Adaptive Levenberg–Marquardt Algorithm: A New Optimization Strategy for Levenberg–Marquardt Neural Networks

Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network optimized by the algorithm is trained with engineering data. In this work, we analyzed the reasons for the LM neural network’s poor convergen...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 9; no. 17; p. 2176
Main Authors Yan, Zhiqi, Zhong, Shisheng, Lin, Lin, Cui, Zhiquan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math9172176

Cover

Abstract Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network optimized by the algorithm is trained with engineering data. In this work, we analyzed the reasons for the LM neural network’s poor convergence commonly associated with the LM algorithm. Specifically, the effects of different activation functions such as Sigmoid, Tanh, Rectified Linear Unit (RELU) and Parametric Rectified Linear Unit (PRLU) were evaluated on the general performance of LM neural networks, and special values of LM neural network parameters were found that could make the LM algorithm converge poorly. We proposed an adaptive LM (AdaLM) algorithm to solve the problem of the LM algorithm. The algorithm coordinates the descent direction and the descent step by the iteration number, which can prevent falling into the local minimum value and avoid the influence of the parameter state of LM neural networks. We compared the AdaLM algorithm with the traditional LM algorithm and its variants in terms of accuracy and speed in the context of testing common datasets and aero-engine data, and the results verified the effectiveness of the AdaLM algorithm.
AbstractList Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network optimized by the algorithm is trained with engineering data. In this work, we analyzed the reasons for the LM neural network’s poor convergence commonly associated with the LM algorithm. Specifically, the effects of different activation functions such as Sigmoid, Tanh, Rectified Linear Unit (RELU) and Parametric Rectified Linear Unit (PRLU) were evaluated on the general performance of LM neural networks, and special values of LM neural network parameters were found that could make the LM algorithm converge poorly. We proposed an adaptive LM (AdaLM) algorithm to solve the problem of the LM algorithm. The algorithm coordinates the descent direction and the descent step by the iteration number, which can prevent falling into the local minimum value and avoid the influence of the parameter state of LM neural networks. We compared the AdaLM algorithm with the traditional LM algorithm and its variants in terms of accuracy and speed in the context of testing common datasets and aero-engine data, and the results verified the effectiveness of the AdaLM algorithm.
Author Cui, Zhiquan
Yan, Zhiqi
Lin, Lin
Zhong, Shisheng
Author_xml – sequence: 1
  givenname: Zhiqi
  surname: Yan
  fullname: Yan, Zhiqi
– sequence: 2
  givenname: Shisheng
  surname: Zhong
  fullname: Zhong, Shisheng
– sequence: 3
  givenname: Lin
  surname: Lin
  fullname: Lin, Lin
– sequence: 4
  givenname: Zhiquan
  surname: Cui
  fullname: Cui, Zhiquan
BookMark eNp9kM1OGzEURi1EJShl1RcYqUua1v9js4sQUKQUFm3X1h2PHZxOxsHjIQqrvkPfkCfBEIRQJerNtT4dH11_79FuH3uH0EeCvzCm8dcl5GtNakpquYP2KaX1pC757qv7HjochgUuRxOmuN5HcdrCKodbV83cresbl-b3f_5-h3QzQmpzNe3mMYV8vTyuptWlW1dXhV6GO8gh9tWPnCC7-abyMb0huHRjgq6MvI7p9_ABvfPQDe7weR6gX2enP0--TWZX5xcn09nEMsnzxCoOrGVc4roRwrUtaG-lxuCZ51q7kshGEWo5FZ4JC0z5WgutGulrRwk7QBdbbxthYVYpLCFtTIRgnoKY5gZSDrZzhlNJqFPCSWx50yhQWigJFpoWKyweXZ-3rrFfwWYNXfciJNg8dm9edV_wT1t8leLN6IZsFnFMffmtoaImHGuqcaHIlrIpDkNy3tiQn1otnYbuDfPRP2_-t8cDoxKnmQ
CitedBy_id crossref_primary_10_3390_jmse12020240
crossref_primary_10_1080_10106049_2023_2243884
crossref_primary_10_2478_pead_2023_0018
crossref_primary_10_1016_j_molliq_2023_122747
crossref_primary_10_1016_j_engfracmech_2023_109331
crossref_primary_10_1016_j_mcat_2025_114952
crossref_primary_10_3390_electronics14010121
crossref_primary_10_3762_bjnano_15_12
crossref_primary_10_1016_j_infrared_2024_105691
crossref_primary_10_3390_math10010050
crossref_primary_10_1134_S0020441223050044
crossref_primary_10_1061_JCCEE5_CPENG_6029
crossref_primary_10_3390_math10162938
crossref_primary_10_3390_met13040812
crossref_primary_10_1177_08927057251314430
crossref_primary_10_1364_OE_544542
crossref_primary_10_31857_S003281622305004X
crossref_primary_10_1002_slct_202404214
crossref_primary_10_3390_s22072677
crossref_primary_10_1007_s40997_023_00596_3
crossref_primary_10_3390_en18051265
crossref_primary_10_1016_j_aei_2023_102347
crossref_primary_10_3390_ma18030563
crossref_primary_10_1016_j_est_2025_115508
crossref_primary_10_1016_j_neucom_2023_126997
crossref_primary_10_1080_00423114_2024_2432388
crossref_primary_10_1016_j_heliyon_2024_e37669
crossref_primary_10_3390_app142210508
crossref_primary_10_3390_agriculture15020161
crossref_primary_10_3390_en17153674
crossref_primary_10_3390_metrology4020019
Cites_doi 10.1016/j.apenergy.2009.02.011
10.1109/IJCNN.1990.137651
10.1103/PhysRevLett.104.060201
10.1016/j.colsurfa.2018.01.030
10.1016/j.cam.2015.04.040
10.1051/matecconf/201823201041
10.1016/j.rcim.2021.102165
10.1155/2019/3941920
10.1016/S0893-6080(03)00006-6
10.1007/s10492-011-0027-y
10.1016/j.cam.2012.09.025
10.1109/ICSESS.2018.8663747
10.1016/j.ijepes.2018.01.019
10.1016/j.matpr.2020.07.399
10.1109/ACCESS.2018.2810190
10.1007/s00521-009-0321-8
10.1002/nag.291
10.3390/en12071201
10.1007/BFb0067700
10.1016/j.jece.2021.105200
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math9172176
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_42612e85e60c4bb8a89586acabd08051
10.3390/math9172176
10_3390_math9172176
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-c84a3d34607b55edda9fc690af3f499eedd6b812c425f35ca38f79598b6f7e213
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Tue Oct 14 18:46:16 EDT 2025
Sun Oct 26 03:57:26 EDT 2025
Fri Jul 25 12:10:21 EDT 2025
Thu Oct 16 04:41:54 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c84a3d34607b55edda9fc690af3f499eedd6b812c425f35ca38f79598b6f7e213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/42612e85e60c4bb8a89586acabd08051
PQID 2571409290
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_42612e85e60c4bb8a89586acabd08051
unpaywall_primary_10_3390_math9172176
proquest_journals_2571409290
crossref_citationtrail_10_3390_math9172176
crossref_primary_10_3390_math9172176
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kumar (ref_2) 2021; 37
Zhao (ref_7) 2019; 2019
Zhou (ref_8) 2018; 232
ref_10
Du (ref_17) 2011; 56
Ma (ref_16) 2008; 197
Amini (ref_5) 2015; 288
ref_19
Li (ref_25) 2009; 86
Chua (ref_23) 2003; 27
Chen (ref_13) 2016; 285
Transtrum (ref_4) 2010; 104
Zhang (ref_21) 2003; 16
Qiao (ref_15) 2018; 6
Zhou (ref_18) 2013; 239
Derakhshandeh (ref_14) 2018; 99
Liang (ref_22) 2010; 19
ref_24
ref_20
Luo (ref_1) 2021; 71
ref_9
Mahmoudabadi (ref_3) 2021; 9
Hossein (ref_11) 2018; 541
Yang (ref_12) 2013; 219
ref_6
References_xml – volume: 285
  start-page: 79
  year: 2016
  ident: ref_13
  article-title: A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence
  publication-title: Appl. Math. Comput.
– volume: 86
  start-page: 2152
  year: 2009
  ident: ref_25
  article-title: Gas turbine performance prognostic for condition-based maintenance
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.02.011
– ident: ref_24
  doi: 10.1109/IJCNN.1990.137651
– volume: 104
  start-page: 060201
  year: 2010
  ident: ref_4
  article-title: Why are nonlinear fits to data so challenging?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.060201
– volume: 541
  start-page: 154
  year: 2018
  ident: ref_11
  article-title: Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2018.01.030
– volume: 288
  start-page: 341
  year: 2015
  ident: ref_5
  article-title: A modified two steps Levenberg–Marquardt method for nonlinear equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.04.040
– volume: 232
  start-page: 01041
  year: 2018
  ident: ref_8
  article-title: Application of GA-LM-BP Neural Network in Fault Prediction of Drying Furnace Equipment
  publication-title: Matec. Web Conf.
  doi: 10.1051/matecconf/201823201041
– volume: 71
  start-page: 102165
  year: 2021
  ident: ref_1
  article-title: A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and Differential Evolution hybrid algorithm
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102165
– volume: 2019
  start-page: 3941920
  year: 2019
  ident: ref_7
  article-title: Stability and Complexity of a Novel Three-Dimensional Envi-ronmental Quality Dynamic Evolution System
  publication-title: Complexity
  doi: 10.1155/2019/3941920
– volume: 16
  start-page: 995
  year: 2003
  ident: ref_21
  article-title: Bounds on the number of hidden neurons in three-layer binary neural networks
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00006-6
– volume: 56
  start-page: 481
  year: 2011
  ident: ref_17
  article-title: Global convergence property of modified Levenberg-Marquardt meth-ods for nonsmooth equations
  publication-title: Appl. Math.
  doi: 10.1007/s10492-011-0027-y
– volume: 239
  start-page: 152
  year: 2013
  ident: ref_18
  article-title: On the convergence of the modified Levenberg–Marquardt method with a non-monotone second order Armijo type line search
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.09.025
– ident: ref_9
  doi: 10.1109/ICSESS.2018.8663747
– ident: ref_10
– volume: 99
  start-page: 299
  year: 2018
  ident: ref_14
  article-title: A novel fuzzy logic Leven-berg-Marquardt method to solve the ill-conditioned power flow problem
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.01.019
– volume: 37
  start-page: 1813
  year: 2021
  ident: ref_2
  article-title: Analysis of Connected Word Recognition systems using Levenberg Mar-quardt Algorithm for cockpit control in unmanned aircrafts
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.07.399
– volume: 197
  start-page: 566
  year: 2008
  ident: ref_16
  article-title: The quadratic convergence of a smoothing Levenberg–Marquardt method for nonlinear complementarity problem
  publication-title: Appl. Math. Comput.
– volume: 6
  start-page: 10720
  year: 2018
  ident: ref_15
  article-title: Adaptive levenberg-marquardt algorithm based echo state network for chaotic time series prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810190
– volume: 219
  start-page: 10682
  year: 2013
  ident: ref_12
  article-title: A higher-order Levenberg–Marquardt method for nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 19
  start-page: 445
  year: 2010
  ident: ref_22
  article-title: A unified mathematical form for removing neurons based on or-thogonal projection and crosswise propagation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-009-0321-8
– volume: 27
  start-page: 651
  year: 2003
  ident: ref_23
  article-title: A hybrid Bayesian back-propagation neural network approach to multivariate modelling
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.291
– ident: ref_6
  doi: 10.3390/en12071201
– ident: ref_19
  doi: 10.1007/BFb0067700
– ident: ref_20
– volume: 9
  start-page: 105200
  year: 2021
  ident: ref_3
  article-title: Synthesis of 2D-Porous MoS2 as a Nanocatalyst for Oxidative Desulfuriza-tion of Sour Gas Condensate: Process Parameters Optimization Based on the Levenberg–Marquardt Algorithm
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105200
SSID ssj0000913849
Score 2.4013784
Snippet Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2176
SubjectTerms Adaptive algorithms
Algorithms
Approximation
Convergence
Levenberg–Marquardt algorithm
local minima
Mathematics
Network management systems
Neural networks
Optimization
Parameters
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEB7RcGh7qIC2Ii2gPdALkoXxrje7lSoUKhBCTUBVkbhZ6_2BQ0hCYlRx6zv0DfskzDhrN0gtV2tkrXdmZ75Zz3wDsKu19TJTPkG06xLBXUqUtyLR1mZpUD6kPeodHgzl6aU4u8qvVmDY9MJQWWXjE2tH7SaW7sj30bSImynT6eH0LqGpUfR3tRmhYeJoBfelphh7AasZMWN1YPXoeHjxvb11IRZMJfSiUY9jvr-PuPBGUx5ErCNLoalm8H8CO1_ej6fm4acZjZYi0MkavInQkfUXul6HFT_egNeDlnd1_hYmfWem5MDYN2JmotqtP79-D8zsjiyhYv3RNX5TdXP7mfUZ-jd2jtK3sRWTRabaB4ZA9j8vIC4PXMNwUTw-fweXJ8c_vp4mcaRCYrkUVWKVMNxxIdNemefeOaODxQTZBB4w98GA6WSJMd_iUQ48t4arQNPIVSlDz2cH_D10xpOx3wSmc9y-YE0ZNMLCwI1xpRYCNdwzwkjfhb1mNwsb-cZp7MWowLyDtr5Y2vou7LbC0wXNxr_FjkgtrQhxY9cPJrPrIh61gpLCzKvcy9SKslRG6VxJgyt1CI_zgy5sNUot4oGdF3_NqwufWkU_t5YPz7_mI7zKqPylLkfbgk41u_fbiF-qcica5SNMOvSG
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvBGBgvZQLkhuHO_Du1yQQVQVIoEDkcrJ7LOtSJOQOKBy4j_wD_klzMSbKCBASFyt8WrtGc9-nzXzDSF7WrsgCxUyQLs-48znKHnLM-1ckUcVYl5i7_BgKA9H_OWROEpzTheprBKo-OkqSWOfZlYCK-_pXr_sAXqWvZmPTz-lX0mAJTCigKFcJDtSABjvkJ3R8E31DkfKrW9uu_IYLgMg8EQj6UGJka1zaCXX_xPGvLSczMz5ZzMebx03B9fI-_VG2yqTD_vLxu67L79oOP7Hk1wnVxMUpVUbOzfIhTC5Sa4MNjqui1tkWnkzw4RIX6HSE9aCff_6bWDmHzGyGlqNj6fz0-bk7AmtKORL-hqsz1JrJ03Kt-cUgPEfFkBtENjDsC1GX9wmo4MXb58fZmlEQ-aY5E3mFDfMMy7z0goRvDc6OiDcJrIIXAoOYC8tYAgHqSEy4QxTEaebKytjGYo-u0M6k-kk3CVUC3g90RkbNcDMyIzxVnMOEVMabmToksdrh9Uu6ZfjGI1xDTwGvVtvebdL9jbGs1a24_dmz9DzGxPU2l5dmM6P6_Tp1kgyi6BEkLnj1iqjtFDSwE49wG3R75LdddzUKQEsasiEKCVW6LxLHm1i6W97ufePdvfJ5QLralZ1bruk08yX4QEAo8Y-TMH_A6hLDEo
  priority: 102
  providerName: Unpaywall
Title Adaptive Levenberg–Marquardt Algorithm: A New Optimization Strategy for Levenberg–Marquardt Neural Networks
URI https://www.proquest.com/docview/2571409290
https://www.mdpi.com/2227-7390/9/17/2176/pdf?version=1631017094
https://doaj.org/article/42612e85e60c4bb8a89586acabd08051
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEB5ROLQcKuiPSIFoD_SCZGG8680uN4MICDUpQo1ET9Z6f-AQkpQEIW68Q9-QJ2HGNpGRSrlwtDWyRjPjmW-kmW8AtrS2XibKR4h2XSS4i4nyVkTa2iQOyoe4Q7vDvb48HoiT8_S8ceqLZsIqeuDKcDsE8ROvUi9jK4pCGaVTJY01hUOwUy5PJ7HSjWaqzMF6lyuhq4U8jn39DuK_S039DrGLNEpQydT_DF6-vxlNzN2tGQ4blaa7Ah9riMiySrVVWPCjT7Dcm_OrTj_DOHNmQomK_SAGJprRerj_2zPXf8jjM5YNL8bY9V9e7bGMYR5jP1H6ql65ZDUj7R1DwPrCB4izA3XoV0Pi0y8w6B7-OjiO6tMJkeVSzCKrhOGOCxl3ijT1zhkdLDbCJvCAPQ4WRicLrO0Wf9nAU2u4CnR1XBUydHyyy7_C4mg88mvAdIrmC2jvoBH-BW6MK7QQ6MmOEUb6Fmw_WTO3Na84nbcY5thfkOnzhulbsDUXnlR0Gv8W2ye3zEWIA7t8gZGR15GRvxYZLdh4cmpe_5jTHDMUUXwlOm7B97mj_6fLt7fQZR0-JDQMUw6nbcDi7PrGbyKamRVteKe6R21Y2j_sn561yzDGp0H_NPv9CO8s-mk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6V9lA4IH7VQAEf2gvSqtu1d2MjVSiFVilNAkKt1Nvi9U97SJM02arKjXfgfXgYnoSZjXcJEvTW62pkWePxzDfemW8AtpQyLkukixDt2khwGxPlrYiUMUnspfNxm3qH-4Oseyo-naVnK_Cz7oWhssraJ1aO2o4NvZHvoGkRN1Oi4veTq4imRtHf1XqEhg6jFexeRTEWGjuO3fwGU7jZ3tFHPO_tJDk8OPnQjcKUgcjwTJSRkUJzy0UWt4s0ddZq5Q3mjNpzj-kAxhCbFRgGDVq356nRXHoa0C2LzLddsstx3XuwJrhQmPyt7R8MvnxtXnmIdVMKtWgM5FzFO4hDLxTlXcRyshQKq4kBf8Hc9evRRM9v9HC4FPEOH8HDAFVZZ2Fbj2HFjZ7Ag37D8zp7CuOO1RNymKxHTFBUK_br-4--nl6R5ZWsMzxHHZYXl-9Yh6E_ZZ9R-jK0frLAjDtnCJz_swBxh-AeBoti9dkzOL0T5T6H1dF45DaAqRTV540uvEIY6rnWtlBCoEW1tdCZa8HbWpu5CfzmNGZjmGOeQ6rPl1Tfgq1GeLKg9fi32D4dSyNCXNzVh_H0PA9XO6ckNHEydVlsRFFILVUqM407tQjH090WbNaHmgcHMcv_mHMLtpuDvm0vL25f5g2sd0_6vbx3NDh-CfcTKr2pSuE2YbWcXrtXiJ3K4nUwUAbf7vpO_Ab_BzJV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJioH4jOuovYBLiYThumemW4SYxZxBWFXD5JwG3r6AYdld9kdQvbmf_Df-HP4JVTNyzVRblwnlU6lqroePVVfAawrZVwSSRdgtmsDwW1IkLciUMZEoZfOhynNDvcHyd6R-HocHy_B72YWhtoqG59YOmo7NvRGvommRdhMkQo3fd0W8X2393FyEdAGKfrT2qzTqEzkwM2vsHybfdjfRV1vRFHv849Pe0G9YSAwPBFFYKTQ3HKRhGkex85arbzBelF77rEUwPhhkxxDoEHL9jw2mktPy7llnvjURVscz70H91NCcacp9d6X9n2H8DalUNVIIOfINmagZ4oqLsI3WQiC5a6AvxLch5ejiZ5f6eFwIdb1HsNqnaSybmVVT2DJjZ7CSr9FeJ09g3HX6gm5SnZIGFDUJXb981dfTy_I5grWHZ6ixIqz823WZehJ2TekPq-HPlmNiTtnmDL_5wBCDUEeBlWb-uw5HN2JaF_A8mg8ci-BqRjF543OvcIE1HOtba6EQFtKtdCJ68D7RpqZqZHNacHGMMMKh0SfLYi-A-st8aQC9Pg32Q6ppSUhFO7yw3h6mtWXOqPyM3IydkloRJ5LLVUsE42cWkzE460OrDVKzWrXMMv-GHIHNlpF38bLq9uPeQcP8CZkh_uDg9fwKKKem7IHbg2Wi-mle4NJU5G_La2TwcldX4cbucAv7w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvBGBgvZQLkhuHO_Du1yQQVQVIoEDkcrJ7LOtSJOQOKBy4j_wD_klzMSbKCBASFyt8WrtGc9-nzXzDSF7WrsgCxUyQLs-48znKHnLM-1ckUcVYl5i7_BgKA9H_OWROEpzTheprBKo-OkqSWOfZlYCK-_pXr_sAXqWvZmPTz-lX0mAJTCigKFcJDtSABjvkJ3R8E31DkfKrW9uu_IYLgMg8EQj6UGJka1zaCXX_xPGvLSczMz5ZzMebx03B9fI-_VG2yqTD_vLxu67L79oOP7Hk1wnVxMUpVUbOzfIhTC5Sa4MNjqui1tkWnkzw4RIX6HSE9aCff_6bWDmHzGyGlqNj6fz0-bk7AmtKORL-hqsz1JrJ03Kt-cUgPEfFkBtENjDsC1GX9wmo4MXb58fZmlEQ-aY5E3mFDfMMy7z0goRvDc6OiDcJrIIXAoOYC8tYAgHqSEy4QxTEaebKytjGYo-u0M6k-kk3CVUC3g90RkbNcDMyIzxVnMOEVMabmToksdrh9Uu6ZfjGI1xDTwGvVtvebdL9jbGs1a24_dmz9DzGxPU2l5dmM6P6_Tp1kgyi6BEkLnj1iqjtFDSwE49wG3R75LdddzUKQEsasiEKCVW6LxLHm1i6W97ufePdvfJ5QLralZ1bruk08yX4QEAo8Y-TMH_A6hLDEo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Levenberg%E2%80%93Marquardt+Algorithm%3A+A+New+Optimization+Strategy+for+Levenberg%E2%80%93Marquardt+Neural+Networks&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhiqi+Yan&rft.au=Shisheng+Zhong&rft.au=Lin+Lin&rft.au=Zhiquan+Cui&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=9&rft.issue=17&rft.spage=2176&rft_id=info:doi/10.3390%2Fmath9172176&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_42612e85e60c4bb8a89586acabd08051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon