Multimodal Few-Shot Learning for Gait Recognition
A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification pu...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 10; no. 21; p. 7619 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.11.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app10217619 | 
Cover
| Abstract | A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification purposes. Despite recent advances in gait recognition, an open set gait recognition problem presents challenges to current approaches. To address the open set gait recognition problem, a system should be able to deal with unseen subjects who have not included in the training dataset. In this paper, we propose a system that learns a mapping from a multimodal time series collected using insole to a latent (embedding vector) space to address the open set gait recognition problem. The distance between two embedding vectors in the latent space corresponds to the similarity between two multimodal time series. Using the characteristics of the human gait pattern, multimodal time series are sliced into unit steps. The system maps unit steps to embedding vectors using an ensemble consisting of a convolutional neural network and a recurrent neural network. To recognize each individual, the system learns a decision function using a one-class support vector machine from a few embedding vectors of the person in the latent space, then the system determines whether an unknown unit step is recognized as belonging to a known individual. Our experiments demonstrate that the proposed framework recognizes individuals with high accuracy regardless they have been registered or not. If we could have an environment in which all people would be wearing the insole, the framework would be used for user verification widely. | 
    
|---|---|
| AbstractList | A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification purposes. Despite recent advances in gait recognition, an open set gait recognition problem presents challenges to current approaches. To address the open set gait recognition problem, a system should be able to deal with unseen subjects who have not included in the training dataset. In this paper, we propose a system that learns a mapping from a multimodal time series collected using insole to a latent (embedding vector) space to address the open set gait recognition problem. The distance between two embedding vectors in the latent space corresponds to the similarity between two multimodal time series. Using the characteristics of the human gait pattern, multimodal time series are sliced into unit steps. The system maps unit steps to embedding vectors using an ensemble consisting of a convolutional neural network and a recurrent neural network. To recognize each individual, the system learns a decision function using a one-class support vector machine from a few embedding vectors of the person in the latent space, then the system determines whether an unknown unit step is recognized as belonging to a known individual. Our experiments demonstrate that the proposed framework recognizes individuals with high accuracy regardless they have been registered or not. If we could have an environment in which all people would be wearing the insole, the framework would be used for user verification widely. | 
    
| Author | Minaya, Nelson Hebert Moon, Jucheol Le, Nhat Anh Choi, Sang-Il  | 
    
| Author_xml | – sequence: 1 givenname: Jucheol orcidid: 0000-0002-2885-0627 surname: Moon fullname: Moon, Jucheol – sequence: 2 givenname: Nhat Anh surname: Le fullname: Le, Nhat Anh – sequence: 3 givenname: Nelson Hebert surname: Minaya fullname: Minaya, Nelson Hebert – sequence: 4 givenname: Sang-Il orcidid: 0000-0002-0462-0050 surname: Choi fullname: Choi, Sang-Il  | 
    
| BookMark | eNqFkN9LwzAQx4NMcM49-Q8UfNRq0jRp-ijDzcFE8MdzuCbpzOiamqaM_fd2VkRE8F7uOD73gfueolHtaoPQOcHXlOb4BpqG4IRknORHaJzgjMc0Jdnox3yCpm27wX3lhAqCx4g8dFWwW6ehiuZmFz-_uRCtDPja1uuodD5agA3Rk1FuXdtgXX2GjkuoWjP96hP0Or97md3Hq8fFcna7ihXlaYjBUMENoaos0kIYoLowONEcKFNFJkSWZ6UuMVO6yLmGlLMUM6qYECwRWanoBC0Hr3awkY23W_B76cDKz4Xzawk-WFUZycucZwVPeF4kKRdYaIIZU4wWRANOee-6Glxd3cB-B1X1LSRYHtKTP9Lr8YsBb7x770wb5MZ1vu6_lQmjaZ8mp7inLgdKede23pT_OMkvWtkAh0CDB1v9efMB4PGMaw | 
    
| CitedBy_id | crossref_primary_10_1155_2022_5422428 crossref_primary_10_1109_JSEN_2024_3446673 crossref_primary_10_1016_j_eswa_2024_124655 crossref_primary_10_1109_JSEN_2022_3188527 crossref_primary_10_3389_fninf_2024_1454583 crossref_primary_10_3390_drones7020066 crossref_primary_10_1007_s13735_023_00279_4 crossref_primary_10_1371_journal_pone_0264783 crossref_primary_10_3233_JIFS_221551 crossref_primary_10_1016_j_aei_2024_102729 crossref_primary_10_3390_s22072648  | 
    
| Cites_doi | 10.1109/CVPR.2019.00484 10.1109/TMC.2017.2686855 10.2106/00004623-196446020-00009 10.1016/j.imavis.2008.11.008 10.1155/2012/563864 10.1109/ISSPIT.2011.6151536 10.1037/0096-1523.4.3.357 10.1016/j.patcog.2019.107069 10.1016/j.ins.2016.01.020 10.1007/s00138-016-0810-6 10.1109/TIFS.2013.2287605 10.1109/TPAMI.2012.256 10.1016/j.ins.2015.01.031 10.3390/app9245529 10.1109/TPAMI.2016.2545669 10.1007/978-3-642-23687-7_48 10.1007/BF00994018 10.1109/CVPR.1994.323868 10.1016/j.ins.2015.04.047 10.1109/TENCON.2018.8650147 10.3390/s19173785 10.1016/j.patcog.2017.09.005 10.3390/s20144001 10.1109/TPAMI.2017.2726061 10.1109/CVPR.2015.7298682 10.1145/3230633 10.1109/TPAMI.2005.9 10.1162/neco.1997.9.8.1735 10.1016/j.gaitpost.2015.10.016 10.1016/j.patcog.2007.11.021 10.3758/BF03212378 10.3390/s17122735 10.1109/TPAMI.2020.2981604 10.3390/s19081757 10.1016/j.cviu.2018.01.007 10.1016/j.patcog.2012.02.032 10.3390/app7030210 10.3390/app9214581 10.3758/BF03337021 10.1016/j.cviu.2017.10.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app10217619 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_6f967b6269b246808d1055c53b1da046 10.3390/app10217619 10_3390_app10217619  | 
    
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c364t-ae386e13cfb4b8ea3dbe02d6a35cb788797fdf05cdb96da4654053c5885287fc3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Tue Oct 14 19:06:13 EDT 2025 Sun Oct 26 04:14:54 EDT 2025 Mon Jun 30 07:30:00 EDT 2025 Thu Oct 16 04:31:34 EDT 2025 Thu Apr 24 22:54:51 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c364t-ae386e13cfb4b8ea3dbe02d6a35cb788797fdf05cdb96da4654053c5885287fc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0462-0050 0000-0002-2885-0627  | 
    
| OpenAccessLink | https://doaj.org/article/6f967b6269b246808d1055c53b1da046 | 
    
| PQID | 2534076630 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6f967b6269b246808d1055c53b1da046 unpaywall_primary_10_3390_app10217619 proquest_journals_2534076630 crossref_primary_10_3390_app10217619 crossref_citationtrail_10_3390_app10217619  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-11-01 | 
    
| PublicationDateYYYYMMDD | 2020-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2020 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Major (ref_37) 2016; 44 Liu (ref_36) 2016; 340 Choudhury (ref_10) 2012; 45 Gadaleta (ref_38) 2018; 74 Cortes (ref_39) 1995; 20 ref_13 ref_35 Connor (ref_9) 2018; 167 Murray (ref_19) 1964; 46 Cheng (ref_11) 2008; 41 Alotaibi (ref_42) 2017; 164 Srivastava (ref_46) 2014; 15 Wu (ref_34) 2016; 39 Cevikalp (ref_41) 2005; 27 ref_18 Wan (ref_15) 2018; 51 ref_17 Cutting (ref_2) 1977; 9 Cutting (ref_3) 1978; 4 Chen (ref_31) 2017; 40 Johansson (ref_1) 1973; 14 ref_25 Yogarajah (ref_27) 2015; 308 ref_24 ref_23 ref_22 ref_44 Maaten (ref_47) 2008; 9 ref_21 ref_43 ref_20 Hochreiter (ref_45) 1997; 9 ref_40 Zeng (ref_6) 2015; 317 ref_29 ref_28 Liao (ref_12) 2020; 98 Muaaz (ref_14) 2017; 16 ref_26 Hu (ref_33) 2013; 8 ref_8 Scheirer (ref_16) 2012; 35 Wahid (ref_5) 2015; 19 Chen (ref_30) 2017; 28 ref_4 Bodor (ref_32) 2009; 27 ref_7  | 
    
| References_xml | – ident: ref_26 doi: 10.1109/CVPR.2019.00484 – volume: 16 start-page: 3209 year: 2017 ident: ref_14 article-title: Smartphone-based gait recognition: From authentication to imitation publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2017.2686855 – volume: 46 start-page: 335 year: 1964 ident: ref_19 article-title: Walking patterns of normal men publication-title: J. Bone Jt. Surg. doi: 10.2106/00004623-196446020-00009 – volume: 27 start-page: 1194 year: 2009 ident: ref_32 article-title: View-independent human motion classification using image-based reconstruction publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.11.008 – ident: ref_25 doi: 10.1155/2012/563864 – ident: ref_4 doi: 10.1109/ISSPIT.2011.6151536 – volume: 4 start-page: 357 year: 1978 ident: ref_3 article-title: A biomechanical invariant for gait perception publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.4.3.357 – volume: 98 start-page: 107069 year: 2020 ident: ref_12 article-title: A model-based gait recognition method with body pose and human prior knowledge publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107069 – volume: 340 start-page: 41 year: 2016 ident: ref_36 article-title: Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.020 – volume: 28 start-page: 117 year: 2017 ident: ref_30 article-title: Multi-gait recognition using hypergraph partition publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-016-0810-6 – volume: 8 start-page: 2034 year: 2013 ident: ref_33 article-title: View-invariant discriminative projection for multi-view gait-based human identification publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2013.2287605 – volume: 35 start-page: 1757 year: 2012 ident: ref_16 article-title: Toward open set recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.256 – ident: ref_35 – ident: ref_44 – volume: 308 start-page: 3 year: 2015 ident: ref_27 article-title: Enhancing gait based person identification using joint sparsity model and L1-norm minimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.01.031 – ident: ref_29 doi: 10.3390/app9245529 – volume: 39 start-page: 209 year: 2016 ident: ref_34 article-title: A comprehensive study on cross-view gait based human identification with deep cnns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2545669 – ident: ref_24 doi: 10.1007/978-3-642-23687-7_48 – volume: 20 start-page: 273 year: 1995 ident: ref_39 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_23 doi: 10.1109/CVPR.1994.323868 – volume: 317 start-page: 246 year: 2015 ident: ref_6 article-title: Classification of neurodegenerative diseases using gait dynamics via deterministic learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.04.047 – ident: ref_18 doi: 10.1109/TENCON.2018.8650147 – ident: ref_40 doi: 10.3390/s19173785 – volume: 74 start-page: 25 year: 2018 ident: ref_38 article-title: Idnet: Smartphone-based gait recognition with convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.005 – ident: ref_13 doi: 10.3390/s20144001 – volume: 40 start-page: 1697 year: 2017 ident: ref_31 article-title: Multi-gait recognition based on attribute discovery publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2726061 – ident: ref_21 doi: 10.1109/CVPR.2015.7298682 – volume: 19 start-page: 1794 year: 2015 ident: ref_5 article-title: Classification of Parkinson’s disease gait using spatial-temporal gait features publication-title: Inst. Electr. Electron. Eng. J. Biomed. Health Inform. – volume: 51 start-page: 1 year: 2018 ident: ref_15 article-title: A survey on gait recognition publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3230633 – volume: 27 start-page: 4 year: 2005 ident: ref_41 article-title: Discriminative common vectors for face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.9 – volume: 9 start-page: 1735 year: 1997 ident: ref_45 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 44 start-page: 12 year: 2016 ident: ref_37 article-title: Instrumented shoes for activity classification in the elderly publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.10.016 – volume: 41 start-page: 2541 year: 2008 ident: ref_11 article-title: Gait analysis for human identification through manifold learning and HMM publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.11.021 – volume: 14 start-page: 201 year: 1973 ident: ref_1 article-title: Visual perception of biological motion and a model for its analysis publication-title: Percept. Psychophys. doi: 10.3758/BF03212378 – volume: 15 start-page: 1929 year: 2014 ident: ref_46 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_8 doi: 10.3390/s17122735 – ident: ref_17 doi: 10.1109/TPAMI.2020.2981604 – ident: ref_20 doi: 10.3390/s19081757 – volume: 167 start-page: 1 year: 2018 ident: ref_9 article-title: Biometric recognition by gait: A survey of modalities and features publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2018.01.007 – volume: 45 start-page: 3414 year: 2012 ident: ref_10 article-title: Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.02.032 – ident: ref_43 – ident: ref_22 – ident: ref_28 doi: 10.3390/app7030210 – ident: ref_7 doi: 10.3390/app9214581 – volume: 9 start-page: 353 year: 1977 ident: ref_2 article-title: Recognizing friends by their walk: Gait perception without familiarity cues publication-title: Bull. Psychon. Soc. doi: 10.3758/BF03337021 – volume: 9 start-page: 2579 year: 2008 ident: ref_47 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 164 start-page: 103 year: 2017 ident: ref_42 article-title: Improved gait recognition based on specialized deep convolutional neural network publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.10.004  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.269391 | 
    
| Snippet | A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 7619 | 
    
| SubjectTerms | Accelerometers Accuracy Algorithms Biometrics Datasets Discriminant analysis few-shot learning Gait gait analysis multi-modality Neural networks open set recognition Sensors Smartphones Support vector machines Time series wearable sensors  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe1AP4hOjVXJQUGExyWa3yUFExSqCRXyAt7CPpAo1qTVS_PfupJtaQbyGSQizOzvz7e58H8CeCnWgFfUI8zNGQlMDkFhrj3SoypgyoCiLsFH4tsevn8KbZ_bcgF7dC4PXKus1sVqodaFwj_w4YNRgD5MfvdPhO0HVKDxdrSU0hJVW0CcVxdgctAJkxmpC6_yyd3c_3XVBFszI9yaNetTgfTwnRnVrRPO_UlPF4P-r7Jz_zIfiaywGg5kM1F2GJVs6umeTsV6BRpqvwuIMoeAqrNhQ_XAPLJ_04Rr4VZPtW6HNy910TB5eitK1vKp91xSt7pV4Ld37-ipRka_DU_fy8eKaWKUEoigPSyJSGvHUN_6VoYxSQbVMvUBzQZmSeF8w7mQ685jSMuZaIIeaCT7FoogZxJQpugHNvMjTTXApp6bokVzi-WrsK4EALxR-Rr1Q8Zg7cFQ7KVGWRhzVLAaJgRPo0WTGo46ZDLXxcMKe8bfZOXp7aoKU19WDYtRPbAQlPIt5Rxr8FcsgRMEQjdqeilHpa2FQvgPteqwSG4cfyc-scWB_On7__cvW_5_ZhoUAEXfVjdiGZjn6THdMWVLKXTvXvgHO8t6Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q9UH7YD-09GwtebCgwvaS7MclT6VKzyJYinpQn8J-ZGvxTI42Z6l_vTO5TbmKFKGvYTdsmJnd3y878xuAV1a41FkeM5l4yQRiAJY7F7Mht15aJEU-o0LhTyfqeCw-nsmzhSp-SqtEKn7RbtIpkmyG2yxVhw_SZECUezB1_uBX-JdEPZJJbkTIR7CsJKLxHiyPT04Pv1FPuW72vCyPI7unW2HqZU0vunMQtXr9d0Dm41k11TfXejJZOG9Gq6C7lc7TTH7szxqzb3__JeL4kE9Zg6cBjEaHc-9Zh6Wy2oCVBYnCDVgPwX8VvQ4K1W-eQdKW7f6sHU4eldfsy_e6iYJS63mEMDj6oC-a6HOXnFRXz2E8Ovr6_piF3gvMciUapkueqTJBixlhslJzZ8o4dUpzaQ1lIOZD73wsrTO5cppU2TCcrcwyiRzMW74Jvaquyi2IuOIIo4wydGObJ1YTZRQ68TwWVuWqD287QxQ2CJNTf4xJgQSFrFYsWK2P7tUNns71OP497B1Z9HYIiWi3D-rL8yLEZKF8roYGGV1uUkEtSBx1C7WSm8TpWODCdjp_KEJkXxWp5MiBEafFfdi79ZH71vLiP8dtw5OUyHxb6LgDveZyVr5ExNOY3eDUfwCE3fZ6 priority: 102 providerName: Unpaywall  | 
    
| Title | Multimodal Few-Shot Learning for Gait Recognition | 
    
| URI | https://www.proquest.com/docview/2534076630 https://www.mdpi.com/2076-3417/10/21/7619/pdf?version=1603948145 https://doaj.org/article/6f967b6269b246808d1055c53b1da046  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60HtSD-MT6KDkoqBBMstlt9lilVQSLVAv1FPaRqFBT0Yj4751JUklB9OIxYQLDTGb3-9idbwAOTGgDa5jncj_lbogYwJXWem6bmZQbJEVpRI3C131xOQyvRnxUG_VFd8JKeeAycKcilaKtEXZLHYQ0J8LSSEfDmfatQnJHq68XyRqZKtZg6ZN0VdmQx5DX03kwTbEm1j6zBRVK_TPwcvE9e1GfH2o8ru00vVVYqSCi0yldW4O5JFuH5Zpw4DqsVSX55hxVutHHG-AXzbTPE4sf95IP9_ZxkjuVfuqDg-DUuVBPuTOYXhmaZJsw7HXvzi_daiKCa5gIc1clLBKJj3HUoY4SxaxOvMAKxbjRdC9QtlObetxYLYVVpJWGRWZ4FHFkRqlhW9DIJlmyDQ4TDMGNFprOUaVvFBG5UPkp80IjpGjCyTRIsankwmlqxThG2kARjWsRbWLSp8YvpUrGz2ZnFO1vE5K2Ll5gwuMq4fFfCW_C3jRXcVVvb3HAGTJTRE9eEw6_8_ebLzv_4csuLAXEv4vexD1o5K_vyT6ClFy3YD7qXbRg4azbvxm0ir8Tn4b9m879F5XT42k | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygcEC0gFgrkQCVAsnDij40PFaLQZUvbFSqt1FvwVwrSkizdVKv-OX4bM1ln2Uqot14jx7LGY3uePfMeIa-c8Jl3nFGZlpIKiAGo9p7RPneldACKyhwLhY9GangqvpzJsxXyp6uFwbTKbk9sN2pfO7wjf5dJDtgDzkf2fvKbomoUvq52EhomSiv4nZZiLBZ2HISrGUC46c7-J5jv7Swb7J18HNKoMkAdV6KhJvBchRTGZoXNg-HeBpZ5Zbh0FnPtdL_0JZPOW628Qf4xcFwn81wC2igdh37vkDXBhQbwt7a7N_p6vLjlQdbNPGXzwkDONcN3aVTTxtuDa0dhqxhwLcxdv6wm5mpmxuOlE2_wgNyPoWryYe5bG2QlVJvk3hKB4SbZiFvDNHkd-avfPCRpW9T7q_bw8yDM6LcfdZNEHtfzBILk5LP52STHXepSXT0ip7dis8dktaqr8IQkXHEIsqyy-J6rU2cQUAqTlpwJp7TqkbedkQoXactRPWNcAHxBixZLFu2B83WNJ3O2jv8320VrL5ogxXb7ob44L-KKLVSpVd8C3tM2EyhQ4lFL1EluU2-YgIFtdXNVxHU_Lf55aY9sL-bvprE8vbmbl2R9eHJ0WBzujw6ekbsZov22EnKLrDYXl-E5hESNfRH9LiHfb9vV_wJeqhyn | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkXgcEC1UXSiQA5UAyaoTPzY5IASUtKVQIaBSb6mfBWlJlm6qVf9af11nss6ylVBvvUaOZY3H9nz2zPcR8tIKlznLGZVpkFRADEAL5xgdchukBVAUciwU_nqgdg_F5yN5tEQu-loYTKvs98Ruo3aNxTvyrUxywB5wPrKtENMivm2X78Z_KSpI4UtrL6cxc5F9fz4F-DZ5u7cNc72ZZeWnnx93aVQYoJYr0VLtea58CuMywuRec2c8y5zSXFqDeXbFMLjApHWmUE4j9xg4rZV5LgFpBMuh31vk9hBZ3LFKvdyZ3-8g32aesllJIOcFwxdp1NHGe4Mrh2CnFXAlwL17Vo_1-VSPRgtnXfmQPIhBavJ-5lUrZMnXq-T-AnXhKlmJm8IkeRWZq18_ImlXzvuncfBz6af0x6-mTSKD60kC4XGyo3-3yfc-aampH5PDG7HYGlmum9qvk4QrDuGVUQZfcovUaoSSQqeBM2FVoQbkTW-kykbCctTNGFUAXNCi1YJFB-B2fePxjKfj_80-oLXnTZBcu_vQnJ5Uca1WKhRqaADpFSYTKE3iUEXUSm5Sp5mAgW30c1XFFT-p_vnngGzO5--6sTy5vpsX5A44ePVl72D_KbmXIczvSiA3yHJ7euafQSzUmued0yXk-Ka9_BKQrRpB | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q9UH7YD-09GwtebCgwvaS7MclT6VKzyJYinpQn8J-ZGvxTI42Z6l_vTO5TbmKFKGvYTdsmJnd3y878xuAV1a41FkeM5l4yQRiAJY7F7Mht15aJEU-o0LhTyfqeCw-nsmzhSp-SqtEKn7RbtIpkmyG2yxVhw_SZECUezB1_uBX-JdEPZJJbkTIR7CsJKLxHiyPT04Pv1FPuW72vCyPI7unW2HqZU0vunMQtXr9d0Dm41k11TfXejJZOG9Gq6C7lc7TTH7szxqzb3__JeL4kE9Zg6cBjEaHc-9Zh6Wy2oCVBYnCDVgPwX8VvQ4K1W-eQdKW7f6sHU4eldfsy_e6iYJS63mEMDj6oC-a6HOXnFRXz2E8Ovr6_piF3gvMciUapkueqTJBixlhslJzZ8o4dUpzaQ1lIOZD73wsrTO5cppU2TCcrcwyiRzMW74Jvaquyi2IuOIIo4wydGObJ1YTZRQ68TwWVuWqD287QxQ2CJNTf4xJgQSFrFYsWK2P7tUNns71OP497B1Z9HYIiWi3D-rL8yLEZKF8roYGGV1uUkEtSBx1C7WSm8TpWODCdjp_KEJkXxWp5MiBEafFfdi79ZH71vLiP8dtw5OUyHxb6LgDveZyVr5ExNOY3eDUfwCE3fZ6 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Few-Shot+Learning+for+Gait+Recognition&rft.jtitle=Applied+sciences&rft.au=Jucheol+Moon&rft.au=Nhat+Anh+Le&rft.au=Nelson+Hebert+Minaya&rft.au=Sang-Il+Choi&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=21&rft.spage=7619&rft_id=info:doi/10.3390%2Fapp10217619&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f967b6269b246808d1055c53b1da046 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |