Classification of Water Source in Coal Mine Based on PCA-GA-ET
In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na++K+, Ca2+, Mg2+, Cl...
Saved in:
| Published in | Water (Basel) Vol. 15; no. 10; p. 1945 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
21.05.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4441 2073-4441 |
| DOI | 10.3390/w15101945 |
Cover
| Abstract | In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na++K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3− from observed water samples. An improved water source discrimination model is proposed which combines algorithms from data mining, classification models, and learning reinforcement. According to the Pearson correlation coefficient, Na++K+ has a strong correlation with HCO3−. To identify the major metrics, we performed principal component analysis (PCA), and the adaptive differential evolutionary genetic algorithm (GA) was utilized to optimize the depth of the extreme tree (ET) and the number of classifiers. Finally, the model distinguished 25 sets of studied samples from various water sources in the Pingdingshan coalfield. Comparative analysis demonstrated the efficacy of each stage of our work. PCA-GA-ET outperformed the conventional approaches, such as the support vector machine, BP artificial neural network, and random forest. The studies revealed that PCA-GA-ET can eliminate the information overlap between data and simplify the data structure and thereby improve the efficiency and accuracy of water source detection. We discovered that by utilizing the evolutionary algorithm to optimize parameters such as the depth of the extreme trees and the number of decision trees, we could get the model to converge faster and to be more stable and more accurate. The results suggest that PCA-GA-ET has good robustness and accuracy and can meet the needs of water source identification. |
|---|---|
| AbstractList | In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na++K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3− from observed water samples. An improved water source discrimination model is proposed which combines algorithms from data mining, classification models, and learning reinforcement. According to the Pearson correlation coefficient, Na++K+ has a strong correlation with HCO3−. To identify the major metrics, we performed principal component analysis (PCA), and the adaptive differential evolutionary genetic algorithm (GA) was utilized to optimize the depth of the extreme tree (ET) and the number of classifiers. Finally, the model distinguished 25 sets of studied samples from various water sources in the Pingdingshan coalfield. Comparative analysis demonstrated the efficacy of each stage of our work. PCA-GA-ET outperformed the conventional approaches, such as the support vector machine, BP artificial neural network, and random forest. The studies revealed that PCA-GA-ET can eliminate the information overlap between data and simplify the data structure and thereby improve the efficiency and accuracy of water source detection. We discovered that by utilizing the evolutionary algorithm to optimize parameters such as the depth of the extreme trees and the number of decision trees, we could get the model to converge faster and to be more stable and more accurate. The results suggest that PCA-GA-ET has good robustness and accuracy and can meet the needs of water source identification. In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na⁺+K⁺, Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻, and HCO₃⁻ from observed water samples. An improved water source discrimination model is proposed which combines algorithms from data mining, classification models, and learning reinforcement. According to the Pearson correlation coefficient, Na⁺+K⁺ has a strong correlation with HCO₃⁻. To identify the major metrics, we performed principal component analysis (PCA), and the adaptive differential evolutionary genetic algorithm (GA) was utilized to optimize the depth of the extreme tree (ET) and the number of classifiers. Finally, the model distinguished 25 sets of studied samples from various water sources in the Pingdingshan coalfield. Comparative analysis demonstrated the efficacy of each stage of our work. PCA-GA-ET outperformed the conventional approaches, such as the support vector machine, BP artificial neural network, and random forest. The studies revealed that PCA-GA-ET can eliminate the information overlap between data and simplify the data structure and thereby improve the efficiency and accuracy of water source detection. We discovered that by utilizing the evolutionary algorithm to optimize parameters such as the depth of the extreme trees and the number of decision trees, we could get the model to converge faster and to be more stable and more accurate. The results suggest that PCA-GA-ET has good robustness and accuracy and can meet the needs of water source identification. In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the prevention and management of water hazards in mines. This paper extracts the standard water chemistry discriminating ions Na[sup.+]+K[sup.+], Ca[sup.2+], Mg[sup.2+], Cl[sup.−], SO[sub.4] [sup.2−], and HCO[sub.3] [sup.−] from observed water samples. An improved water source discrimination model is proposed which combines algorithms from data mining, classification models, and learning reinforcement. According to the Pearson correlation coefficient, Na[sup.+]+K[sup.+] has a strong correlation with HCO[sub.3] [sup.−]. To identify the major metrics, we performed principal component analysis (PCA), and the adaptive differential evolutionary genetic algorithm (GA) was utilized to optimize the depth of the extreme tree (ET) and the number of classifiers. Finally, the model distinguished 25 sets of studied samples from various water sources in the Pingdingshan coalfield. Comparative analysis demonstrated the efficacy of each stage of our work. PCA-GA-ET outperformed the conventional approaches, such as the support vector machine, BP artificial neural network, and random forest. The studies revealed that PCA-GA-ET can eliminate the information overlap between data and simplify the data structure and thereby improve the efficiency and accuracy of water source detection. We discovered that by utilizing the evolutionary algorithm to optimize parameters such as the depth of the extreme trees and the number of decision trees, we could get the model to converge faster and to be more stable and more accurate. The results suggest that PCA-GA-ET has good robustness and accuracy and can meet the needs of water source identification. |
| Audience | Academic |
| Author | Wang, Xinyi Xu, Zhaofeng Lv, Hang Yan, Hengrui Yang, Zhenwei |
| Author_xml | – sequence: 1 givenname: Zhenwei orcidid: 0000-0002-6233-6621 surname: Yang fullname: Yang, Zhenwei – sequence: 2 givenname: Hang surname: Lv fullname: Lv, Hang – sequence: 3 givenname: Xinyi surname: Wang fullname: Wang, Xinyi – sequence: 4 givenname: Hengrui surname: Yan fullname: Yan, Hengrui – sequence: 5 givenname: Zhaofeng surname: Xu fullname: Xu, Zhaofeng |
| BookMark | eNp1kV1LBCEUhiUK-rzoHwx0U8FsOqM7ehNsQ21BUdBGl3LWPYbh6jbOEv37rI2IKBUUed6jj26T9RADErLP6KCuFT15ZYJRprhYI1sVbeqSc87Wf6w3yV5KzzQ3rqQUdIucth5SctYZ6F0MRbTFI_TYFfdx2RksXCjaCL64cQGLM0g4KzJ1147K8ag8n-ySDQs-4d7XvEMeLs4n7WV5fTu-akfXpamHvC9hmE-0QwRaWQaMYlUpnPEGURkrKZoKESoUgFQqsFZwNFNJQdZTtKKp6x1yvKq7DAt4ewXv9aJzc-jeNKP6Q15_y2f4cAUvuviyxNTruUsGvYeAcZl0zUQeklOZ0YNf6HP2DllFVzIXU0OhPqjBinoCj9oFG_sOTO4znDuT_8C6vD9qRMVVwwXPgZNVwHQxpQ6tNq7_fOAcdP7POx_9Svzv9w5bhZJs |
| CitedBy_id | crossref_primary_10_3390_pr12030438 crossref_primary_10_3390_w15193398 |
| Cites_doi | 10.1007/s10064-021-02535-5 10.1109/ACCESS.2020.3000333 10.1016/j.proeps.2011.09.058 10.1016/j.jclepro.2020.120008 10.1007/s10230-020-00699-2 10.1038/323533a0 10.1109/LGRS.2020.2968356 10.1111/1365-2478.12682 10.1007/s12517-019-4500-3 10.1007/s12665-019-8624-2 10.1007/s10230-022-00884-5 10.1038/s41598-022-05473-8 10.1109/TIT.1967.1053964 10.3390/en15218108 10.1016/j.gexplo.2018.01.019 10.1007/s12665-012-2117-x 10.1155/2018/9205025 10.1007/s12665-020-8856-1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 ADTOC UNPAY |
| DOI | 10.3390/w15101945 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2073-4441 |
| ExternalDocumentID | 10.3390/w15101945 A752497454 10_3390_w15101945 |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c364t-a6004f6ea02f1a10e229ed47ee9cf80ec2eea2e5ae089aff54ecb80a83bef5733 |
| IEDL.DBID | BENPR |
| ISSN | 2073-4441 |
| IngestDate | Sun Oct 26 04:15:59 EDT 2025 Sat Sep 27 19:07:20 EDT 2025 Mon Jun 30 07:43:47 EDT 2025 Mon Oct 20 16:20:17 EDT 2025 Thu Oct 16 04:41:49 EDT 2025 Thu Apr 24 22:48:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-a6004f6ea02f1a10e229ed47ee9cf80ec2eea2e5ae089aff54ecb80a83bef5733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6233-6621 |
| OpenAccessLink | https://www.proquest.com/docview/2819496598?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2819496598 |
| PQPubID | 2032318 |
| ParticipantIDs | unpaywall_primary_10_3390_w15101945 proquest_miscellaneous_3153158408 proquest_journals_2819496598 gale_infotracacademiconefile_A752497454 crossref_citationtrail_10_3390_w15101945 crossref_primary_10_3390_w15101945 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-21 |
| PublicationDateYYYYMMDD | 2023-05-21 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Huang (ref_7) 2018; 2018 Zhang (ref_15) 2019; 78 Nishitsuji (ref_12) 2019; 67 Zhang (ref_21) 2022; 12 Wei (ref_18) 2022; 41 Yan (ref_19) 2020; 253 Jiang (ref_17) 2022; 81 Feng (ref_13) 2020; 18 Wang (ref_20) 2020; 79 ref_11 Schetselaar (ref_14) 2018; 188 Rumelhart (ref_8) 1986; 323 Cover (ref_9) 1967; 13 Daral (ref_10) 2005; 2005 Huang (ref_16) 2019; 12 Zhang (ref_6) 2020; 39 Hu (ref_1) 2011; 3 Bian (ref_5) 2020; 8 Howladar (ref_2) 2013; 70 Li (ref_3) 2020; 2020 Zhou (ref_4) 2018; 38 |
| References_xml | – volume: 81 start-page: 26 year: 2022 ident: ref_17 article-title: Deep learning model based on big data for water source discrimination in an underground multiaquifer coal mine publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-021-02535-5 – volume: 8 start-page: 107076 year: 2020 ident: ref_5 article-title: CEEMD: A new method to identify mine water inrush based on the signal processing and laser-induced fluorescence publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000333 – volume: 3 start-page: 1 year: 2011 ident: ref_1 article-title: Water hazard control technology for safe extractionof coal resources influenced by faulted zone publication-title: Procedia Earth Planet. Sci. doi: 10.1016/j.proeps.2011.09.058 – volume: 253 start-page: 120008 year: 2020 ident: ref_19 article-title: Bayesian model based on Markov chain Monte Carlo for identifying mine water sources in Submarine Gold Mining publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120008 – volume: 39 start-page: 888 year: 2020 ident: ref_6 article-title: The Bayes recognition model for mine water inrush source based on multiple logistic regression analysis publication-title: Mine Water Environ. doi: 10.1007/s10230-020-00699-2 – volume: 323 start-page: 399 year: 1986 ident: ref_8 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 18 start-page: 18 year: 2020 ident: ref_13 article-title: A Bayesian approach in machine learning for lithofacies classification and its uncertainty analysis publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2968356 – volume: 67 start-page: 1040 year: 2019 ident: ref_12 article-title: Elastic impedance based facies classification using support vector machine and deep learning publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12682 – volume: 12 start-page: 334 year: 2019 ident: ref_16 article-title: Research on Piper-PCA-Bayes-LOOCV discrimination model of water inrush source in mines publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4500-3 – volume: 38 start-page: 2262 year: 2018 ident: ref_4 article-title: Application of CNN in LIF fluorescence spectrum image recognition of mine water inrush publication-title: Spectrosc. Spectr. Anal. – volume: 78 start-page: 612 year: 2019 ident: ref_15 article-title: The multiple logistic regression recognition model for mine water inrush source based on cluster analysis publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8624-2 – volume: 2020 start-page: 2584094 year: 2020 ident: ref_3 article-title: Identification of mine water inrush source based on PCA-FDA: Xiandewang coal mine case publication-title: Geofluids – volume: 2005 start-page: 886 year: 2005 ident: ref_10 article-title: Histograms of Oriented Gradients for Human Detection publication-title: Proc. CVPR – volume: 41 start-page: 1106 year: 2022 ident: ref_18 article-title: Source Discrimination of Mine Water Inrush Using Multiple Combinations of an Improved Support Vector Machine Model publication-title: Mine Water Environ. doi: 10.1007/s10230-022-00884-5 – volume: 12 start-page: 1370 year: 2022 ident: ref_21 article-title: Risk assessment of coal mine water inrush based on PCA-DBN publication-title: Sci. Rep. doi: 10.1038/s41598-022-05473-8 – volume: 13 start-page: 21 year: 1967 ident: ref_9 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – ident: ref_11 doi: 10.3390/en15218108 – volume: 188 start-page: 216 year: 2018 ident: ref_14 article-title: Classification of lithostratigraphic and alteration units from drillhole lithogeochemical data using machine learning: A case study from the Lalor volcanogenic massive sulphide deposit, Snow Lake, Manitoba, Canada publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2018.01.019 – volume: 70 start-page: 215 year: 2013 ident: ref_2 article-title: Coal mining impacts on water environs around the Barapukuria coal mining area, Dinajpur, Bangladesh publication-title: Environ. Earth Sci. doi: 10.1007/s12665-012-2117-x – volume: 2018 start-page: 9205025 year: 2018 ident: ref_7 article-title: Piper-PCA-Fisher recognition model of water inrush source: A case study of the Jiaozuo mining area publication-title: Geofluids doi: 10.1155/2018/9205025 – volume: 79 start-page: 123 year: 2020 ident: ref_20 article-title: Hydrochemical analysis and discrimination of mine water source of the Jiaojia gold mine area, China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-020-8856-1 |
| SSID | ssj0000498850 |
| Score | 2.2857125 |
| Snippet | In recent years, inrush water has hampered the regular mining of coal mines, and the proper identification of the source of inrush water is critical to the... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1945 |
| SubjectTerms | Accuracy Algorithms Aquifers Artificial intelligence calcium Classification coal Coal industry Coal mining Comparative analysis Genetic algorithms hydrochemistry Machine learning Methods Mines Monte Carlo simulation Mutation Neural networks principal component analysis Principal components analysis Support vector machines trees water |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9yfdA-WD_p2SrxA_QlvSSbZHdflPVoLUJLwR7Wp2WSm0Dx2DvaO4v-9U729o6jKAg-7yRk-c1kZpLJbxh743wuc7AgtMqcMIX1wmOMInNjb0owPrSU-Sen7nhkPl_Yi41X_KmsklLxy3aT1qR_wpDDHihL5j2ghNsOZuP44Ud3lqQcuU9T6NS2dstZisZ7bGt0elZ9Sz3lVqOXhEIZZfeDG5V0sEyPlzbc0O3NeJvdXTQz-HkDk8mGtznaYbBa57LI5PvBYu4Pwq9bFI7_8yMP2P0uFOXVUncesjvYPGLbGwSFj9n7tmdmqiZqAeTTyL9ScHrFv7Rn_vyy4cMpzXFCQ_hHcohjTlJnw0p8qsTh-RM2Ojo8Hx6LruOCCJkzcwEU_pjoEKSOCpRErUscmxyxDLGQGDQiaLSAsighRmsw-EJCkRHAiVnxKes10wZ3GS8oSzfeykC5twkSPaBSMVD05gCcjX32bgVAHTo68tQVY1JTWpKwqtdY9dmrtehsycHxJ6G3CcU62SXNE6B7XkCrSQxXdZVbyjRzY02f7a-ArjuDva7TfWJLnV_02cv1ZzK1dH8CDU4X13VG3kFRwCZJ5vVaQf6-pGf_JLXH7qUW9qkiQat91ptfLfA5BTpz_6LT5d9dCvTX priority: 102 providerName: Unpaywall |
| Title | Classification of Water Source in Coal Mine Based on PCA-GA-ET |
| URI | https://www.proquest.com/docview/2819496598 https://www.proquest.com/docview/3153158408 https://www.mdpi.com/2073-4441/15/10/1945/pdf?version=1684648213 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: A8Z dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9GHrw9gny9YV7QO2F1HJlmz5YStuSFsGDWFrWPZkJFmCQbCzNqHsv9_Jsd1Quj0an2VxJ53udNLvB_AhMSlLtdQ04nFChZKGGuc9jZPSiEwLYxvI_ItJcj4TX-dyvgOT7i5MOFbZ-cTGUZe1DXvkR6Hg02Cbq-PlbxpYo0J1taPQ0C21Qvm5gRjbhb0oIGMNYO9kPJl-63ddMB5WSrINxFCM-f7RDQ-jMgvXmbYWprvueR8erKul_nOjF4ut9ef0MTxqA0eSbyz9BHZc9RT2t-AEn8GXhuEynP1p1E1qT35gKHlFvjc79ORXRUY1tnGBn5ATXL5KglLTUU7Pcjq-fA6z0_Hl6Jy2_AjUxolYUY3BivCJ0yzyXHPmoihzpUidy6xXzNnIOR05qR1TmfZeCmeNYlrFaI6Ag_gCBlVduZdAFObUwkhmMVMWljmjHefeYqyVaJ1IP4RPnXIK24KHBw6LRYFJRNBj0etxCO960eUGMeM-oY9Bw0WYRdiO1e1lAOxNwKMq8lRiXpgKKYZw0BmhaKfXdXE7GIbwtn-NEyNUO3Tl6vV1EaMv5xheMZR53xvv31169f8fvYaHgWk-HByI-AEMVldr9wbjkZU5bAfZIeyezTk-zSbT_Odf-S3gpg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAfEpygaYL8GLNSex8_EwUFc6OrZWE3Rib8FxztKkKilrq2r_HH8b5zQJFQLe9pyL45zvfHc-3-8AXodZJCKtNPe9IOQyVhnP0FoehHkmEy0zU0HmD0fh4Fx-vlAXG_CzqYVx1yqbPbHaqPPSuDPyfZfwqbDN4w_TH9x1jXLZ1aaFhq5bK-QHFcRYXdhxgtdLCuFmB8cfab3f-P5Rf9wb8LrLADdBKOdck8mXNkQtfOtpT6DvJ5jLCDExNhZofETto9Io4kRbqySaLBY6DuinHJogjXsLtmQgEwr-tg77o7Mv7SkP-d9xrMQK0igIErG_9JwWJK58as0Q_mkOdmB7UUz19VJPJmv27ugu3KkdVdZdSdY92MDiPuyswRc-gPdVR01316haXlZa9o1c1yv2tcoIsMuC9UoaY0ivsEMylzkjqrNel3_q8v74IZzfCKcewWZRFvgYWEwxvMyUMBSZSyMw0-h51pBvF2odKtuBdw1zUlODlbueGZOUghbHx7TlYwdetqTTFULH34jeOg6nTmtpHKPr4gOajcO_SruRojg0kkp2YK9ZhLRW51n6W_g68KJ9TIrosiu6wHIxSwOyHR65c4JoXrWL9-8pPfn_h57D9mA8PE1Pj0cnu3Dbdbl3lxZ8bw8251cLfEq-0Dx7Vgscg-83LeO_ABdpHV4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTYLtAfEpCgPMl-DFqpPY-XgYqOtaNsaqCjaxt-A4Z2lSlZS1VbV_kb-Kc5qECgFve87Fce7Ovjvf-XcAr8MsEpFWmvteEHIZq4xnaC0PwjyTiZaZqSDzT0bh4Zn8dK7ON-BncxfGlVU2e2K1UeelcWfkXZfwqbDN466tyyLGB8MP0x_cdZBymdamnYau2yzkexXcWH3J4xivlhTOzfaODkj2b3x_ODjtH_K64wA3QSjnXJP5lzZELXzraU-g7yeYywgxMTYWaHxE7aPSKOJEW6skmiwWOg7oBx2yII17A7Zc8os2ia39wWj8pT3xIV88jpVYwRsFQSK6S8-tiMRdpVozin-ahh24tSim-mqpJ5M12ze8A7drp5X1Vlp2FzawuAc7a1CG9-F91V3T1R1VomalZd_Ijb1kX6vsALsoWL-kMU7oFbZPpjNnRDXu9_jHHh-cPoCza-HUQ9gsygIfAYspnpeZEoaidGkEZho9zxry80KtQ2U78K5hTmpq4HLXP2OSUgDj-Ji2fOzAy5Z0ukLr-BvRW8fh1K1gGsfo-iICzcZhYaW9SFFMGkklO7DbCCGtl_Ys_a2IHXjRPqZF6TItusByMUsDsiMeuXaCaF61wvv3lB7__0PP4Sbpevr5aHT8BLZdw3tXv-B7u7A5v1zgU3KL5tmzWt8YfL9uFf8FGSQhjQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9yfdA-WD_p2SrxA_QlvSSbZHdflPVoLUJLwR7Wp2WSm0Dx2DvaO4v-9U729o6jKAg-7yRk-c1kZpLJbxh743wuc7AgtMqcMIX1wmOMInNjb0owPrSU-Sen7nhkPl_Yi41X_KmsklLxy3aT1qR_wpDDHihL5j2ghNsOZuP44Ud3lqQcuU9T6NS2dstZisZ7bGt0elZ9Sz3lVqOXhEIZZfeDG5V0sEyPlzbc0O3NeJvdXTQz-HkDk8mGtznaYbBa57LI5PvBYu4Pwq9bFI7_8yMP2P0uFOXVUncesjvYPGLbGwSFj9n7tmdmqiZqAeTTyL9ScHrFv7Rn_vyy4cMpzXFCQ_hHcohjTlJnw0p8qsTh-RM2Ojo8Hx6LruOCCJkzcwEU_pjoEKSOCpRErUscmxyxDLGQGDQiaLSAsighRmsw-EJCkRHAiVnxKes10wZ3GS8oSzfeykC5twkSPaBSMVD05gCcjX32bgVAHTo68tQVY1JTWpKwqtdY9dmrtehsycHxJ6G3CcU62SXNE6B7XkCrSQxXdZVbyjRzY02f7a-ArjuDva7TfWJLnV_02cv1ZzK1dH8CDU4X13VG3kFRwCZJ5vVaQf6-pGf_JLXH7qUW9qkiQat91ptfLfA5BTpz_6LT5d9dCvTX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Water+Source+in+Coal+Mine+Based+on+PCA-GA-ET&rft.jtitle=Water+%28Basel%29&rft.au=Yang%2C+Zhenwei&rft.au=Lv%2C+Hang&rft.au=Wang%2C+Xinyi&rft.au=Yan%2C+Hengrui&rft.date=2023-05-21&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=15&rft.issue=10&rft.spage=1945&rft_id=info:doi/10.3390%2Fw15101945&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |