Research on Failure Pressure Prediction of Water Supply Pipe Based on GA-BP Neural Network

The water supply pipeline is regarded as the “lifeline” of the city. In recent years, pipeline accidents caused by aging and other factors are common and have caused large economic losses. Therefore, in order to avoid large economic losses, it is necessary to analyze the failure prediction of pipeli...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 16; no. 18; p. 2659
Main Authors Li, Qingfu, Li, Zeyi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w16182659

Cover

Abstract The water supply pipeline is regarded as the “lifeline” of the city. In recent years, pipeline accidents caused by aging and other factors are common and have caused large economic losses. Therefore, in order to avoid large economic losses, it is necessary to analyze the failure prediction of pipelines so that the pipelines that are going to fail can be replaced in a timely manner. In this paper, we propose a method for predicting the failure pressure of pipelines, i.e., a genetic algorithm was used to optimize the weights and thresholds of a BP neural network. The first step was to determine the topology of the neural network and the number of input and output variables. The second step was to optimize the weights and thresholds initially set for the back propagation neural network using a genetic algorithm. Finally, the optimized back-propagation neural network was used to simulate and predict pipeline failures. It was proved by examples that compared with the separate back propagation neural network model and the optimized and trained genetic algorithm-back propagation neural network, the model performed better in simulation prediction, and the prediction accuracy could reach up to 91%, whereas the unoptimized back propagation neural network model could only reach 85%. It is feasible to apply this model for fault prediction of pipelines.
AbstractList The water supply pipeline is regarded as the “lifeline” of the city. In recent years, pipeline accidents caused by aging and other factors are common and have caused large economic losses. Therefore, in order to avoid large economic losses, it is necessary to analyze the failure prediction of pipelines so that the pipelines that are going to fail can be replaced in a timely manner. In this paper, we propose a method for predicting the failure pressure of pipelines, i.e., a genetic algorithm was used to optimize the weights and thresholds of a BP neural network. The first step was to determine the topology of the neural network and the number of input and output variables. The second step was to optimize the weights and thresholds initially set for the back propagation neural network using a genetic algorithm. Finally, the optimized back-propagation neural network was used to simulate and predict pipeline failures. It was proved by examples that compared with the separate back propagation neural network model and the optimized and trained genetic algorithm-back propagation neural network, the model performed better in simulation prediction, and the prediction accuracy could reach up to 91%, whereas the unoptimized back propagation neural network model could only reach 85%. It is feasible to apply this model for fault prediction of pipelines.
Audience Academic
Author Li, Qingfu
Li, Zeyi
Author_xml – sequence: 1
  givenname: Qingfu
  surname: Li
  fullname: Li, Qingfu
– sequence: 2
  givenname: Zeyi
  surname: Li
  fullname: Li, Zeyi
BookMark eNp1kV1LwzAUhoMoOHUX_oOCNyp0Jk3appeb-AWiww8Eb0qanGpm1tSkZezfmzERGZpzcQ7J8x5y3rOHthvbAEKHBI8oLfDZgmSEJ1labKFBgnMaM8bI9q96Fw29n-FwWMF5igfo9QE8CCffI9tEl0Kb3kE0deD9d6G07HR4s3X0Ijpw0WPftmYZTXUL0UR4UCvl1TieTKM76J0wIXUL6z4O0E4tjIfhd95Hz5cXT-fX8e391c35-DaWNGNdLAtWEay4yFmFUwAsU6ZIzWUBVAEktcRJnXGhKK6IgJTJRFWkApXSnKsc6D46Xfftm1YsF8KYsnV6LtyyJLhcGVP-GBPg4zXcOvvZg-_KufYSjBEN2N6XlKSUsyLPaUCPNtCZ7V0TRgkUwTnBCc0DNVpTb8JAqZvadk7IEArmWob91DrcjzkhPM1YkgXB2VognfXeQV1K3YmVx0GozZ9_PtlQ_D_fF1Genbo
CitedBy_id crossref_primary_10_3390_w16223248
Cites_doi 10.1016/j.advengsoft.2017.05.006
10.1061/40934(252)26
10.3390/math11071636
10.1061/AJRUA6.0000920
10.1080/1573062X.2020.1713384
10.1016/j.ress.2022.108990
10.1109/SMC42975.2020.9282941
10.1051/matecconf/201824602029
10.1051/matecconf/201819302002
10.1016/j.asej.2022.101958
10.1080/07011784.2013.774153
10.1002/suco.202000238
10.1061/JWRMD5.WRENG-6263
10.1016/j.ijpvp.2023.104907
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ADTOC
UNPAY
DOI 10.3390/w16182659
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10.3390/w16182659
A811856426
10_3390_w16182659
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-c94b10d8a74b05ee0c54d1f8c9e3dee2fc02f68ad30b1ae54c2db1bed5378d7e3
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Sun Sep 07 11:11:59 EDT 2025
Mon Sep 08 17:09:21 EDT 2025
Mon Jun 30 15:45:45 EDT 2025
Mon Oct 20 16:58:53 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Thu Oct 16 04:30:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c94b10d8a74b05ee0c54d1f8c9e3dee2fc02f68ad30b1ae54c2db1bed5378d7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3110710237?pq-origsite=%requestingapplication%&accountid=15518
PQID 3110710237
PQPubID 2032318
ParticipantIDs unpaywall_primary_10_3390_w16182659
proquest_miscellaneous_3153849773
proquest_journals_3110710237
gale_infotracacademiconefile_A811856426
crossref_citationtrail_10_3390_w16182659
crossref_primary_10_3390_w16182659
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xu (ref_11) 2017; 112
Zhang (ref_27) 2020; 53
Hajali (ref_10) 2020; 22
ref_16
Asnaashari (ref_14) 2013; 38
Yang (ref_6) 2022; 53
Qi (ref_13) 2024; 46
Li (ref_17) 2023; 202
Zhang (ref_19) 2023; 231
Qing (ref_5) 2012; 28
Demissie (ref_7) 2017; 3
ref_24
ref_23
ref_20
Yue (ref_25) 2022; 43
Zali (ref_18) 2024; 150
ref_1
ref_3
ref_2
Zhao (ref_26) 2014; 35
Shirzad (ref_22) 2019; 16
ref_28
Peng (ref_12) 2022; 38
(ref_8) 2018; 193
ref_9
Cho (ref_21) 2022; 32
Hoseingholi (ref_15) 2023; 14
ref_4
References_xml – ident: ref_28
– ident: ref_9
– ident: ref_3
– ident: ref_24
– volume: 112
  start-page: 255
  year: 2017
  ident: ref_11
  article-title: Corroded pipeline failure analysis using artificial neural network scheme
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.006
– volume: 43
  start-page: 80
  year: 2022
  ident: ref_25
  article-title: Research on Optimal Deployment Problem of Weapon System Based on Improved Genetic Bee Colony Algorithm
  publication-title: J. Weapons Equip. Eng.
– ident: ref_20
  doi: 10.1061/40934(252)26
– ident: ref_16
  doi: 10.3390/math11071636
– volume: 38
  start-page: 56
  year: 2022
  ident: ref_12
  article-title: Research on pipe burst identification in water supply network based on extreme learning machine algorithm
  publication-title: China Water Supply Drain.
– volume: 3
  start-page: 04017017
  year: 2017
  ident: ref_7
  article-title: Prediction of Pipe Failure by Considering Time-Dependent Factors: Dynamic Bayesian Belief Network Model
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A-Civ. Eng.
  doi: 10.1061/AJRUA6.0000920
– volume: 16
  start-page: 653
  year: 2019
  ident: ref_22
  article-title: Pipe failure rate prediction in water distribution networks using multivariate adaptive regression splines and random forest techniques
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2020.1713384
– volume: 231
  start-page: 108990
  year: 2023
  ident: ref_19
  article-title: Efficient prediction method of triple failure pressure for corroded pipelines under complex loads based on a backpropagation neural network
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108990
– volume: 28
  start-page: 68
  year: 2012
  ident: ref_5
  article-title: Pipe burst prediction model for water supply network
  publication-title: China Water Supply Drain.
– ident: ref_23
  doi: 10.1109/SMC42975.2020.9282941
– ident: ref_4
– ident: ref_2
– volume: 46
  start-page: 159
  year: 2024
  ident: ref_13
  article-title: Failure prediction and sensitivity analysis of pipe girth welds based on neural network
  publication-title: J. Southwest Univ. (Nat. Sci. Ed.)
– volume: 53
  start-page: 46
  year: 2020
  ident: ref_27
  article-title: Prediction of failure pressure of corroded pipeline based on Lasso-PSO-BP neural network
  publication-title: Mater. Prot.
– ident: ref_1
  doi: 10.1051/matecconf/201824602029
– volume: 193
  start-page: 02002
  year: 2018
  ident: ref_8
  article-title: Proposed probabilistic models of pipe failure in water distribution system
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201819302002
– volume: 14
  start-page: 101958
  year: 2023
  ident: ref_15
  article-title: Pipe failure prediction of wastewater network using genetic programming: Proposing three approaches
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2022.101958
– volume: 38
  start-page: 24
  year: 2013
  ident: ref_14
  article-title: Forecasting watermain failure using artificial neural network modelling
  publication-title: Can. Water Resour. J.
  doi: 10.1080/07011784.2013.774153
– volume: 35
  start-page: 48
  year: 2014
  ident: ref_26
  article-title: Comparative Analysis of Implementation and Performance of Genetic Algorithm for Small Habitat with Shared Adaptation Value
  publication-title: J. Tonghua Norm. Coll.
– volume: 32
  start-page: 1
  year: 2022
  ident: ref_21
  article-title: Prediction of Photovoltaic Generation Using Machine Learning Models with Various Weight Optimization Techniques
  publication-title: J. Korean Inst. Intell. Syst.
– volume: 22
  start-page: 1487
  year: 2020
  ident: ref_10
  article-title: Using numerical modeling for asset management of buried prestressed concrete cylinder pipes
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202000238
– volume: 150
  start-page: 04023078
  year: 2024
  ident: ref_18
  article-title: Semisupervised Clustering Approach for Pipe Failure Prediction with Imbalanced Data Set
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/JWRMD5.WRENG-6263
– volume: 202
  start-page: 104907
  year: 2023
  ident: ref_17
  article-title: The prediction analysis of failure pressure of pipelines with axial double corrosion defects in cold regions based on the BP neural network
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2023.104907
– volume: 53
  start-page: 560
  year: 2022
  ident: ref_6
  article-title: Gray cast pipe failure prediction model in water distribution system based on Zero-inflated Poisson model
  publication-title: J. Cent. South Univ. Sci. Technol.
SSID ssj0000498850
Score 2.348812
Snippet The water supply pipeline is regarded as the “lifeline” of the city. In recent years, pipeline accidents caused by aging and other factors are common and have...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2659
SubjectTerms Accuracy
Age
Algorithms
Artificial intelligence
Back propagation
Cathodic protection
Comparative analysis
Corrosion
Decision trees
Equipment and supplies
Failure
Finite element analysis
Fracture mechanics
Generalized linear models
Genetic algorithms
Logistics
Maintenance and repair
Methods
Neural networks
Optimization
Pipes
prediction
Propagation
Regression analysis
Risk assessment
Simulation
Soils
Testing
topology
Variables
water
Water supply
Water-pipes
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BeRg8bLCBCIPJsEnwkpLEdj4eC1pBSFR9oBrbS-SPi1RRpRW0qrq_fmeSdgUB4iWylHNi2Wff_eS73wH8QCmNxkj4pBuJLxICKGnACx95pEwmNaEiBxSvO_FlT1zdytsVOJznwizd33OC46dTR-gexTJbhTV6xkED1nqdbuu3KxpH6ukLsucVY9BT-Sd25vlpuwEfJuVIzaZqMFgyJ-1P_5NyqiiSu-ZkrJvm7zOOxjdHugkfa2eStarV34IVLD_DxhLF4Bf4Mw-tY8OStVXfRaGzKiewatj-Y2YDGxbsF_md9-yxzueMdfsjZGdk46zredHyz7rMMXnQ_zpV6Pg29No_b84v_bqegm94LMa-yYQOA5uqROhAIgZGChsWqcmQW8SoMEFUxKmyPNChQilMZHWo0UqepDZBvgONcljiLjCehRwlJjaMY6FkpsmvoX7kjlieSZt6cDKf_dzUZOOu5sUgJ9DhpitfTJcHRwvRUcWw8ZLQsVvC3O06-o5RdfIAjcbxV-WtlICSJCwVe7A_X-W83o4POXco15FUJB4cLl7TRnK3I6rE4cTJ0NkvyB3mHnxfaMfrQ9p7l9RXWI_IDaqi0vahMb6f4AG5MWP9rVbkf6Qz7Ao
  priority: 102
  providerName: Unpaywall
Title Research on Failure Pressure Prediction of Water Supply Pipe Based on GA-BP Neural Network
URI https://www.proquest.com/docview/3110710237
https://www.proquest.com/docview/3153849773
https://doi.org/10.3390/w16182659
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: A8Z
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9GHrw9gn9dYV7QO2F1Pbkmz5YYxkNC2DmTAWlu3F6MsQCHbWJZT-97uLPxbGtjcbS5Y4SaffSXe_A3jtpbTGJyLEuZGFIkMDRUW8Cj1PtM2lQauIDMVPRXo1Fx8XcnEARR8LQ26VvU7cKWrXWDojP-dkqBDPQPZ-_SOkrFF0u9qn0NBdagX3bkcxdghHCTFjjeBoclHMPg-nLoiHlZJRSzHE0d4_vyHG-CQlrtK9jelP9XwMd7b1Wt_e6NVqb_-Z3od7HXBk43akH8CBrx_C8R6d4CP43rvRsaZmU70kj3PWxv-1D265i2JgTcW-Isa8Zrucnrdstlx7NsH9zFHNy3E4mTFi7cD2itZN_DHMpxdfPlyFXe6E0PJUbEKbCxNHTulMmEh6H1kpXFwpm3vuvE8qGyVVqrTjkYm1l8ImzsTGO8kz5TLPn8Cobmp_AoznMffSZy5OU6FlbhDDYD2EHo7n0qkA3vaCK21HLE75LVYlGhgk43KQcQAvh6Lrlk3jb4XekPRLWmH4H6u7QAHsDXFVlWOFRpFEuykN4LQfoLJbej_L3xMlgBfDZ1w0dBOia99sqQzqeYHQlwfwahjYf3fp6f8begZ3E8Q6revZKYw211v_HLHKxpx1E_AMDi8XMb7Ni9n42y_nXOol
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOqE81hYL7UnuJSGI7jwNCuy3bpcBqVYFAvaSOPZFWWiVb2NVq_1x_G-PNo6uq7Y1bpNhONB575rNnvgF4h1LqDAPhkm5ErogIoMQez13kgdKJzAgVWaB4Pgj7l-Lrtbxeg19NLowNq2z2xOVGbUptz8gPuAUqlmcgOpr8dG3VKHu72pTQUHVpBXO4pBirEztOcTEnCHd7ePKZ5vt9EPSOLz713brKgKt5KKauTkTmeyZWkcg8iehpKYyfxzpBbhCDXHtBHsbKcC_zFUqhA5P5GRrJo9hEyGncB7AhuEgI_G10jwfDb-0pD_nfcSy9itKI88Q7mFuG-iC03KgrhvBPc7AFm7NiohZzNR6v2LveI9iuHVXWqTTrMaxh8QS2VugLn8L3JmyPlQXrqZGNcGdVvmH1YEbLrAlW5uyKfNobtqwhumDD0QRZl-ynsT2_dNzukFmWEPreoApLfwaX9yLF57BelAW-AMYTn6PEyPhhKJRMMvKZqB-5OoYn0sQOfGwEl-qayNzW0xinBGisjNNWxg68aZtOKvaOvzX6YKWf2hVN42hVJybQ31hurLQTEwiThNNCB3abCUrrpX6b_lZMB163r2mR2psXVWA5s23IrpB-RNyBt-3E_vuXXv7_Q_uw2b84P0vPTganO_AwID-rCnvbhfXpzQxfkZ80zfZqZWTw4771_w7Y0ybV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQL2gPgUgQHmS_ASNYntxHmYUMtWNgZVhZg28RIc25EqVUnZWlX9F_mruGs-qBDwtrdI8ZfOd747--53AK-clCZ3kfCRNxJfJOigqIAXvuORNqnM0SsiR_HzKD46FR_P5fkW_GxzYSissj0T1we1rQzdkfc4OSqEM5D0iiYsYnwwfDf74VMFKXppbctp6KbMgt1fw401SR4nbrVEd-5y__gA9_51FA0Pv74_8puKA77hsZj7JhV5GFilE5EH0rnASGHDQpnUcetcVJggKmKlLQ_yUDspTGTzMHdW8kTZxHEc9xrs0OMXHhI7g8PR-Et344O2uFIyqOGNOE-D3pLQ6qOYcFI3lOKfqmEXbizKmV4t9XS6ofuGt-FWY7Syfs1ld2DLlXdhdwPK8B58a0P4WFWyoZ5QtDurcw_rDztZZ1CwqmBnaN9esHU90RUbT2aODVCXWur5oe8PxowQQ3C-UR2ifh9Or4SKD2C7rEr3EBhPQ-6kS2wYx0LLNEf7Cfuh2WORxlZ58LYlXGYaUHOqrTHN0LkhGmcdjT140TWd1Ugef2v0hqifkXTjOEY3SQq4GsLJyvoKHTKJPlvswV67QVkj9pfZbyb14Hn3GwWWXmF06aoFtUEdI9Ds5h687Db230t69P-JnsF1lIPs0_Ho5DHcjNDkqiPg9mB7frFwT9BkmudPG15k8P2q2f8XRbUrBA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BeRg8bLCBCIPJsEnwkpLEdj4eC1pBSFR9oBrbS-SPi1RRpRW0qrq_fmeSdgUB4iWylHNi2Wff_eS73wH8QCmNxkj4pBuJLxICKGnACx95pEwmNaEiBxSvO_FlT1zdytsVOJznwizd33OC46dTR-gexTJbhTV6xkED1nqdbuu3KxpH6ukLsucVY9BT-Sd25vlpuwEfJuVIzaZqMFgyJ-1P_5NyqiiSu-ZkrJvm7zOOxjdHugkfa2eStarV34IVLD_DxhLF4Bf4Mw-tY8OStVXfRaGzKiewatj-Y2YDGxbsF_md9-yxzueMdfsjZGdk46zredHyz7rMMXnQ_zpV6Pg29No_b84v_bqegm94LMa-yYQOA5uqROhAIgZGChsWqcmQW8SoMEFUxKmyPNChQilMZHWo0UqepDZBvgONcljiLjCehRwlJjaMY6FkpsmvoX7kjlieSZt6cDKf_dzUZOOu5sUgJ9DhpitfTJcHRwvRUcWw8ZLQsVvC3O06-o5RdfIAjcbxV-WtlICSJCwVe7A_X-W83o4POXco15FUJB4cLl7TRnK3I6rE4cTJ0NkvyB3mHnxfaMfrQ9p7l9RXWI_IDaqi0vahMb6f4AG5MWP9rVbkf6Qz7Ao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Failure+Pressure+Prediction+of+Water+Supply+Pipe+Based+on+GA-BP+Neural+Network&rft.jtitle=Water+%28Basel%29&rft.au=Li%2C+Qingfu&rft.au=Li%2C+Zeyi&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=16&rft.issue=18&rft.spage=2659&rft_id=info:doi/10.3390%2Fw16182659&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon