Multimodal Few-Shot Learning for Gait Recognition

A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification pu...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 21; p. 7619
Main Authors Moon, Jucheol, Le, Nhat Anh, Minaya, Nelson Hebert, Choi, Sang-Il
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2020
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app10217619

Cover

Abstract A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification purposes. Despite recent advances in gait recognition, an open set gait recognition problem presents challenges to current approaches. To address the open set gait recognition problem, a system should be able to deal with unseen subjects who have not included in the training dataset. In this paper, we propose a system that learns a mapping from a multimodal time series collected using insole to a latent (embedding vector) space to address the open set gait recognition problem. The distance between two embedding vectors in the latent space corresponds to the similarity between two multimodal time series. Using the characteristics of the human gait pattern, multimodal time series are sliced into unit steps. The system maps unit steps to embedding vectors using an ensemble consisting of a convolutional neural network and a recurrent neural network. To recognize each individual, the system learns a decision function using a one-class support vector machine from a few embedding vectors of the person in the latent space, then the system determines whether an unknown unit step is recognized as belonging to a known individual. Our experiments demonstrate that the proposed framework recognizes individuals with high accuracy regardless they have been registered or not. If we could have an environment in which all people would be wearing the insole, the framework would be used for user verification widely.
AbstractList A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification purposes. Despite recent advances in gait recognition, an open set gait recognition problem presents challenges to current approaches. To address the open set gait recognition problem, a system should be able to deal with unseen subjects who have not included in the training dataset. In this paper, we propose a system that learns a mapping from a multimodal time series collected using insole to a latent (embedding vector) space to address the open set gait recognition problem. The distance between two embedding vectors in the latent space corresponds to the similarity between two multimodal time series. Using the characteristics of the human gait pattern, multimodal time series are sliced into unit steps. The system maps unit steps to embedding vectors using an ensemble consisting of a convolutional neural network and a recurrent neural network. To recognize each individual, the system learns a decision function using a one-class support vector machine from a few embedding vectors of the person in the latent space, then the system determines whether an unknown unit step is recognized as belonging to a known individual. Our experiments demonstrate that the proposed framework recognizes individuals with high accuracy regardless they have been registered or not. If we could have an environment in which all people would be wearing the insole, the framework would be used for user verification widely.
Author Minaya, Nelson Hebert
Moon, Jucheol
Le, Nhat Anh
Choi, Sang-Il
Author_xml – sequence: 1
  givenname: Jucheol
  orcidid: 0000-0002-2885-0627
  surname: Moon
  fullname: Moon, Jucheol
– sequence: 2
  givenname: Nhat Anh
  surname: Le
  fullname: Le, Nhat Anh
– sequence: 3
  givenname: Nelson Hebert
  surname: Minaya
  fullname: Minaya, Nelson Hebert
– sequence: 4
  givenname: Sang-Il
  orcidid: 0000-0002-0462-0050
  surname: Choi
  fullname: Choi, Sang-Il
BookMark eNqFkN9LwzAQx4NMcM49-Q8UfNRq0jRp-ijDzcFE8MdzuCbpzOiamqaM_fd2VkRE8F7uOD73gfueolHtaoPQOcHXlOb4BpqG4IRknORHaJzgjMc0Jdnox3yCpm27wX3lhAqCx4g8dFWwW6ehiuZmFz-_uRCtDPja1uuodD5agA3Rk1FuXdtgXX2GjkuoWjP96hP0Or97md3Hq8fFcna7ihXlaYjBUMENoaos0kIYoLowONEcKFNFJkSWZ6UuMVO6yLmGlLMUM6qYECwRWanoBC0Hr3awkY23W_B76cDKz4Xzawk-WFUZycucZwVPeF4kKRdYaIIZU4wWRANOee-6Glxd3cB-B1X1LSRYHtKTP9Lr8YsBb7x770wb5MZ1vu6_lQmjaZ8mp7inLgdKede23pT_OMkvWtkAh0CDB1v9efMB4PGMaw
CitedBy_id crossref_primary_10_1155_2022_5422428
crossref_primary_10_1109_JSEN_2024_3446673
crossref_primary_10_1016_j_eswa_2024_124655
crossref_primary_10_1109_JSEN_2022_3188527
crossref_primary_10_3389_fninf_2024_1454583
crossref_primary_10_3390_drones7020066
crossref_primary_10_1007_s13735_023_00279_4
crossref_primary_10_1371_journal_pone_0264783
crossref_primary_10_3233_JIFS_221551
crossref_primary_10_1016_j_aei_2024_102729
crossref_primary_10_3390_s22072648
Cites_doi 10.1109/CVPR.2019.00484
10.1109/TMC.2017.2686855
10.2106/00004623-196446020-00009
10.1016/j.imavis.2008.11.008
10.1155/2012/563864
10.1109/ISSPIT.2011.6151536
10.1037/0096-1523.4.3.357
10.1016/j.patcog.2019.107069
10.1016/j.ins.2016.01.020
10.1007/s00138-016-0810-6
10.1109/TIFS.2013.2287605
10.1109/TPAMI.2012.256
10.1016/j.ins.2015.01.031
10.3390/app9245529
10.1109/TPAMI.2016.2545669
10.1007/978-3-642-23687-7_48
10.1007/BF00994018
10.1109/CVPR.1994.323868
10.1016/j.ins.2015.04.047
10.1109/TENCON.2018.8650147
10.3390/s19173785
10.1016/j.patcog.2017.09.005
10.3390/s20144001
10.1109/TPAMI.2017.2726061
10.1109/CVPR.2015.7298682
10.1145/3230633
10.1109/TPAMI.2005.9
10.1162/neco.1997.9.8.1735
10.1016/j.gaitpost.2015.10.016
10.1016/j.patcog.2007.11.021
10.3758/BF03212378
10.3390/s17122735
10.1109/TPAMI.2020.2981604
10.3390/s19081757
10.1016/j.cviu.2018.01.007
10.1016/j.patcog.2012.02.032
10.3390/app7030210
10.3390/app9214581
10.3758/BF03337021
10.1016/j.cviu.2017.10.004
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app10217619
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_6f967b6269b246808d1055c53b1da046
10.3390/app10217619
10_3390_app10217619
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-ae386e13cfb4b8ea3dbe02d6a35cb788797fdf05cdb96da4654053c5885287fc3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 14 19:06:13 EDT 2025
Sun Oct 26 04:14:54 EDT 2025
Mon Jun 30 07:30:00 EDT 2025
Thu Oct 16 04:31:34 EDT 2025
Thu Apr 24 22:54:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-ae386e13cfb4b8ea3dbe02d6a35cb788797fdf05cdb96da4654053c5885287fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0462-0050
0000-0002-2885-0627
OpenAccessLink https://doaj.org/article/6f967b6269b246808d1055c53b1da046
PQID 2534076630
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_6f967b6269b246808d1055c53b1da046
unpaywall_primary_10_3390_app10217619
proquest_journals_2534076630
crossref_primary_10_3390_app10217619
crossref_citationtrail_10_3390_app10217619
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Major (ref_37) 2016; 44
Liu (ref_36) 2016; 340
Choudhury (ref_10) 2012; 45
Gadaleta (ref_38) 2018; 74
Cortes (ref_39) 1995; 20
ref_13
ref_35
Connor (ref_9) 2018; 167
Murray (ref_19) 1964; 46
Cheng (ref_11) 2008; 41
Alotaibi (ref_42) 2017; 164
Srivastava (ref_46) 2014; 15
Wu (ref_34) 2016; 39
Cevikalp (ref_41) 2005; 27
ref_18
Wan (ref_15) 2018; 51
ref_17
Cutting (ref_2) 1977; 9
Cutting (ref_3) 1978; 4
Chen (ref_31) 2017; 40
Johansson (ref_1) 1973; 14
ref_25
Yogarajah (ref_27) 2015; 308
ref_24
ref_23
ref_22
ref_44
Maaten (ref_47) 2008; 9
ref_21
ref_43
ref_20
Hochreiter (ref_45) 1997; 9
ref_40
Zeng (ref_6) 2015; 317
ref_29
ref_28
Liao (ref_12) 2020; 98
Muaaz (ref_14) 2017; 16
ref_26
Hu (ref_33) 2013; 8
ref_8
Scheirer (ref_16) 2012; 35
Wahid (ref_5) 2015; 19
Chen (ref_30) 2017; 28
ref_4
Bodor (ref_32) 2009; 27
ref_7
References_xml – ident: ref_26
  doi: 10.1109/CVPR.2019.00484
– volume: 16
  start-page: 3209
  year: 2017
  ident: ref_14
  article-title: Smartphone-based gait recognition: From authentication to imitation
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2017.2686855
– volume: 46
  start-page: 335
  year: 1964
  ident: ref_19
  article-title: Walking patterns of normal men
  publication-title: J. Bone Jt. Surg.
  doi: 10.2106/00004623-196446020-00009
– volume: 27
  start-page: 1194
  year: 2009
  ident: ref_32
  article-title: View-independent human motion classification using image-based reconstruction
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.11.008
– ident: ref_25
  doi: 10.1155/2012/563864
– ident: ref_4
  doi: 10.1109/ISSPIT.2011.6151536
– volume: 4
  start-page: 357
  year: 1978
  ident: ref_3
  article-title: A biomechanical invariant for gait perception
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/0096-1523.4.3.357
– volume: 98
  start-page: 107069
  year: 2020
  ident: ref_12
  article-title: A model-based gait recognition method with body pose and human prior knowledge
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107069
– volume: 340
  start-page: 41
  year: 2016
  ident: ref_36
  article-title: Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.020
– volume: 28
  start-page: 117
  year: 2017
  ident: ref_30
  article-title: Multi-gait recognition using hypergraph partition
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-016-0810-6
– volume: 8
  start-page: 2034
  year: 2013
  ident: ref_33
  article-title: View-invariant discriminative projection for multi-view gait-based human identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2013.2287605
– volume: 35
  start-page: 1757
  year: 2012
  ident: ref_16
  article-title: Toward open set recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.256
– ident: ref_35
– ident: ref_44
– volume: 308
  start-page: 3
  year: 2015
  ident: ref_27
  article-title: Enhancing gait based person identification using joint sparsity model and L1-norm minimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.01.031
– ident: ref_29
  doi: 10.3390/app9245529
– volume: 39
  start-page: 209
  year: 2016
  ident: ref_34
  article-title: A comprehensive study on cross-view gait based human identification with deep cnns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2545669
– ident: ref_24
  doi: 10.1007/978-3-642-23687-7_48
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_39
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_23
  doi: 10.1109/CVPR.1994.323868
– volume: 317
  start-page: 246
  year: 2015
  ident: ref_6
  article-title: Classification of neurodegenerative diseases using gait dynamics via deterministic learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.04.047
– ident: ref_18
  doi: 10.1109/TENCON.2018.8650147
– ident: ref_40
  doi: 10.3390/s19173785
– volume: 74
  start-page: 25
  year: 2018
  ident: ref_38
  article-title: Idnet: Smartphone-based gait recognition with convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.005
– ident: ref_13
  doi: 10.3390/s20144001
– volume: 40
  start-page: 1697
  year: 2017
  ident: ref_31
  article-title: Multi-gait recognition based on attribute discovery
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2726061
– ident: ref_21
  doi: 10.1109/CVPR.2015.7298682
– volume: 19
  start-page: 1794
  year: 2015
  ident: ref_5
  article-title: Classification of Parkinson’s disease gait using spatial-temporal gait features
  publication-title: Inst. Electr. Electron. Eng. J. Biomed. Health Inform.
– volume: 51
  start-page: 1
  year: 2018
  ident: ref_15
  article-title: A survey on gait recognition
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3230633
– volume: 27
  start-page: 4
  year: 2005
  ident: ref_41
  article-title: Discriminative common vectors for face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.9
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_45
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 44
  start-page: 12
  year: 2016
  ident: ref_37
  article-title: Instrumented shoes for activity classification in the elderly
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.10.016
– volume: 41
  start-page: 2541
  year: 2008
  ident: ref_11
  article-title: Gait analysis for human identification through manifold learning and HMM
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.11.021
– volume: 14
  start-page: 201
  year: 1973
  ident: ref_1
  article-title: Visual perception of biological motion and a model for its analysis
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03212378
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_46
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_8
  doi: 10.3390/s17122735
– ident: ref_17
  doi: 10.1109/TPAMI.2020.2981604
– ident: ref_20
  doi: 10.3390/s19081757
– volume: 167
  start-page: 1
  year: 2018
  ident: ref_9
  article-title: Biometric recognition by gait: A survey of modalities and features
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2018.01.007
– volume: 45
  start-page: 3414
  year: 2012
  ident: ref_10
  article-title: Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.02.032
– ident: ref_43
– ident: ref_22
– ident: ref_28
  doi: 10.3390/app7030210
– ident: ref_7
  doi: 10.3390/app9214581
– volume: 9
  start-page: 353
  year: 1977
  ident: ref_2
  article-title: Recognizing friends by their walk: Gait perception without familiarity cues
  publication-title: Bull. Psychon. Soc.
  doi: 10.3758/BF03337021
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_47
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 164
  start-page: 103
  year: 2017
  ident: ref_42
  article-title: Improved gait recognition based on specialized deep convolutional neural network
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.10.004
SSID ssj0000913810
Score 2.269391
Snippet A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7619
SubjectTerms Accelerometers
Accuracy
Algorithms
Biometrics
Datasets
Discriminant analysis
few-shot learning
Gait
gait analysis
multi-modality
Neural networks
open set recognition
Sensors
Smartphones
Support vector machines
Time series
wearable sensors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe1AP4hOjVXJQUGExyWa3yUFExSqCRXyAt7CPpAo1qTVS_PfupJtaQbyGSQizOzvz7e58H8CeCnWgFfUI8zNGQlMDkFhrj3SoypgyoCiLsFH4tsevn8KbZ_bcgF7dC4PXKus1sVqodaFwj_w4YNRgD5MfvdPhO0HVKDxdrSU0hJVW0CcVxdgctAJkxmpC6_yyd3c_3XVBFszI9yaNetTgfTwnRnVrRPO_UlPF4P-r7Jz_zIfiaywGg5kM1F2GJVs6umeTsV6BRpqvwuIMoeAqrNhQ_XAPLJ_04Rr4VZPtW6HNy910TB5eitK1vKp91xSt7pV4Ld37-ipRka_DU_fy8eKaWKUEoigPSyJSGvHUN_6VoYxSQbVMvUBzQZmSeF8w7mQ685jSMuZaIIeaCT7FoogZxJQpugHNvMjTTXApp6bokVzi-WrsK4EALxR-Rr1Q8Zg7cFQ7KVGWRhzVLAaJgRPo0WTGo46ZDLXxcMKe8bfZOXp7aoKU19WDYtRPbAQlPIt5Rxr8FcsgRMEQjdqeilHpa2FQvgPteqwSG4cfyc-scWB_On7__cvW_5_ZhoUAEXfVjdiGZjn6THdMWVLKXTvXvgHO8t6Q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q9UH7YD-09GwtebCgwvaS7MclT6VKzyJYinpQn8J-ZGvxTI42Z6l_vTO5TbmKFKGvYTdsmJnd3y878xuAV1a41FkeM5l4yQRiAJY7F7Mht15aJEU-o0LhTyfqeCw-nsmzhSp-SqtEKn7RbtIpkmyG2yxVhw_SZECUezB1_uBX-JdEPZJJbkTIR7CsJKLxHiyPT04Pv1FPuW72vCyPI7unW2HqZU0vunMQtXr9d0Dm41k11TfXejJZOG9Gq6C7lc7TTH7szxqzb3__JeL4kE9Zg6cBjEaHc-9Zh6Wy2oCVBYnCDVgPwX8VvQ4K1W-eQdKW7f6sHU4eldfsy_e6iYJS63mEMDj6oC-a6HOXnFRXz2E8Ovr6_piF3gvMciUapkueqTJBixlhslJzZ8o4dUpzaQ1lIOZD73wsrTO5cppU2TCcrcwyiRzMW74Jvaquyi2IuOIIo4wydGObJ1YTZRQ68TwWVuWqD287QxQ2CJNTf4xJgQSFrFYsWK2P7tUNns71OP497B1Z9HYIiWi3D-rL8yLEZKF8roYGGV1uUkEtSBx1C7WSm8TpWODCdjp_KEJkXxWp5MiBEafFfdi79ZH71vLiP8dtw5OUyHxb6LgDveZyVr5ExNOY3eDUfwCE3fZ6
  priority: 102
  providerName: Unpaywall
Title Multimodal Few-Shot Learning for Gait Recognition
URI https://www.proquest.com/docview/2534076630
https://www.mdpi.com/2076-3417/10/21/7619/pdf?version=1603948145
https://doaj.org/article/6f967b6269b246808d1055c53b1da046
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60HtSD-MT6KDkoqBBMstlt9lilVQSLVAv1FPaRqFBT0Yj4751JUklB9OIxYQLDTGb3-9idbwAOTGgDa5jncj_lbogYwJXWem6bmZQbJEVpRI3C131xOQyvRnxUG_VFd8JKeeAycKcilaKtEXZLHYQ0J8LSSEfDmfatQnJHq68XyRqZKtZg6ZN0VdmQx5DX03kwTbEm1j6zBRVK_TPwcvE9e1GfH2o8ru00vVVYqSCi0yldW4O5JFuH5Zpw4DqsVSX55hxVutHHG-AXzbTPE4sf95IP9_ZxkjuVfuqDg-DUuVBPuTOYXhmaZJsw7HXvzi_daiKCa5gIc1clLBKJj3HUoY4SxaxOvMAKxbjRdC9QtlObetxYLYVVpJWGRWZ4FHFkRqlhW9DIJlmyDQ4TDMGNFprOUaVvFBG5UPkp80IjpGjCyTRIsankwmlqxThG2kARjWsRbWLSp8YvpUrGz2ZnFO1vE5K2Ll5gwuMq4fFfCW_C3jRXcVVvb3HAGTJTRE9eEw6_8_ebLzv_4csuLAXEv4vexD1o5K_vyT6ClFy3YD7qXbRg4azbvxm0ir8Tn4b9m879F5XT42k
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygcEC0gFgrkQCVAsnDij40PFaLQZUvbFSqt1FvwVwrSkizdVKv-OX4bM1ln2Uqot14jx7LGY3uePfMeIa-c8Jl3nFGZlpIKiAGo9p7RPneldACKyhwLhY9GangqvpzJsxXyp6uFwbTKbk9sN2pfO7wjf5dJDtgDzkf2fvKbomoUvq52EhomSiv4nZZiLBZ2HISrGUC46c7-J5jv7Swb7J18HNKoMkAdV6KhJvBchRTGZoXNg-HeBpZ5Zbh0FnPtdL_0JZPOW628Qf4xcFwn81wC2igdh37vkDXBhQbwt7a7N_p6vLjlQdbNPGXzwkDONcN3aVTTxtuDa0dhqxhwLcxdv6wm5mpmxuOlE2_wgNyPoWryYe5bG2QlVJvk3hKB4SbZiFvDNHkd-avfPCRpW9T7q_bw8yDM6LcfdZNEHtfzBILk5LP52STHXepSXT0ip7dis8dktaqr8IQkXHEIsqyy-J6rU2cQUAqTlpwJp7TqkbedkQoXactRPWNcAHxBixZLFu2B83WNJ3O2jv8320VrL5ogxXb7ob44L-KKLVSpVd8C3tM2EyhQ4lFL1EluU2-YgIFtdXNVxHU_Lf55aY9sL-bvprE8vbmbl2R9eHJ0WBzujw6ekbsZov22EnKLrDYXl-E5hESNfRH9LiHfb9vV_wJeqhyn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkXgcEC1UXSiQA5UAyaoTPzY5IASUtKVQIaBSb6mfBWlJlm6qVf9af11nss6ylVBvvUaOZY3H9nz2zPcR8tIKlznLGZVpkFRADEAL5xgdchukBVAUciwU_nqgdg_F5yN5tEQu-loYTKvs98Ruo3aNxTvyrUxywB5wPrKtENMivm2X78Z_KSpI4UtrL6cxc5F9fz4F-DZ5u7cNc72ZZeWnnx93aVQYoJYr0VLtea58CuMywuRec2c8y5zSXFqDeXbFMLjApHWmUE4j9xg4rZV5LgFpBMuh31vk9hBZ3LFKvdyZ3-8g32aesllJIOcFwxdp1NHGe4Mrh2CnFXAlwL17Vo_1-VSPRgtnXfmQPIhBavJ-5lUrZMnXq-T-AnXhKlmJm8IkeRWZq18_ImlXzvuncfBz6af0x6-mTSKD60kC4XGyo3-3yfc-aampH5PDG7HYGlmum9qvk4QrDuGVUQZfcovUaoSSQqeBM2FVoQbkTW-kykbCctTNGFUAXNCi1YJFB-B2fePxjKfj_80-oLXnTZBcu_vQnJ5Uca1WKhRqaADpFSYTKE3iUEXUSm5Sp5mAgW30c1XFFT-p_vnngGzO5--6sTy5vpsX5A44ePVl72D_KbmXIczvSiA3yHJ7euafQSzUmued0yXk-Ka9_BKQrRpB
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q9UH7YD-09GwtebCgwvaS7MclT6VKzyJYinpQn8J-ZGvxTI42Z6l_vTO5TbmKFKGvYTdsmJnd3y878xuAV1a41FkeM5l4yQRiAJY7F7Mht15aJEU-o0LhTyfqeCw-nsmzhSp-SqtEKn7RbtIpkmyG2yxVhw_SZECUezB1_uBX-JdEPZJJbkTIR7CsJKLxHiyPT04Pv1FPuW72vCyPI7unW2HqZU0vunMQtXr9d0Dm41k11TfXejJZOG9Gq6C7lc7TTH7szxqzb3__JeL4kE9Zg6cBjEaHc-9Zh6Wy2oCVBYnCDVgPwX8VvQ4K1W-eQdKW7f6sHU4eldfsy_e6iYJS63mEMDj6oC-a6HOXnFRXz2E8Ovr6_piF3gvMciUapkueqTJBixlhslJzZ8o4dUpzaQ1lIOZD73wsrTO5cppU2TCcrcwyiRzMW74Jvaquyi2IuOIIo4wydGObJ1YTZRQ68TwWVuWqD287QxQ2CJNTf4xJgQSFrFYsWK2P7tUNns71OP497B1Z9HYIiWi3D-rL8yLEZKF8roYGGV1uUkEtSBx1C7WSm8TpWODCdjp_KEJkXxWp5MiBEafFfdi79ZH71vLiP8dtw5OUyHxb6LgDveZyVr5ExNOY3eDUfwCE3fZ6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Few-Shot+Learning+for+Gait+Recognition&rft.jtitle=Applied+sciences&rft.au=Jucheol+Moon&rft.au=Nhat+Anh+Le&rft.au=Nelson+Hebert+Minaya&rft.au=Sang-Il+Choi&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=21&rft.spage=7619&rft_id=info:doi/10.3390%2Fapp10217619&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f967b6269b246808d1055c53b1da046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon