Gait Recognition via Deep Learning of the Center-of-Pressure Trajectory

The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 3; p. 774
Main Author Terrier, Philippe
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2020
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app10030774

Cover

Abstract The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-six adults walked for 30 min on a treadmill equipped with a force platform that continuously recorded the positions of the COP. The raw two-dimensional signals were sliced into segments of two gait cycles. A set of 20,250 segments from 30 subjects was used to configure and train convolutional neural networks (CNNs). The best CNN classified a separate set containing 2250 segments with an overall accuracy of 99.9%. A second set of 4500 segments from the six remaining subjects was then used for transfer learning. Several small subsamples of this set were selected randomly and used to fine tune the pretrained CNNs. Training with two segments per subject was sufficient to achieve 100% accuracy. The results suggest that every person produces a unique trajectory of underfoot pressures while walking and that CNNs can learn the distinctive features of these trajectories. By applying a pretrained CNN (transfer learning), a couple of strides seem enough to learn and identify new gaits. However, these promising results should be confirmed in a larger sample under realistic conditions.
AbstractList The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-six adults walked for 30 min on a treadmill equipped with a force platform that continuously recorded the positions of the COP. The raw two-dimensional signals were sliced into segments of two gait cycles. A set of 20,250 segments from 30 subjects was used to configure and train convolutional neural networks (CNNs). The best CNN classified a separate set containing 2250 segments with an overall accuracy of 99.9%. A second set of 4500 segments from the six remaining subjects was then used for transfer learning. Several small subsamples of this set were selected randomly and used to fine tune the pretrained CNNs. Training with two segments per subject was sufficient to achieve 100% accuracy. The results suggest that every person produces a unique trajectory of underfoot pressures while walking and that CNNs can learn the distinctive features of these trajectories. By applying a pretrained CNN (transfer learning), a couple of strides seem enough to learn and identify new gaits. However, these promising results should be confirmed in a larger sample under realistic conditions.
Featured ApplicationSensing floors combined with pattern recognition and deep learning could identify individuals by the way they unfold their footsteps on the ground.AbstractThe fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-six adults walked for 30 min on a treadmill equipped with a force platform that continuously recorded the positions of the COP. The raw two-dimensional signals were sliced into segments of two gait cycles. A set of 20,250 segments from 30 subjects was used to configure and train convolutional neural networks (CNNs). The best CNN classified a separate set containing 2250 segments with an overall accuracy of 99.9%. A second set of 4500 segments from the six remaining subjects was then used for transfer learning. Several small subsamples of this set were selected randomly and used to fine tune the pretrained CNNs. Training with two segments per subject was sufficient to achieve 100% accuracy. The results suggest that every person produces a unique trajectory of underfoot pressures while walking and that CNNs can learn the distinctive features of these trajectories. By applying a pretrained CNN (transfer learning), a couple of strides seem enough to learn and identify new gaits. However, these promising results should be confirmed in a larger sample under realistic conditions.
Author Terrier, Philippe
Author_xml – sequence: 1
  givenname: Philippe
  orcidid: 0000-0002-3693-4505
  surname: Terrier
  fullname: Terrier, Philippe
BookMark eNqFkV1L7DAQhoMo-HnlHyicy2M1abJNcyl7dBUWFNHrMEmna5aepKZZZf-90RUREZybDOHJwzuTfbLtg0dCjhk95VzRMxgGRimnUootsldRWZdcMLn9pd8lR-O4pLkU4w2je2Q2A5eKO7Rh4V1ywRfPDop_iEMxR4je-UURuiI9YjFFnzCWoStvI47jKmJxH2GJNoW4PiQ7HfQjHn2cB-Th8uJ-elXOb2bX0_N5aXktUglGWMNE1QiAHNSqquGcdkpiRxtuWJVzKWUngkPXcGHqicS2oaYD09a1pPyAXG-8bYClHqL7D3GtAzj9fhHiQkNMzvao84ATpMYogyCUVA1roDaGt9C2kqPNrpONa-UHWL9A338KGdVvO9VfdprxPxt8iOFphWPSy7CKPk-rq0mmKyEFy9TfDWVjGMeI3S9O9o22LsHbP6QIrv_xzSsLVJS4
CitedBy_id crossref_primary_10_3390_electronics10020182
crossref_primary_10_1109_JSEN_2023_3235869
crossref_primary_10_1007_s00371_024_03684_w
crossref_primary_10_1109_ACCESS_2024_3445415
crossref_primary_10_3389_fbioe_2022_843204
crossref_primary_10_1016_j_engappai_2023_107712
crossref_primary_10_1155_2021_6252445
crossref_primary_10_1007_s10723_021_09595_7
crossref_primary_10_1016_j_neucom_2022_07_002
crossref_primary_10_1109_JSEN_2024_3373100
crossref_primary_10_1186_s12984_024_01460_4
crossref_primary_10_1016_j_imavis_2023_104784
crossref_primary_10_3390_s20247225
crossref_primary_10_1186_s40537_020_00387_6
crossref_primary_10_3390_math10132283
crossref_primary_10_1109_JSEN_2021_3136162
crossref_primary_10_1002_widm_1557
crossref_primary_10_1016_j_dsp_2024_104393
crossref_primary_10_1109_TIM_2022_3162270
crossref_primary_10_1177_20552076221074128
crossref_primary_10_3390_s23073392
crossref_primary_10_3390_app10030774
crossref_primary_10_1109_ACCESS_2020_3016970
crossref_primary_10_3390_app10165608
crossref_primary_10_1109_TMM_2021_3075025
Cites_doi 10.1111/jar.12462
10.1109/CVPR.2016.319
10.7287/peerj.preprints.27711v1
10.1109/CVPR.2017.195
10.1109/TCYB.2014.2361287
10.1109/THS.2015.7225338
10.1186/1471-2318-13-34
10.25103/jestr.111.02
10.3389/fpsyg.2017.00817
10.1109/HSI.2010.5514531
10.3389/fphys.2013.00230
10.1007/978-1-4899-7488-4
10.1097/00005768-199810000-00011
10.3389/fphys.2019.00257
10.1186/1743-0003-8-12
10.1109/TIFS.2015.2415753
10.1109/JSEN.2015.2493122
10.1109/ICB.2016.7550060
10.3390/app10030774
10.1016/j.gaitpost.2018.03.017
10.1016/j.humov.2012.05.004
10.1016/S0966-6362(97)00043-X
10.1007/978-3-642-40925-7
10.1038/nature14539
10.1016/j.jns.2015.08.028
10.1007/978-3-030-00931-1
10.1109/CVPR.2015.7298594
10.1155/2009/415817
10.3389/fncom.2014.00043
10.1088/1749-4699/8/1/014008
10.1002/047134608X.W8261
10.1109/ACCESS.2018.2879896
10.1016/j.neunet.2017.12.012
10.1186/s41074-018-0039-6
10.1016/j.jbiomech.2008.06.023
10.1016/j.gaitpost.2015.12.037
10.1007/s10439-016-1573-y
10.1109/TPAMI.2016.2545669
10.1080/00222895.1995.9941708
10.1016/j.patrec.2004.09.011
10.1109/IJCNN.2017.7966039
10.1371/journal.pone.0047171
10.1016/j.inffus.2006.11.003
10.21629/JSEE.2017.01.18
10.1016/j.cviu.2018.01.007
10.1098/rsif.2011.0430
10.1049/iet-bmt.2018.5063
10.1016/j.humov.2005.03.002
10.1109/TSMCB.2008.927722
10.7717/peerj.7417
10.3390/s150922089
10.1109/ICCV.2015.123
ContentType Journal Article
Copyright 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app10030774
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_3815e0bb9bea4979818a6bb3dadd73ec
10.3390/app10030774
10_3390_app10030774
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-ab4cb14284aa077c928330f97ef083b1291399c543af834b657ed80bfabd66703
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Fri Oct 03 12:37:50 EDT 2025
Sun Oct 26 03:50:30 EDT 2025
Mon Jun 30 11:37:37 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
Thu Oct 16 04:33:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-ab4cb14284aa077c928330f97ef083b1291399c543af834b657ed80bfabd66703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3693-4505
OpenAccessLink https://www.proquest.com/docview/2533924741?pq-origsite=%requestingapplication%&accountid=15518
PQID 2533924741
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_3815e0bb9bea4979818a6bb3dadd73ec
unpaywall_primary_10_3390_app10030774
proquest_journals_2533924741
crossref_primary_10_3390_app10030774
crossref_citationtrail_10_3390_app10030774
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Veilleux (ref_70) 2011; 11
ref_14
ref_13
ref_57
ref_12
ref_56
ref_55
Andries (ref_72) 2016; 16
Wu (ref_19) 2017; 39
Terrier (ref_25) 2019; 7
ref_53
ref_52
ref_51
Rida (ref_3) 2018; 8
Han (ref_54) 2005; 26
Terrier (ref_58) 2005; 24
Terrier (ref_67) 2012; 31
Casartelli (ref_60) 2016; 44
Holt (ref_1) 1995; 27
Singh (ref_4) 2018; 6
Scorza (ref_71) 2018; 11
Oberg (ref_66) 1993; 30
Kalron (ref_28) 2015; 358
Zhao (ref_21) 2017; 28
Pataky (ref_16) 2012; 9
Hinton (ref_49) 2008; 9
White (ref_64) 1998; 30
ref_68
ref_23
ref_22
ref_20
Overberg (ref_59) 2018; 62
ref_27
Sprager (ref_8) 2015; 15
Elfwing (ref_44) 2018; 107
Gafurov (ref_7) 2009; 2009
ref_36
Zhang (ref_10) 2015; 45
ref_35
ref_34
ref_33
LeCun (ref_62) 2015; 521
ref_32
ref_31
ref_30
Sprager (ref_11) 2015; 10
ref_39
ref_38
ref_37
Straube (ref_50) 2014; 8
Roerdink (ref_69) 2019; 10
Stolze (ref_61) 1998; 7
Suutala (ref_18) 2008; 9
Roerdink (ref_26) 2008; 41
Moustakidis (ref_15) 2008; 38
Vienne (ref_9) 2017; 8
ref_46
ref_45
Grieco (ref_65) 2018; 31
ref_43
ref_42
ref_41
Takemura (ref_6) 2018; 10
Terrier (ref_29) 2013; 4
ref_40
Terrier (ref_24) 2016; 44
Connor (ref_2) 2018; 167
Jung (ref_17) 2004; 87
ref_48
Terrier (ref_63) 2011; 8
ref_5
Bergstra (ref_47) 2015; 8
References_xml – volume: 31
  start-page: 1219
  year: 2018
  ident: ref_65
  article-title: Identification of spatiotemporal gait parameters and pressure-related characteristics in children with Angelman syndrome: A pilot study
  publication-title: J. Appl. Res. Intellect. Disabil.
  doi: 10.1111/jar.12462
– ident: ref_32
– ident: ref_52
  doi: 10.1109/CVPR.2016.319
– ident: ref_55
– ident: ref_30
  doi: 10.7287/peerj.preprints.27711v1
– ident: ref_35
  doi: 10.1109/CVPR.2017.195
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_49
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_51
– volume: 45
  start-page: 1864
  year: 2015
  ident: ref_10
  article-title: Accelerometer-Based Gait Recognition by Sparse Representation of Signature Points With Clusters
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2361287
– volume: 11
  start-page: 27
  year: 2011
  ident: ref_70
  article-title: Gait analysis using a force-measuring gangway: Intrasession repeatability in healthy adults
  publication-title: J. Musculoskelet. Neuronal Interact
– ident: ref_23
  doi: 10.1109/THS.2015.7225338
– ident: ref_27
  doi: 10.1186/1471-2318-13-34
– volume: 11
  start-page: 10
  year: 2018
  ident: ref_71
  article-title: A review on methods and devices for force platforms calibration in medical applications
  publication-title: J. Eng. Sci. Technol. Rev.
  doi: 10.25103/jestr.111.02
– volume: 8
  start-page: 817
  year: 2017
  ident: ref_9
  article-title: Inertial Sensors to Assess Gait Quality in Patients with Neurological Disorders: A Systematic Review of Technical and Analytical Challenges
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2017.00817
– ident: ref_13
  doi: 10.1109/HSI.2010.5514531
– volume: 4
  start-page: 230
  year: 2013
  ident: ref_29
  article-title: Non-linear dynamics of human locomotion: Effects of rhythmic auditory cueing on local dynamic stability
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00230
– ident: ref_12
  doi: 10.1007/978-1-4899-7488-4
– ident: ref_39
– volume: 30
  start-page: 1537
  year: 1998
  ident: ref_64
  article-title: Comparison of vertical ground reaction forces during overground and treadmill walking
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1097/00005768-199810000-00011
– volume: 10
  start-page: 257
  year: 2019
  ident: ref_69
  article-title: Tightening up the Control of Treadmill Walking: Effects of Maneuverability Range and Acoustic Pacing on Stride-to-Stride Fluctuations
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00257
– volume: 8
  start-page: 12
  year: 2011
  ident: ref_63
  article-title: Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-8-12
– volume: 10
  start-page: 1486
  year: 2015
  ident: ref_11
  article-title: An Efficient HOS-Based Gait Authentication of Accelerometer Data
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2415753
– volume: 16
  start-page: 1026
  year: 2016
  ident: ref_72
  article-title: Localization of Humans, Objects, and Robots Interacting on Load-Sensing Floors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2493122
– ident: ref_20
  doi: 10.1109/ICB.2016.7550060
– ident: ref_31
  doi: 10.3390/app10030774
– volume: 62
  start-page: 117
  year: 2018
  ident: ref_59
  article-title: Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.03.017
– volume: 31
  start-page: 1585
  year: 2012
  ident: ref_67
  article-title: Persistent and anti-persistent pattern in stride-to-stride variability of treadmill walking: Influence of rhythmic auditory cueing
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2012.05.004
– ident: ref_56
– volume: 7
  start-page: 125
  year: 1998
  ident: ref_61
  article-title: Retest reliability of spatiotemporal gait parameters in children and adults
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(97)00043-X
– volume: 30
  start-page: 210
  year: 1993
  ident: ref_66
  article-title: Basic gait parameters: Reference data for normal subjects, 10–79 years of age
  publication-title: J. Rehabil. Res. Dev.
– ident: ref_48
– ident: ref_14
  doi: 10.1007/978-3-642-40925-7
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_62
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 87
  start-page: 1393
  year: 2004
  ident: ref_17
  article-title: Person recognition method using sequential walking footprints via overlapped foot shape and center-of-pressure trajectory
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– ident: ref_41
– volume: 358
  start-page: 92
  year: 2015
  ident: ref_28
  article-title: The “butterfly diagram”: A gait marker for neurological and cerebellar impairment in people with multiple sclerosis
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2015.08.028
– ident: ref_53
  doi: 10.1007/978-3-030-00931-1
– ident: ref_57
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_38
– ident: ref_45
– volume: 2009
  start-page: 415817
  year: 2009
  ident: ref_7
  article-title: Gait Recognition Using Wearable Motion Recording Sensors
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2009/415817
– volume: 8
  start-page: 43
  year: 2014
  ident: ref_50
  article-title: How to evaluate an agent’s behavior to infrequent events?—Reliable performance estimation insensitive to class distribution
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2014.00043
– ident: ref_34
– volume: 8
  start-page: 014008
  year: 2015
  ident: ref_47
  article-title: Hyperopt: A Python library for model selection and hyperparameter optimization
  publication-title: Comput. Sci. Discov.
  doi: 10.1088/1749-4699/8/1/014008
– ident: ref_5
  doi: 10.1002/047134608X.W8261
– ident: ref_40
– volume: 6
  start-page: 70497
  year: 2018
  ident: ref_4
  article-title: Vision-based gait recognition: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879896
– volume: 107
  start-page: 3
  year: 2018
  ident: ref_44
  article-title: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.12.012
– volume: 10
  start-page: 4
  year: 2018
  ident: ref_6
  article-title: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition
  publication-title: IPSJ Trans. Comput. Vis. Appl.
  doi: 10.1186/s41074-018-0039-6
– ident: ref_37
– volume: 41
  start-page: 2628
  year: 2008
  ident: ref_26
  article-title: Online gait event detection using a large force platform embedded in a treadmill
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.06.023
– volume: 44
  start-page: 259
  year: 2016
  ident: ref_60
  article-title: Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.12.037
– volume: 44
  start-page: 2785
  year: 2016
  ident: ref_24
  article-title: Fractal Fluctuations in Human Walking: Comparison between Auditory and Visually Guided Stepping
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1573-y
– volume: 39
  start-page: 209
  year: 2017
  ident: ref_19
  article-title: A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2545669
– volume: 27
  start-page: 164
  year: 1995
  ident: ref_1
  article-title: Energetic Cost and Stability during Human Walking at the Preferred Stride Frequency
  publication-title: J. Mot. Behav.
  doi: 10.1080/00222895.1995.9941708
– ident: ref_33
– ident: ref_46
– volume: 26
  start-page: 615
  year: 2005
  ident: ref_54
  article-title: Performance prediction for individual recognition by gait
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.09.011
– ident: ref_22
  doi: 10.1109/IJCNN.2017.7966039
– ident: ref_68
  doi: 10.1371/journal.pone.0047171
– volume: 9
  start-page: 21
  year: 2008
  ident: ref_18
  article-title: Methods for person identification on a pressure-sensitive floor: Experiments with multiple classifiers and reject option
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2006.11.003
– volume: 28
  start-page: 162
  year: 2017
  ident: ref_21
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
– volume: 167
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: Biometric recognition by gait: A survey of modalities and features
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2018.01.007
– volume: 9
  start-page: 790
  year: 2012
  ident: ref_16
  article-title: Gait recognition: Highly unique dynamic plantar pressure patterns among 104 individuals
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2011.0430
– volume: 8
  start-page: 14
  year: 2018
  ident: ref_3
  article-title: Robust gait recognition: A comprehensive survey
  publication-title: IET Biom.
  doi: 10.1049/iet-bmt.2018.5063
– volume: 24
  start-page: 97
  year: 2005
  ident: ref_58
  article-title: GPS analysis of human locomotion: Further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2005.03.002
– ident: ref_36
– ident: ref_43
– volume: 38
  start-page: 1476
  year: 2008
  ident: ref_15
  article-title: Subject recognition based on ground reaction force measurements of gait signals
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2008.927722
– volume: 7
  start-page: e7417
  year: 2019
  ident: ref_25
  article-title: Complexity of human walking: The attractor complexity index is sensitive to gait synchronization with visual and auditory cues
  publication-title: PeerJ.
  doi: 10.7717/peerj.7417
– volume: 15
  start-page: 22089
  year: 2015
  ident: ref_8
  article-title: Inertial Sensor-Based Gait Recognition: A Review
  publication-title: Sensors
  doi: 10.3390/s150922089
– ident: ref_42
  doi: 10.1109/ICCV.2015.123
SSID ssj0000913810
Score 2.3395276
Snippet The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end...
Featured ApplicationSensing floors combined with pattern recognition and deep learning could identify individuals by the way they unfold their footsteps on the...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 774
SubjectTerms Accuracy
biometric recognition
Biometrics
Classification
Fitness equipment
footstep recognition
force platform
Gait
Laboratories
machine learning
Neural networks
Sensors
Signal processing
Time series
user verification
Walking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi3oQNxWrU3KYoEKwXdOmOfprG4IexMFuJUkTmYx2bJ2y_96XthsdiF68lRJK-vJevu8lL18Q6vgMUICxhMhEG0KLJ6kYYYCl1DOJ4tyeHX5-CQdD-jQKRrWrvmxNWCkPXBruBhAl0K6UXGpBOePwaRFK6ScQmMzXys6-bsRryVQxB3PPSleVB_J8yOvtfrBXeDSjGxBUKPVv0MvtRToVyy8xmdSQpreP9iqKiG_LrjXRlk5baLcmHNhCzSok5_iy0o2-OkD9vhjn-HVVEZSl-HMs8IPWU1ypqL7jzGBgfNiu6eoZyQwpjwfONAbQ-ihW8JeHaNh7fLsfkOqeBKL8kOZESKrsWk5EhYD_Uxwog-8azrQBgiUB0YHmcRVQX5jIpzIMmE4iVxohkzCEkD9CjTRL9THCQBYikRgFSK6pCCIObCMBhqOjKJCceQ66XpkuVpWIuL3LYhJDMmHtHNfs7KDOuvG01M74udmdHYN1Eyt4XbwAN4grN4j_cgMHtVcjGFdROI-7wGUhvwTS5KCL9aj-1peT_-jLKdrp2qy8qO1uo0Y-W-gzoC65PC-89BsIWerm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3faxQxEMeHen1QH2pbLV5bSx4qqJDej2Q3myep9heCRcSD-rTkZzk9do-7vUr96zvZzR5XESm-LUsWsjuTzGdmk28ADpnAKCCEpdo6T3l9pY2gAmMpH3hrpAx7hz9fphcj_ukquYoFt3lcVomp-LiepIeYZFOcZsPu8B7rIan0pta_v4mVpEGSBd1rzvgjWE8TZPEOrI8uvxx_DyfKtc82m_IY5vbhn_Cg9mrB74WhWq3_HmI-XhRTdftLTSYr0ebsGeRtP5tFJj-PFpU-Mr__kHD8_xfZhI0IouS48ZwtWHPFNjxdkSfchq048OfkTVSnfvsczs_VuCJf23VHZUFuxoqcODclUav1mpSeIFeSUDl2M1p62mxCnDmCofFH_Z_g9gWMzk6_fbyg8TQGaljKK6o0N6FilHGl8AsaiWDC-l4K5xHjNHIDwqQ0CWfKZ4zrNBHOZn3tlbZpihPLDnSKsnAvgSCSZMp6g7zguEoyiUxjkaNcliVaikEX3rXGyU2UKg8nZkxyTFmCJfMVS3bhcNl42ih0_L3Zh2DlZZMgq13fKGfXeRylOeJL4vpaS-0Ul0KiH6tUa2YxCmD3TBf2Wx_J41if50MkZsxiEc268HrpN__qy-4D2-3Bk2FI7-tF4vvQqWYL9woZqNIH0dHvAHtx_rY
  priority: 102
  providerName: Unpaywall
Title Gait Recognition via Deep Learning of the Center-of-Pressure Trajectory
URI https://www.proquest.com/docview/2533924741
https://www.mdpi.com/2076-3417/10/3/774/pdf?version=1580729434
https://doaj.org/article/3815e0bb9bea4979818a6bb3dadd73ec
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7a9GHbw1i7jaXrgh462AZiTixb0sMYbdekDBZKWaB7MvpZOoKdpWlL__ueFDlNYfTNNkLIutPdp5PuO4D9nKMX4NxSbZ2nLD5pwylHX8r63hopQ-7wr3F5MmE_z4vzDRi3uTDhWmVrE6Ohto0JMfKvA8QluFdAB_h99o-GqlHhdLUtoaFSaQX7LVKMbcLWIDBjdWDr8Hh8eraKugQWTNHPlol62GEWzon7UdM5e-SaIoP_I9j57LqeqbtbNZ2ueaDhK3iZoCM5WMp6GzZcvQMv1ggFd2A7LdUr8inxSX9-DaORulyQs_amUFOTm0tFfjg3I4ld9YI0niASJCHW6-a08XSZNjh3BJ3Z3xjZv3sDk-Hx76MTmuonUJOXbEGVZibEeARTCv_PSIQSeeYldx6Bl0ZPj_BPmoLlyouc6bLgzopMe6VtWaIpeAuduqndOyAIIoSy3qCHd0wVQiIKsYh8nBCFlrzfhS_t1FUmkYuHGhfTCjcZYZ6rtXnuwv6q8WzJqfH_ZodBBqsmgQg7fmjmF1VaVxVKs3CZ1lI7xSSXqHmq1Dq3aLdxeKYLe60Eq7Q6r6oHXerCx5VUnxrL7tPdvIfng7APj7e596CzmF-7DwhWFroHm2I46iU97MUtP75NxqcHf-4Bus3rLg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOEAPVaFU3ZaHDyC1SFazGyeODwiV5_JaVQgkbsFPRLVKtrtL0f65_raOs86ySIgbtyiyrMTz-D6PPTMAmzFHFODcUGWso6x6UppTjljKms5oIXzu8EUnbV-z05vkZgb-1bkw_lpl7RMrR21K7WPkP1rIS3CvgAC42_tDfdcof7pat9CQobWC2alKjIXEjjM7esQt3GDn5ADlvdVqHR1e7bdp6DJAdZyyIZWKaR8JyZiUEedaIODGkRPcOqQnCvEQSZLQCYuly2Km0oRbk0XKSWXSFA0G552FeRYzgZu_-b3Dzq_LSZTHV93MmtE4MRB_IPLn0s3Ksjh7BoVVx4BnNHfhoejJ0aPsdqcQ7-gDvA9Ulfwc69YSzNhiGd5NFTBchqXgGgbkW6hf_f0jHB_L-yG5rG8mlQX5ey_JgbU9Eqq53pHSEWSexMeWbZ-Wjo7TFPuWIHj-rk4SRitw_SYr-QnmirKwn4EgacmkcRoZhWUyyQSyHoNMy2ZZogRvNmC7Xrpch2LmvqdGN8dNjV_nfGqdG7A5Gdwb1_B4ediel8FkiC-8Xb0o-3d5sOMcpZnYSCmhrESBC9R0mSoVG8QJ_DzdgNVagnnwBoP8SXcbsDWR6mvf8uX1aTZgoX11cZ6fn3TOvsJiy8cAqpvkqzA37D_YNSRKQ7UetJHA7VsbwH9zKSO2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxwxFD5YC1YfpNoWV22bB4W2EJzdyUwmD6W03e56p5QKvk1zFWWZWXdXZf9af50nM5ntCsU334YhhJBzcr7vJOcCsBNzRAHODVXGOsqqL6U55YilrO2MFsLnDp-cpvtn7PA8OV-Av00ujA-rbGxiZahNqf0d-V4HeQn6CgiAey6ERfzs9r4Mr6nvIOVfWpt2GrWKHNnpHbpv488HXZT1bqfT-_H7-z4NHQaojlM2oVIx7W9BMiZlxLkWCLZx5AS3DqmJQixEgiR0wmLpspipNOHWZJFyUpk0xcOC8z6D59xXcfdZ6r3-7H7H19vM2lGdEohLj_yLdLs6U5w9AMGqV8ADgvviphjK6Z0cDOawrvcSVgNJJV9rrVqDBVusw8pc6cJ1WAtGYUw-hMrVH19Bvy8vJ-RXE5NUFuT2UpKutUMS6rhekNIR5JzE3yrbES0drRMUR5YgbF5VbwjT13D2JPv4BhaLsrAbQJCuZNI4jVzCMplkAvmOQY5lsyxRgrdb8KnZulyHMua-m8YgR3fG73M-t88t2JkNHtbVO_4_7JuXwWyIL7ld_ShHF3k4wTlKM7GRUkJZyQQXqOMyVSo2iBC4PN2C7UaCebAD4_yf1rZgdybVx9ay-fg072EJ1T4_Pjg92oLljnf-qxDybVicjG7sW2RIE_WuUkUCf55a9-8Bb8shUA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3faxQxEMeHen1QH2pbLV5bSx4qqJDej2Q3myep9heCRcSD-rTkZzk9do-7vUr96zvZzR5XESm-LUsWsjuTzGdmk28ADpnAKCCEpdo6T3l9pY2gAmMpH3hrpAx7hz9fphcj_ukquYoFt3lcVomp-LiepIeYZFOcZsPu8B7rIan0pta_v4mVpEGSBd1rzvgjWE8TZPEOrI8uvxx_DyfKtc82m_IY5vbhn_Cg9mrB74WhWq3_HmI-XhRTdftLTSYr0ebsGeRtP5tFJj-PFpU-Mr__kHD8_xfZhI0IouS48ZwtWHPFNjxdkSfchq048OfkTVSnfvsczs_VuCJf23VHZUFuxoqcODclUav1mpSeIFeSUDl2M1p62mxCnDmCofFH_Z_g9gWMzk6_fbyg8TQGaljKK6o0N6FilHGl8AsaiWDC-l4K5xHjNHIDwqQ0CWfKZ4zrNBHOZn3tlbZpihPLDnSKsnAvgSCSZMp6g7zguEoyiUxjkaNcliVaikEX3rXGyU2UKg8nZkxyTFmCJfMVS3bhcNl42ih0_L3Zh2DlZZMgq13fKGfXeRylOeJL4vpaS-0Ul0KiH6tUa2YxCmD3TBf2Wx_J41if50MkZsxiEc268HrpN__qy-4D2-3Bk2FI7-tF4vvQqWYL9woZqNIH0dHvAHtx_rY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gait+Recognition+via+Deep+Learning+of+the+Center-of-Pressure+Trajectory&rft.jtitle=Applied+sciences&rft.au=Terrier%2C+Philippe&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=3&rft.spage=774&rft_id=info:doi/10.3390%2Fapp10030774&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon