EmiR: Evolutionary minimization for R

Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-inspired...

Full description

Saved in:
Bibliographic Details
Published inSoftwareX Vol. 18; p. 101083
Main Authors Pagano, Davide, Sostero, Lorenzo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2352-7110
2352-7110
DOI10.1016/j.softx.2022.101083

Cover

Abstract Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-inspired algorithms has been growing steadily, due to their flexibility and effectiveness. In this paper we present EmiR, a package for R which implements several metaheuristic algorithms for optimization problems. Unlike other available tools, EmiR can be used not only for unconstrained problems, but also for problems subjected to inequality constraints and for integer or mixed-integer problems. Main features of EmiR, its usage and the comparison with other available tools are presented. [Display omitted]
AbstractList Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-inspired algorithms has been growing steadily, due to their flexibility and effectiveness. In this paper we present EmiR, a package for R which implements several metaheuristic algorithms for optimization problems. Unlike other available tools, EmiR can be used not only for unconstrained problems, but also for problems subjected to inequality constraints and for integer or mixed-integer problems. Main features of EmiR, its usage and the comparison with other available tools are presented. [Display omitted]
Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-inspired algorithms has been growing steadily, due to their flexibility and effectiveness. In this paper we present EmiR, a package for R which implements several metaheuristic algorithms for optimization problems. Unlike other available tools, EmiR can be used not only for unconstrained problems, but also for problems subjected to inequality constraints and for integer or mixed-integer problems. Main features of EmiR, its usage and the comparison with other available tools are presented.
ArticleNumber 101083
Author Pagano, Davide
Sostero, Lorenzo
Author_xml – sequence: 1
  givenname: Davide
  orcidid: 0000-0003-0333-448X
  surname: Pagano
  fullname: Pagano, Davide
  email: davide.pagano@unibs.it
– sequence: 2
  givenname: Lorenzo
  surname: Sostero
  fullname: Sostero, Lorenzo
  email: l.sostero@studenti.unibs.it
BookMark eNp9kE9LxDAQxYOs4LruJ_DSi8fWSdL0j-BBllUXFoRFzyFNJpKybSSti_rpbbcinjzNzIP3ePM7J7PWt0jIJYWEAs2u66Tztv9IGDA2KlDwEzJnXLA4pxRmf_Yzsuy6GgCoYIVg6ZxcrRu3u4nWB79_751vVfiMGte6xn2p8Y6sD9Hugpxate9w-TMX5OV-_bx6jLdPD5vV3TbWPEv7WBktKs5RICurKjWcgoLMWMOZEWjLUtMyzTJTcWRQABYFszkTHDDLdVppviCbKdd4Vcu34Jqhj_TKyaPgw6tUoXd6j1Jb4HmOFa-oTrUqlFVM2dKWhRHKMj5k8SlLB991Ae1vHgU5gpO1PIKTIzg5gRtct5MLhzcPDoPstMNWo3EBdT_0cP_6vwHG_njB
Cites_doi 10.1007/s10898-007-9149-x
10.1016/j.compstruc.2004.01.002
10.1016/j.advengsoft.2016.01.008
10.1137/S1052623496303470
10.1007/BF00930579
10.1016/0305-0548(86)90048-1
10.6028/jres.049.044
10.1016/j.beproc.2011.09.006
10.1007/s10462-017-9605-z
10.1126/science.220.4598.671
10.1007/s10589-005-0985-7
10.1016/j.knosys.2015.07.006
10.1016/0895-7177(96)00014-3
10.1177/003754970107600201
10.1145/29380.29864
10.1016/j.ins.2009.03.004
10.4249/scholarpedia.6532
10.1016/j.advengsoft.2013.12.007
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.softx.2022.101083
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2352-7110
ExternalDocumentID oai_doaj_org_article_cf0377eb3b1c4ca8afa2af9f98d5af23
10_1016_j_softx_2022_101083
S2352711022000590
GroupedDBID 0R~
457
5VS
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
IXB
KQ8
M~E
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c364t-adc5b33e5e29bb4d310a06dfd32d5ef99c19466db3e2080e882f72530e67c4bc3
IEDL.DBID DOA
ISSN 2352-7110
IngestDate Wed Aug 27 00:58:48 EDT 2025
Tue Jul 01 02:31:34 EDT 2025
Sun Apr 06 06:53:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords R
Optimization
Evolutionary algorithms
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-adc5b33e5e29bb4d310a06dfd32d5ef99c19466db3e2080e882f72530e67c4bc3
ORCID 0000-0003-0333-448X
OpenAccessLink https://doaj.org/article/cf0377eb3b1c4ca8afa2af9f98d5af23
ParticipantIDs doaj_primary_oai_doaj_org_article_cf0377eb3b1c4ca8afa2af9f98d5af23
crossref_primary_10_1016_j_softx_2022_101083
elsevier_sciencedirect_doi_10_1016_j_softx_2022_101083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle SoftwareX
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Glover, Sörensen (b5) 2015; 10
Lee, Geem (b16) 2004; 82
Karaboga, Basturk (b6) 2007; 39
Kirkpatrick, Gelatt, Vecchi (b21) 1983; 220
Tereshko, Loengarov (b7) 2005; 9
Ng, Zhang, Li, Tian (b28) 2005; 31
Muro, Escobedo, Spector, Coppinger (b14) 2011; 88
Rashedi, Nezamabadi-pour, Saryazdi (b12) 2009; 179
Mirjalili, Mirjalili, Lewis (b13) 2014; 69
Ackley (b27) 1987
Hestenes, Stiefel (b33) 1952; 49
Holland (b10) 1992
Yang, Deb (b9) 2009
Geem, Kim, Loganathan (b15) 2001; 76
Mirjalili (b18) 2015; 89
Kennedy, Eberhart (b19) 1995
Yang (b1) 2010
Mahdavi, Fesanghary, Damangir (b17) 2007; 188
Haupt (b25) 2004
Hussain, Salleh, Cheng, Shi (b4) 2018; 52
Yang (b8) 2010
Corana, Marchesi, Martini, Ridella (b22) 1987; 13
Kazemzadeh Azad, Hasançebi, Erol (b31) 2011; 1
Cragg, Levy (b26) 1969; 4
Simon (b2) 2013
.
Surjanovic S, Bingham D. Virtual library of simulation experiments: Test functions and datasets, Retrieved March 21, 2022, from
Glover (b3) 1986; 13
Mirjalili, Lewis (b24) 2016; 95
Liang, Runarsson, Mezura-Montes, Clerc, Suganthan, Coello, Deb (b30) 2005
Askarzadeh, dos Santos Coelho, Klein, Mariani (b23) 2016
Goldberg (b11) 1989
Septem Riza, Iip, Prasetyo Nugroho, Adi Prabowo, Junaeti, Abdullah (b32) 2019
Lagarias, Reeds, Wright, Wright (b34) 1998; 9
Kennedy, Eberhart (b20) 2001
Reid (b29) 1996; 23
Haupt (10.1016/j.softx.2022.101083_b25) 2004
Mirjalili (10.1016/j.softx.2022.101083_b24) 2016; 95
Glover (10.1016/j.softx.2022.101083_b5) 2015; 10
Simon (10.1016/j.softx.2022.101083_b2) 2013
Tereshko (10.1016/j.softx.2022.101083_b7) 2005; 9
Cragg (10.1016/j.softx.2022.101083_b26) 1969; 4
Mirjalili (10.1016/j.softx.2022.101083_b18) 2015; 89
Hussain (10.1016/j.softx.2022.101083_b4) 2018; 52
Karaboga (10.1016/j.softx.2022.101083_b6) 2007; 39
Corana (10.1016/j.softx.2022.101083_b22) 1987; 13
Goldberg (10.1016/j.softx.2022.101083_b11) 1989
Reid (10.1016/j.softx.2022.101083_b29) 1996; 23
Hestenes (10.1016/j.softx.2022.101083_b33) 1952; 49
Yang (10.1016/j.softx.2022.101083_b1) 2010
Mahdavi (10.1016/j.softx.2022.101083_b17) 2007; 188
Kennedy (10.1016/j.softx.2022.101083_b20) 2001
Septem Riza (10.1016/j.softx.2022.101083_b32) 2019
Kazemzadeh Azad (10.1016/j.softx.2022.101083_b31) 2011; 1
Askarzadeh (10.1016/j.softx.2022.101083_b23) 2016
Ng (10.1016/j.softx.2022.101083_b28) 2005; 31
Glover (10.1016/j.softx.2022.101083_b3) 1986; 13
Geem (10.1016/j.softx.2022.101083_b15) 2001; 76
Liang (10.1016/j.softx.2022.101083_b30) 2005
Lee (10.1016/j.softx.2022.101083_b16) 2004; 82
Kirkpatrick (10.1016/j.softx.2022.101083_b21) 1983; 220
Yang (10.1016/j.softx.2022.101083_b8) 2010
Lagarias (10.1016/j.softx.2022.101083_b34) 1998; 9
Mirjalili (10.1016/j.softx.2022.101083_b13) 2014; 69
10.1016/j.softx.2022.101083_b35
Holland (10.1016/j.softx.2022.101083_b10) 1992
Ackley (10.1016/j.softx.2022.101083_b27) 1987
Yang (10.1016/j.softx.2022.101083_b9) 2009
Rashedi (10.1016/j.softx.2022.101083_b12) 2009; 179
Kennedy (10.1016/j.softx.2022.101083_b19) 1995
Muro (10.1016/j.softx.2022.101083_b14) 2011; 88
References_xml – volume: 88
  start-page: 192
  year: 2011
  end-page: 197
  ident: b14
  article-title: Wolf-pack
  publication-title: Behav Process
– year: 2010
  ident: b1
  article-title: Nature-inspired metaheuristic algorithms
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b15
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
– year: 2013
  ident: b2
  article-title: Evolutionary optimization algorithms
– year: 1992
  ident: b10
  article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence
– volume: 10
  start-page: 6532
  year: 2015
  ident: b5
  article-title: Metaheuristics
  publication-title: Scholarpedia
– volume: 49
  start-page: 409
  year: 1952
  ident: b33
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Natl Bur Stand
– volume: 13
  start-page: 262
  year: 1987
  end-page: 280
  ident: b22
  article-title: Minimizing multimodal functions of continuous variables with the ”simulated annealing” algorithm
  publication-title: ACM Trans Math Softw
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b13
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
– year: 1989
  ident: b11
  article-title: Genetic algorithms in search, optimization, and machine learning
– reference: Surjanovic S, Bingham D. Virtual library of simulation experiments: Test functions and datasets, Retrieved March 21, 2022, from
– year: 1987
  ident: b27
  article-title: A connectionist machine for genetic hillclimbing
– volume: 9
  start-page: 112
  year: 1998
  end-page: 147
  ident: b34
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM J Optim
– volume: 13
  start-page: 533
  year: 1986
  end-page: 549
  ident: b3
  article-title: Future paths for integer programming and links to artificial intelligence
  publication-title: Comput Oper Res
– volume: 23
  start-page: 87
  year: 1996
  end-page: 111
  ident: b29
  article-title: Genetic algorithms in constrained optimization
  publication-title: Math Comput Modelling
– year: 2004
  ident: b25
  article-title: Practical genetic algorithms
– year: 2005
  ident: b30
  article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization
– start-page: 1942
  year: 1995
  end-page: 1948 vol.4
  ident: b19
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95 - international conference on neural networks, vol. 4
– volume: 82
  start-page: 781
  year: 2004
  end-page: 798
  ident: b16
  article-title: A new structural optimization method based on the harmony search algorithm
  publication-title: Comput Struct
– year: 2001
  ident: b20
  article-title: Swarm intelligence
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b18
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl-Based Syst
– year: 2016
  ident: b23
  article-title: A population-based simulated annealing algorithm for global optimization
  publication-title: 2016 IEEE international conference on systems, man, and cybernetics
– reference: .
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b21
  article-title: Optimization by simulated annealing
  publication-title: Science
– year: 2019
  ident: b32
  article-title: Metaheuristicopt: Metaheuristic for optimization
– volume: 1
  year: 2011
  ident: b31
  article-title: Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems
  publication-title: Int J Optim Civ Eng
– year: 2009
  ident: b9
  article-title: Cuckoo search via lèvy flights
  publication-title: 2009 world congress on nature & biologically inspired computing
– volume: 52
  start-page: 2191
  year: 2018
  end-page: 2233
  ident: b4
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif Intell Rev
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b6
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Global Optim
– volume: 9
  start-page: 1
  year: 2005
  ident: b7
  article-title: Collective decision making in honey-bee foraging dynamics
  publication-title: Comput Inf Syst
– volume: 188
  start-page: 1567
  year: 2007
  end-page: 1579
  ident: b17
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Appl Math Comput
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b24
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
– volume: 4
  start-page: 191
  year: 1969
  end-page: 205
  ident: b26
  article-title: Study on a supermemory gradient method for the minimization of functions
  publication-title: J Optim Theory Appl
– volume: 31
  start-page: 87
  year: 2005
  end-page: 115
  ident: b28
  article-title: Discrete filled function method for discrete global optimization
  publication-title: Comput Optim Appl
– start-page: 65
  year: 2010
  end-page: 74
  ident: b8
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature inspired cooperative strategies for optimization
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b12
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform Sci
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.softx.2022.101083_b6
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 82
  start-page: 781
  issue: 9–10
  year: 2004
  ident: 10.1016/j.softx.2022.101083_b16
  article-title: A new structural optimization method based on the harmony search algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2004.01.002
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.softx.2022.101083_b24
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2009
  ident: 10.1016/j.softx.2022.101083_b9
  article-title: Cuckoo search via lèvy flights
– year: 1987
  ident: 10.1016/j.softx.2022.101083_b27
– start-page: 1942
  year: 1995
  ident: 10.1016/j.softx.2022.101083_b19
  article-title: Particle swarm optimization
– volume: 9
  start-page: 112
  issue: 1
  year: 1998
  ident: 10.1016/j.softx.2022.101083_b34
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623496303470
– year: 1992
  ident: 10.1016/j.softx.2022.101083_b10
– volume: 4
  start-page: 191
  issue: 3
  year: 1969
  ident: 10.1016/j.softx.2022.101083_b26
  article-title: Study on a supermemory gradient method for the minimization of functions
  publication-title: J Optim Theory Appl
  doi: 10.1007/BF00930579
– volume: 9
  start-page: 1
  issue: 3
  year: 2005
  ident: 10.1016/j.softx.2022.101083_b7
  article-title: Collective decision making in honey-bee foraging dynamics
  publication-title: Comput Inf Syst
– year: 2010
  ident: 10.1016/j.softx.2022.101083_b1
– ident: 10.1016/j.softx.2022.101083_b35
– year: 2005
  ident: 10.1016/j.softx.2022.101083_b30
– volume: 13
  start-page: 533
  issue: 5
  year: 1986
  ident: 10.1016/j.softx.2022.101083_b3
  article-title: Future paths for integer programming and links to artificial intelligence
  publication-title: Comput Oper Res
  doi: 10.1016/0305-0548(86)90048-1
– year: 2001
  ident: 10.1016/j.softx.2022.101083_b20
– year: 2004
  ident: 10.1016/j.softx.2022.101083_b25
– volume: 49
  start-page: 409
  issue: 6
  year: 1952
  ident: 10.1016/j.softx.2022.101083_b33
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Natl Bur Stand
  doi: 10.6028/jres.049.044
– volume: 88
  start-page: 192
  issue: 3
  year: 2011
  ident: 10.1016/j.softx.2022.101083_b14
  article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav Process
  doi: 10.1016/j.beproc.2011.09.006
– volume: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.softx.2022.101083_b31
  article-title: Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems
  publication-title: Int J Optim Civ Eng
– volume: 52
  start-page: 2191
  issue: 4
  year: 2018
  ident: 10.1016/j.softx.2022.101083_b4
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9605-z
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.softx.2022.101083_b21
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– start-page: 65
  year: 2010
  ident: 10.1016/j.softx.2022.101083_b8
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 31
  start-page: 87
  issue: 1
  year: 2005
  ident: 10.1016/j.softx.2022.101083_b28
  article-title: Discrete filled function method for discrete global optimization
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-005-0985-7
– year: 2019
  ident: 10.1016/j.softx.2022.101083_b32
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.softx.2022.101083_b18
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 23
  start-page: 87
  issue: 5
  year: 1996
  ident: 10.1016/j.softx.2022.101083_b29
  article-title: Genetic algorithms in constrained optimization
  publication-title: Math Comput Modelling
  doi: 10.1016/0895-7177(96)00014-3
– year: 2016
  ident: 10.1016/j.softx.2022.101083_b23
  article-title: A population-based simulated annealing algorithm for global optimization
– volume: 188
  start-page: 1567
  issue: 2
  year: 2007
  ident: 10.1016/j.softx.2022.101083_b17
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Appl Math Comput
– year: 2013
  ident: 10.1016/j.softx.2022.101083_b2
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.softx.2022.101083_b15
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– year: 1989
  ident: 10.1016/j.softx.2022.101083_b11
– volume: 13
  start-page: 262
  issue: 3
  year: 1987
  ident: 10.1016/j.softx.2022.101083_b22
  article-title: Minimizing multimodal functions of continuous variables with the ”simulated annealing” algorithm
  publication-title: ACM Trans Math Softw
  doi: 10.1145/29380.29864
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.softx.2022.101083_b12
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 10
  start-page: 6532
  issue: 4
  year: 2015
  ident: 10.1016/j.softx.2022.101083_b5
  article-title: Metaheuristics
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.6532
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.softx.2022.101083_b13
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
SSID ssj0001528524
Score 2.1975174
Snippet Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 101083
SubjectTerms Evolutionary algorithms
Optimization
SummonAdditionalLinks – databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTiy8EeWlDLARNfEjjtlo1apCgqFQqZvlJwpSHyoFwb_HdhygCwNjTraTnJ2776K77wC4LAzT2GqTZoxmKcZWpYwqmhJPZ06hVKXy1cj3D8Vogu-mZNoC_aYWxqdVRttf2_RgraOkG7XZXVZV9xE67EBzH7HULCTODiNMQxHftPfzn4XAkoTetn586ic05EMhzevVWbsPFydC6CVZiTYcVODx_-Wnfvme4S7YjqAxua2faw-0zHwf7DQNGZL4fR6Aq8GsGt8kg_d4nsTqM_HcIbNYbJk4hJqMD8FkOHjqj9LYByFVqMDrVGhFJEKGGMikxNohMpEV2moENTGWMZV7lngtkYEOABoHmi2FBGWmoApLhY5Ae76Ym2OQZMrhC5ubkmqGiTaysLk1LshgpSBE2g64bl6eL2u6C97kgb3woCvudcVrXXVAzyvoe6jnqg6CxeqZx83iymaIUhe0y1xhJUphBRSWWVZqIix0ixSNevnG1rulqr_ufvLfiadgy1_VGV9noL1evZlzhy3W8iIcni-bK8uK
  priority: 102
  providerName: Elsevier
Title EmiR: Evolutionary minimization for R
URI https://dx.doi.org/10.1016/j.softx.2022.101083
https://doaj.org/article/cf0377eb3b1c4ca8afa2af9f98d5af23
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: KQ8
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: IXB
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: AKRWK
  dateStart: 20150901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxbeiPJSBtiwSP2IYzaKWhUkGCoqdbP8lIrUgkpB8PdcxwkKCywsGazITo6dnHOle89F6Kzw0rHgPM6lyDFjwWIprMA82pkLYmxpYzXy_UMxmrC7KZ-2Wn3FnLBkD5yAu7Qhp0JAyGd6llld6qCJDjLI0nEdSOXzCTTWCqZSfTApedXRloDCwAJIrrEcqpK7XuEf9wHRISFxJC_pD1qq3Ptb7NRinOEW2qilYnadHnEbrfnFDtps2jBk9Ve5i84H89n4Khu816dILz-z6Bgyr0ssM9Cl2XgPTYaDx5sRrrsfYEsLtsLaWW4o9dwTaQxzoMN0XrjgKHHcByltL3rDO0M9AJB7kMpBEE5zXwjLjKX7qLN4XvgDlOUWVEXo-VI4ybjzpgi94CG0kKXm3IQuumheXr0kkwvVZH89qQorFbFSCasu6keAvm-NDtXVAOybqvdN_bVvXVQ08Kqa7BOJw1Sz31Y__I_Vj9B6nDLlfB2jzmr55k9AXazMaXWQ4Ho77X8Be-jN1Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRpRnBtiImvgRx2yAisqjHUordbP8REFqQaUg-PfYiQNlYWB1ck5ydu6-s-6-A-AkM0xjq02cMJrEGFsVM6poTDydOYVS5cpXI3d7WWeIb0dktACu6loYn1YZbH9l00trHUZaQZutl6JoPUCHHWjqI5aKhWQRLDk0kPi8rpvR5c9BC4E5KZvbeoHYS9TsQ2We16szdx8uUITQjyQ5-uWhSiL_OUc153yu18FqQI3RRfViG2DBTDbBWt2RIQo_6BY4bY-L_nnUfg8bSkw_I08eMg7VlpGDqFF_Gwyv24OrThwaIcQKZXgWC62IRMgQA5mUWDtIJpJMW42gJsYyplJPE68lMtAhQONQs6WQoMRkVGGp0A5oTJ4nZhdEiXIAw6Ymp5phoo3MbGqNizJYLgiRtgnO6o_nLxXfBa8TwZ54qSvudcUrXTXBpVfQ962erLoceJ4-8rBaXNkEUeqidpkqrEQurIDCMstyTYSFbpKsVi__tfZuquKvp-_9V_AYLHcG3Xt-f9O72wcr_kqV_nUAGrPpmzl0QGMmj8qN9AXqFM6r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EmiR%3A+Evolutionary+minimization+for+R&rft.jtitle=SoftwareX&rft.au=Davide+Pagano&rft.au=Lorenzo+Sostero&rft.date=2022-06-01&rft.pub=Elsevier&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=18&rft.spage=101083&rft_id=info:doi/10.1016%2Fj.softx.2022.101083&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cf0377eb3b1c4ca8afa2af9f98d5af23
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon