Gait Recognition via Deep Learning of the Center-of-Pressure Trajectory
The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-...
Saved in:
| Published in | Applied sciences Vol. 10; no. 3; p. 774 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app10030774 |
Cover
| Abstract | The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-six adults walked for 30 min on a treadmill equipped with a force platform that continuously recorded the positions of the COP. The raw two-dimensional signals were sliced into segments of two gait cycles. A set of 20,250 segments from 30 subjects was used to configure and train convolutional neural networks (CNNs). The best CNN classified a separate set containing 2250 segments with an overall accuracy of 99.9%. A second set of 4500 segments from the six remaining subjects was then used for transfer learning. Several small subsamples of this set were selected randomly and used to fine tune the pretrained CNNs. Training with two segments per subject was sufficient to achieve 100% accuracy. The results suggest that every person produces a unique trajectory of underfoot pressures while walking and that CNNs can learn the distinctive features of these trajectories. By applying a pretrained CNN (transfer learning), a couple of strides seem enough to learn and identify new gaits. However, these promising results should be confirmed in a larger sample under realistic conditions. |
|---|---|
| AbstractList | The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-six adults walked for 30 min on a treadmill equipped with a force platform that continuously recorded the positions of the COP. The raw two-dimensional signals were sliced into segments of two gait cycles. A set of 20,250 segments from 30 subjects was used to configure and train convolutional neural networks (CNNs). The best CNN classified a separate set containing 2250 segments with an overall accuracy of 99.9%. A second set of 4500 segments from the six remaining subjects was then used for transfer learning. Several small subsamples of this set were selected randomly and used to fine tune the pretrained CNNs. Training with two segments per subject was sufficient to achieve 100% accuracy. The results suggest that every person produces a unique trajectory of underfoot pressures while walking and that CNNs can learn the distinctive features of these trajectories. By applying a pretrained CNN (transfer learning), a couple of strides seem enough to learn and identify new gaits. However, these promising results should be confirmed in a larger sample under realistic conditions. Featured ApplicationSensing floors combined with pattern recognition and deep learning could identify individuals by the way they unfold their footsteps on the ground.AbstractThe fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-six adults walked for 30 min on a treadmill equipped with a force platform that continuously recorded the positions of the COP. The raw two-dimensional signals were sliced into segments of two gait cycles. A set of 20,250 segments from 30 subjects was used to configure and train convolutional neural networks (CNNs). The best CNN classified a separate set containing 2250 segments with an overall accuracy of 99.9%. A second set of 4500 segments from the six remaining subjects was then used for transfer learning. Several small subsamples of this set were selected randomly and used to fine tune the pretrained CNNs. Training with two segments per subject was sufficient to achieve 100% accuracy. The results suggest that every person produces a unique trajectory of underfoot pressures while walking and that CNNs can learn the distinctive features of these trajectories. By applying a pretrained CNN (transfer learning), a couple of strides seem enough to learn and identify new gaits. However, these promising results should be confirmed in a larger sample under realistic conditions. |
| Author | Terrier, Philippe |
| Author_xml | – sequence: 1 givenname: Philippe orcidid: 0000-0002-3693-4505 surname: Terrier fullname: Terrier, Philippe |
| BookMark | eNqFkV1L7DAQhoMo-HnlHyicy2M1abJNcyl7dBUWFNHrMEmna5aepKZZZf-90RUREZybDOHJwzuTfbLtg0dCjhk95VzRMxgGRimnUootsldRWZdcMLn9pd8lR-O4pLkU4w2je2Q2A5eKO7Rh4V1ywRfPDop_iEMxR4je-UURuiI9YjFFnzCWoStvI47jKmJxH2GJNoW4PiQ7HfQjHn2cB-Th8uJ-elXOb2bX0_N5aXktUglGWMNE1QiAHNSqquGcdkpiRxtuWJVzKWUngkPXcGHqicS2oaYD09a1pPyAXG-8bYClHqL7D3GtAzj9fhHiQkNMzvao84ATpMYogyCUVA1roDaGt9C2kqPNrpONa-UHWL9A338KGdVvO9VfdprxPxt8iOFphWPSy7CKPk-rq0mmKyEFy9TfDWVjGMeI3S9O9o22LsHbP6QIrv_xzSsLVJS4 |
| CitedBy_id | crossref_primary_10_3390_electronics10020182 crossref_primary_10_1109_JSEN_2023_3235869 crossref_primary_10_1007_s00371_024_03684_w crossref_primary_10_1109_ACCESS_2024_3445415 crossref_primary_10_3389_fbioe_2022_843204 crossref_primary_10_1016_j_engappai_2023_107712 crossref_primary_10_1155_2021_6252445 crossref_primary_10_1007_s10723_021_09595_7 crossref_primary_10_1016_j_neucom_2022_07_002 crossref_primary_10_1109_JSEN_2024_3373100 crossref_primary_10_1186_s12984_024_01460_4 crossref_primary_10_1016_j_imavis_2023_104784 crossref_primary_10_3390_s20247225 crossref_primary_10_1186_s40537_020_00387_6 crossref_primary_10_3390_math10132283 crossref_primary_10_1109_JSEN_2021_3136162 crossref_primary_10_1002_widm_1557 crossref_primary_10_1016_j_dsp_2024_104393 crossref_primary_10_1109_TIM_2022_3162270 crossref_primary_10_1177_20552076221074128 crossref_primary_10_3390_s23073392 crossref_primary_10_3390_app10030774 crossref_primary_10_1109_ACCESS_2020_3016970 crossref_primary_10_3390_app10165608 crossref_primary_10_1109_TMM_2021_3075025 |
| Cites_doi | 10.1111/jar.12462 10.1109/CVPR.2016.319 10.7287/peerj.preprints.27711v1 10.1109/CVPR.2017.195 10.1109/TCYB.2014.2361287 10.1109/THS.2015.7225338 10.1186/1471-2318-13-34 10.25103/jestr.111.02 10.3389/fpsyg.2017.00817 10.1109/HSI.2010.5514531 10.3389/fphys.2013.00230 10.1007/978-1-4899-7488-4 10.1097/00005768-199810000-00011 10.3389/fphys.2019.00257 10.1186/1743-0003-8-12 10.1109/TIFS.2015.2415753 10.1109/JSEN.2015.2493122 10.1109/ICB.2016.7550060 10.3390/app10030774 10.1016/j.gaitpost.2018.03.017 10.1016/j.humov.2012.05.004 10.1016/S0966-6362(97)00043-X 10.1007/978-3-642-40925-7 10.1038/nature14539 10.1016/j.jns.2015.08.028 10.1007/978-3-030-00931-1 10.1109/CVPR.2015.7298594 10.1155/2009/415817 10.3389/fncom.2014.00043 10.1088/1749-4699/8/1/014008 10.1002/047134608X.W8261 10.1109/ACCESS.2018.2879896 10.1016/j.neunet.2017.12.012 10.1186/s41074-018-0039-6 10.1016/j.jbiomech.2008.06.023 10.1016/j.gaitpost.2015.12.037 10.1007/s10439-016-1573-y 10.1109/TPAMI.2016.2545669 10.1080/00222895.1995.9941708 10.1016/j.patrec.2004.09.011 10.1109/IJCNN.2017.7966039 10.1371/journal.pone.0047171 10.1016/j.inffus.2006.11.003 10.21629/JSEE.2017.01.18 10.1016/j.cviu.2018.01.007 10.1098/rsif.2011.0430 10.1049/iet-bmt.2018.5063 10.1016/j.humov.2005.03.002 10.1109/TSMCB.2008.927722 10.7717/peerj.7417 10.3390/s150922089 10.1109/ICCV.2015.123 |
| ContentType | Journal Article |
| Copyright | 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app10030774 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_3815e0bb9bea4979818a6bb3dadd73ec 10.3390/app10030774 10_3390_app10030774 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c364t-ab4cb14284aa077c928330f97ef083b1291399c543af834b657ed80bfabd66703 |
| IEDL.DBID | BENPR |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:37:50 EDT 2025 Sun Oct 26 03:50:30 EDT 2025 Mon Jun 30 11:37:37 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 Thu Oct 16 04:33:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-ab4cb14284aa077c928330f97ef083b1291399c543af834b657ed80bfabd66703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3693-4505 |
| OpenAccessLink | https://www.proquest.com/docview/2533924741?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2533924741 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3815e0bb9bea4979818a6bb3dadd73ec unpaywall_primary_10_3390_app10030774 proquest_journals_2533924741 crossref_primary_10_3390_app10030774 crossref_citationtrail_10_3390_app10030774 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Veilleux (ref_70) 2011; 11 ref_14 ref_13 ref_57 ref_12 ref_56 ref_55 Andries (ref_72) 2016; 16 Wu (ref_19) 2017; 39 Terrier (ref_25) 2019; 7 ref_53 ref_52 ref_51 Rida (ref_3) 2018; 8 Han (ref_54) 2005; 26 Terrier (ref_58) 2005; 24 Terrier (ref_67) 2012; 31 Casartelli (ref_60) 2016; 44 Holt (ref_1) 1995; 27 Singh (ref_4) 2018; 6 Scorza (ref_71) 2018; 11 Oberg (ref_66) 1993; 30 Kalron (ref_28) 2015; 358 Zhao (ref_21) 2017; 28 Pataky (ref_16) 2012; 9 Hinton (ref_49) 2008; 9 White (ref_64) 1998; 30 ref_68 ref_23 ref_22 ref_20 Overberg (ref_59) 2018; 62 ref_27 Sprager (ref_8) 2015; 15 Elfwing (ref_44) 2018; 107 Gafurov (ref_7) 2009; 2009 ref_36 Zhang (ref_10) 2015; 45 ref_35 ref_34 ref_33 LeCun (ref_62) 2015; 521 ref_32 ref_31 ref_30 Sprager (ref_11) 2015; 10 ref_39 ref_38 ref_37 Straube (ref_50) 2014; 8 Roerdink (ref_69) 2019; 10 Stolze (ref_61) 1998; 7 Suutala (ref_18) 2008; 9 Roerdink (ref_26) 2008; 41 Moustakidis (ref_15) 2008; 38 Vienne (ref_9) 2017; 8 ref_46 ref_45 Grieco (ref_65) 2018; 31 ref_43 ref_42 ref_41 Takemura (ref_6) 2018; 10 Terrier (ref_29) 2013; 4 ref_40 Terrier (ref_24) 2016; 44 Connor (ref_2) 2018; 167 Jung (ref_17) 2004; 87 ref_48 Terrier (ref_63) 2011; 8 ref_5 Bergstra (ref_47) 2015; 8 |
| References_xml | – volume: 31 start-page: 1219 year: 2018 ident: ref_65 article-title: Identification of spatiotemporal gait parameters and pressure-related characteristics in children with Angelman syndrome: A pilot study publication-title: J. Appl. Res. Intellect. Disabil. doi: 10.1111/jar.12462 – ident: ref_32 – ident: ref_52 doi: 10.1109/CVPR.2016.319 – ident: ref_55 – ident: ref_30 doi: 10.7287/peerj.preprints.27711v1 – ident: ref_35 doi: 10.1109/CVPR.2017.195 – volume: 9 start-page: 2579 year: 2008 ident: ref_49 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref_51 – volume: 45 start-page: 1864 year: 2015 ident: ref_10 article-title: Accelerometer-Based Gait Recognition by Sparse Representation of Signature Points With Clusters publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2361287 – volume: 11 start-page: 27 year: 2011 ident: ref_70 article-title: Gait analysis using a force-measuring gangway: Intrasession repeatability in healthy adults publication-title: J. Musculoskelet. Neuronal Interact – ident: ref_23 doi: 10.1109/THS.2015.7225338 – ident: ref_27 doi: 10.1186/1471-2318-13-34 – volume: 11 start-page: 10 year: 2018 ident: ref_71 article-title: A review on methods and devices for force platforms calibration in medical applications publication-title: J. Eng. Sci. Technol. Rev. doi: 10.25103/jestr.111.02 – volume: 8 start-page: 817 year: 2017 ident: ref_9 article-title: Inertial Sensors to Assess Gait Quality in Patients with Neurological Disorders: A Systematic Review of Technical and Analytical Challenges publication-title: Front. Psychol. doi: 10.3389/fpsyg.2017.00817 – ident: ref_13 doi: 10.1109/HSI.2010.5514531 – volume: 4 start-page: 230 year: 2013 ident: ref_29 article-title: Non-linear dynamics of human locomotion: Effects of rhythmic auditory cueing on local dynamic stability publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00230 – ident: ref_12 doi: 10.1007/978-1-4899-7488-4 – ident: ref_39 – volume: 30 start-page: 1537 year: 1998 ident: ref_64 article-title: Comparison of vertical ground reaction forces during overground and treadmill walking publication-title: Med. Sci. Sports Exerc. doi: 10.1097/00005768-199810000-00011 – volume: 10 start-page: 257 year: 2019 ident: ref_69 article-title: Tightening up the Control of Treadmill Walking: Effects of Maneuverability Range and Acoustic Pacing on Stride-to-Stride Fluctuations publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00257 – volume: 8 start-page: 12 year: 2011 ident: ref_63 article-title: Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-8-12 – volume: 10 start-page: 1486 year: 2015 ident: ref_11 article-title: An Efficient HOS-Based Gait Authentication of Accelerometer Data publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2415753 – volume: 16 start-page: 1026 year: 2016 ident: ref_72 article-title: Localization of Humans, Objects, and Robots Interacting on Load-Sensing Floors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2493122 – ident: ref_20 doi: 10.1109/ICB.2016.7550060 – ident: ref_31 doi: 10.3390/app10030774 – volume: 62 start-page: 117 year: 2018 ident: ref_59 article-title: Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.03.017 – volume: 31 start-page: 1585 year: 2012 ident: ref_67 article-title: Persistent and anti-persistent pattern in stride-to-stride variability of treadmill walking: Influence of rhythmic auditory cueing publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2012.05.004 – ident: ref_56 – volume: 7 start-page: 125 year: 1998 ident: ref_61 article-title: Retest reliability of spatiotemporal gait parameters in children and adults publication-title: Gait Posture doi: 10.1016/S0966-6362(97)00043-X – volume: 30 start-page: 210 year: 1993 ident: ref_66 article-title: Basic gait parameters: Reference data for normal subjects, 10–79 years of age publication-title: J. Rehabil. Res. Dev. – ident: ref_48 – ident: ref_14 doi: 10.1007/978-3-642-40925-7 – volume: 521 start-page: 436 year: 2015 ident: ref_62 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 87 start-page: 1393 year: 2004 ident: ref_17 article-title: Person recognition method using sequential walking footprints via overlapped foot shape and center-of-pressure trajectory publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – ident: ref_41 – volume: 358 start-page: 92 year: 2015 ident: ref_28 article-title: The “butterfly diagram”: A gait marker for neurological and cerebellar impairment in people with multiple sclerosis publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2015.08.028 – ident: ref_53 doi: 10.1007/978-3-030-00931-1 – ident: ref_57 doi: 10.1109/CVPR.2015.7298594 – ident: ref_38 – ident: ref_45 – volume: 2009 start-page: 415817 year: 2009 ident: ref_7 article-title: Gait Recognition Using Wearable Motion Recording Sensors publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2009/415817 – volume: 8 start-page: 43 year: 2014 ident: ref_50 article-title: How to evaluate an agent’s behavior to infrequent events?—Reliable performance estimation insensitive to class distribution publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2014.00043 – ident: ref_34 – volume: 8 start-page: 014008 year: 2015 ident: ref_47 article-title: Hyperopt: A Python library for model selection and hyperparameter optimization publication-title: Comput. Sci. Discov. doi: 10.1088/1749-4699/8/1/014008 – ident: ref_5 doi: 10.1002/047134608X.W8261 – ident: ref_40 – volume: 6 start-page: 70497 year: 2018 ident: ref_4 article-title: Vision-based gait recognition: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879896 – volume: 107 start-page: 3 year: 2018 ident: ref_44 article-title: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.12.012 – volume: 10 start-page: 4 year: 2018 ident: ref_6 article-title: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition publication-title: IPSJ Trans. Comput. Vis. Appl. doi: 10.1186/s41074-018-0039-6 – ident: ref_37 – volume: 41 start-page: 2628 year: 2008 ident: ref_26 article-title: Online gait event detection using a large force platform embedded in a treadmill publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.06.023 – volume: 44 start-page: 259 year: 2016 ident: ref_60 article-title: Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.12.037 – volume: 44 start-page: 2785 year: 2016 ident: ref_24 article-title: Fractal Fluctuations in Human Walking: Comparison between Auditory and Visually Guided Stepping publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1573-y – volume: 39 start-page: 209 year: 2017 ident: ref_19 article-title: A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2545669 – volume: 27 start-page: 164 year: 1995 ident: ref_1 article-title: Energetic Cost and Stability during Human Walking at the Preferred Stride Frequency publication-title: J. Mot. Behav. doi: 10.1080/00222895.1995.9941708 – ident: ref_33 – ident: ref_46 – volume: 26 start-page: 615 year: 2005 ident: ref_54 article-title: Performance prediction for individual recognition by gait publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2004.09.011 – ident: ref_22 doi: 10.1109/IJCNN.2017.7966039 – ident: ref_68 doi: 10.1371/journal.pone.0047171 – volume: 9 start-page: 21 year: 2008 ident: ref_18 article-title: Methods for person identification on a pressure-sensitive floor: Experiments with multiple classifiers and reject option publication-title: Inf. Fusion doi: 10.1016/j.inffus.2006.11.003 – volume: 28 start-page: 162 year: 2017 ident: ref_21 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.01.18 – volume: 167 start-page: 1 year: 2018 ident: ref_2 article-title: Biometric recognition by gait: A survey of modalities and features publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2018.01.007 – volume: 9 start-page: 790 year: 2012 ident: ref_16 article-title: Gait recognition: Highly unique dynamic plantar pressure patterns among 104 individuals publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2011.0430 – volume: 8 start-page: 14 year: 2018 ident: ref_3 article-title: Robust gait recognition: A comprehensive survey publication-title: IET Biom. doi: 10.1049/iet-bmt.2018.5063 – volume: 24 start-page: 97 year: 2005 ident: ref_58 article-title: GPS analysis of human locomotion: Further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2005.03.002 – ident: ref_36 – ident: ref_43 – volume: 38 start-page: 1476 year: 2008 ident: ref_15 article-title: Subject recognition based on ground reaction force measurements of gait signals publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2008.927722 – volume: 7 start-page: e7417 year: 2019 ident: ref_25 article-title: Complexity of human walking: The attractor complexity index is sensitive to gait synchronization with visual and auditory cues publication-title: PeerJ. doi: 10.7717/peerj.7417 – volume: 15 start-page: 22089 year: 2015 ident: ref_8 article-title: Inertial Sensor-Based Gait Recognition: A Review publication-title: Sensors doi: 10.3390/s150922089 – ident: ref_42 doi: 10.1109/ICCV.2015.123 |
| SSID | ssj0000913810 |
| Score | 2.3395276 |
| Snippet | The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end... Featured ApplicationSensing floors combined with pattern recognition and deep learning could identify individuals by the way they unfold their footsteps on the... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 774 |
| SubjectTerms | Accuracy biometric recognition Biometrics Classification Fitness equipment footstep recognition force platform Gait Laboratories machine learning Neural networks Sensors Signal processing Time series user verification Walking |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi3oQNxWrU3KYoEKwXdOmOfprG4IexMFuJUkTmYx2bJ2y_96XthsdiF68lRJK-vJevu8lL18Q6vgMUICxhMhEG0KLJ6kYYYCl1DOJ4tyeHX5-CQdD-jQKRrWrvmxNWCkPXBruBhAl0K6UXGpBOePwaRFK6ScQmMzXys6-bsRryVQxB3PPSleVB_J8yOvtfrBXeDSjGxBUKPVv0MvtRToVyy8xmdSQpreP9iqKiG_LrjXRlk5baLcmHNhCzSok5_iy0o2-OkD9vhjn-HVVEZSl-HMs8IPWU1ypqL7jzGBgfNiu6eoZyQwpjwfONAbQ-ihW8JeHaNh7fLsfkOqeBKL8kOZESKrsWk5EhYD_Uxwog-8azrQBgiUB0YHmcRVQX5jIpzIMmE4iVxohkzCEkD9CjTRL9THCQBYikRgFSK6pCCIObCMBhqOjKJCceQ66XpkuVpWIuL3LYhJDMmHtHNfs7KDOuvG01M74udmdHYN1Eyt4XbwAN4grN4j_cgMHtVcjGFdROI-7wGUhvwTS5KCL9aj-1peT_-jLKdrp2qy8qO1uo0Y-W-gzoC65PC-89BsIWerm priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3faxQxEMeHen1QH2pbLV5bSx4qqJDej2Q3myep9heCRcSD-rTkZzk9do-7vUr96zvZzR5XESm-LUsWsjuTzGdmk28ADpnAKCCEpdo6T3l9pY2gAmMpH3hrpAx7hz9fphcj_ukquYoFt3lcVomp-LiepIeYZFOcZsPu8B7rIan0pta_v4mVpEGSBd1rzvgjWE8TZPEOrI8uvxx_DyfKtc82m_IY5vbhn_Cg9mrB74WhWq3_HmI-XhRTdftLTSYr0ebsGeRtP5tFJj-PFpU-Mr__kHD8_xfZhI0IouS48ZwtWHPFNjxdkSfchq048OfkTVSnfvsczs_VuCJf23VHZUFuxoqcODclUav1mpSeIFeSUDl2M1p62mxCnDmCofFH_Z_g9gWMzk6_fbyg8TQGaljKK6o0N6FilHGl8AsaiWDC-l4K5xHjNHIDwqQ0CWfKZ4zrNBHOZn3tlbZpihPLDnSKsnAvgSCSZMp6g7zguEoyiUxjkaNcliVaikEX3rXGyU2UKg8nZkxyTFmCJfMVS3bhcNl42ih0_L3Zh2DlZZMgq13fKGfXeRylOeJL4vpaS-0Ul0KiH6tUa2YxCmD3TBf2Wx_J41if50MkZsxiEc268HrpN__qy-4D2-3Bk2FI7-tF4vvQqWYL9woZqNIH0dHvAHtx_rY priority: 102 providerName: Unpaywall |
| Title | Gait Recognition via Deep Learning of the Center-of-Pressure Trajectory |
| URI | https://www.proquest.com/docview/2533924741 https://www.mdpi.com/2076-3417/10/3/774/pdf?version=1580729434 https://doaj.org/article/3815e0bb9bea4979818a6bb3dadd73ec |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7a9GHbw1i7jaXrgh462AZiTixb0sMYbdekDBZKWaB7MvpZOoKdpWlL__ueFDlNYfTNNkLIutPdp5PuO4D9nKMX4NxSbZ2nLD5pwylHX8r63hopQ-7wr3F5MmE_z4vzDRi3uTDhWmVrE6Ohto0JMfKvA8QluFdAB_h99o-GqlHhdLUtoaFSaQX7LVKMbcLWIDBjdWDr8Hh8eraKugQWTNHPlol62GEWzon7UdM5e-SaIoP_I9j57LqeqbtbNZ2ueaDhK3iZoCM5WMp6GzZcvQMv1ggFd2A7LdUr8inxSX9-DaORulyQs_amUFOTm0tFfjg3I4ld9YI0niASJCHW6-a08XSZNjh3BJ3Z3xjZv3sDk-Hx76MTmuonUJOXbEGVZibEeARTCv_PSIQSeeYldx6Bl0ZPj_BPmoLlyouc6bLgzopMe6VtWaIpeAuduqndOyAIIoSy3qCHd0wVQiIKsYh8nBCFlrzfhS_t1FUmkYuHGhfTCjcZYZ6rtXnuwv6q8WzJqfH_ZodBBqsmgQg7fmjmF1VaVxVKs3CZ1lI7xSSXqHmq1Dq3aLdxeKYLe60Eq7Q6r6oHXerCx5VUnxrL7tPdvIfng7APj7e596CzmF-7DwhWFroHm2I46iU97MUtP75NxqcHf-4Bus3rLg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOEAPVaFU3ZaHDyC1SFazGyeODwiV5_JaVQgkbsFPRLVKtrtL0f65_raOs86ySIgbtyiyrMTz-D6PPTMAmzFHFODcUGWso6x6UppTjljKms5oIXzu8EUnbV-z05vkZgb-1bkw_lpl7RMrR21K7WPkP1rIS3CvgAC42_tDfdcof7pat9CQobWC2alKjIXEjjM7esQt3GDn5ADlvdVqHR1e7bdp6DJAdZyyIZWKaR8JyZiUEedaIODGkRPcOqQnCvEQSZLQCYuly2Km0oRbk0XKSWXSFA0G552FeRYzgZu_-b3Dzq_LSZTHV93MmtE4MRB_IPLn0s3Ksjh7BoVVx4BnNHfhoejJ0aPsdqcQ7-gDvA9Ulfwc69YSzNhiGd5NFTBchqXgGgbkW6hf_f0jHB_L-yG5rG8mlQX5ey_JgbU9Eqq53pHSEWSexMeWbZ-Wjo7TFPuWIHj-rk4SRitw_SYr-QnmirKwn4EgacmkcRoZhWUyyQSyHoNMy2ZZogRvNmC7Xrpch2LmvqdGN8dNjV_nfGqdG7A5Gdwb1_B4ediel8FkiC-8Xb0o-3d5sOMcpZnYSCmhrESBC9R0mSoVG8QJ_DzdgNVagnnwBoP8SXcbsDWR6mvf8uX1aTZgoX11cZ6fn3TOvsJiy8cAqpvkqzA37D_YNSRKQ7UetJHA7VsbwH9zKSO2 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxwxFD5YC1YfpNoWV22bB4W2EJzdyUwmD6W03e56p5QKvk1zFWWZWXdXZf9af50nM5ntCsU334YhhJBzcr7vJOcCsBNzRAHODVXGOsqqL6U55YilrO2MFsLnDp-cpvtn7PA8OV-Av00ujA-rbGxiZahNqf0d-V4HeQn6CgiAey6ERfzs9r4Mr6nvIOVfWpt2GrWKHNnpHbpv488HXZT1bqfT-_H7-z4NHQaojlM2oVIx7W9BMiZlxLkWCLZx5AS3DqmJQixEgiR0wmLpspipNOHWZJFyUpk0xcOC8z6D59xXcfdZ6r3-7H7H19vM2lGdEohLj_yLdLs6U5w9AMGqV8ADgvviphjK6Z0cDOawrvcSVgNJJV9rrVqDBVusw8pc6cJ1WAtGYUw-hMrVH19Bvy8vJ-RXE5NUFuT2UpKutUMS6rhekNIR5JzE3yrbES0drRMUR5YgbF5VbwjT13D2JPv4BhaLsrAbQJCuZNI4jVzCMplkAvmOQY5lsyxRgrdb8KnZulyHMua-m8YgR3fG73M-t88t2JkNHtbVO_4_7JuXwWyIL7ld_ShHF3k4wTlKM7GRUkJZyQQXqOMyVSo2iBC4PN2C7UaCebAD4_yf1rZgdybVx9ay-fg072EJ1T4_Pjg92oLljnf-qxDybVicjG7sW2RIE_WuUkUCf55a9-8Bb8shUA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3faxQxEMeHen1QH2pbLV5bSx4qqJDej2Q3myep9heCRcSD-rTkZzk9do-7vUr96zvZzR5XESm-LUsWsjuTzGdmk28ADpnAKCCEpdo6T3l9pY2gAmMpH3hrpAx7hz9fphcj_ukquYoFt3lcVomp-LiepIeYZFOcZsPu8B7rIan0pta_v4mVpEGSBd1rzvgjWE8TZPEOrI8uvxx_DyfKtc82m_IY5vbhn_Cg9mrB74WhWq3_HmI-XhRTdftLTSYr0ebsGeRtP5tFJj-PFpU-Mr__kHD8_xfZhI0IouS48ZwtWHPFNjxdkSfchq048OfkTVSnfvsczs_VuCJf23VHZUFuxoqcODclUav1mpSeIFeSUDl2M1p62mxCnDmCofFH_Z_g9gWMzk6_fbyg8TQGaljKK6o0N6FilHGl8AsaiWDC-l4K5xHjNHIDwqQ0CWfKZ4zrNBHOZn3tlbZpihPLDnSKsnAvgSCSZMp6g7zguEoyiUxjkaNcliVaikEX3rXGyU2UKg8nZkxyTFmCJfMVS3bhcNl42ih0_L3Zh2DlZZMgq13fKGfXeRylOeJL4vpaS-0Ul0KiH6tUa2YxCmD3TBf2Wx_J41if50MkZsxiEc268HrpN__qy-4D2-3Bk2FI7-tF4vvQqWYL9woZqNIH0dHvAHtx_rY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gait+Recognition+via+Deep+Learning+of+the+Center-of-Pressure+Trajectory&rft.jtitle=Applied+sciences&rft.au=Terrier%2C+Philippe&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=3&rft.spage=774&rft_id=info:doi/10.3390%2Fapp10030774&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |