Assessing the performance of machine learning and analytical hierarchy process (AHP) models for rainwater harvesting potential zone identification in hilly region, Bangladesh
[Display omitted] •Eleven parameters were considered for potential rainwater harvesting zone identification;•Machine learning algorithms and geospatial techniques were compared in this study;•Machine learning algorithms performed better than analytical hierarchy process;•Boosted regression trees and...
Saved in:
Published in | Journal of Asian Earth Sciences: X Vol. 13; p. 100189 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2590-0560 2590-0560 |
DOI | 10.1016/j.jaesx.2024.100189 |
Cover
Abstract | [Display omitted]
•Eleven parameters were considered for potential rainwater harvesting zone identification;•Machine learning algorithms and geospatial techniques were compared in this study;•Machine learning algorithms performed better than analytical hierarchy process;•Boosted regression trees and random forest showed superior performance;
Water scarcity in hilly regions presents unique challenges, particularly in Bangladesh, where obtaining fresh drinking water has become difficult to access. This study aims to evaluate the potential zones for rainwater harvesting (RWH) using machine learning (ML) algorithms and geospatial analysis. Specifically, four ML algorithms—random forest (RF), boosted regression trees (BRT), k-nearest neighbors (KNN), and naïve bayes (NB)—alongside the analytical hierarchy process (AHP) were employed to delineate potential RWH zones in the Chattogram hilly districts, including Chattogram, Rangamati, Bandarban, Khagrachari, and Cox’s Bazar. Eleven influencing factors were considered: aspect, distance from road, drainage density, elevation, hill shade, lineament density, land use/land cover (LULC), slope, topographic wetness index (TWI), rainfall, and geology. Inventory data from the study area, consisting of 135 suitable and 135 non-suitable points, were randomly split, with 70% used for training the models and the remaining 30% for validation using the area under the curve (AUC) values. The southern regions are highly suitable for harvesting rainwater. Among the five models, BRT and RF demonstrated superior performance with AUC values of 0.93 for both models. In contrast, the AHP method yielded the lowest AUC value at 0.82. Notably, drainage density and elevation emerged as the most influential factors in constructing these models. The application of machine learning algorithms has enhanced the precision of rainwater harvesting zone estimate systems by examining diverse aspects. The findings of this study can provide valuable insights for policymakers in making informed decisions regarding RWH in these regions. |
---|---|
AbstractList | Water scarcity in hilly regions presents unique challenges, particularly in Bangladesh, where obtaining fresh drinking water has become difficult to access. This study aims to evaluate the potential zones for rainwater harvesting (RWH) using machine learning (ML) algorithms and geospatial analysis. Specifically, four ML algorithms—random forest (RF), boosted regression trees (BRT), k-nearest neighbors (KNN), and naïve bayes (NB)—alongside the analytical hierarchy process (AHP) were employed to delineate potential RWH zones in the Chattogram hilly districts, including Chattogram, Rangamati, Bandarban, Khagrachari, and Cox’s Bazar. Eleven influencing factors were considered: aspect, distance from road, drainage density, elevation, hill shade, lineament density, land use/land cover (LULC), slope, topographic wetness index (TWI), rainfall, and geology. Inventory data from the study area, consisting of 135 suitable and 135 non-suitable points, were randomly split, with 70% used for training the models and the remaining 30% for validation using the area under the curve (AUC) values. The southern regions are highly suitable for harvesting rainwater. Among the five models, BRT and RF demonstrated superior performance with AUC values of 0.93 for both models. In contrast, the AHP method yielded the lowest AUC value at 0.82. Notably, drainage density and elevation emerged as the most influential factors in constructing these models. The application of machine learning algorithms has enhanced the precision of rainwater harvesting zone estimate systems by examining diverse aspects. The findings of this study can provide valuable insights for policymakers in making informed decisions regarding RWH in these regions. [Display omitted] •Eleven parameters were considered for potential rainwater harvesting zone identification;•Machine learning algorithms and geospatial techniques were compared in this study;•Machine learning algorithms performed better than analytical hierarchy process;•Boosted regression trees and random forest showed superior performance; Water scarcity in hilly regions presents unique challenges, particularly in Bangladesh, where obtaining fresh drinking water has become difficult to access. This study aims to evaluate the potential zones for rainwater harvesting (RWH) using machine learning (ML) algorithms and geospatial analysis. Specifically, four ML algorithms—random forest (RF), boosted regression trees (BRT), k-nearest neighbors (KNN), and naïve bayes (NB)—alongside the analytical hierarchy process (AHP) were employed to delineate potential RWH zones in the Chattogram hilly districts, including Chattogram, Rangamati, Bandarban, Khagrachari, and Cox’s Bazar. Eleven influencing factors were considered: aspect, distance from road, drainage density, elevation, hill shade, lineament density, land use/land cover (LULC), slope, topographic wetness index (TWI), rainfall, and geology. Inventory data from the study area, consisting of 135 suitable and 135 non-suitable points, were randomly split, with 70% used for training the models and the remaining 30% for validation using the area under the curve (AUC) values. The southern regions are highly suitable for harvesting rainwater. Among the five models, BRT and RF demonstrated superior performance with AUC values of 0.93 for both models. In contrast, the AHP method yielded the lowest AUC value at 0.82. Notably, drainage density and elevation emerged as the most influential factors in constructing these models. The application of machine learning algorithms has enhanced the precision of rainwater harvesting zone estimate systems by examining diverse aspects. The findings of this study can provide valuable insights for policymakers in making informed decisions regarding RWH in these regions. |
ArticleNumber | 100189 |
Author | Roy, Sujit Kumar Ferdous, Md Tasim Hasan, Md. Mahmudul Mojumder, Pratik Talha, Md Refat Nasher, N.M. Akter, Most. Mitu |
Author_xml | – sequence: 1 givenname: Md. Mahmudul surname: Hasan fullname: Hasan, Md. Mahmudul email: mhmilton017@gmail.com organization: Department of Geography and Environment, Jagannath University, Dhaka 1100, Bangladesh – sequence: 2 givenname: Md surname: Talha fullname: Talha, Md email: jahidulalamtalha@gmail.com organization: Department of Geography and Environment, Jagannath University, Dhaka 1100, Bangladesh – sequence: 3 givenname: Most. Mitu surname: Akter fullname: Akter, Most. Mitu email: mituakter112399@gmail.com organization: Department of Geography and Environment, Jagannath University, Dhaka 1100, Bangladesh – sequence: 4 givenname: Md Tasim surname: Ferdous fullname: Ferdous, Md Tasim email: tasimferdous6@gmail.com organization: Department of Geography and Environment, Jagannath University, Dhaka 1100, Bangladesh – sequence: 5 givenname: Pratik surname: Mojumder fullname: Mojumder, Pratik email: pratikmojumdar@gmail.com organization: Dept. of Environmental Science and Disaster Management, Daffodil International University, Bangladesh – sequence: 6 givenname: Sujit Kumar surname: Roy fullname: Roy, Sujit Kumar email: sujitroy.bejoy@gmail.com organization: Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh – sequence: 7 givenname: N.M. surname: Refat Nasher fullname: Refat Nasher, N.M. email: refat@geography.jnu.ac.bd organization: Faculty of Life and Earth Sciences, Jagannath University, Dhaka, Bangladesh |
BookMark | eNp9kcGOFCEQholZE9d1n8ALR02ckQaa7j54GDfqbrKJHvRMqqGYpsPABDqr40P5jNI7xnjyQKAq_F_B_z8nFzFFJORlw7YNa9TbeTsDlh9bzrisHdb0wxNyyduBbVir2MU_52fkupSZMcb7VvWyvyS_dqVgKT7u6TIhPWJ2KR8gGqTJ0QOYyUekASHH9Q5EWxeE0-INBDp5zJDNdKLHnEzl0Fe72y-v6SFZDIVWFM3g43dYMNMJ8gOWZcUc04Jx8ZXws_6FertWriIXnyL1sYJDONGM-1q_oe8h7gNYLNML8tRBKHj9Z78i3z5--Hpzu7n__OnuZne_MULJZQPW9IMdG8GdarkyveyclFyqQdhWOsWsdE1nWT8IlENrUAyiAyNlOzpwgosrcnfm2gSzPmZ_gHzSCbx-bKS815CrBwG1GhGltR3v6hg79qPpOsUH2XHORtWyyhJnlsmplIzuL69hek1Qz_oxQb0mqM8JVtW7s6oaiQ_VZ12Mx5qL9RnNUt_h_6v_DcngqqM |
Cites_doi | 10.1007/s12518-020-00342-3 10.1016/j.gsd.2024.101167 10.1016/j.pce.2024.103574 10.1016/j.heliyon.2024.e30455 10.3808/jei.200600062 10.1016/j.knosys.2019.105361 10.3390/w6103224 10.3390/su16219266 10.1016/j.ecolmodel.2008.11.017 10.3390/w10040506 10.1080/01431161.2012.705443 10.1007/s00704-020-03244-x 10.2307/254268 10.1016/j.heliyon.2024.e34328 10.1023/A:1010933404324 10.1007/s11270-022-05796-2 10.1139/er-2020-0019 10.1016/j.hydres.2023.08.001 10.1016/j.cageo.2021.104855 10.1016/j.datak.2009.08.005 10.1007/s10346-014-0521-x 10.1111/j.1476-5381.1976.tb07443.x 10.1016/j.jclepro.2016.11.163 10.1038/nclimate1744 10.1016/j.hydres.2024.04.001 10.1080/10106049.2019.1608590 10.1371/journal.pone.0187906 10.1007/978-981-15-8677-4_9 10.1016/j.jhydrol.2006.09.024 10.1007/978-3-031-30341-8_17 10.21203/rs.3.rs-3638687/v1 10.1002/0470011815.b2a4a002 10.1002/widm.1493 10.1007/s11356-020-10227-y 10.1007/s40899-016-0072-5 10.1016/j.catena.2019.104358 10.1016/j.resconrec.2013.12.003 10.3390/sym12050739 10.1016/j.tiv.2020.104812 10.1016/0022-2496(77)90033-5 10.1201/9781439808726 10.1016/j.jhydrol.2015.06.017 10.1007/s13201-014-0221-7 10.3390/f11040421 10.1016/j.envres.2020.109321 10.1016/j.enggeo.2005.02.002 10.1007/s10040-016-1427-6 10.1007/s11269-016-1350-6 10.1007/s11269-012-0031-3 10.1017/CBO9781139177245 10.1016/j.scitotenv.2018.03.312 10.3390/w14213480 10.1016/B978-0-12-818172-0.00040-2 10.2166/hydro.2018.108 10.1007/s00704-024-05024-3 10.1108/IJDRBE-08-2021-0089 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jaesx.2024.100189 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-0560 |
ExternalDocumentID | oai_doaj_org_article_6bee4dd727c84db8bc7762947220b650 10_1016_j_jaesx_2024_100189 S2590056024000173 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ M41 OK1 ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c364t-adc89db132f6526c847f4424693d54f60d4f17d0893e495ce3937ac445bfaf323 |
IEDL.DBID | DOA |
ISSN | 2590-0560 |
IngestDate | Wed Aug 27 01:25:55 EDT 2025 Thu Jul 03 08:35:07 EDT 2025 Sat Jul 05 17:12:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Machine learning (ML) Hill tracts Chattogram Rainwater harvesting Analytical hierarchy process (AHP) |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-adc89db132f6526c847f4424693d54f60d4f17d0893e495ce3937ac445bfaf323 |
OpenAccessLink | https://doaj.org/article/6bee4dd727c84db8bc7762947220b650 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6bee4dd727c84db8bc7762947220b650 crossref_primary_10_1016_j_jaesx_2024_100189 elsevier_sciencedirect_doi_10_1016_j_jaesx_2024_100189 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 2025-06-00 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Asian Earth Sciences: X |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Field, C.B., Barros, V., Stocker, T.F., Dahe, Q. (Eds.), 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press. https://doi.org/10.1017/CBO9781139177245. Rao, N.R., Kiran, S.P., Amena I, T., Senthilkumar, A., Sivakumar, R., Kumar, M.A., Sampathkumar Velusamy, 2024. Enhancing rainwater harvesting and groundwater recharge efficiency with multi-dimensional LSTM and clonal selection algorithm. Groundwater for Sustainable Development 25, 101167. https://doi.org/10.1016/j.gsd.2024.101167. Saaty (b0255) 1977; 15 Olsen, Dickson, Baetz (b0225) 2015; 7 Islam, Rahman, Khatun, Hu (b0135) 2020; 141 Ouyang, Zhu, Ye, Park, Wang (b0230) 2021; 1–13 Preeti, Shendryk, Rahman (b0240) 2022; 14 Lani, Yusop, Syafiuddin (b0170) 2018; 10 Saaty, T.L., 2005. Analytic Hierarchy Process, in: Armitage, P., Colton, T. (Eds.), Encyclopedia of Biostatistics. Wiley. https://doi.org/10.1002/0470011815.b2a4a002. Seidler, Slotkin (b0285) 1976; 56 Soultan, Safi (b0305) 2017; 12 Nipun, Ashik-Ur-Rahman, Rikta, Parven, Pal (b0220) 2024; 15 Gaurihar, M., Paonikar, K., Dongre, S., Khobragade, P., Agrawal, R., Saraf, P., 2023. Enhancing Drought Detection and Visualization with LSTM and SPEI: Addressing Slow-Onset Climate-Induced Water Scarcity. https://doi.org/10.21203/rs.3.rs-3638687/v1. Kumar, Dwivedi, Gaur (b0160) 2021; 155 Hulse, J.V., Khoshgoftaar, T., 2009. Knowledge discovery from imbalanced and noisy data. Data & Knowledge Engineering, Including Special Section: 21st IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS 2008) – Seven selected and extended papers on Biomedical Data Mining 68, 1513–1542. https://doi.org/10.1016/j.datak.2009.08.005. Taylor, Scanlon, Döll, Rodell, Van Beek, Wada, Longuevergne, Leblanc, Famiglietti, Edmunds, Konikow, Green, Chen, Taniguchi, Bierkens, MacDonald, Fan, Maxwell, Yechieli, Gurdak, Allen, Shamsudduha, Hiscock, Yeh, Holman, Treidel (b0315) 2013; 3 Chuvieco, Aguado, Yebra, Nieto, Salas, Martín, Vilar, Martínez, Martín, Ibarra, De La Riva, Baeza, Rodríguez, Molina, Herrera, Zamora (b0075) 2010; 221 Brimicombe, A., 2009. GIS, Environmental Modeling and Engineering, 2nd ed. CRC Press. https://doi.org/10.1201/9781439808726. Kumar, Herath, Avtar, Takeuchi (b0165) 2016; 2 Ipcc (b0130) 2012 Asif, Yaseen, Shahid, Latif, Anwar, Abbas (b0040) 2024; 155 Cheng, Guo, Zhao, Han, Li, Fang (b0070) 2013; 34 Saha, Setu, Das, Hossain, Rahman, Rahman (b0270) 2024; 10 Steinel, Schelkes, Subah, Himmelsbach (b0310) 2016; 24 Saaty (b0260) 1980 Lundberg, S.M., Lee, S.-I., 2017. A Unified Approach to Interpreting Model Predictions, in: Advances in Neural Information Processing Systems. Curran Associates, Inc. Alkaradaghi, Hamamin, Karim, Al-Ansari, Ali, Laue, Ali (b0035) 2022; 233 Misra, Dolui, Dutta, Baruah, Ranjan, Wanjari (b0205) 2024; 1–14 Abdullah, Idrak, Kabir, Bhuiyan (b0010) 2024; 10 Liu, Zhang, Balay (b0185) 2018; 634 Singh, Jha, Chowdary (b0295) 2017; 142 Rana, Moniruzzaman (b0245) 2023; 6 Zhang, Liu, Mao, Shen, Xie, Mu (b0340) 2020; 65 Ahmed, Othman, Afan, Ibrahim, Fai, Hossain, Ehteram, Elshafie (b0020) 2019; 578 Breiman (b0055) 2001; 45 Ahmed (b0015) 2015; 12 Her, Seong (b0110) 2018; 20 Blanco, H., Lal, R., 2023. Soil Water Management, in: Soil Conservation and Management. Springer Nature Switzerland, Cham, pp. 417–441. https://doi.org/10.1007/978-3-031-30341-8_17. Jha, Chowdary, Kulkarni, Mal (b0145) 2014; 83 Karimi, Zeinivand (b0155) 2021; 36 Mohammed, Sayl, Sulaiman, Mahmood, Allawi, Al-Ansari (b0210) 2023; 25 Al-Abadi, A.M., Al-Shamma’a, A.M., Aljabbari, M.H., 2017. A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq. Appl Water Sci 7, 89–101. https://doi.org/10.1007/s13201-014-0221-7. Assaf, Sayl, Adham (b0045) 2021 Leake (b0175) 2000; 51 Hossan, M.A., Bari, Q.H., Islam, S.M., Nayan, M.A.H., 2023. ROOFTOP RAINWATER HARVESTING: REVIEW AND PRACTICE. Sayl, Muhammad, Yaseen, El-shafie (b0280) 2016; 30 Malakar, P., Sarkar, S., Mukherjee, A., Bhanja, S., Sun, A.Y., 2021. Chapter 40 - Use of machine learning and deep learning methods in groundwater, in: Mukherjee, A., Scanlon, B.R., Aureli, A., Langan, S., Guo, H., McKenzie, A.A. (Eds.), Global Groundwater. Elsevier, pp. 545–557. https://doi.org/10.1016/B978-0-12-818172-0.00040-2. Marcinkevičs, Vogt (b0200) 2023; 13 Pourghasemi, Gayen, Lasaponara, Tiefenbacher (b0235) 2020; 184 Abdellah (b0005) 1979 Yesilnacar, Topal (b0335) 2005; 79 Ullah, Iqbal, Waseem, Abbas, Masood, Nabi, Tariq, Sadam (b0325) 2024; 16 Singh, Jha, Chowdary (b0300) 2021; 28 Sekar, Randhir (b0290) 2007; 334 Zhao, Li (b0345) 2020; 12 Du, Tariq, Islam, Aziz, Waseem, Ahmad, Amin, Amin, Ali, Aslam (b0080) 2024; 134 Halder, Bose (b0100) 2024; 7 Sameen, Pradhan, Bui, Alamri (b0275) 2020; 187 Akter, Ahmed (b0025) 2015; 528 Jain, Coogan, Subramanian, Crowley, Taylor, Flannigan (b0140) 2020 Nhu, Shirzadi, Shahabi, Chen, Clague, Geertsema, Jaafari, Avand, Miraki, Talebpour Asl, Pham, Ahmad, Lee (b0215) 2020; 11 Gaurav, V., Vinod, V., Singh, S.K., Sharma, T., Pradyumna, K.R., Choudhary, S., 2021. RainRoof: Automated Shared Rainwater Harvesting Prediction, in: Karuppusamy, P., Perikos, I., Shi, F., Nguyen, T.N. (Eds.), Sustainable Communication Networks and Application, Lecture Notes on Data Engineering and Communications Technologies. Springer Singapore, Singapore, pp. 105–122. https://doi.org/10.1007/978-981-15-8677-4_9. Toosi, Tousi, Ghassemi, Cheshomi, Alaghmand (b0320) 2020; 582 Chen, Webb, Liu, Ma (b0065) 2020; 192 Hashim, Sayl (b0105) 2021; 13 UN-Water, 2018. World Water Development Report 2018. UN-Water. URL https://www.unwater.org/publications/world-water-development-report-2018 (accessed 12.2.24). Huang, Shi, Sun, Ciais, Cheng, Mao, Poulter, Shi, Zeng, Wang (b0120) 2015; 21 Kadam, Kale, Pande, Pawar, Sankhua (b0150) 2012; 26 Liaw, Chiang (b0180) 2014; 6 Akter (10.1016/j.jaesx.2024.100189_b0025) 2015; 528 Sayl (10.1016/j.jaesx.2024.100189_b0280) 2016; 30 10.1016/j.jaesx.2024.100189_b0190 Cheng (10.1016/j.jaesx.2024.100189_b0070) 2013; 34 Toosi (10.1016/j.jaesx.2024.100189_b0320) 2020; 582 Du (10.1016/j.jaesx.2024.100189_b0080) 2024; 134 Soultan (10.1016/j.jaesx.2024.100189_b0305) 2017; 12 Kumar (10.1016/j.jaesx.2024.100189_b0160) 2021; 155 Misra (10.1016/j.jaesx.2024.100189_b0205) 2024; 1–14 10.1016/j.jaesx.2024.100189_b0115 Yesilnacar (10.1016/j.jaesx.2024.100189_b0335) 2005; 79 Halder (10.1016/j.jaesx.2024.100189_b0100) 2024; 7 10.1016/j.jaesx.2024.100189_b0030 10.1016/j.jaesx.2024.100189_b0195 Saaty (10.1016/j.jaesx.2024.100189_b0255) 1977; 15 Seidler (10.1016/j.jaesx.2024.100189_b0285) 1976; 56 Nhu (10.1016/j.jaesx.2024.100189_b0215) 2020; 11 Sameen (10.1016/j.jaesx.2024.100189_b0275) 2020; 187 Islam (10.1016/j.jaesx.2024.100189_b0135) 2020; 141 Mohammed (10.1016/j.jaesx.2024.100189_b0210) 2023; 25 Abdullah (10.1016/j.jaesx.2024.100189_b0010) 2024; 10 Hashim (10.1016/j.jaesx.2024.100189_b0105) 2021; 13 10.1016/j.jaesx.2024.100189_b0265 Huang (10.1016/j.jaesx.2024.100189_b0120) 2015; 21 Jain (10.1016/j.jaesx.2024.100189_b0140) 2020 Leake (10.1016/j.jaesx.2024.100189_b0175) 2000; 51 10.1016/j.jaesx.2024.100189_b0060 Preeti (10.1016/j.jaesx.2024.100189_b0240) 2022; 14 Saaty (10.1016/j.jaesx.2024.100189_b0260) 1980 Ahmed (10.1016/j.jaesx.2024.100189_b0020) 2019; 578 Her (10.1016/j.jaesx.2024.100189_b0110) 2018; 20 Chuvieco (10.1016/j.jaesx.2024.100189_b0075) 2010; 221 Zhao (10.1016/j.jaesx.2024.100189_b0345) 2020; 12 Taylor (10.1016/j.jaesx.2024.100189_b0315) 2013; 3 10.1016/j.jaesx.2024.100189_b0090 Lani (10.1016/j.jaesx.2024.100189_b0170) 2018; 10 Ullah (10.1016/j.jaesx.2024.100189_b0325) 2024; 16 Alkaradaghi (10.1016/j.jaesx.2024.100189_b0035) 2022; 233 Ouyang (10.1016/j.jaesx.2024.100189_b0230) 2021; 1–13 Steinel (10.1016/j.jaesx.2024.100189_b0310) 2016; 24 Ahmed (10.1016/j.jaesx.2024.100189_b0015) 2015; 12 Assaf (10.1016/j.jaesx.2024.100189_b0045) 2021 Chen (10.1016/j.jaesx.2024.100189_b0065) 2020; 192 Liaw (10.1016/j.jaesx.2024.100189_b0180) 2014; 6 Pourghasemi (10.1016/j.jaesx.2024.100189_b0235) 2020; 184 Rana (10.1016/j.jaesx.2024.100189_b0245) 2023; 6 Kumar (10.1016/j.jaesx.2024.100189_b0165) 2016; 2 Nipun (10.1016/j.jaesx.2024.100189_b0220) 2024; 15 Olsen (10.1016/j.jaesx.2024.100189_b0225) 2015; 7 10.1016/j.jaesx.2024.100189_b0095 Marcinkevičs (10.1016/j.jaesx.2024.100189_b0200) 2023; 13 10.1016/j.jaesx.2024.100189_b0050 10.1016/j.jaesx.2024.100189_b0250 Ipcc (10.1016/j.jaesx.2024.100189_b0130) Kadam (10.1016/j.jaesx.2024.100189_b0150) 2012; 26 10.1016/j.jaesx.2024.100189_b0330 Jha (10.1016/j.jaesx.2024.100189_b0145) 2014; 83 Breiman (10.1016/j.jaesx.2024.100189_b0055) 2001; 45 Abdellah (10.1016/j.jaesx.2024.100189_b0005) 1979 Zhang (10.1016/j.jaesx.2024.100189_b0340) 2020; 65 Singh (10.1016/j.jaesx.2024.100189_b0295) 2017; 142 10.1016/j.jaesx.2024.100189_b0125 Liu (10.1016/j.jaesx.2024.100189_b0185) 2018; 634 Karimi (10.1016/j.jaesx.2024.100189_b0155) 2021; 36 Saha (10.1016/j.jaesx.2024.100189_b0270) 2024; 10 Singh (10.1016/j.jaesx.2024.100189_b0300) 2021; 28 Sekar (10.1016/j.jaesx.2024.100189_b0290) 2007; 334 Asif (10.1016/j.jaesx.2024.100189_b0040) 2024; 155 10.1016/j.jaesx.2024.100189_b0085 |
References_xml | – volume: 184 year: 2020 ident: b0235 article-title: Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling publication-title: Environ. Res. – volume: 7 start-page: 201 year: 2024 end-page: 212 ident: b0100 article-title: Addressing water scarcity challenges through rainwater harvesting: A comprehensive analysis of potential zones and model performance in arid and semi-arid regions–A case study on Purulia, India publication-title: HydroResearch – reference: Field, C.B., Barros, V., Stocker, T.F., Dahe, Q. (Eds.), 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press. https://doi.org/10.1017/CBO9781139177245. – volume: 187 year: 2020 ident: b0275 article-title: Systematic sample subdividing strategy for training landslide susceptibility models publication-title: Catena – volume: 634 start-page: 12 year: 2018 end-page: 19 ident: b0185 article-title: Posterior assessment of reference gages for water resources management using instantaneous flow measurements publication-title: Sci. Total Environ. – volume: 6 start-page: 235 year: 2023 end-page: 246 ident: b0245 article-title: A combined GIS, remote sensing and MCDM approach to find potential location for rainwater harvesting structure in northwestern part of Bangladesh publication-title: HydroResearch – volume: 2 start-page: 419 year: 2016 end-page: 430 ident: b0165 article-title: Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques publication-title: Sustain. Water Resour. Manag. – reference: Malakar, P., Sarkar, S., Mukherjee, A., Bhanja, S., Sun, A.Y., 2021. Chapter 40 - Use of machine learning and deep learning methods in groundwater, in: Mukherjee, A., Scanlon, B.R., Aureli, A., Langan, S., Guo, H., McKenzie, A.A. (Eds.), Global Groundwater. Elsevier, pp. 545–557. https://doi.org/10.1016/B978-0-12-818172-0.00040-2. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0055 article-title: Random Forests publication-title: Mach. Learn. – volume: 14 start-page: 3480 year: 2022 ident: b0240 article-title: Identification of Suitable Sites Using GIS for Rainwater Harvesting Structures to Meet Irrigation Demand publication-title: Water – volume: 578 year: 2019 ident: b0020 article-title: Machine learning methods for better water quality prediction publication-title: J. Hydrol. – volume: 21 year: 2015 ident: b0120 article-title: Change in terrestrial ecosystem water-use efficiency over the last three decades publication-title: ITPCAS OpenIR – reference: Hossan, M.A., Bari, Q.H., Islam, S.M., Nayan, M.A.H., 2023. ROOFTOP RAINWATER HARVESTING: REVIEW AND PRACTICE. – reference: Brimicombe, A., 2009. GIS, Environmental Modeling and Engineering, 2nd ed. CRC Press. https://doi.org/10.1201/9781439808726. – year: 2020 ident: b0140 article-title: A review of machine learning applications in wildfire science and management publication-title: Environ. Rev. – volume: 34 start-page: 45 year: 2013 end-page: 59 ident: b0070 article-title: Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA publication-title: Int. J. Remote Sens. – volume: 221 start-page: 46 year: 2010 end-page: 58 ident: b0075 article-title: Development of a framework for fire risk assessment using remote sensing and geographic information system technologies publication-title: Ecol. Model. – volume: 20 start-page: 864 year: 2018 end-page: 885 ident: b0110 article-title: Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration publication-title: Journal of Hydroinformatics – volume: 582 year: 2020 ident: b0320 article-title: A multi-criteria decision analysis approach towards efficient rainwater harvesting publication-title: J. Hydrol. – volume: 155 start-page: 7991 year: 2024 end-page: 8004 ident: b0040 article-title: Geospatial identification of possible rainwater harvesting locations within a high-altitude Gilgit River basin, Pakistan publication-title: Theor Appl Climatol – volume: 25 start-page: 220 year: 2023 end-page: 234 ident: b0210 article-title: Geoinformatics-Based Approach for Aquifer Recharge Zone Identification in the Western Desert of Iraq publication-title: GEOMATE Journal – volume: 134 year: 2024 ident: b0080 article-title: Integrated study of GIS and Remote Sensing to identify potential sites for rainwater harvesting structures publication-title: Physics and Chemistry of the Earth, Parts a/b/c – year: 2021 ident: b0045 article-title: Surface water detection method for water resources management, in publication-title: Journal of Physics: Conference Series. IOP Publishing – volume: 11 start-page: 421 year: 2020 ident: b0215 article-title: Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran publication-title: Forests – volume: 83 start-page: 96 year: 2014 end-page: 111 ident: b0145 article-title: Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis publication-title: Resour. Conserv. Recycl. – volume: 15 start-page: 80 year: 2024 end-page: 100 ident: b0220 article-title: Rooftop rainwater harvesting for sustainable water usage in residential buildings for climate resilient city building: case study of Rajshahi, Bangladesh publication-title: International Journal of Disaster Resilience in the Built Environment – volume: 192 year: 2020 ident: b0065 article-title: A novel selective naïve Bayes algorithm publication-title: Knowl.-Based Syst. – volume: 36 start-page: 320 year: 2021 end-page: 339 ident: b0155 article-title: Integrating runoff map of a spatially distributed model and thematic layers for identifying potential rainwater harvesting suitability sites using GIS techniques publication-title: Geocarto Int. – volume: 142 start-page: 1436 year: 2017 end-page: 1456 ident: b0295 article-title: Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply publication-title: J. Clean. Prod. – volume: 141 start-page: 869 year: 2020 end-page: 887 ident: b0135 article-title: Spatiotemporal trends in the frequency of daily rainfall in Bangladesh during 1975–2017 publication-title: Theor. Appl. Climatol. – volume: 1–13 year: 2021 ident: b0230 article-title: Robust Bayesian hierarchical modeling and inference using scale mixtures of normal distributions publication-title: IISE Trans. – volume: 15 start-page: 234 year: 1977 end-page: 281 ident: b0255 article-title: A scaling method for priorities in hierarchical structures publication-title: J. Math. Psychol. – reference: Blanco, H., Lal, R., 2023. Soil Water Management, in: Soil Conservation and Management. Springer Nature Switzerland, Cham, pp. 417–441. https://doi.org/10.1007/978-3-031-30341-8_17. – reference: Lundberg, S.M., Lee, S.-I., 2017. A Unified Approach to Interpreting Model Predictions, in: Advances in Neural Information Processing Systems. Curran Associates, Inc. – reference: Gaurihar, M., Paonikar, K., Dongre, S., Khobragade, P., Agrawal, R., Saraf, P., 2023. Enhancing Drought Detection and Visualization with LSTM and SPEI: Addressing Slow-Onset Climate-Induced Water Scarcity. https://doi.org/10.21203/rs.3.rs-3638687/v1. – volume: 3 start-page: 322 year: 2013 end-page: 329 ident: b0315 article-title: Ground water and climate change publication-title: Nature Clim. Change – volume: 13 start-page: 235 year: 2021 end-page: 248 ident: b0105 article-title: Detection of suitable sites for rainwater harvesting planning in an arid region using geographic information system publication-title: Appl Geomat – reference: UN-Water, 2018. World Water Development Report 2018. UN-Water. URL https://www.unwater.org/publications/world-water-development-report-2018 (accessed 12.2.24). – volume: 12 start-page: 1077 year: 2015 end-page: 1095 ident: b0015 article-title: Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh publication-title: Landslides – volume: 26 start-page: 2537 year: 2012 end-page: 2554 ident: b0150 article-title: Identifying Potential Rainwater Harvesting Sites of a Semi-arid, Basaltic Region of Western India, Using SCS-CN Method publication-title: Water Resour Manage – reference: Saaty, T.L., 2005. Analytic Hierarchy Process, in: Armitage, P., Colton, T. (Eds.), Encyclopedia of Biostatistics. Wiley. https://doi.org/10.1002/0470011815.b2a4a002. – volume: 24 start-page: 1753 year: 2016 end-page: 1774 ident: b0310 article-title: Spatial multi-criteria analysis for selecting potential sites for aquifer recharge via harvesting and infiltration of surface runoff in north Jordan publication-title: Hydrogeol J. – volume: 10 year: 2024 ident: b0270 article-title: Decision support system for community managed rainwater harvesting: A case study in the salinity-prone coastal region of Bangladesh publication-title: Heliyon – volume: 528 start-page: 84 year: 2015 end-page: 93 ident: b0025 article-title: Potentiality of rainwater harvesting for an urban community in Bangladesh publication-title: J. Hydrol. – volume: 13 start-page: e1493 year: 2023 ident: b0200 article-title: Interpretable and explainable machine learning: A methods-centric overview with concrete examples publication-title: WIREs Data Min. Knowl. Discovery – year: 1980 ident: b0260 article-title: The analytic hierarchy process: planning, priority setting, resource allocation – reference: Hulse, J.V., Khoshgoftaar, T., 2009. Knowledge discovery from imbalanced and noisy data. Data & Knowledge Engineering, Including Special Section: 21st IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS 2008) – Seven selected and extended papers on Biomedical Data Mining 68, 1513–1542. https://doi.org/10.1016/j.datak.2009.08.005. – reference: Al-Abadi, A.M., Al-Shamma’a, A.M., Aljabbari, M.H., 2017. A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq. Appl Water Sci 7, 89–101. https://doi.org/10.1007/s13201-014-0221-7. – volume: 79 start-page: 251 year: 2005 end-page: 266 ident: b0335 article-title: Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey) publication-title: Eng. Geol. – volume: 56 start-page: 201 year: 1976 end-page: 207 ident: b0285 article-title: Effects of chronic nicotine administration on the denervated rat adrenal medulla publication-title: Br J Pharmacol – year: 2012 ident: b0130 article-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation — IPCC – volume: 30 start-page: 3299 year: 2016 end-page: 3313 ident: b0280 article-title: Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach publication-title: Water Resour Manage – start-page: 1 year: 1979 end-page: 11 ident: b0005 article-title: Preparing for the health care issues of the 1980s publication-title: NLN Publ – volume: 7 start-page: 1 year: 2015 end-page: 13 ident: b0225 article-title: Decision Support System for Rural Water Supply in the Nilgiris District of South India publication-title: J. Environ. Inf. – volume: 334 start-page: 39 year: 2007 end-page: 52 ident: b0290 article-title: Spatial assessment of conjunctive water harvesting potential in watershed systems publication-title: J. Hydrol. – volume: 10 year: 2024 ident: b0010 article-title: Suitability of rainwater harvesting in saline and arsenic affected areas of Bangladesh publication-title: Heliyon – volume: 51 start-page: 247 year: 2000 end-page: 248 ident: b0175 article-title: Review of GIS and Multicriteria Decision Analysis publication-title: J. Oper. Res. Soc. – volume: 12 year: 2017 ident: b0305 article-title: The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation publication-title: PLoS One – volume: 155 year: 2021 ident: b0160 article-title: A comparative study of machine learning and Fuzzy-AHP technique to groundwater potential mapping in the data-scarce region publication-title: Comput. Geosci. – volume: 10 start-page: 506 year: 2018 ident: b0170 article-title: A Review of Rainwater Harvesting in Malaysia: Prospects and Challenges publication-title: Water – volume: 12 start-page: 739 year: 2020 ident: b0345 article-title: Equilibrium Selection under the Bayes-Based Strategy Updating Rules publication-title: Symmetry – volume: 1–14 year: 2024 ident: b0205 article-title: Sustainable water management in Sikkim Himalayan region: innovative solutions for rainwater harvesting reservoirs publication-title: Geol. Ecol. Landscapes – reference: Rao, N.R., Kiran, S.P., Amena I, T., Senthilkumar, A., Sivakumar, R., Kumar, M.A., Sampathkumar Velusamy, 2024. Enhancing rainwater harvesting and groundwater recharge efficiency with multi-dimensional LSTM and clonal selection algorithm. Groundwater for Sustainable Development 25, 101167. https://doi.org/10.1016/j.gsd.2024.101167. – volume: 65 year: 2020 ident: b0340 article-title: Development of novel in silico prediction model for drug-induced ototoxicity by using naïve Bayes classifier approach publication-title: Toxicol. In Vitro – volume: 16 start-page: 9266 year: 2024 ident: b0325 article-title: Potential Sites for Rainwater Harvesting Focusing on the Sustainable Development Goals Using Remote Sensing and Geographical Information System publication-title: Sustainability – volume: 28 start-page: 1734 year: 2021 end-page: 1751 ident: b0300 article-title: Planning rainwater conservation measures using geospatial and multi-criteria decision making tools publication-title: Environ. Sci. Pollut. Res. – volume: 6 start-page: 3224 year: 2014 end-page: 3246 ident: b0180 article-title: Framework for Assessing the Rainwater Harvesting Potential of Residential Buildings at a National Level as an Alternative Water Resource for Domestic Water Supply in Taiwan publication-title: Water – volume: 233 start-page: 313 year: 2022 ident: b0035 article-title: Geospatial Technique Integrated with MCDM Models for Selecting Potential Sites for Harvesting Rainwater in the Semi-arid Region publication-title: Water Air Soil Pollut – reference: Gaurav, V., Vinod, V., Singh, S.K., Sharma, T., Pradyumna, K.R., Choudhary, S., 2021. RainRoof: Automated Shared Rainwater Harvesting Prediction, in: Karuppusamy, P., Perikos, I., Shi, F., Nguyen, T.N. (Eds.), Sustainable Communication Networks and Application, Lecture Notes on Data Engineering and Communications Technologies. Springer Singapore, Singapore, pp. 105–122. https://doi.org/10.1007/978-981-15-8677-4_9. – volume: 13 start-page: 235 year: 2021 ident: 10.1016/j.jaesx.2024.100189_b0105 article-title: Detection of suitable sites for rainwater harvesting planning in an arid region using geographic information system publication-title: Appl Geomat doi: 10.1007/s12518-020-00342-3 – ident: 10.1016/j.jaesx.2024.100189_b0250 doi: 10.1016/j.gsd.2024.101167 – volume: 134 year: 2024 ident: 10.1016/j.jaesx.2024.100189_b0080 article-title: Integrated study of GIS and Remote Sensing to identify potential sites for rainwater harvesting structures publication-title: Physics and Chemistry of the Earth, Parts a/b/c doi: 10.1016/j.pce.2024.103574 – volume: 25 start-page: 220 year: 2023 ident: 10.1016/j.jaesx.2024.100189_b0210 article-title: Geoinformatics-Based Approach for Aquifer Recharge Zone Identification in the Western Desert of Iraq publication-title: GEOMATE Journal – volume: 10 year: 2024 ident: 10.1016/j.jaesx.2024.100189_b0270 article-title: Decision support system for community managed rainwater harvesting: A case study in the salinity-prone coastal region of Bangladesh publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e30455 – volume: 7 start-page: 1 year: 2015 ident: 10.1016/j.jaesx.2024.100189_b0225 article-title: Decision Support System for Rural Water Supply in the Nilgiris District of South India publication-title: J. Environ. Inf. doi: 10.3808/jei.200600062 – volume: 192 year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0065 article-title: A novel selective naïve Bayes algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105361 – volume: 6 start-page: 3224 year: 2014 ident: 10.1016/j.jaesx.2024.100189_b0180 article-title: Framework for Assessing the Rainwater Harvesting Potential of Residential Buildings at a National Level as an Alternative Water Resource for Domestic Water Supply in Taiwan publication-title: Water doi: 10.3390/w6103224 – volume: 16 start-page: 9266 year: 2024 ident: 10.1016/j.jaesx.2024.100189_b0325 article-title: Potential Sites for Rainwater Harvesting Focusing on the Sustainable Development Goals Using Remote Sensing and Geographical Information System publication-title: Sustainability doi: 10.3390/su16219266 – volume: 221 start-page: 46 year: 2010 ident: 10.1016/j.jaesx.2024.100189_b0075 article-title: Development of a framework for fire risk assessment using remote sensing and geographic information system technologies publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2008.11.017 – volume: 10 start-page: 506 year: 2018 ident: 10.1016/j.jaesx.2024.100189_b0170 article-title: A Review of Rainwater Harvesting in Malaysia: Prospects and Challenges publication-title: Water doi: 10.3390/w10040506 – volume: 582 year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0320 article-title: A multi-criteria decision analysis approach towards efficient rainwater harvesting publication-title: J. Hydrol. – ident: 10.1016/j.jaesx.2024.100189_b0190 – ident: 10.1016/j.jaesx.2024.100189_b0330 – year: 2021 ident: 10.1016/j.jaesx.2024.100189_b0045 article-title: Surface water detection method for water resources management, in publication-title: Journal of Physics: Conference Series. IOP Publishing – volume: 34 start-page: 45 year: 2013 ident: 10.1016/j.jaesx.2024.100189_b0070 article-title: Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.705443 – volume: 141 start-page: 869 year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0135 article-title: Spatiotemporal trends in the frequency of daily rainfall in Bangladesh during 1975–2017 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-020-03244-x – volume: 51 start-page: 247 year: 2000 ident: 10.1016/j.jaesx.2024.100189_b0175 article-title: Review of GIS and Multicriteria Decision Analysis publication-title: J. Oper. Res. Soc. doi: 10.2307/254268 – ident: 10.1016/j.jaesx.2024.100189_b0130 – volume: 1–14 year: 2024 ident: 10.1016/j.jaesx.2024.100189_b0205 article-title: Sustainable water management in Sikkim Himalayan region: innovative solutions for rainwater harvesting reservoirs publication-title: Geol. Ecol. Landscapes – volume: 10 year: 2024 ident: 10.1016/j.jaesx.2024.100189_b0010 article-title: Suitability of rainwater harvesting in saline and arsenic affected areas of Bangladesh publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e34328 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jaesx.2024.100189_b0055 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 233 start-page: 313 year: 2022 ident: 10.1016/j.jaesx.2024.100189_b0035 article-title: Geospatial Technique Integrated with MCDM Models for Selecting Potential Sites for Harvesting Rainwater in the Semi-arid Region publication-title: Water Air Soil Pollut doi: 10.1007/s11270-022-05796-2 – year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0140 article-title: A review of machine learning applications in wildfire science and management publication-title: Environ. Rev. doi: 10.1139/er-2020-0019 – volume: 6 start-page: 235 year: 2023 ident: 10.1016/j.jaesx.2024.100189_b0245 article-title: A combined GIS, remote sensing and MCDM approach to find potential location for rainwater harvesting structure in northwestern part of Bangladesh publication-title: HydroResearch doi: 10.1016/j.hydres.2023.08.001 – volume: 155 year: 2021 ident: 10.1016/j.jaesx.2024.100189_b0160 article-title: A comparative study of machine learning and Fuzzy-AHP technique to groundwater potential mapping in the data-scarce region publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104855 – start-page: 1 year: 1979 ident: 10.1016/j.jaesx.2024.100189_b0005 article-title: Preparing for the health care issues of the 1980s publication-title: NLN Publ – ident: 10.1016/j.jaesx.2024.100189_b0125 doi: 10.1016/j.datak.2009.08.005 – volume: 12 start-page: 1077 year: 2015 ident: 10.1016/j.jaesx.2024.100189_b0015 article-title: Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh publication-title: Landslides doi: 10.1007/s10346-014-0521-x – volume: 56 start-page: 201 year: 1976 ident: 10.1016/j.jaesx.2024.100189_b0285 article-title: Effects of chronic nicotine administration on the denervated rat adrenal medulla publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.1976.tb07443.x – volume: 142 start-page: 1436 year: 2017 ident: 10.1016/j.jaesx.2024.100189_b0295 article-title: Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.163 – volume: 3 start-page: 322 year: 2013 ident: 10.1016/j.jaesx.2024.100189_b0315 article-title: Ground water and climate change publication-title: Nature Clim. Change doi: 10.1038/nclimate1744 – volume: 1–13 year: 2021 ident: 10.1016/j.jaesx.2024.100189_b0230 article-title: Robust Bayesian hierarchical modeling and inference using scale mixtures of normal distributions publication-title: IISE Trans. – volume: 7 start-page: 201 year: 2024 ident: 10.1016/j.jaesx.2024.100189_b0100 article-title: Addressing water scarcity challenges through rainwater harvesting: A comprehensive analysis of potential zones and model performance in arid and semi-arid regions–A case study on Purulia, India publication-title: HydroResearch doi: 10.1016/j.hydres.2024.04.001 – volume: 36 start-page: 320 year: 2021 ident: 10.1016/j.jaesx.2024.100189_b0155 article-title: Integrating runoff map of a spatially distributed model and thematic layers for identifying potential rainwater harvesting suitability sites using GIS techniques publication-title: Geocarto Int. doi: 10.1080/10106049.2019.1608590 – volume: 12 year: 2017 ident: 10.1016/j.jaesx.2024.100189_b0305 article-title: The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation publication-title: PLoS One doi: 10.1371/journal.pone.0187906 – ident: 10.1016/j.jaesx.2024.100189_b0090 doi: 10.1007/978-981-15-8677-4_9 – volume: 334 start-page: 39 year: 2007 ident: 10.1016/j.jaesx.2024.100189_b0290 article-title: Spatial assessment of conjunctive water harvesting potential in watershed systems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.09.024 – ident: 10.1016/j.jaesx.2024.100189_b0050 doi: 10.1007/978-3-031-30341-8_17 – ident: 10.1016/j.jaesx.2024.100189_b0115 – ident: 10.1016/j.jaesx.2024.100189_b0095 doi: 10.21203/rs.3.rs-3638687/v1 – ident: 10.1016/j.jaesx.2024.100189_b0265 doi: 10.1002/0470011815.b2a4a002 – volume: 13 start-page: e1493 year: 2023 ident: 10.1016/j.jaesx.2024.100189_b0200 article-title: Interpretable and explainable machine learning: A methods-centric overview with concrete examples publication-title: WIREs Data Min. Knowl. Discovery doi: 10.1002/widm.1493 – volume: 28 start-page: 1734 year: 2021 ident: 10.1016/j.jaesx.2024.100189_b0300 article-title: Planning rainwater conservation measures using geospatial and multi-criteria decision making tools publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-10227-y – volume: 2 start-page: 419 year: 2016 ident: 10.1016/j.jaesx.2024.100189_b0165 article-title: Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques publication-title: Sustain. Water Resour. Manag. doi: 10.1007/s40899-016-0072-5 – volume: 187 year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0275 article-title: Systematic sample subdividing strategy for training landslide susceptibility models publication-title: Catena doi: 10.1016/j.catena.2019.104358 – volume: 83 start-page: 96 year: 2014 ident: 10.1016/j.jaesx.2024.100189_b0145 article-title: Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2013.12.003 – volume: 12 start-page: 739 year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0345 article-title: Equilibrium Selection under the Bayes-Based Strategy Updating Rules publication-title: Symmetry doi: 10.3390/sym12050739 – volume: 578 year: 2019 ident: 10.1016/j.jaesx.2024.100189_b0020 article-title: Machine learning methods for better water quality prediction publication-title: J. Hydrol. – volume: 65 year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0340 article-title: Development of novel in silico prediction model for drug-induced ototoxicity by using naïve Bayes classifier approach publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2020.104812 – volume: 15 start-page: 234 year: 1977 ident: 10.1016/j.jaesx.2024.100189_b0255 article-title: A scaling method for priorities in hierarchical structures publication-title: J. Math. Psychol. doi: 10.1016/0022-2496(77)90033-5 – ident: 10.1016/j.jaesx.2024.100189_b0060 doi: 10.1201/9781439808726 – volume: 528 start-page: 84 year: 2015 ident: 10.1016/j.jaesx.2024.100189_b0025 article-title: Potentiality of rainwater harvesting for an urban community in Bangladesh publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.06.017 – ident: 10.1016/j.jaesx.2024.100189_b0030 doi: 10.1007/s13201-014-0221-7 – volume: 11 start-page: 421 year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0215 article-title: Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran publication-title: Forests doi: 10.3390/f11040421 – volume: 184 year: 2020 ident: 10.1016/j.jaesx.2024.100189_b0235 article-title: Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109321 – volume: 79 start-page: 251 year: 2005 ident: 10.1016/j.jaesx.2024.100189_b0335 article-title: Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey) publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2005.02.002 – volume: 21 year: 2015 ident: 10.1016/j.jaesx.2024.100189_b0120 article-title: Change in terrestrial ecosystem water-use efficiency over the last three decades publication-title: ITPCAS OpenIR – volume: 24 start-page: 1753 year: 2016 ident: 10.1016/j.jaesx.2024.100189_b0310 article-title: Spatial multi-criteria analysis for selecting potential sites for aquifer recharge via harvesting and infiltration of surface runoff in north Jordan publication-title: Hydrogeol J. doi: 10.1007/s10040-016-1427-6 – volume: 30 start-page: 3299 year: 2016 ident: 10.1016/j.jaesx.2024.100189_b0280 article-title: Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach publication-title: Water Resour Manage doi: 10.1007/s11269-016-1350-6 – volume: 26 start-page: 2537 year: 2012 ident: 10.1016/j.jaesx.2024.100189_b0150 article-title: Identifying Potential Rainwater Harvesting Sites of a Semi-arid, Basaltic Region of Western India, Using SCS-CN Method publication-title: Water Resour Manage doi: 10.1007/s11269-012-0031-3 – ident: 10.1016/j.jaesx.2024.100189_b0085 doi: 10.1017/CBO9781139177245 – volume: 634 start-page: 12 year: 2018 ident: 10.1016/j.jaesx.2024.100189_b0185 article-title: Posterior assessment of reference gages for water resources management using instantaneous flow measurements publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.312 – volume: 14 start-page: 3480 year: 2022 ident: 10.1016/j.jaesx.2024.100189_b0240 article-title: Identification of Suitable Sites Using GIS for Rainwater Harvesting Structures to Meet Irrigation Demand publication-title: Water doi: 10.3390/w14213480 – ident: 10.1016/j.jaesx.2024.100189_b0195 doi: 10.1016/B978-0-12-818172-0.00040-2 – year: 1980 ident: 10.1016/j.jaesx.2024.100189_b0260 – volume: 20 start-page: 864 year: 2018 ident: 10.1016/j.jaesx.2024.100189_b0110 article-title: Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2018.108 – volume: 155 start-page: 7991 year: 2024 ident: 10.1016/j.jaesx.2024.100189_b0040 article-title: Geospatial identification of possible rainwater harvesting locations within a high-altitude Gilgit River basin, Pakistan publication-title: Theor Appl Climatol doi: 10.1007/s00704-024-05024-3 – volume: 15 start-page: 80 year: 2024 ident: 10.1016/j.jaesx.2024.100189_b0220 article-title: Rooftop rainwater harvesting for sustainable water usage in residential buildings for climate resilient city building: case study of Rajshahi, Bangladesh publication-title: International Journal of Disaster Resilience in the Built Environment doi: 10.1108/IJDRBE-08-2021-0089 |
SSID | ssj0002856848 |
Score | 2.3415902 |
Snippet | [Display omitted]
•Eleven parameters were considered for potential rainwater harvesting zone identification;•Machine learning algorithms and geospatial... Water scarcity in hilly regions presents unique challenges, particularly in Bangladesh, where obtaining fresh drinking water has become difficult to access.... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100189 |
SubjectTerms | Analytical hierarchy process (AHP) Chattogram Hill tracts Machine learning (ML) Rainwater harvesting |
Title | Assessing the performance of machine learning and analytical hierarchy process (AHP) models for rainwater harvesting potential zone identification in hilly region, Bangladesh |
URI | https://dx.doi.org/10.1016/j.jaesx.2024.100189 https://doaj.org/article/6bee4dd727c84db8bc7762947220b650 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3EkxdRVKxfzMGDgsGY3WySo4pSBMWDhd7CfkVbNC1tReuP8jc6s5tqTnrxkEsIs8vOJPNmd_IeY4dZpitE_TKyhgsi1baRKtIsKnQaGyMx53sS19s72e2Jm37ab0l9UU9YoAcOC3cqtXPCWkyzJhdW59pk-P4WxHEYaxmq9biIW8XU0G8ZpTIX-YJmyDd0DZWbvmNFmAhPPETC7q1U5Bn7WxmplWWu19hqAw_hPExrnS25eoN9hpNZTDKAcA3GP73-MKrgxbdDOmj0Hx5B1RYv9Tz329RAYtcUzXMYh58C4Oi8e38MXgNnCmgKSCbiDUHnBJ7UxPNuoJnxaEadRGjhY4TmB7bpK_KuhEENdI4wB1J2GNUncKFIDsS66dMm611fPVx2o0ZnITJcilmkrMkLq7EurWSaSFznDP2XYOHMbSoqGVtRnWU2RmjjsJ4yjkj0lBEi1ZWqeMK32HKNM9lmYArOLdaMPE8rURiutJEZfk8J9RQ8Nh12sljychzoNMpFn9mw9B4qyUNl8FCHXZBbvh8lLmx_AyOkbCKk_CtCOkwunFo2sCLABTQ1-G30nf8YfZetJCQZ7Ddu9tjybPLq9hHHzPSBD9kv1Lry3A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+performance+of+machine+learning+and+analytical+hierarchy+process+%28AHP%29+models+for+rainwater+harvesting+potential+zone+identification+in+hilly+region%2C+Bangladesh&rft.jtitle=Journal+of+Asian+Earth+Sciences%3A+X&rft.au=Hasan%2C+Md.+Mahmudul&rft.au=Talha%2C+Md&rft.au=Akter%2C+Most.+Mitu&rft.au=Ferdous%2C+Md+Tasim&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=2590-0560&rft.eissn=2590-0560&rft.volume=13&rft_id=info:doi/10.1016%2Fj.jaesx.2024.100189&rft.externalDocID=S2590056024000173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0560&client=summon |