EmiR: Evolutionary minimization for R
Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-inspired...
Saved in:
Published in | SoftwareX Vol. 18; p. 101083 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-7110 2352-7110 |
DOI | 10.1016/j.softx.2022.101083 |
Cover
Abstract | Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-inspired algorithms has been growing steadily, due to their flexibility and effectiveness. In this paper we present EmiR, a package for R which implements several metaheuristic algorithms for optimization problems. Unlike other available tools, EmiR can be used not only for unconstrained problems, but also for problems subjected to inequality constraints and for integer or mixed-integer problems. Main features of EmiR, its usage and the comparison with other available tools are presented.
[Display omitted] |
---|---|
AbstractList | Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-inspired algorithms has been growing steadily, due to their flexibility and effectiveness. In this paper we present EmiR, a package for R which implements several metaheuristic algorithms for optimization problems. Unlike other available tools, EmiR can be used not only for unconstrained problems, but also for problems subjected to inequality constraints and for integer or mixed-integer problems. Main features of EmiR, its usage and the comparison with other available tools are presented.
[Display omitted] Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic nature-inspired algorithms has been growing steadily, due to their flexibility and effectiveness. In this paper we present EmiR, a package for R which implements several metaheuristic algorithms for optimization problems. Unlike other available tools, EmiR can be used not only for unconstrained problems, but also for problems subjected to inequality constraints and for integer or mixed-integer problems. Main features of EmiR, its usage and the comparison with other available tools are presented. |
ArticleNumber | 101083 |
Author | Pagano, Davide Sostero, Lorenzo |
Author_xml | – sequence: 1 givenname: Davide orcidid: 0000-0003-0333-448X surname: Pagano fullname: Pagano, Davide email: davide.pagano@unibs.it – sequence: 2 givenname: Lorenzo surname: Sostero fullname: Sostero, Lorenzo email: l.sostero@studenti.unibs.it |
BookMark | eNp9kE9LxDAQxYOs4LruJ_DSi8fWSdL0j-BBllUXFoRFzyFNJpKybSSti_rpbbcinjzNzIP3ePM7J7PWt0jIJYWEAs2u66Tztv9IGDA2KlDwEzJnXLA4pxRmf_Yzsuy6GgCoYIVg6ZxcrRu3u4nWB79_751vVfiMGte6xn2p8Y6sD9Hugpxate9w-TMX5OV-_bx6jLdPD5vV3TbWPEv7WBktKs5RICurKjWcgoLMWMOZEWjLUtMyzTJTcWRQABYFszkTHDDLdVppviCbKdd4Vcu34Jqhj_TKyaPgw6tUoXd6j1Jb4HmOFa-oTrUqlFVM2dKWhRHKMj5k8SlLB991Ae1vHgU5gpO1PIKTIzg5gRtct5MLhzcPDoPstMNWo3EBdT_0cP_6vwHG_njB |
Cites_doi | 10.1007/s10898-007-9149-x 10.1016/j.compstruc.2004.01.002 10.1016/j.advengsoft.2016.01.008 10.1137/S1052623496303470 10.1007/BF00930579 10.1016/0305-0548(86)90048-1 10.6028/jres.049.044 10.1016/j.beproc.2011.09.006 10.1007/s10462-017-9605-z 10.1126/science.220.4598.671 10.1007/s10589-005-0985-7 10.1016/j.knosys.2015.07.006 10.1016/0895-7177(96)00014-3 10.1177/003754970107600201 10.1145/29380.29864 10.1016/j.ins.2009.03.004 10.4249/scholarpedia.6532 10.1016/j.advengsoft.2013.12.007 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.softx.2022.101083 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2352-7110 |
ExternalDocumentID | oai_doaj_org_article_cf0377eb3b1c4ca8afa2af9f98d5af23 10_1016_j_softx_2022_101083 S2352711022000590 |
GroupedDBID | 0R~ 457 5VS 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ IXB KQ8 M~E O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c364t-adc5b33e5e29bb4d310a06dfd32d5ef99c19466db3e2080e882f72530e67c4bc3 |
IEDL.DBID | DOA |
ISSN | 2352-7110 |
IngestDate | Wed Aug 27 00:58:48 EDT 2025 Tue Jul 01 02:31:34 EDT 2025 Sun Apr 06 06:53:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | R Optimization Evolutionary algorithms |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-adc5b33e5e29bb4d310a06dfd32d5ef99c19466db3e2080e882f72530e67c4bc3 |
ORCID | 0000-0003-0333-448X |
OpenAccessLink | https://doaj.org/article/cf0377eb3b1c4ca8afa2af9f98d5af23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf0377eb3b1c4ca8afa2af9f98d5af23 crossref_primary_10_1016_j_softx_2022_101083 elsevier_sciencedirect_doi_10_1016_j_softx_2022_101083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | SoftwareX |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Glover, Sörensen (b5) 2015; 10 Lee, Geem (b16) 2004; 82 Karaboga, Basturk (b6) 2007; 39 Kirkpatrick, Gelatt, Vecchi (b21) 1983; 220 Tereshko, Loengarov (b7) 2005; 9 Ng, Zhang, Li, Tian (b28) 2005; 31 Muro, Escobedo, Spector, Coppinger (b14) 2011; 88 Rashedi, Nezamabadi-pour, Saryazdi (b12) 2009; 179 Mirjalili, Mirjalili, Lewis (b13) 2014; 69 Ackley (b27) 1987 Hestenes, Stiefel (b33) 1952; 49 Holland (b10) 1992 Yang, Deb (b9) 2009 Geem, Kim, Loganathan (b15) 2001; 76 Mirjalili (b18) 2015; 89 Kennedy, Eberhart (b19) 1995 Yang (b1) 2010 Mahdavi, Fesanghary, Damangir (b17) 2007; 188 Haupt (b25) 2004 Hussain, Salleh, Cheng, Shi (b4) 2018; 52 Yang (b8) 2010 Corana, Marchesi, Martini, Ridella (b22) 1987; 13 Kazemzadeh Azad, Hasançebi, Erol (b31) 2011; 1 Cragg, Levy (b26) 1969; 4 Simon (b2) 2013 . Surjanovic S, Bingham D. Virtual library of simulation experiments: Test functions and datasets, Retrieved March 21, 2022, from Glover (b3) 1986; 13 Mirjalili, Lewis (b24) 2016; 95 Liang, Runarsson, Mezura-Montes, Clerc, Suganthan, Coello, Deb (b30) 2005 Askarzadeh, dos Santos Coelho, Klein, Mariani (b23) 2016 Goldberg (b11) 1989 Septem Riza, Iip, Prasetyo Nugroho, Adi Prabowo, Junaeti, Abdullah (b32) 2019 Lagarias, Reeds, Wright, Wright (b34) 1998; 9 Kennedy, Eberhart (b20) 2001 Reid (b29) 1996; 23 Haupt (10.1016/j.softx.2022.101083_b25) 2004 Mirjalili (10.1016/j.softx.2022.101083_b24) 2016; 95 Glover (10.1016/j.softx.2022.101083_b5) 2015; 10 Simon (10.1016/j.softx.2022.101083_b2) 2013 Tereshko (10.1016/j.softx.2022.101083_b7) 2005; 9 Cragg (10.1016/j.softx.2022.101083_b26) 1969; 4 Mirjalili (10.1016/j.softx.2022.101083_b18) 2015; 89 Hussain (10.1016/j.softx.2022.101083_b4) 2018; 52 Karaboga (10.1016/j.softx.2022.101083_b6) 2007; 39 Corana (10.1016/j.softx.2022.101083_b22) 1987; 13 Goldberg (10.1016/j.softx.2022.101083_b11) 1989 Reid (10.1016/j.softx.2022.101083_b29) 1996; 23 Hestenes (10.1016/j.softx.2022.101083_b33) 1952; 49 Yang (10.1016/j.softx.2022.101083_b1) 2010 Mahdavi (10.1016/j.softx.2022.101083_b17) 2007; 188 Kennedy (10.1016/j.softx.2022.101083_b20) 2001 Septem Riza (10.1016/j.softx.2022.101083_b32) 2019 Kazemzadeh Azad (10.1016/j.softx.2022.101083_b31) 2011; 1 Askarzadeh (10.1016/j.softx.2022.101083_b23) 2016 Ng (10.1016/j.softx.2022.101083_b28) 2005; 31 Glover (10.1016/j.softx.2022.101083_b3) 1986; 13 Geem (10.1016/j.softx.2022.101083_b15) 2001; 76 Liang (10.1016/j.softx.2022.101083_b30) 2005 Lee (10.1016/j.softx.2022.101083_b16) 2004; 82 Kirkpatrick (10.1016/j.softx.2022.101083_b21) 1983; 220 Yang (10.1016/j.softx.2022.101083_b8) 2010 Lagarias (10.1016/j.softx.2022.101083_b34) 1998; 9 Mirjalili (10.1016/j.softx.2022.101083_b13) 2014; 69 10.1016/j.softx.2022.101083_b35 Holland (10.1016/j.softx.2022.101083_b10) 1992 Ackley (10.1016/j.softx.2022.101083_b27) 1987 Yang (10.1016/j.softx.2022.101083_b9) 2009 Rashedi (10.1016/j.softx.2022.101083_b12) 2009; 179 Kennedy (10.1016/j.softx.2022.101083_b19) 1995 Muro (10.1016/j.softx.2022.101083_b14) 2011; 88 |
References_xml | – volume: 88 start-page: 192 year: 2011 end-page: 197 ident: b14 article-title: Wolf-pack publication-title: Behav Process – year: 2010 ident: b1 article-title: Nature-inspired metaheuristic algorithms – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: b15 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation – year: 2013 ident: b2 article-title: Evolutionary optimization algorithms – year: 1992 ident: b10 article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence – volume: 10 start-page: 6532 year: 2015 ident: b5 article-title: Metaheuristics publication-title: Scholarpedia – volume: 49 start-page: 409 year: 1952 ident: b33 article-title: Methods of conjugate gradients for solving linear systems publication-title: J Res Natl Bur Stand – volume: 13 start-page: 262 year: 1987 end-page: 280 ident: b22 article-title: Minimizing multimodal functions of continuous variables with the ”simulated annealing” algorithm publication-title: ACM Trans Math Softw – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b13 article-title: Grey wolf optimizer publication-title: Adv Eng Softw – year: 1989 ident: b11 article-title: Genetic algorithms in search, optimization, and machine learning – reference: Surjanovic S, Bingham D. Virtual library of simulation experiments: Test functions and datasets, Retrieved March 21, 2022, from – year: 1987 ident: b27 article-title: A connectionist machine for genetic hillclimbing – volume: 9 start-page: 112 year: 1998 end-page: 147 ident: b34 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: SIAM J Optim – volume: 13 start-page: 533 year: 1986 end-page: 549 ident: b3 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput Oper Res – volume: 23 start-page: 87 year: 1996 end-page: 111 ident: b29 article-title: Genetic algorithms in constrained optimization publication-title: Math Comput Modelling – year: 2004 ident: b25 article-title: Practical genetic algorithms – year: 2005 ident: b30 article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization – start-page: 1942 year: 1995 end-page: 1948 vol.4 ident: b19 article-title: Particle swarm optimization publication-title: Proceedings of ICNN’95 - international conference on neural networks, vol. 4 – volume: 82 start-page: 781 year: 2004 end-page: 798 ident: b16 article-title: A new structural optimization method based on the harmony search algorithm publication-title: Comput Struct – year: 2001 ident: b20 article-title: Swarm intelligence – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b18 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl-Based Syst – year: 2016 ident: b23 article-title: A population-based simulated annealing algorithm for global optimization publication-title: 2016 IEEE international conference on systems, man, and cybernetics – reference: . – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b21 article-title: Optimization by simulated annealing publication-title: Science – year: 2019 ident: b32 article-title: Metaheuristicopt: Metaheuristic for optimization – volume: 1 year: 2011 ident: b31 article-title: Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems publication-title: Int J Optim Civ Eng – year: 2009 ident: b9 article-title: Cuckoo search via lèvy flights publication-title: 2009 world congress on nature & biologically inspired computing – volume: 52 start-page: 2191 year: 2018 end-page: 2233 ident: b4 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif Intell Rev – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b6 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J Global Optim – volume: 9 start-page: 1 year: 2005 ident: b7 article-title: Collective decision making in honey-bee foraging dynamics publication-title: Comput Inf Syst – volume: 188 start-page: 1567 year: 2007 end-page: 1579 ident: b17 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Appl Math Comput – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b24 article-title: The whale optimization algorithm publication-title: Adv Eng Softw – volume: 4 start-page: 191 year: 1969 end-page: 205 ident: b26 article-title: Study on a supermemory gradient method for the minimization of functions publication-title: J Optim Theory Appl – volume: 31 start-page: 87 year: 2005 end-page: 115 ident: b28 article-title: Discrete filled function method for discrete global optimization publication-title: Comput Optim Appl – start-page: 65 year: 2010 end-page: 74 ident: b8 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature inspired cooperative strategies for optimization – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b12 article-title: GSA: A gravitational search algorithm publication-title: Inform Sci – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.softx.2022.101083_b6 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J Global Optim doi: 10.1007/s10898-007-9149-x – volume: 82 start-page: 781 issue: 9–10 year: 2004 ident: 10.1016/j.softx.2022.101083_b16 article-title: A new structural optimization method based on the harmony search algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2004.01.002 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.softx.2022.101083_b24 article-title: The whale optimization algorithm publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – year: 2009 ident: 10.1016/j.softx.2022.101083_b9 article-title: Cuckoo search via lèvy flights – year: 1987 ident: 10.1016/j.softx.2022.101083_b27 – start-page: 1942 year: 1995 ident: 10.1016/j.softx.2022.101083_b19 article-title: Particle swarm optimization – volume: 9 start-page: 112 issue: 1 year: 1998 ident: 10.1016/j.softx.2022.101083_b34 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: SIAM J Optim doi: 10.1137/S1052623496303470 – year: 1992 ident: 10.1016/j.softx.2022.101083_b10 – volume: 4 start-page: 191 issue: 3 year: 1969 ident: 10.1016/j.softx.2022.101083_b26 article-title: Study on a supermemory gradient method for the minimization of functions publication-title: J Optim Theory Appl doi: 10.1007/BF00930579 – volume: 9 start-page: 1 issue: 3 year: 2005 ident: 10.1016/j.softx.2022.101083_b7 article-title: Collective decision making in honey-bee foraging dynamics publication-title: Comput Inf Syst – year: 2010 ident: 10.1016/j.softx.2022.101083_b1 – ident: 10.1016/j.softx.2022.101083_b35 – year: 2005 ident: 10.1016/j.softx.2022.101083_b30 – volume: 13 start-page: 533 issue: 5 year: 1986 ident: 10.1016/j.softx.2022.101083_b3 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput Oper Res doi: 10.1016/0305-0548(86)90048-1 – year: 2001 ident: 10.1016/j.softx.2022.101083_b20 – year: 2004 ident: 10.1016/j.softx.2022.101083_b25 – volume: 49 start-page: 409 issue: 6 year: 1952 ident: 10.1016/j.softx.2022.101083_b33 article-title: Methods of conjugate gradients for solving linear systems publication-title: J Res Natl Bur Stand doi: 10.6028/jres.049.044 – volume: 88 start-page: 192 issue: 3 year: 2011 ident: 10.1016/j.softx.2022.101083_b14 article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations publication-title: Behav Process doi: 10.1016/j.beproc.2011.09.006 – volume: 1 issue: 3 year: 2011 ident: 10.1016/j.softx.2022.101083_b31 article-title: Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems publication-title: Int J Optim Civ Eng – volume: 52 start-page: 2191 issue: 4 year: 2018 ident: 10.1016/j.softx.2022.101083_b4 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9605-z – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.softx.2022.101083_b21 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – start-page: 65 year: 2010 ident: 10.1016/j.softx.2022.101083_b8 article-title: A new metaheuristic bat-inspired algorithm – volume: 31 start-page: 87 issue: 1 year: 2005 ident: 10.1016/j.softx.2022.101083_b28 article-title: Discrete filled function method for discrete global optimization publication-title: Comput Optim Appl doi: 10.1007/s10589-005-0985-7 – year: 2019 ident: 10.1016/j.softx.2022.101083_b32 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.softx.2022.101083_b18 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 23 start-page: 87 issue: 5 year: 1996 ident: 10.1016/j.softx.2022.101083_b29 article-title: Genetic algorithms in constrained optimization publication-title: Math Comput Modelling doi: 10.1016/0895-7177(96)00014-3 – year: 2016 ident: 10.1016/j.softx.2022.101083_b23 article-title: A population-based simulated annealing algorithm for global optimization – volume: 188 start-page: 1567 issue: 2 year: 2007 ident: 10.1016/j.softx.2022.101083_b17 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Appl Math Comput – year: 2013 ident: 10.1016/j.softx.2022.101083_b2 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.softx.2022.101083_b15 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – year: 1989 ident: 10.1016/j.softx.2022.101083_b11 – volume: 13 start-page: 262 issue: 3 year: 1987 ident: 10.1016/j.softx.2022.101083_b22 article-title: Minimizing multimodal functions of continuous variables with the ”simulated annealing” algorithm publication-title: ACM Trans Math Softw doi: 10.1145/29380.29864 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.softx.2022.101083_b12 article-title: GSA: A gravitational search algorithm publication-title: Inform Sci doi: 10.1016/j.ins.2009.03.004 – volume: 10 start-page: 6532 issue: 4 year: 2015 ident: 10.1016/j.softx.2022.101083_b5 article-title: Metaheuristics publication-title: Scholarpedia doi: 10.4249/scholarpedia.6532 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.softx.2022.101083_b13 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 |
SSID | ssj0001528524 |
Score | 2.1975174 |
Snippet | Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 101083 |
SubjectTerms | Evolutionary algorithms Optimization |
SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTiy8EeWlDLARNfEjjtlo1apCgqFQqZvlJwpSHyoFwb_HdhygCwNjTraTnJ2776K77wC4LAzT2GqTZoxmKcZWpYwqmhJPZ06hVKXy1cj3D8Vogu-mZNoC_aYWxqdVRttf2_RgraOkG7XZXVZV9xE67EBzH7HULCTODiNMQxHftPfzn4XAkoTetn586ic05EMhzevVWbsPFydC6CVZiTYcVODx_-Wnfvme4S7YjqAxua2faw-0zHwf7DQNGZL4fR6Aq8GsGt8kg_d4nsTqM_HcIbNYbJk4hJqMD8FkOHjqj9LYByFVqMDrVGhFJEKGGMikxNohMpEV2moENTGWMZV7lngtkYEOABoHmi2FBGWmoApLhY5Ae76Ym2OQZMrhC5ubkmqGiTaysLk1LshgpSBE2g64bl6eL2u6C97kgb3woCvudcVrXXVAzyvoe6jnqg6CxeqZx83iymaIUhe0y1xhJUphBRSWWVZqIix0ixSNevnG1rulqr_ufvLfiadgy1_VGV9noL1evZlzhy3W8iIcni-bK8uK priority: 102 providerName: Elsevier |
Title | EmiR: Evolutionary minimization for R |
URI | https://dx.doi.org/10.1016/j.softx.2022.101083 https://doaj.org/article/cf0377eb3b1c4ca8afa2af9f98d5af23 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: KQ8 dateStart: 20150901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: IXB dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: AKRWK dateStart: 20150901 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxbeiPJSBtiwSP2IYzaKWhUkGCoqdbP8lIrUgkpB8PdcxwkKCywsGazITo6dnHOle89F6Kzw0rHgPM6lyDFjwWIprMA82pkLYmxpYzXy_UMxmrC7KZ-2Wn3FnLBkD5yAu7Qhp0JAyGd6llld6qCJDjLI0nEdSOXzCTTWCqZSfTApedXRloDCwAJIrrEcqpK7XuEf9wHRISFxJC_pD1qq3Ptb7NRinOEW2qilYnadHnEbrfnFDtps2jBk9Ve5i84H89n4Khu816dILz-z6Bgyr0ssM9Cl2XgPTYaDx5sRrrsfYEsLtsLaWW4o9dwTaQxzoMN0XrjgKHHcByltL3rDO0M9AJB7kMpBEE5zXwjLjKX7qLN4XvgDlOUWVEXo-VI4ybjzpgi94CG0kKXm3IQuumheXr0kkwvVZH89qQorFbFSCasu6keAvm-NDtXVAOybqvdN_bVvXVQ08Kqa7BOJw1Sz31Y__I_Vj9B6nDLlfB2jzmr55k9AXazMaXWQ4Ho77X8Be-jN1Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRpRnBtiImvgRx2yAisqjHUordbP8REFqQaUg-PfYiQNlYWB1ck5ydu6-s-6-A-AkM0xjq02cMJrEGFsVM6poTDydOYVS5cpXI3d7WWeIb0dktACu6loYn1YZbH9l00trHUZaQZutl6JoPUCHHWjqI5aKhWQRLDk0kPi8rpvR5c9BC4E5KZvbeoHYS9TsQ2We16szdx8uUITQjyQ5-uWhSiL_OUc153yu18FqQI3RRfViG2DBTDbBWt2RIQo_6BY4bY-L_nnUfg8bSkw_I08eMg7VlpGDqFF_Gwyv24OrThwaIcQKZXgWC62IRMgQA5mUWDtIJpJMW42gJsYyplJPE68lMtAhQONQs6WQoMRkVGGp0A5oTJ4nZhdEiXIAw6Ymp5phoo3MbGqNizJYLgiRtgnO6o_nLxXfBa8TwZ54qSvudcUrXTXBpVfQ962erLoceJ4-8rBaXNkEUeqidpkqrEQurIDCMstyTYSFbpKsVi__tfZuquKvp-_9V_AYLHcG3Xt-f9O72wcr_kqV_nUAGrPpmzl0QGMmj8qN9AXqFM6r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EmiR%3A+Evolutionary+minimization+for+R&rft.jtitle=SoftwareX&rft.au=Davide+Pagano&rft.au=Lorenzo+Sostero&rft.date=2022-06-01&rft.pub=Elsevier&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=18&rft.spage=101083&rft_id=info:doi/10.1016%2Fj.softx.2022.101083&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cf0377eb3b1c4ca8afa2af9f98d5af23 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon |