Classification of Water Source in Coal Mine Based on PCA-GA-ET

In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na++K+, Ca2+, Mg2+, Cl...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 15; no. 10; p. 1945
Main Authors Yang, Zhenwei, Lv, Hang, Wang, Xinyi, Yan, Hengrui, Xu, Zhaofeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 21.05.2023
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w15101945

Cover

Abstract In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na++K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3− from observed water samples. An improved water source discrimination model is proposed which combines algorithms from data mining, classification models, and learning reinforcement. According to the Pearson correlation coefficient, Na++K+ has a strong correlation with HCO3−. To identify the major metrics, we performed principal component analysis (PCA), and the adaptive differential evolutionary genetic algorithm (GA) was utilized to optimize the depth of the extreme tree (ET) and the number of classifiers. Finally, the model distinguished 25 sets of studied samples from various water sources in the Pingdingshan coalfield. Comparative analysis demonstrated the efficacy of each stage of our work. PCA-GA-ET outperformed the conventional approaches, such as the support vector machine, BP artificial neural network, and random forest. The studies revealed that PCA-GA-ET can eliminate the information overlap between data and simplify the data structure and thereby improve the efficiency and accuracy of water source detection. We discovered that by utilizing the evolutionary algorithm to optimize parameters such as the depth of the extreme trees and the number of decision trees, we could get the model to converge faster and to be more stable and more accurate. The results suggest that PCA-GA-ET has good robustness and accuracy and can meet the needs of water source identification.
AbstractList In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na++K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3− from observed water samples. An improved water source discrimination model is proposed which combines algorithms from data mining, classification models, and learning reinforcement. According to the Pearson correlation coefficient, Na++K+ has a strong correlation with HCO3−. To identify the major metrics, we performed principal component analysis (PCA), and the adaptive differential evolutionary genetic algorithm (GA) was utilized to optimize the depth of the extreme tree (ET) and the number of classifiers. Finally, the model distinguished 25 sets of studied samples from various water sources in the Pingdingshan coalfield. Comparative analysis demonstrated the efficacy of each stage of our work. PCA-GA-ET outperformed the conventional approaches, such as the support vector machine, BP artificial neural network, and random forest. The studies revealed that PCA-GA-ET can eliminate the information overlap between data and simplify the data structure and thereby improve the efficiency and accuracy of water source detection. We discovered that by utilizing the evolutionary algorithm to optimize parameters such as the depth of the extreme trees and the number of decision trees, we could get the model to converge faster and to be more stable and more accurate. The results suggest that PCA-GA-ET has good robustness and accuracy and can meet the needs of water source identification.
In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na⁺+K⁺, Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻, and HCO₃⁻ from observed water samples. An improved water source discrimination model is proposed which combines algorithms from data mining, classification models, and learning reinforcement. According to the Pearson correlation coefficient, Na⁺+K⁺ has a strong correlation with HCO₃⁻. To identify the major metrics, we performed principal component analysis (PCA), and the adaptive differential evolutionary genetic algorithm (GA) was utilized to optimize the depth of the extreme tree (ET) and the number of classifiers. Finally, the model distinguished 25 sets of studied samples from various water sources in the Pingdingshan coalfield. Comparative analysis demonstrated the efficacy of each stage of our work. PCA-GA-ET outperformed the conventional approaches, such as the support vector machine, BP artificial neural network, and random forest. The studies revealed that PCA-GA-ET can eliminate the information overlap between data and simplify the data structure and thereby improve the efficiency and accuracy of water source detection. We discovered that by utilizing the evolutionary algorithm to optimize parameters such as the depth of the extreme trees and the number of decision trees, we could get the model to converge faster and to be more stable and more accurate. The results suggest that PCA-GA-ET has good robustness and accuracy and can meet the needs of water source identification.
In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na[sup.+]+K[sup.+], Ca[sup.2+], Mg[sup.2+], Cl[sup.−], SO[sub.4] [sup.2−], and HCO[sub.3] [sup.−] from observed water samples. An improved water source discrimination model is proposed which combines algorithms from data mining, classification models, and learning reinforcement. According to the Pearson correlation coefficient, Na[sup.+]+K[sup.+] has a strong correlation with HCO[sub.3] [sup.−]. To identify the major metrics, we performed principal component analysis (PCA), and the adaptive differential evolutionary genetic algorithm (GA) was utilized to optimize the depth of the extreme tree (ET) and the number of classifiers. Finally, the model distinguished 25 sets of studied samples from various water sources in the Pingdingshan coalfield. Comparative analysis demonstrated the efficacy of each stage of our work. PCA-GA-ET outperformed the conventional approaches, such as the support vector machine, BP artificial neural network, and random forest. The studies revealed that PCA-GA-ET can eliminate the information overlap between data and simplify the data structure and thereby improve the efficiency and accuracy of water source detection. We discovered that by utilizing the evolutionary algorithm to optimize parameters such as the depth of the extreme trees and the number of decision trees, we could get the model to converge faster and to be more stable and more accurate. The results suggest that PCA-GA-ET has good robustness and accuracy and can meet the needs of water source identification.
Audience Academic
Author Wang, Xinyi
Xu, Zhaofeng
Lv, Hang
Yan, Hengrui
Yang, Zhenwei
Author_xml – sequence: 1
  givenname: Zhenwei
  orcidid: 0000-0002-6233-6621
  surname: Yang
  fullname: Yang, Zhenwei
– sequence: 2
  givenname: Hang
  surname: Lv
  fullname: Lv, Hang
– sequence: 3
  givenname: Xinyi
  surname: Wang
  fullname: Wang, Xinyi
– sequence: 4
  givenname: Hengrui
  surname: Yan
  fullname: Yan, Hengrui
– sequence: 5
  givenname: Zhaofeng
  surname: Xu
  fullname: Xu, Zhaofeng
BookMark eNp1kV1LBCEUhiUK-rzoHwx0U8FsOqM7ehNsQ21BUdBGl3LWPYbh6jbOEv37rI2IKBUUed6jj26T9RADErLP6KCuFT15ZYJRprhYI1sVbeqSc87Wf6w3yV5KzzQ3rqQUdIucth5SctYZ6F0MRbTFI_TYFfdx2RksXCjaCL64cQGLM0g4KzJ1147K8ag8n-ySDQs-4d7XvEMeLs4n7WV5fTu-akfXpamHvC9hmE-0QwRaWQaMYlUpnPEGURkrKZoKESoUgFQqsFZwNFNJQdZTtKKp6x1yvKq7DAt4ewXv9aJzc-jeNKP6Q15_y2f4cAUvuviyxNTruUsGvYeAcZl0zUQeklOZ0YNf6HP2DllFVzIXU0OhPqjBinoCj9oFG_sOTO4znDuT_8C6vD9qRMVVwwXPgZNVwHQxpQ6tNq7_fOAcdP7POx_9Svzv9w5bhZJs
CitedBy_id crossref_primary_10_3390_pr12030438
crossref_primary_10_3390_w15193398
Cites_doi 10.1007/s10064-021-02535-5
10.1109/ACCESS.2020.3000333
10.1016/j.proeps.2011.09.058
10.1016/j.jclepro.2020.120008
10.1007/s10230-020-00699-2
10.1038/323533a0
10.1109/LGRS.2020.2968356
10.1111/1365-2478.12682
10.1007/s12517-019-4500-3
10.1007/s12665-019-8624-2
10.1007/s10230-022-00884-5
10.1038/s41598-022-05473-8
10.1109/TIT.1967.1053964
10.3390/en15218108
10.1016/j.gexplo.2018.01.019
10.1007/s12665-012-2117-x
10.1155/2018/9205025
10.1007/s12665-020-8856-1
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ADTOC
UNPAY
DOI 10.3390/w15101945
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10.3390/w15101945
A752497454
10_3390_w15101945
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-a6004f6ea02f1a10e229ed47ee9cf80ec2eea2e5ae089aff54ecb80a83bef5733
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Sun Oct 26 04:15:59 EDT 2025
Sat Sep 27 19:07:20 EDT 2025
Mon Jun 30 07:43:47 EDT 2025
Mon Oct 20 16:20:17 EDT 2025
Thu Oct 16 04:41:49 EDT 2025
Thu Apr 24 22:48:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-a6004f6ea02f1a10e229ed47ee9cf80ec2eea2e5ae089aff54ecb80a83bef5733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6233-6621
OpenAccessLink https://www.proquest.com/docview/2819496598?pq-origsite=%requestingapplication%&accountid=15518
PQID 2819496598
PQPubID 2032318
ParticipantIDs unpaywall_primary_10_3390_w15101945
proquest_miscellaneous_3153158408
proquest_journals_2819496598
gale_infotracacademiconefile_A752497454
crossref_citationtrail_10_3390_w15101945
crossref_primary_10_3390_w15101945
PublicationCentury 2000
PublicationDate 2023-05-21
PublicationDateYYYYMMDD 2023-05-21
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-21
  day: 21
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_7) 2018; 2018
Zhang (ref_15) 2019; 78
Nishitsuji (ref_12) 2019; 67
Zhang (ref_21) 2022; 12
Wei (ref_18) 2022; 41
Yan (ref_19) 2020; 253
Jiang (ref_17) 2022; 81
Feng (ref_13) 2020; 18
Wang (ref_20) 2020; 79
ref_11
Schetselaar (ref_14) 2018; 188
Rumelhart (ref_8) 1986; 323
Cover (ref_9) 1967; 13
Daral (ref_10) 2005; 2005
Huang (ref_16) 2019; 12
Zhang (ref_6) 2020; 39
Hu (ref_1) 2011; 3
Bian (ref_5) 2020; 8
Howladar (ref_2) 2013; 70
Li (ref_3) 2020; 2020
Zhou (ref_4) 2018; 38
References_xml – volume: 81
  start-page: 26
  year: 2022
  ident: ref_17
  article-title: Deep learning model based on big data for water source discrimination in an underground multiaquifer coal mine
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-021-02535-5
– volume: 8
  start-page: 107076
  year: 2020
  ident: ref_5
  article-title: CEEMD: A new method to identify mine water inrush based on the signal processing and laser-induced fluorescence
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000333
– volume: 3
  start-page: 1
  year: 2011
  ident: ref_1
  article-title: Water hazard control technology for safe extractionof coal resources influenced by faulted zone
  publication-title: Procedia Earth Planet. Sci.
  doi: 10.1016/j.proeps.2011.09.058
– volume: 253
  start-page: 120008
  year: 2020
  ident: ref_19
  article-title: Bayesian model based on Markov chain Monte Carlo for identifying mine water sources in Submarine Gold Mining
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120008
– volume: 39
  start-page: 888
  year: 2020
  ident: ref_6
  article-title: The Bayes recognition model for mine water inrush source based on multiple logistic regression analysis
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-020-00699-2
– volume: 323
  start-page: 399
  year: 1986
  ident: ref_8
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 18
  start-page: 18
  year: 2020
  ident: ref_13
  article-title: A Bayesian approach in machine learning for lithofacies classification and its uncertainty analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2968356
– volume: 67
  start-page: 1040
  year: 2019
  ident: ref_12
  article-title: Elastic impedance based facies classification using support vector machine and deep learning
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12682
– volume: 12
  start-page: 334
  year: 2019
  ident: ref_16
  article-title: Research on Piper-PCA-Bayes-LOOCV discrimination model of water inrush source in mines
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4500-3
– volume: 38
  start-page: 2262
  year: 2018
  ident: ref_4
  article-title: Application of CNN in LIF fluorescence spectrum image recognition of mine water inrush
  publication-title: Spectrosc. Spectr. Anal.
– volume: 78
  start-page: 612
  year: 2019
  ident: ref_15
  article-title: The multiple logistic regression recognition model for mine water inrush source based on cluster analysis
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8624-2
– volume: 2020
  start-page: 2584094
  year: 2020
  ident: ref_3
  article-title: Identification of mine water inrush source based on PCA-FDA: Xiandewang coal mine case
  publication-title: Geofluids
– volume: 2005
  start-page: 886
  year: 2005
  ident: ref_10
  article-title: Histograms of Oriented Gradients for Human Detection
  publication-title: Proc. CVPR
– volume: 41
  start-page: 1106
  year: 2022
  ident: ref_18
  article-title: Source Discrimination of Mine Water Inrush Using Multiple Combinations of an Improved Support Vector Machine Model
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-022-00884-5
– volume: 12
  start-page: 1370
  year: 2022
  ident: ref_21
  article-title: Risk assessment of coal mine water inrush based on PCA-DBN
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05473-8
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_9
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– ident: ref_11
  doi: 10.3390/en15218108
– volume: 188
  start-page: 216
  year: 2018
  ident: ref_14
  article-title: Classification of lithostratigraphic and alteration units from drillhole lithogeochemical data using machine learning: A case study from the Lalor volcanogenic massive sulphide deposit, Snow Lake, Manitoba, Canada
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2018.01.019
– volume: 70
  start-page: 215
  year: 2013
  ident: ref_2
  article-title: Coal mining impacts on water environs around the Barapukuria coal mining area, Dinajpur, Bangladesh
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-2117-x
– volume: 2018
  start-page: 9205025
  year: 2018
  ident: ref_7
  article-title: Piper-PCA-Fisher recognition model of water inrush source: A case study of the Jiaozuo mining area
  publication-title: Geofluids
  doi: 10.1155/2018/9205025
– volume: 79
  start-page: 123
  year: 2020
  ident: ref_20
  article-title: Hydrochemical analysis and discrimination of mine water source of the Jiaojia gold mine area, China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-020-8856-1
SSID ssj0000498850
Score 2.2857125
Snippet In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1945
SubjectTerms Accuracy
Algorithms
Aquifers
Artificial intelligence
calcium
Classification
coal
Coal industry
Coal mining
Comparative analysis
Genetic algorithms
hydrochemistry
Machine learning
Methods
Mines
Monte Carlo simulation
Mutation
Neural networks
principal component analysis
Principal components analysis
Support vector machines
trees
water
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9yfdA-WD_p2SrxA_QlvSSbZHdflPVoLUJLwR7Wp2WSm0Dx2DvaO4v-9U729o6jKAg-7yRk-c1kZpLJbxh743wuc7AgtMqcMIX1wmOMInNjb0owPrSU-Sen7nhkPl_Yi41X_KmsklLxy3aT1qR_wpDDHihL5j2ghNsOZuP44Ud3lqQcuU9T6NS2dstZisZ7bGt0elZ9Sz3lVqOXhEIZZfeDG5V0sEyPlzbc0O3NeJvdXTQz-HkDk8mGtznaYbBa57LI5PvBYu4Pwq9bFI7_8yMP2P0uFOXVUncesjvYPGLbGwSFj9n7tmdmqiZqAeTTyL9ScHrFv7Rn_vyy4cMpzXFCQ_hHcohjTlJnw0p8qsTh-RM2Ojo8Hx6LruOCCJkzcwEU_pjoEKSOCpRErUscmxyxDLGQGDQiaLSAsighRmsw-EJCkRHAiVnxKes10wZ3GS8oSzfeykC5twkSPaBSMVD05gCcjX32bgVAHTo68tQVY1JTWpKwqtdY9dmrtehsycHxJ6G3CcU62SXNE6B7XkCrSQxXdZVbyjRzY02f7a-ArjuDva7TfWJLnV_02cv1ZzK1dH8CDU4X13VG3kFRwCZJ5vVaQf6-pGf_JLXH7qUW9qkiQat91ptfLfA5BTpz_6LT5d9dCvTX
  priority: 102
  providerName: Unpaywall
Title Classification of Water Source in Coal Mine Based on PCA-GA-ET
URI https://www.proquest.com/docview/2819496598
https://www.proquest.com/docview/3153158408
https://www.mdpi.com/2073-4441/15/10/1945/pdf?version=1684648213
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: A8Z
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9GHrw9gny9YV7QO2F1HJlmz5YStuSFsGDWFrWPZkJFmCQbCzNqHsv9_Jsd1Quj0an2VxJ53udNLvB_AhMSlLtdQ04nFChZKGGuc9jZPSiEwLYxvI_ItJcj4TX-dyvgOT7i5MOFbZ-cTGUZe1DXvkR6Hg02Cbq-PlbxpYo0J1taPQ0C21Qvm5gRjbhb0oIGMNYO9kPJl-63ddMB5WSrINxFCM-f7RDQ-jMgvXmbYWprvueR8erKul_nOjF4ut9ef0MTxqA0eSbyz9BHZc9RT2t-AEn8GXhuEynP1p1E1qT35gKHlFvjc79ORXRUY1tnGBn5ATXL5KglLTUU7Pcjq-fA6z0_Hl6Jy2_AjUxolYUY3BivCJ0yzyXHPmoihzpUidy6xXzNnIOR05qR1TmfZeCmeNYlrFaI6Ag_gCBlVduZdAFObUwkhmMVMWljmjHefeYqyVaJ1IP4RPnXIK24KHBw6LRYFJRNBj0etxCO960eUGMeM-oY9Bw0WYRdiO1e1lAOxNwKMq8lRiXpgKKYZw0BmhaKfXdXE7GIbwtn-NEyNUO3Tl6vV1EaMv5xheMZR53xvv31169f8fvYaHgWk-HByI-AEMVldr9wbjkZU5bAfZIeyezTk-zSbT_Odf-S3gpg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAfEpygaYL8GLNSex8_EwUFc6OrZWE3Rib8FxztKkKilrq2r_HH8b5zQJFQLe9pyL45zvfHc-3-8AXodZJCKtNPe9IOQyVhnP0FoehHkmEy0zU0HmD0fh4Fx-vlAXG_CzqYVx1yqbPbHaqPPSuDPyfZfwqbDN4w_TH9x1jXLZ1aaFhq5bK-QHFcRYXdhxgtdLCuFmB8cfab3f-P5Rf9wb8LrLADdBKOdck8mXNkQtfOtpT6DvJ5jLCDExNhZofETto9Io4kRbqySaLBY6DuinHJogjXsLtmQgEwr-tg77o7Mv7SkP-d9xrMQK0igIErG_9JwWJK58as0Q_mkOdmB7UUz19VJPJmv27ugu3KkdVdZdSdY92MDiPuyswRc-gPdVR01316haXlZa9o1c1yv2tcoIsMuC9UoaY0ivsEMylzkjqrNel3_q8v74IZzfCKcewWZRFvgYWEwxvMyUMBSZSyMw0-h51pBvF2odKtuBdw1zUlODlbueGZOUghbHx7TlYwdetqTTFULH34jeOg6nTmtpHKPr4gOajcO_SruRojg0kkp2YK9ZhLRW51n6W_g68KJ9TIrosiu6wHIxSwOyHR65c4JoXrWL9-8pPfn_h57D9mA8PE1Pj0cnu3Dbdbl3lxZ8bw8251cLfEq-0Dx7Vgscg-83LeO_ABdpHV4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTYLtAfEpCgPMl-DFqpPY-XgYqOtaNsaqCjaxt-A4Z2lSlZS1VbV_kb-Kc5qECgFve87Fce7Ovjvf-XcAr8MsEpFWmvteEHIZq4xnaC0PwjyTiZaZqSDzT0bh4Zn8dK7ON-BncxfGlVU2e2K1UeelcWfkXZfwqbDN466tyyLGB8MP0x_cdZBymdamnYau2yzkexXcWH3J4xivlhTOzfaODkj2b3x_ODjtH_K64wA3QSjnXJP5lzZELXzraU-g7yeYywgxMTYWaHxE7aPSKOJEW6skmiwWOg7oBx2yII17A7Zc8os2ia39wWj8pT3xIV88jpVYwRsFQSK6S8-tiMRdpVozin-ahh24tSim-mqpJ5M12ze8A7drp5X1Vlp2FzawuAc7a1CG9-F91V3T1R1VomalZd_Ijb1kX6vsALsoWL-kMU7oFbZPpjNnRDXu9_jHHh-cPoCza-HUQ9gsygIfAYspnpeZEoaidGkEZho9zxry80KtQ2U78K5hTmpq4HLXP2OSUgDj-Ji2fOzAy5Z0ukLr-BvRW8fh1K1gGsfo-iICzcZhYaW9SFFMGkklO7DbCCGtl_Ys_a2IHXjRPqZF6TItusByMUsDsiMeuXaCaF61wvv3lB7__0PP4Sbpevr5aHT8BLZdw3tXv-B7u7A5v1zgU3KL5tmzWt8YfL9uFf8FGSQhjQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9yfdA-WD_p2SrxA_QlvSSbZHdflPVoLUJLwR7Wp2WSm0Dx2DvaO4v-9U729o6jKAg-7yRk-c1kZpLJbxh743wuc7AgtMqcMIX1wmOMInNjb0owPrSU-Sen7nhkPl_Yi41X_KmsklLxy3aT1qR_wpDDHihL5j2ghNsOZuP44Ud3lqQcuU9T6NS2dstZisZ7bGt0elZ9Sz3lVqOXhEIZZfeDG5V0sEyPlzbc0O3NeJvdXTQz-HkDk8mGtznaYbBa57LI5PvBYu4Pwq9bFI7_8yMP2P0uFOXVUncesjvYPGLbGwSFj9n7tmdmqiZqAeTTyL9ScHrFv7Rn_vyy4cMpzXFCQ_hHcohjTlJnw0p8qsTh-RM2Ojo8Hx6LruOCCJkzcwEU_pjoEKSOCpRErUscmxyxDLGQGDQiaLSAsighRmsw-EJCkRHAiVnxKes10wZ3GS8oSzfeykC5twkSPaBSMVD05gCcjX32bgVAHTo68tQVY1JTWpKwqtdY9dmrtehsycHxJ6G3CcU62SXNE6B7XkCrSQxXdZVbyjRzY02f7a-ArjuDva7TfWJLnV_02cv1ZzK1dH8CDU4X13VG3kFRwCZJ5vVaQf6-pGf_JLXH7qUW9qkiQat91ptfLfA5BTpz_6LT5d9dCvTX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Water+Source+in+Coal+Mine+Based+on+PCA-GA-ET&rft.jtitle=Water+%28Basel%29&rft.au=Yang%2C+Zhenwei&rft.au=Lv%2C+Hang&rft.au=Wang%2C+Xinyi&rft.au=Yan%2C+Hengrui&rft.date=2023-05-21&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=15&rft.issue=10&rft.spage=1945&rft_id=info:doi/10.3390%2Fw15101945&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon