: Li fullname: Li, Qingfu – sequence: 2 givenname: Zeyi surname: Li fullname: Li, Zeyi |
| BookMark | eNp1kV1LwzAUhoMoOHUX_oOCNyp0Jk3appeb-AWiww8Eb0qanGpm1tSkZezfmzERGZpzcQ7J8x5y3rOHthvbAEKHBI8oLfDZgmSEJ1labKFBgnMaM8bI9q96Fw29n-FwWMF5igfo9QE8CCffI9tEl0Kb3kE0deD9d6G07HR4s3X0Ijpw0WPftmYZTXUL0UR4UCvl1TieTKM76J0wIXUL6z4O0E4tjIfhd95Hz5cXT-fX8e391c35-DaWNGNdLAtWEay4yFmFUwAsU6ZIzWUBVAEktcRJnXGhKK6IgJTJRFWkApXSnKsc6D46Xfftm1YsF8KYsnV6LtyyJLhcGVP-GBPg4zXcOvvZg-_KufYSjBEN2N6XlKSUsyLPaUCPNtCZ7V0TRgkUwTnBCc0DNVpTb8JAqZvadk7IEArmWob91DrcjzkhPM1YkgXB2VognfXeQV1K3YmVx0GozZ9_PtlQ_D_fF1Genbo |
| CitedBy_id | crossref_primary_10_3390_w16223248 |
| Cites_doi | 10.1016/j.advengsoft.2017.05.006 10.1061/40934(252)26 10.3390/math11071636 10.1061/AJRUA6.0000920 10.1080/1573062X.2020.1713384 10.1016/j.ress.2022.108990 10.1109/SMC42975.2020.9282941 10.1051/matecconf/201824602029 10.1051/matecconf/201819302002 10.1016/j.asej.2022.101958 10.1080/07011784.2013.774153 10.1002/suco.202000238 10.1061/JWRMD5.WRENG-6263 10.1016/j.ijpvp.2023.104907 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 ADTOC UNPAY |
| DOI | 10.3390/w16182659 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2073-4441 |
| ExternalDocumentID | 10.3390/w16182659 A811856426 10_3390_w16182659 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c364t-c94b10d8a74b05ee0c54d1f8c9e3dee2fc02f68ad30b1ae54c2db1bed5378d7e3 |
| IEDL.DBID | BENPR |
| ISSN | 2073-4441 |
| IngestDate | Sun Sep 07 11:11:59 EDT 2025 Mon Sep 08 17:09:21 EDT 2025 Mon Jun 30 15:45:45 EDT 2025 Mon Oct 20 16:58:53 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Thu Oct 16 04:30:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-c94b10d8a74b05ee0c54d1f8c9e3dee2fc02f68ad30b1ae54c2db1bed5378d7e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3110710237?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3110710237 |
| PQPubID | 2032318 |
| ParticipantIDs | unpaywall_primary_10_3390_w16182659 proquest_miscellaneous_3153849773 proquest_journals_3110710237 gale_infotracacademiconefile_A811856426 crossref_citationtrail_10_3390_w16182659 crossref_primary_10_3390_w16182659 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xu (ref_11) 2017; 112 Zhang (ref_27) 2020; 53 Hajali (ref_10) 2020; 22 ref_16 Asnaashari (ref_14) 2013; 38 Yang (ref_6) 2022; 53 Qi (ref_13) 2024; 46 Li (ref_17) 2023; 202 Zhang (ref_19) 2023; 231 Qing (ref_5) 2012; 28 Demissie (ref_7) 2017; 3 ref_24 ref_23 ref_20 Yue (ref_25) 2022; 43 Zali (ref_18) 2024; 150 ref_1 ref_3 ref_2 Zhao (ref_26) 2014; 35 Shirzad (ref_22) 2019; 16 ref_28 Peng (ref_12) 2022; 38 (ref_8) 2018; 193 ref_9 Cho (ref_21) 2022; 32 Hoseingholi (ref_15) 2023; 14 ref_4 |
| References_xml | – ident: ref_28 – ident: ref_9 – ident: ref_3 – ident: ref_24 – volume: 112 start-page: 255 year: 2017 ident: ref_11 article-title: Corroded pipeline failure analysis using artificial neural network scheme publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.006 – volume: 43 start-page: 80 year: 2022 ident: ref_25 article-title: Research on Optimal Deployment Problem of Weapon System Based on Improved Genetic Bee Colony Algorithm publication-title: J. Weapons Equip. Eng. – ident: ref_20 doi: 10.1061/40934(252)26 – ident: ref_16 doi: 10.3390/math11071636 – volume: 38 start-page: 56 year: 2022 ident: ref_12 article-title: Research on pipe burst identification in water supply network based on extreme learning machine algorithm publication-title: China Water Supply Drain. – volume: 3 start-page: 04017017 year: 2017 ident: ref_7 article-title: Prediction of Pipe Failure by Considering Time-Dependent Factors: Dynamic Bayesian Belief Network Model publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A-Civ. Eng. doi: 10.1061/AJRUA6.0000920 – volume: 16 start-page: 653 year: 2019 ident: ref_22 article-title: Pipe failure rate prediction in water distribution networks using multivariate adaptive regression splines and random forest techniques publication-title: Urban Water J. doi: 10.1080/1573062X.2020.1713384 – volume: 231 start-page: 108990 year: 2023 ident: ref_19 article-title: Efficient prediction method of triple failure pressure for corroded pipelines under complex loads based on a backpropagation neural network publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108990 – volume: 28 start-page: 68 year: 2012 ident: ref_5 article-title: Pipe burst prediction model for water supply network publication-title: China Water Supply Drain. – ident: ref_23 doi: 10.1109/SMC42975.2020.9282941 – ident: ref_4 – ident: ref_2 – volume: 46 start-page: 159 year: 2024 ident: ref_13 article-title: Failure prediction and sensitivity analysis of pipe girth welds based on neural network publication-title: J. Southwest Univ. (Nat. Sci. Ed.) – volume: 53 start-page: 46 year: 2020 ident: ref_27 article-title: Prediction of failure pressure of corroded pipeline based on Lasso-PSO-BP neural network publication-title: Mater. Prot. – ident: ref_1 doi: 10.1051/matecconf/201824602029 – volume: 193 start-page: 02002 year: 2018 ident: ref_8 article-title: Proposed probabilistic models of pipe failure in water distribution system publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201819302002 – volume: 14 start-page: 101958 year: 2023 ident: ref_15 article-title: Pipe failure prediction of wastewater network using genetic programming: Proposing three approaches publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2022.101958 – volume: 38 start-page: 24 year: 2013 ident: ref_14 article-title: Forecasting watermain failure using artificial neural network modelling publication-title: Can. Water Resour. J. doi: 10.1080/07011784.2013.774153 – volume: 35 start-page: 48 year: 2014 ident: ref_26 article-title: Comparative Analysis of Implementation and Performance of Genetic Algorithm for Small Habitat with Shared Adaptation Value publication-title: J. Tonghua Norm. Coll. – volume: 32 start-page: 1 year: 2022 ident: ref_21 article-title: Prediction of Photovoltaic Generation Using Machine Learning Models with Various Weight Optimization Techniques publication-title: J. Korean Inst. Intell. Syst. – volume: 22 start-page: 1487 year: 2020 ident: ref_10 article-title: Using numerical modeling for asset management of buried prestressed concrete cylinder pipes publication-title: Struct. Concr. doi: 10.1002/suco.202000238 – volume: 150 start-page: 04023078 year: 2024 ident: ref_18 article-title: Semisupervised Clustering Approach for Pipe Failure Prediction with Imbalanced Data Set publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/JWRMD5.WRENG-6263 – volume: 202 start-page: 104907 year: 2023 ident: ref_17 article-title: The prediction analysis of failure pressure of pipelines with axial double corrosion defects in cold regions based on the BP neural network publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2023.104907 – volume: 53 start-page: 560 year: 2022 ident: ref_6 article-title: Gray cast pipe failure prediction model in water distribution system based on Zero-inflated Poisson model publication-title: J. Cent. South Univ. Sci. Technol. |
| SSID | ssj0000498850 |
| Score | 2.348812 |
| Snippet | The water supply pipeline is regarded as the “lifeline” of the city. In recent years, pipeline accidents caused by aging and other factors are common and have... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2659 |
| SubjectTerms | Accuracy Age Algorithms Artificial intelligence Back propagation Cathodic protection Comparative analysis Corrosion Decision trees Equipment and supplies Failure Finite element analysis Fracture mechanics Generalized linear models Genetic algorithms Logistics Maintenance and repair Methods Neural networks Optimization Pipes prediction Propagation Regression analysis Risk assessment Simulation Soils Testing topology Variables water Water supply Water-pipes |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BeRg8bLCBCIPJsEnwkpLEdj4eC1pBSFR9oBrbS-SPi1RRpRW0qrq_fmeSdgUB4iWylHNi2Wff_eS73wH8QCmNxkj4pBuJLxICKGnACx95pEwmNaEiBxSvO_FlT1zdytsVOJznwizd33OC46dTR-gexTJbhTV6xkED1nqdbuu3KxpH6ukLsucVY9BT-Sd25vlpuwEfJuVIzaZqMFgyJ-1P_5NyqiiSu-ZkrJvm7zOOxjdHugkfa2eStarV34IVLD_DxhLF4Bf4Mw-tY8OStVXfRaGzKiewatj-Y2YDGxbsF_md9-yxzueMdfsjZGdk46zredHyz7rMMXnQ_zpV6Pg29No_b84v_bqegm94LMa-yYQOA5uqROhAIgZGChsWqcmQW8SoMEFUxKmyPNChQilMZHWo0UqepDZBvgONcljiLjCehRwlJjaMY6FkpsmvoX7kjlieSZt6cDKf_dzUZOOu5sUgJ9DhpitfTJcHRwvRUcWw8ZLQsVvC3O06-o5RdfIAjcbxV-WtlICSJCwVe7A_X-W83o4POXco15FUJB4cLl7TRnK3I6rE4cTJ0NkvyB3mHnxfaMfrQ9p7l9RXWI_IDaqi0vahMb6f4AG5MWP9rVbkf6Qz7Ao priority: 102 providerName: Unpaywall |
| Title | Research on Failure Pressure Prediction of Water Supply Pipe Based on GA-BP Neural Network |
| URI | https://www.proquest.com/docview/3110710237 https://www.proquest.com/docview/3153849773 https://doi.org/10.3390/w16182659 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: A8Z dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9GHrw9gn9dYV7QO2F1Pbkmz5YYxkNC2DmTAWlu3F6MsQCHbWJZT-97uLPxbGtjcbS5Y4SaffSXe_A3jtpbTGJyLEuZGFIkMDRUW8Cj1PtM2lQauIDMVPRXo1Fx8XcnEARR8LQ26VvU7cKWrXWDojP-dkqBDPQPZ-_SOkrFF0u9qn0NBdagX3bkcxdghHCTFjjeBoclHMPg-nLoiHlZJRSzHE0d4_vyHG-CQlrtK9jelP9XwMd7b1Wt_e6NVqb_-Z3od7HXBk43akH8CBrx_C8R6d4CP43rvRsaZmU70kj3PWxv-1D265i2JgTcW-Isa8Zrucnrdstlx7NsH9zFHNy3E4mTFi7cD2itZN_DHMpxdfPlyFXe6E0PJUbEKbCxNHTulMmEh6H1kpXFwpm3vuvE8qGyVVqrTjkYm1l8ImzsTGO8kz5TLPn8Cobmp_AoznMffSZy5OU6FlbhDDYD2EHo7n0qkA3vaCK21HLE75LVYlGhgk43KQcQAvh6Lrlk3jb4XekPRLWmH4H6u7QAHsDXFVlWOFRpFEuykN4LQfoLJbej_L3xMlgBfDZ1w0dBOia99sqQzqeYHQlwfwahjYf3fp6f8begZ3E8Q6revZKYw211v_HLHKxpx1E_AMDi8XMb7Ni9n42y_nXOol |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOqE81hYL7UnuJSGI7jwNCuy3bpcBqVYFAvaSOPZFWWiVb2NVq_1x_G-PNo6uq7Y1bpNhONB575rNnvgF4h1LqDAPhkm5ErogIoMQez13kgdKJzAgVWaB4Pgj7l-Lrtbxeg19NLowNq2z2xOVGbUptz8gPuAUqlmcgOpr8dG3VKHu72pTQUHVpBXO4pBirEztOcTEnCHd7ePKZ5vt9EPSOLz713brKgKt5KKauTkTmeyZWkcg8iehpKYyfxzpBbhCDXHtBHsbKcC_zFUqhA5P5GRrJo9hEyGncB7AhuEgI_G10jwfDb-0pD_nfcSy9itKI88Q7mFuG-iC03KgrhvBPc7AFm7NiohZzNR6v2LveI9iuHVXWqTTrMaxh8QS2VugLn8L3JmyPlQXrqZGNcGdVvmH1YEbLrAlW5uyKfNobtqwhumDD0QRZl-ynsT2_dNzukFmWEPreoApLfwaX9yLF57BelAW-AMYTn6PEyPhhKJRMMvKZqB-5OoYn0sQOfGwEl-qayNzW0xinBGisjNNWxg68aZtOKvaOvzX6YKWf2hVN42hVJybQ31hurLQTEwiThNNCB3abCUrrpX6b_lZMB163r2mR2psXVWA5s23IrpB-RNyBt-3E_vuXXv7_Q_uw2b84P0vPTganO_AwID-rCnvbhfXpzQxfkZ80zfZqZWTw4771_w7Y0ybV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQL2gPgUgQHmS_ASNYntxHmYUMtWNgZVhZg28RIc25EqVUnZWlX9F_mruGs-qBDwtrdI8ZfOd747--53AK-clCZ3kfCRNxJfJOigqIAXvuORNqnM0SsiR_HzKD46FR_P5fkW_GxzYSissj0T1we1rQzdkfc4OSqEM5D0iiYsYnwwfDf74VMFKXppbctp6KbMgt1fw401SR4nbrVEd-5y__gA9_51FA0Pv74_8puKA77hsZj7JhV5GFilE5EH0rnASGHDQpnUcetcVJggKmKlLQ_yUDspTGTzMHdW8kTZxHEc9xrs0OMXHhI7g8PR-Et344O2uFIyqOGNOE-D3pLQ6qOYcFI3lOKfqmEXbizKmV4t9XS6ofuGt-FWY7Syfs1ld2DLlXdhdwPK8B58a0P4WFWyoZ5QtDurcw_rDztZZ1CwqmBnaN9esHU90RUbT2aODVCXWur5oe8PxowQQ3C-UR2ifh9Or4SKD2C7rEr3EBhPQ-6kS2wYx0LLNEf7Cfuh2WORxlZ58LYlXGYaUHOqrTHN0LkhGmcdjT140TWd1Ugef2v0hqifkXTjOEY3SQq4GsLJyvoKHTKJPlvswV67QVkj9pfZbyb14Hn3GwWWXmF06aoFtUEdI9Ds5h687Db230t69P-JnsF1lIPs0_Ho5DHcjNDkqiPg9mB7frFwT9BkmudPG15k8P2q2f8XRbUrBA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BeRg8bLCBCIPJsEnwkpLEdj4eC1pBSFR9oBrbS-SPi1RRpRW0qrq_fmeSdgUB4iWylHNi2Wff_eS73wH8QCmNxkj4pBuJLxICKGnACx95pEwmNaEiBxSvO_FlT1zdytsVOJznwizd33OC46dTR-gexTJbhTV6xkED1nqdbuu3KxpH6ukLsucVY9BT-Sd25vlpuwEfJuVIzaZqMFgyJ-1P_5NyqiiSu-ZkrJvm7zOOxjdHugkfa2eStarV34IVLD_DxhLF4Bf4Mw-tY8OStVXfRaGzKiewatj-Y2YDGxbsF_md9-yxzueMdfsjZGdk46zredHyz7rMMXnQ_zpV6Pg29No_b84v_bqegm94LMa-yYQOA5uqROhAIgZGChsWqcmQW8SoMEFUxKmyPNChQilMZHWo0UqepDZBvgONcljiLjCehRwlJjaMY6FkpsmvoX7kjlieSZt6cDKf_dzUZOOu5sUgJ9DhpitfTJcHRwvRUcWw8ZLQsVvC3O06-o5RdfIAjcbxV-WtlICSJCwVe7A_X-W83o4POXco15FUJB4cLl7TRnK3I6rE4cTJ0NkvyB3mHnxfaMfrQ9p7l9RXWI_IDaqi0vahMb6f4AG5MWP9rVbkf6Qz7Ao |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Failure+Pressure+Prediction+of+Water+Supply+Pipe+Based+on+GA-BP+Neural+Network&rft.jtitle=Water+%28Basel%29&rft.au=Li%2C+Qingfu&rft.au=Li%2C+Zeyi&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=16&rft.issue=18&rft.spage=2659&rft_id=info:doi/10.3390%2Fw16182659&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |