An economic model predictive control approach to integrated production management and process operation
Managing production schedules and tracking time‐varying demand of certain products while optimizing process economics are subjects of central importance in industrial applications. We investigate the use of economic model predictive control (EMPC) in tracking a production schedule. Specifically, giv...
Saved in:
| Published in | AIChE journal Vol. 63; no. 6; pp. 1892 - 1906 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
American Institute of Chemical Engineers
01.06.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0001-1541 1547-5905 |
| DOI | 10.1002/aic.15553 |
Cover
| Abstract | Managing production schedules and tracking time‐varying demand of certain products while optimizing process economics are subjects of central importance in industrial applications. We investigate the use of economic model predictive control (EMPC) in tracking a production schedule. Specifically, given that only a small subset of the total process state vector is typically required to track certain scheduled values, we design a novel EMPC scheme, through proper construction of the objective function and constraints, that forces specific process states to meet the production schedule and varies the rest of the process states in a way that optimizes process economic performance. Conditions under which feasibility and closed‐loop stability of a nonlinear process under such an EMPC for schedule management can be guaranteed are developed. The proposed EMPC scheme is demonstrated through a chemical process example in which the product concentration is requested to follow a certain production schedule. © 2016 American Institute of Chemical Engineers AIChE J , 63: 1892–1906, 2017 |
|---|---|
| AbstractList | Managing production schedules and tracking time‐varying demand of certain products while optimizing process economics are subjects of central importance in industrial applications. We investigate the use of economic model predictive control (EMPC) in tracking a production schedule. Specifically, given that only a small subset of the total process state vector is typically required to track certain scheduled values, we design a novel EMPC scheme, through proper construction of the objective function and constraints, that forces specific process states to meet the production schedule and varies the rest of the process states in a way that optimizes process economic performance. Conditions under which feasibility and closed‐loop stability of a nonlinear process under such an EMPC for schedule management can be guaranteed are developed. The proposed EMPC scheme is demonstrated through a chemical process example in which the product concentration is requested to follow a certain production schedule. © 2016 American Institute of Chemical Engineers AIChE J , 63: 1892–1906, 2017 |
| Author | Christofides, Panagiotis D. Durand, Helen Alanqar, Anas Albalawi, Fahad |
| Author_xml | – sequence: 1 givenname: Anas surname: Alanqar fullname: Alanqar, Anas organization: Dept. of Chemical and Biomolecular Engineering University of California Los Angeles CA 90095 – sequence: 2 givenname: Helen surname: Durand fullname: Durand, Helen organization: Dept. of Chemical and Biomolecular Engineering University of California Los Angeles CA 90095 – sequence: 3 givenname: Fahad surname: Albalawi fullname: Albalawi, Fahad organization: Dept. of Electrical Engineering University of California Los Angeles CA 90095 – sequence: 4 givenname: Panagiotis D. surname: Christofides fullname: Christofides, Panagiotis D. organization: Dept. of Chemical and Biomolecular Engineering University of California Los Angeles CA 90095, Dept. of Electrical Engineering University of California Los Angeles CA 90095 |
| BookMark | eNptkD1PwzAQhi1UJNrCwD-wxMSQ9pzEcTxWFV9SJRaYI8e5FFeJHWwXiX-PKUyI6XT3Pvf1LsjMOouEXDNYMYB8rYxeMc55cUbmjJci4xL4jMwBgGWpwC7IIoRDynJR53Oy31iK2lk3Gk1H1-FAJ4-d0dF8IE1C9G6gapq8U_qNRkeNjbj3KmKXSNcdE-ksHZVVexzRRqrsSdEYAnUTJjQBl-S8V0PAq9-4JK_3dy_bx2z3_PC03ewyXVRlzGQrQLIyFwIUyzXvpehzWdWirtuS9Xmr029YqYL3wKquBcVLyVhqkgAaZbEkNz9z0wXvRwyxObijt2llw2rJQQCvqkTd_lDauxA89s3kzaj8Z8Og-faxST42Jx8Tu_7DahNPP0WvzPBPxxdPcHfP |
| CitedBy_id | crossref_primary_10_1016_j_compchemeng_2019_03_004 crossref_primary_10_1016_j_compchemeng_2020_107025 crossref_primary_10_1016_j_ijepes_2019_105778 crossref_primary_10_1016_j_compchemeng_2017_10_006 crossref_primary_10_1016_j_ifacol_2020_12_385 crossref_primary_10_1520_SSMS20180025 crossref_primary_10_3390_math10183287 crossref_primary_10_3390_su14137967 crossref_primary_10_2200_S01028ED1V01Y202006EST011 |
| Cites_doi | 10.1007/978-1-4471-4808-1 10.1016/0009-2509(92)80011-Z 10.1016/j.compchemeng.2012.06.012 10.1109/TAC.2008.929401 10.1021/ie100024p 10.1016/j.compchemeng.2015.09.017 10.1016/j.arcontrol.2011.10.011 10.2307/1969955 10.1016/0167-6911(89)90028-5 10.1007/s10107-004-0559-y 10.1016/j.compchemeng.2015.04.026 10.1016/j.compchemeng.2012.06.025 10.1016/j.ifacol.2015.08.212 10.1002/aic.14249 10.1002/aic.14951 10.1002/aic.690370704 10.1109/TAC.2010.2101291 10.1021/ie303537e 10.1021/acs.iecr.5b03499 10.1016/0167-6911(91)90111-Q 10.1002/aic.14683 10.1016/S0098-1354(00)00495-6 10.1002/aic.15430 10.1016/S0098-1354(03)00047-4 10.1016/j.ijggc.2015.10.025 10.1016/j.renene.2016.05.051 10.1016/S0009-2509(03)00126-X 10.1016/j.jprocont.2014.04.015 10.1002/aic.12672 10.1109/9.827354 10.1002/aic.690381008 10.1016/j.arcontrol.2016.04.004 10.1016/j.sysconle.2014.03.003 10.1016/j.jprocont.2011.01.012 10.1016/j.compchemeng.2014.01.003 10.1021/ie051293d 10.1016/j.jprocont.2014.03.010 10.1002/aic.690170410 10.1021/ie402393s 10.1016/j.compchemeng.2014.09.002 10.1080/14689360500164873 10.1016/S0005-1098(01)00002-4 10.1016/j.compchemeng.2015.11.002 10.1002/aic.15033 |
| ContentType | Journal Article |
| Copyright | 2017 American Institute of Chemical Engineers |
| Copyright_xml | – notice: 2017 American Institute of Chemical Engineers |
| DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.15553 |
| DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Economics |
| EISSN | 1547-5905 |
| EndPage | 1906 |
| ExternalDocumentID | 10_1002_aic_15553 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CITATION CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c364t-9b709142770a12c5f97f2968788b41f2bc555e6a35f016db0a54911709900ce93 |
| ISSN | 0001-1541 |
| IngestDate | Fri Jul 25 10:56:13 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Thu Oct 09 00:31:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c364t-9b709142770a12c5f97f2968788b41f2bc555e6a35f016db0a54911709900ce93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1895070566 |
| PQPubID | 7879 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_1895070566 crossref_primary_10_1002_aic_15553 crossref_citationtrail_10_1002_aic_15553 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | AIChE journal |
| PublicationYear | 2017 |
| Publisher | American Institute of Chemical Engineers |
| Publisher_xml | – name: American Institute of Chemical Engineers |
| References | e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 Christofides PD (e_1_2_7_37_1) 2005 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_29_1 Khalil HK. (e_1_2_7_28_1) 2002 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume-title: Nonlinear Systems year: 2002 ident: e_1_2_7_28_1 – ident: e_1_2_7_43_1 doi: 10.1007/978-1-4471-4808-1 – ident: e_1_2_7_33_1 doi: 10.1016/0009-2509(92)80011-Z – ident: e_1_2_7_11_1 doi: 10.1016/j.compchemeng.2012.06.012 – ident: e_1_2_7_30_1 doi: 10.1109/TAC.2008.929401 – ident: e_1_2_7_19_1 doi: 10.1021/ie100024p – ident: e_1_2_7_7_1 doi: 10.1016/j.compchemeng.2015.09.017 – ident: e_1_2_7_2_1 doi: 10.1016/j.arcontrol.2011.10.011 – ident: e_1_2_7_29_1 doi: 10.2307/1969955 – ident: e_1_2_7_44_1 doi: 10.1016/0167-6911(89)90028-5 – ident: e_1_2_7_45_1 doi: 10.1007/s10107-004-0559-y – ident: e_1_2_7_17_1 doi: 10.1016/j.compchemeng.2015.04.026 – ident: e_1_2_7_12_1 doi: 10.1016/j.compchemeng.2012.06.025 – ident: e_1_2_7_25_1 doi: 10.1016/j.ifacol.2015.08.212 – ident: e_1_2_7_8_1 doi: 10.1002/aic.14249 – ident: e_1_2_7_6_1 doi: 10.1002/aic.14951 – ident: e_1_2_7_34_1 doi: 10.1002/aic.690370704 – ident: e_1_2_7_36_1 doi: 10.1109/TAC.2010.2101291 – ident: e_1_2_7_32_1 doi: 10.1021/ie303537e – ident: e_1_2_7_21_1 doi: 10.1021/acs.iecr.5b03499 – ident: e_1_2_7_41_1 doi: 10.1016/0167-6911(91)90111-Q – ident: e_1_2_7_47_1 doi: 10.1002/aic.14683 – ident: e_1_2_7_14_1 doi: 10.1016/S0098-1354(00)00495-6 – ident: e_1_2_7_46_1 doi: 10.1002/aic.15430 – ident: e_1_2_7_10_1 doi: 10.1016/S0098-1354(03)00047-4 – ident: e_1_2_7_27_1 doi: 10.1016/j.ijggc.2015.10.025 – ident: e_1_2_7_16_1 doi: 10.1016/j.renene.2016.05.051 – ident: e_1_2_7_39_1 doi: 10.1016/S0009-2509(03)00126-X – ident: e_1_2_7_26_1 doi: 10.1016/j.jprocont.2014.04.015 – ident: e_1_2_7_4_1 doi: 10.1002/aic.12672 – ident: e_1_2_7_24_1 doi: 10.1109/9.827354 – ident: e_1_2_7_13_1 doi: 10.1002/aic.690381008 – ident: e_1_2_7_35_1 doi: 10.1016/j.arcontrol.2016.04.004 – ident: e_1_2_7_42_1 doi: 10.1016/j.sysconle.2014.03.003 – ident: e_1_2_7_5_1 doi: 10.1016/j.jprocont.2011.01.012 – ident: e_1_2_7_9_1 doi: 10.1016/j.compchemeng.2014.01.003 – ident: e_1_2_7_18_1 doi: 10.1021/ie051293d – ident: e_1_2_7_3_1 doi: 10.1016/j.jprocont.2014.03.010 – ident: e_1_2_7_31_1 doi: 10.1002/aic.690170410 – volume-title: Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time‐Delays year: 2005 ident: e_1_2_7_37_1 – ident: e_1_2_7_15_1 doi: 10.1021/ie402393s – ident: e_1_2_7_22_1 doi: 10.1016/j.compchemeng.2014.09.002 – ident: e_1_2_7_38_1 doi: 10.1080/14689360500164873 – ident: e_1_2_7_40_1 doi: 10.1016/S0005-1098(01)00002-4 – ident: e_1_2_7_20_1 doi: 10.1016/j.compchemeng.2015.11.002 – ident: e_1_2_7_23_1 doi: 10.1002/aic.15033 |
| SSID | ssj0012782 |
| Score | 2.2739806 |
| Snippet | Managing production schedules and tracking time‐varying demand of certain products while optimizing process economics are subjects of central importance in... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1892 |
| SubjectTerms | Economic analysis Economic models Economics Industrial applications Objective function Predictive control Production management Production scheduling Schedules State vectors Tracking control |
| Title | An economic model predictive control approach to integrated production management and process operation |
| URI | https://www.proquest.com/docview/1895070566 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1547-5905 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0001-1541 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeAAeJhggxgayEEJIVUbixEn8GG2rOi4Tgk3aW-Q49happF2bCom_xR_k-JJLRYWAl6hKrbTx-Xou6Tnfh9BrJaBmIFCWUEWhQIlo6UGcYZ70lfQlpaHg-oH-p_N4ehm9v6JXo9HPQdfSuimOxI-tcyX_Y1U4B3bVU7L_YNnuonACXoN94QgWhuNf2Tirx9INFltJGz3yX1bGhXVN6C1ruM4yO3IITQ5gqF619b91LTCONsDMDoznC7ns7dYy1Z4d35yOh99Oo2XG61vbqZ3VvJeqXy9d26QJbv3qgs_4d9NGMOE3vOxbDAzRgarKVj5AayjNm2rl-pLd04kg6buoBgMBvN5sfei4EFrOxdWGiw48yOvsNaTzylHiUebTodt2frH6zQcHqVXXc_EcMp54a6yw3LO8EkeQU1nG4k0-7mn2Nf98Msk_np1_eLO49bRUmf5L3-m23EF3CYQSrRdy8qXjLAtIklqKencfLZ2VT951n7WZBG3mACaxuXiIdl1FgjMLr0doJOs9dK8dWF_toQcDzsrH6DqrcQs6bECHe9BhBzrcgg43c9yDDvegwz3oMIAEO9DhDnRP0OXk9OJ46jm1Dk-EcdR4rEgg94xIkvg8IIIqlijC4jRJ0yIKFCkE3LmMeUgVlBll4XMaMa17BPmQLyQLn6Kdel7LZwiTUCjKFdFMUBFlqohEwGSsw49MVcr20dt2-3LhqOy1osostyTcJIedzs1O76NX3dKF5W_ZtuiwtUHufkCrHGAEtRLUB_HzP799gO73yD9EO81yLV9AptoULw0yfgFBw5qk |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+economic+model+predictive+control+approach+to+integrated+production+management+and+process+operation&rft.jtitle=AIChE+journal&rft.au=Alanqar%2C+Anas&rft.au=Durand%2C+Helen&rft.au=Albalawi%2C+Fahad&rft.au=Christofides%2C+Panagiotis+D&rft.date=2017-06-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=63&rft.issue=6&rft.spage=1892&rft.epage=1906&rft_id=info:doi/10.1002%2Faic.15553&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |