Adaptive Levenberg–Marquardt Algorithm: A New Optimization Strategy for Levenberg–Marquardt Neural Networks
Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network optimized by the algorithm is trained with engineering data. In this work, we analyzed the reasons for the LM neural network’s poor convergen...
Saved in:
| Published in | Mathematics (Basel) Vol. 9; no. 17; p. 2176 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-7390 2227-7390 |
| DOI | 10.3390/math9172176 |
Cover
| Abstract | Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network optimized by the algorithm is trained with engineering data. In this work, we analyzed the reasons for the LM neural network’s poor convergence commonly associated with the LM algorithm. Specifically, the effects of different activation functions such as Sigmoid, Tanh, Rectified Linear Unit (RELU) and Parametric Rectified Linear Unit (PRLU) were evaluated on the general performance of LM neural networks, and special values of LM neural network parameters were found that could make the LM algorithm converge poorly. We proposed an adaptive LM (AdaLM) algorithm to solve the problem of the LM algorithm. The algorithm coordinates the descent direction and the descent step by the iteration number, which can prevent falling into the local minimum value and avoid the influence of the parameter state of LM neural networks. We compared the AdaLM algorithm with the traditional LM algorithm and its variants in terms of accuracy and speed in the context of testing common datasets and aero-engine data, and the results verified the effectiveness of the AdaLM algorithm. |
|---|---|
| AbstractList | Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network optimized by the algorithm is trained with engineering data. In this work, we analyzed the reasons for the LM neural network’s poor convergence commonly associated with the LM algorithm. Specifically, the effects of different activation functions such as Sigmoid, Tanh, Rectified Linear Unit (RELU) and Parametric Rectified Linear Unit (PRLU) were evaluated on the general performance of LM neural networks, and special values of LM neural network parameters were found that could make the LM algorithm converge poorly. We proposed an adaptive LM (AdaLM) algorithm to solve the problem of the LM algorithm. The algorithm coordinates the descent direction and the descent step by the iteration number, which can prevent falling into the local minimum value and avoid the influence of the parameter state of LM neural networks. We compared the AdaLM algorithm with the traditional LM algorithm and its variants in terms of accuracy and speed in the context of testing common datasets and aero-engine data, and the results verified the effectiveness of the AdaLM algorithm. |
| Author | Cui, Zhiquan Yan, Zhiqi Lin, Lin Zhong, Shisheng |
| Author_xml | – sequence: 1 givenname: Zhiqi surname: Yan fullname: Yan, Zhiqi – sequence: 2 givenname: Shisheng surname: Zhong fullname: Zhong, Shisheng – sequence: 3 givenname: Lin surname: Lin fullname: Lin, Lin – sequence: 4 givenname: Zhiquan surname: Cui fullname: Cui, Zhiquan |
| BookMark | eNp9kM1OGzEURi1EJShl1RcYqUua1v9js4sQUKQUFm3X1h2PHZxOxsHjIQqrvkPfkCfBEIRQJerNtT4dH11_79FuH3uH0EeCvzCm8dcl5GtNakpquYP2KaX1pC757qv7HjochgUuRxOmuN5HcdrCKodbV83cresbl-b3f_5-h3QzQmpzNe3mMYV8vTyuptWlW1dXhV6GO8gh9tWPnCC7-abyMb0huHRjgq6MvI7p9_ABvfPQDe7weR6gX2enP0--TWZX5xcn09nEMsnzxCoOrGVc4roRwrUtaG-lxuCZ51q7kshGEWo5FZ4JC0z5WgutGulrRwk7QBdbbxthYVYpLCFtTIRgnoKY5gZSDrZzhlNJqFPCSWx50yhQWigJFpoWKyweXZ-3rrFfwWYNXfciJNg8dm9edV_wT1t8leLN6IZsFnFMffmtoaImHGuqcaHIlrIpDkNy3tiQn1otnYbuDfPRP2_-t8cDoxKnmQ |
| CitedBy_id | crossref_primary_10_3390_jmse12020240 crossref_primary_10_1080_10106049_2023_2243884 crossref_primary_10_2478_pead_2023_0018 crossref_primary_10_1016_j_molliq_2023_122747 crossref_primary_10_1016_j_engfracmech_2023_109331 crossref_primary_10_1016_j_mcat_2025_114952 crossref_primary_10_3390_electronics14010121 crossref_primary_10_3762_bjnano_15_12 crossref_primary_10_1016_j_infrared_2024_105691 crossref_primary_10_3390_math10010050 crossref_primary_10_1134_S0020441223050044 crossref_primary_10_1061_JCCEE5_CPENG_6029 crossref_primary_10_3390_math10162938 crossref_primary_10_3390_met13040812 crossref_primary_10_1177_08927057251314430 crossref_primary_10_1364_OE_544542 crossref_primary_10_31857_S003281622305004X crossref_primary_10_1002_slct_202404214 crossref_primary_10_3390_s22072677 crossref_primary_10_1007_s40997_023_00596_3 crossref_primary_10_3390_en18051265 crossref_primary_10_1016_j_aei_2023_102347 crossref_primary_10_3390_ma18030563 crossref_primary_10_1016_j_est_2025_115508 crossref_primary_10_1016_j_neucom_2023_126997 crossref_primary_10_1080_00423114_2024_2432388 crossref_primary_10_1016_j_heliyon_2024_e37669 crossref_primary_10_3390_app142210508 crossref_primary_10_3390_agriculture15020161 crossref_primary_10_3390_en17153674 crossref_primary_10_3390_metrology4020019 |
| Cites_doi | 10.1016/j.apenergy.2009.02.011 10.1109/IJCNN.1990.137651 10.1103/PhysRevLett.104.060201 10.1016/j.colsurfa.2018.01.030 10.1016/j.cam.2015.04.040 10.1051/matecconf/201823201041 10.1016/j.rcim.2021.102165 10.1155/2019/3941920 10.1016/S0893-6080(03)00006-6 10.1007/s10492-011-0027-y 10.1016/j.cam.2012.09.025 10.1109/ICSESS.2018.8663747 10.1016/j.ijepes.2018.01.019 10.1016/j.matpr.2020.07.399 10.1109/ACCESS.2018.2810190 10.1007/s00521-009-0321-8 10.1002/nag.291 10.3390/en12071201 10.1007/BFb0067700 10.1016/j.jece.2021.105200 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/math9172176 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_42612e85e60c4bb8a89586acabd08051 10.3390/math9172176 10_3390_math9172176 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c364t-c84a3d34607b55edda9fc690af3f499eedd6b812c425f35ca38f79598b6f7e213 |
| IEDL.DBID | DOA |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 18:46:16 EDT 2025 Sun Oct 26 03:57:26 EDT 2025 Fri Jul 25 12:10:21 EDT 2025 Thu Oct 16 04:41:54 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-c84a3d34607b55edda9fc690af3f499eedd6b812c425f35ca38f79598b6f7e213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/42612e85e60c4bb8a89586acabd08051 |
| PQID | 2571409290 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_42612e85e60c4bb8a89586acabd08051 unpaywall_primary_10_3390_math9172176 proquest_journals_2571409290 crossref_citationtrail_10_3390_math9172176 crossref_primary_10_3390_math9172176 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kumar (ref_2) 2021; 37 Zhao (ref_7) 2019; 2019 Zhou (ref_8) 2018; 232 ref_10 Du (ref_17) 2011; 56 Ma (ref_16) 2008; 197 Amini (ref_5) 2015; 288 ref_19 Li (ref_25) 2009; 86 Chua (ref_23) 2003; 27 Chen (ref_13) 2016; 285 Transtrum (ref_4) 2010; 104 Zhang (ref_21) 2003; 16 Qiao (ref_15) 2018; 6 Zhou (ref_18) 2013; 239 Derakhshandeh (ref_14) 2018; 99 Liang (ref_22) 2010; 19 ref_24 ref_20 Luo (ref_1) 2021; 71 ref_9 Mahmoudabadi (ref_3) 2021; 9 Hossein (ref_11) 2018; 541 Yang (ref_12) 2013; 219 ref_6 |
| References_xml | – volume: 285 start-page: 79 year: 2016 ident: ref_13 article-title: A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence publication-title: Appl. Math. Comput. – volume: 86 start-page: 2152 year: 2009 ident: ref_25 article-title: Gas turbine performance prognostic for condition-based maintenance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.02.011 – ident: ref_24 doi: 10.1109/IJCNN.1990.137651 – volume: 104 start-page: 060201 year: 2010 ident: ref_4 article-title: Why are nonlinear fits to data so challenging? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.060201 – volume: 541 start-page: 154 year: 2018 ident: ref_11 article-title: Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.01.030 – volume: 288 start-page: 341 year: 2015 ident: ref_5 article-title: A modified two steps Levenberg–Marquardt method for nonlinear equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.04.040 – volume: 232 start-page: 01041 year: 2018 ident: ref_8 article-title: Application of GA-LM-BP Neural Network in Fault Prediction of Drying Furnace Equipment publication-title: Matec. Web Conf. doi: 10.1051/matecconf/201823201041 – volume: 71 start-page: 102165 year: 2021 ident: ref_1 article-title: A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and Differential Evolution hybrid algorithm publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2021.102165 – volume: 2019 start-page: 3941920 year: 2019 ident: ref_7 article-title: Stability and Complexity of a Novel Three-Dimensional Envi-ronmental Quality Dynamic Evolution System publication-title: Complexity doi: 10.1155/2019/3941920 – volume: 16 start-page: 995 year: 2003 ident: ref_21 article-title: Bounds on the number of hidden neurons in three-layer binary neural networks publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00006-6 – volume: 56 start-page: 481 year: 2011 ident: ref_17 article-title: Global convergence property of modified Levenberg-Marquardt meth-ods for nonsmooth equations publication-title: Appl. Math. doi: 10.1007/s10492-011-0027-y – volume: 239 start-page: 152 year: 2013 ident: ref_18 article-title: On the convergence of the modified Levenberg–Marquardt method with a non-monotone second order Armijo type line search publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.09.025 – ident: ref_9 doi: 10.1109/ICSESS.2018.8663747 – ident: ref_10 – volume: 99 start-page: 299 year: 2018 ident: ref_14 article-title: A novel fuzzy logic Leven-berg-Marquardt method to solve the ill-conditioned power flow problem publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.01.019 – volume: 37 start-page: 1813 year: 2021 ident: ref_2 article-title: Analysis of Connected Word Recognition systems using Levenberg Mar-quardt Algorithm for cockpit control in unmanned aircrafts publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.07.399 – volume: 197 start-page: 566 year: 2008 ident: ref_16 article-title: The quadratic convergence of a smoothing Levenberg–Marquardt method for nonlinear complementarity problem publication-title: Appl. Math. Comput. – volume: 6 start-page: 10720 year: 2018 ident: ref_15 article-title: Adaptive levenberg-marquardt algorithm based echo state network for chaotic time series prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810190 – volume: 219 start-page: 10682 year: 2013 ident: ref_12 article-title: A higher-order Levenberg–Marquardt method for nonlinear equations publication-title: Appl. Math. Comput. – volume: 19 start-page: 445 year: 2010 ident: ref_22 article-title: A unified mathematical form for removing neurons based on or-thogonal projection and crosswise propagation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-009-0321-8 – volume: 27 start-page: 651 year: 2003 ident: ref_23 article-title: A hybrid Bayesian back-propagation neural network approach to multivariate modelling publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.291 – ident: ref_6 doi: 10.3390/en12071201 – ident: ref_19 doi: 10.1007/BFb0067700 – ident: ref_20 – volume: 9 start-page: 105200 year: 2021 ident: ref_3 article-title: Synthesis of 2D-Porous MoS2 as a Nanocatalyst for Oxidative Desulfuriza-tion of Sour Gas Condensate: Process Parameters Optimization Based on the Levenberg–Marquardt Algorithm publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105200 |
| SSID | ssj0000913849 |
| Score | 2.4013784 |
| Snippet | Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2176 |
| SubjectTerms | Adaptive algorithms Algorithms Approximation Convergence Levenberg–Marquardt algorithm local minima Mathematics Network management systems Neural networks Optimization Parameters |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEB7RcGh7qIC2Ii2gPdALkoXxrje7lSoUKhBCTUBVkbhZ6_2BQ0hCYlRx6zv0DfskzDhrN0gtV2tkrXdmZ75Zz3wDsKu19TJTPkG06xLBXUqUtyLR1mZpUD6kPeodHgzl6aU4u8qvVmDY9MJQWWXjE2tH7SaW7sj30bSImynT6eH0LqGpUfR3tRmhYeJoBfelphh7AasZMWN1YPXoeHjxvb11IRZMJfSiUY9jvr-PuPBGUx5ErCNLoalm8H8CO1_ej6fm4acZjZYi0MkavInQkfUXul6HFT_egNeDlnd1_hYmfWem5MDYN2JmotqtP79-D8zsjiyhYv3RNX5TdXP7mfUZ-jd2jtK3sRWTRabaB4ZA9j8vIC4PXMNwUTw-fweXJ8c_vp4mcaRCYrkUVWKVMNxxIdNemefeOaODxQTZBB4w98GA6WSJMd_iUQ48t4arQNPIVSlDz2cH_D10xpOx3wSmc9y-YE0ZNMLCwI1xpRYCNdwzwkjfhb1mNwsb-cZp7MWowLyDtr5Y2vou7LbC0wXNxr_FjkgtrQhxY9cPJrPrIh61gpLCzKvcy9SKslRG6VxJgyt1CI_zgy5sNUot4oGdF3_NqwufWkU_t5YPz7_mI7zKqPylLkfbgk41u_fbiF-qcica5SNMOvSG priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvBGBgvZQLkhuHO_Du1yQQVQVIoEDkcrJ7LOtSJOQOKBy4j_wD_klzMSbKCBASFyt8WrtGc9-nzXzDSF7WrsgCxUyQLs-48znKHnLM-1ckUcVYl5i7_BgKA9H_OWROEpzTheprBKo-OkqSWOfZlYCK-_pXr_sAXqWvZmPTz-lX0mAJTCigKFcJDtSABjvkJ3R8E31DkfKrW9uu_IYLgMg8EQj6UGJka1zaCXX_xPGvLSczMz5ZzMebx03B9fI-_VG2yqTD_vLxu67L79oOP7Hk1wnVxMUpVUbOzfIhTC5Sa4MNjqui1tkWnkzw4RIX6HSE9aCff_6bWDmHzGyGlqNj6fz0-bk7AmtKORL-hqsz1JrJ03Kt-cUgPEfFkBtENjDsC1GX9wmo4MXb58fZmlEQ-aY5E3mFDfMMy7z0goRvDc6OiDcJrIIXAoOYC8tYAgHqSEy4QxTEaebKytjGYo-u0M6k-kk3CVUC3g90RkbNcDMyIzxVnMOEVMabmToksdrh9Uu6ZfjGI1xDTwGvVtvebdL9jbGs1a24_dmz9DzGxPU2l5dmM6P6_Tp1kgyi6BEkLnj1iqjtFDSwE49wG3R75LdddzUKQEsasiEKCVW6LxLHm1i6W97ufePdvfJ5QLralZ1bruk08yX4QEAo8Y-TMH_A6hLDEo priority: 102 providerName: Unpaywall |
| Title | Adaptive Levenberg–Marquardt Algorithm: A New Optimization Strategy for Levenberg–Marquardt Neural Networks |
| URI | https://www.proquest.com/docview/2571409290 https://www.mdpi.com/2227-7390/9/17/2176/pdf?version=1631017094 https://doaj.org/article/42612e85e60c4bb8a89586acabd08051 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEB5ROLQcKuiPSIFoD_SCZGG8680uN4MICDUpQo1ET9Z6f-AQkpQEIW68Q9-QJ2HGNpGRSrlwtDWyRjPjmW-kmW8AtrS2XibKR4h2XSS4i4nyVkTa2iQOyoe4Q7vDvb48HoiT8_S8ceqLZsIqeuDKcDsE8ROvUi9jK4pCGaVTJY01hUOwUy5PJ7HSjWaqzMF6lyuhq4U8jn39DuK_S039DrGLNEpQydT_DF6-vxlNzN2tGQ4blaa7Ah9riMiySrVVWPCjT7Dcm_OrTj_DOHNmQomK_SAGJprRerj_2zPXf8jjM5YNL8bY9V9e7bGMYR5jP1H6ql65ZDUj7R1DwPrCB4izA3XoV0Pi0y8w6B7-OjiO6tMJkeVSzCKrhOGOCxl3ijT1zhkdLDbCJvCAPQ4WRicLrO0Wf9nAU2u4CnR1XBUydHyyy7_C4mg88mvAdIrmC2jvoBH-BW6MK7QQ6MmOEUb6Fmw_WTO3Na84nbcY5thfkOnzhulbsDUXnlR0Gv8W2ye3zEWIA7t8gZGR15GRvxYZLdh4cmpe_5jTHDMUUXwlOm7B97mj_6fLt7fQZR0-JDQMUw6nbcDi7PrGbyKamRVteKe6R21Y2j_sn561yzDGp0H_NPv9CO8s-mk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6V9lA4IH7VQAEf2gvSqtu1d2MjVSiFVilNAkKt1Nvi9U97SJM02arKjXfgfXgYnoSZjXcJEvTW62pkWePxzDfemW8AtpQyLkukixDt2khwGxPlrYiUMUnspfNxm3qH-4Oseyo-naVnK_Cz7oWhssraJ1aO2o4NvZHvoGkRN1Oi4veTq4imRtHf1XqEhg6jFexeRTEWGjuO3fwGU7jZ3tFHPO_tJDk8OPnQjcKUgcjwTJSRkUJzy0UWt4s0ddZq5Q3mjNpzj-kAxhCbFRgGDVq356nRXHoa0C2LzLddsstx3XuwJrhQmPyt7R8MvnxtXnmIdVMKtWgM5FzFO4hDLxTlXcRyshQKq4kBf8Hc9evRRM9v9HC4FPEOH8HDAFVZZ2Fbj2HFjZ7Ag37D8zp7CuOO1RNymKxHTFBUK_br-4--nl6R5ZWsMzxHHZYXl-9Yh6E_ZZ9R-jK0frLAjDtnCJz_swBxh-AeBoti9dkzOL0T5T6H1dF45DaAqRTV540uvEIY6rnWtlBCoEW1tdCZa8HbWpu5CfzmNGZjmGOeQ6rPl1Tfgq1GeLKg9fi32D4dSyNCXNzVh_H0PA9XO6ckNHEydVlsRFFILVUqM407tQjH090WbNaHmgcHMcv_mHMLtpuDvm0vL25f5g2sd0_6vbx3NDh-CfcTKr2pSuE2YbWcXrtXiJ3K4nUwUAbf7vpO_Ab_BzJV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJioH4jOuovYBLiYThumemW4SYxZxBWFXD5JwG3r6AYdld9kdQvbmf_Df-HP4JVTNyzVRblwnlU6lqroePVVfAawrZVwSSRdgtmsDwW1IkLciUMZEoZfOhynNDvcHyd6R-HocHy_B72YWhtoqG59YOmo7NvRGvommRdhMkQo3fd0W8X2393FyEdAGKfrT2qzTqEzkwM2vsHybfdjfRV1vRFHv849Pe0G9YSAwPBFFYKTQ3HKRhGkex85arbzBelF77rEUwPhhkxxDoEHL9jw2mktPy7llnvjURVscz70H91NCcacp9d6X9n2H8DalUNVIIOfINmagZ4oqLsI3WQiC5a6AvxLch5ejiZ5f6eFwIdb1HsNqnaSybmVVT2DJjZ7CSr9FeJ09g3HX6gm5SnZIGFDUJXb981dfTy_I5grWHZ6ixIqz823WZehJ2TekPq-HPlmNiTtnmDL_5wBCDUEeBlWb-uw5HN2JaF_A8mg8ci-BqRjF543OvcIE1HOtba6EQFtKtdCJ68D7RpqZqZHNacHGMMMKh0SfLYi-A-st8aQC9Pg32Q6ppSUhFO7yw3h6mtWXOqPyM3IydkloRJ5LLVUsE42cWkzE460OrDVKzWrXMMv-GHIHNlpF38bLq9uPeQcP8CZkh_uDg9fwKKKem7IHbg2Wi-mle4NJU5G_La2TwcldX4cbucAv7w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvBGBgvZQLkhuHO_Du1yQQVQVIoEDkcrJ7LOtSJOQOKBy4j_wD_klzMSbKCBASFyt8WrtGc9-nzXzDSF7WrsgCxUyQLs-48znKHnLM-1ckUcVYl5i7_BgKA9H_OWROEpzTheprBKo-OkqSWOfZlYCK-_pXr_sAXqWvZmPTz-lX0mAJTCigKFcJDtSABjvkJ3R8E31DkfKrW9uu_IYLgMg8EQj6UGJka1zaCXX_xPGvLSczMz5ZzMebx03B9fI-_VG2yqTD_vLxu67L79oOP7Hk1wnVxMUpVUbOzfIhTC5Sa4MNjqui1tkWnkzw4RIX6HSE9aCff_6bWDmHzGyGlqNj6fz0-bk7AmtKORL-hqsz1JrJ03Kt-cUgPEfFkBtENjDsC1GX9wmo4MXb58fZmlEQ-aY5E3mFDfMMy7z0goRvDc6OiDcJrIIXAoOYC8tYAgHqSEy4QxTEaebKytjGYo-u0M6k-kk3CVUC3g90RkbNcDMyIzxVnMOEVMabmToksdrh9Uu6ZfjGI1xDTwGvVtvebdL9jbGs1a24_dmz9DzGxPU2l5dmM6P6_Tp1kgyi6BEkLnj1iqjtFDSwE49wG3R75LdddzUKQEsasiEKCVW6LxLHm1i6W97ufePdvfJ5QLralZ1bruk08yX4QEAo8Y-TMH_A6hLDEo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Levenberg%E2%80%93Marquardt+Algorithm%3A+A+New+Optimization+Strategy+for+Levenberg%E2%80%93Marquardt+Neural+Networks&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhiqi+Yan&rft.au=Shisheng+Zhong&rft.au=Lin+Lin&rft.au=Zhiquan+Cui&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=9&rft.issue=17&rft.spage=2176&rft_id=info:doi/10.3390%2Fmath9172176&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_42612e85e60c4bb8a89586acabd08051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |