Application Research on Risk Assessment of Municipal Pipeline Network Based on Random Forest Machine Learning Algorithm

Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the quality and quantity of data available for pipeline systems in recent years, traditional pipeline network risk assessment cannot cope with the imp...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 15; no. 10; p. 1964
Main Authors Cen, Hang, Huang, Delong, Liu, Qiang, Zong, Zhongling, Tang, Aiping
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 22.05.2023
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w15101964

Cover

Abstract Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the quality and quantity of data available for pipeline systems in recent years, traditional pipeline network risk assessment cannot cope with the improvement of various monitoring methods. Therefore, this paper proposes a machine learning-based risk assessment method for municipal pipe network operation and maintenance and builds a model example based on the data of a pipeline network base in a park in Suzhou. We optimized the random forest learning model, compared it with other centralized learning methods, and finally evaluated the model’s learning effect. Finally, the risk probability associated with each pipe segment sample was obtained, the risk factors affecting the pipe segment’s failure were determined, and their relevance and importance ranking was established. The results showed that the most influential factors are pipe material, soil properties, service life, and the number of past failures. The random forest algorithm demonstrated better prediction accuracy and robustness on the dataset.
AbstractList Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the quality and quantity of data available for pipeline systems in recent years, traditional pipeline network risk assessment cannot cope with the improvement of various monitoring methods. Therefore, this paper proposes a machine learning-based risk assessment method for municipal pipe network operation and maintenance and builds a model example based on the data of a pipeline network base in a park in Suzhou. We optimized the random forest learning model, compared it with other centralized learning methods, and finally evaluated the model’s learning effect. Finally, the risk probability associated with each pipe segment sample was obtained, the risk factors affecting the pipe segment’s failure were determined, and their relevance and importance ranking was established. The results showed that the most influential factors are pipe material, soil properties, service life, and the number of past failures. The random forest algorithm demonstrated better prediction accuracy and robustness on the dataset.
Audience Academic
Author Liu, Qiang
Cen, Hang
Huang, Delong
Zong, Zhongling
Tang, Aiping
Author_xml – sequence: 1
  givenname: Hang
  surname: Cen
  fullname: Cen, Hang
– sequence: 2
  givenname: Delong
  surname: Huang
  fullname: Huang, Delong
– sequence: 3
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
– sequence: 4
  givenname: Zhongling
  surname: Zong
  fullname: Zong, Zhongling
– sequence: 5
  givenname: Aiping
  surname: Tang
  fullname: Tang, Aiping
BookMark eNp9kV1rFDEUhoNUsNZe-A8C3qiwbTLJzCSXY7EqbFVEr4ezyZndtJlkTGZY-u_NdkWkiMlFDuF53_P1nJyEGJCQl5xdCKHZ5Z7XnHHdyCfktGKtWEkp-clf8TNynvMtK0dqpWp2SvbdNHlnYHYx0G-YEZLZ0UPs8h3tcsacRwwzjQO9WYIzbgJPv7oJvQtIP-O8j-mOvoOM9kEGwcaRXseEeaY3YHYHbF1sgwtb2vltTG7ejS_I0wF8xvPf7xn5cf3--9XH1frLh09X3XplRCPnlZZQS8Fby6uWWdbYwchWG4XAQNmNAOBKtKriqgLFKttoyS3WG90MG72BQZyRt0ffJUxwvwfv-ym5EdJ9z1l_mFr_Z2oFfn2EpxR_LqWBfnTZoPcQMC65F7wWvKlarQr66hF6G5cUSit9pbiWTSF1oS6O1BY89i4McU5gyrU4OlOWN7jy37V1JXUrW1EEb44Ck2LOCYf_Vnv5iDVuflhkSeL8PxS_AMFSqC8
CitedBy_id crossref_primary_10_3390_w16142017
crossref_primary_10_1016_j_jpse_2024_100247
crossref_primary_10_1115_1_4065177
crossref_primary_10_1007_s11831_025_10251_6
Cites_doi 10.1002/wics.2
10.1061/(ASCE)PS.1949-1204.0000037
10.1109/TPAMI.2009.187
10.2166/ws.2014.131
10.1061/(ASCE)WR.1943-5452.0000030
10.1016/j.wear.2023.204688
10.2166/hydro.2013.094
10.1016/j.jher.2009.02.003
10.1080/1573062X.2017.1279191
10.1007/s00521-017-2987-7
10.1016/j.asoc.2018.11.045
10.1007/s11269-016-1241-x
10.1007/s11069-021-04630-y
10.1016/j.scs.2019.102012
10.1016/j.ress.2008.03.011
10.1016/j.watres.2019.115058
10.1007/s12205-014-0537-8
10.2166/hydro.2014.120
10.1109/TIE.2017.2764861
10.1016/j.watres.2019.06.025
10.1109/TITS.2014.2366512
10.1016/j.powtec.2018.07.055
10.1016/j.tust.2019.04.019
10.2166/aqua.2018.074
10.3390/ma15041477
10.1061/(ASCE)0733-9429(1992)118:7(1031)
10.2166/wst.2002.0595
10.1016/j.compenvurbsys.2008.12.001
10.1016/j.jenvman.2022.114869
10.1016/j.jclepro.2020.123611
10.1016/j.ejor.2014.06.033
10.1016/j.aei.2010.09.001
10.1016/j.ress.2019.02.001
10.1016/j.patcog.2015.03.009
10.1016/S1566-2535(03)00034-4
10.1016/j.mcm.2009.12.033
10.1613/jair.953
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ADTOC
UNPAY
DOI 10.3390/w15101964
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10.3390/w15101964
A752497473
10_3390_w15101964
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-94a54317d1270d06dfc479c8ea0a8db3aa183782182a802d6941de5b96fb9baf3
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Sun Oct 26 02:40:13 EDT 2025
Sat Sep 27 16:28:41 EDT 2025
Mon Jun 30 07:29:31 EDT 2025
Mon Oct 20 16:20:17 EDT 2025
Thu Oct 16 04:29:40 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-94a54317d1270d06dfc479c8ea0a8db3aa183782182a802d6941de5b96fb9baf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2819465319?pq-origsite=%requestingapplication%&accountid=15518
PQID 2819465319
PQPubID 2032318
ParticipantIDs unpaywall_primary_10_3390_w15101964
proquest_miscellaneous_3153162798
proquest_journals_2819465319
gale_infotracacademiconefile_A752497473
crossref_primary_10_3390_w15101964
crossref_citationtrail_10_3390_w15101964
PublicationCentury 2000
PublicationDate 2023-05-22
PublicationDateYYYYMMDD 2023-05-22
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-22
  day: 22
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhou (ref_1) 2019; 166
Kang (ref_11) 2017; 65
Creaco (ref_19) 2019; 161
Fares (ref_35) 2010; 1
Wu (ref_20) 2017; 06
Li (ref_21) 2010; 25
Hu (ref_14) 2020; 278
Yamijala (ref_30) 2009; 94
Sattar (ref_37) 2016; 30
Tao (ref_7) 2016; 10
Mounce (ref_27) 2010; 136
Kabir (ref_36) 2015; 240
Zhou (ref_13) 2019; 25
Pu (ref_33) 2019; 90
Shirzad (ref_40) 2014; 18
Shojaie (ref_3) 2023; 522
Romano (ref_5) 2013; 15
Morgenthaler (ref_44) 2009; 1
Mounce (ref_25) 2002; 45
Kohavi (ref_8) 1995; 14
Wu (ref_16) 2017; 14
Yang (ref_28) 2012; 48
Wong (ref_10) 2015; 48
Rodriguez (ref_9) 2009; 32
Zheng (ref_34) 2017; 3
Bakker (ref_6) 2014; 16
Chen (ref_31) 2021; 107
Shi (ref_22) 2020; 55
Ren (ref_42) 2022; 9
ref_45
Mounce (ref_26) 2003; 4
Zahedi (ref_2) 2018; 338
Li (ref_17) 2015; 15
Luo (ref_23) 2020; 49
Colombo (ref_15) 2009; 2
Tang (ref_24) 2019; 186
Chawla (ref_43) 2002; 16
Christodoulou (ref_29) 2009; 33
Pudar (ref_4) 1992; 118
Page (ref_18) 2019; 68
Vu (ref_46) 2022; 311
Hodge (ref_12) 2014; 16
Sattar (ref_38) 2019; 31
Jafar (ref_41) 2010; 51
Garrett (ref_39) 2011; 25
Liu (ref_32) 2019; 75
References_xml – volume: 1
  start-page: 33
  year: 2009
  ident: ref_44
  article-title: Exploratory Data Analysis
  publication-title: Wiley Interdiscip. Rev. Comput Stat.
  doi: 10.1002/wics.2
– volume: 1
  start-page: 53
  year: 2010
  ident: ref_35
  article-title: Hierarchical Fuzzy Expert System for Risk of Failure of Water Mains
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000037
– volume: 48
  start-page: 471
  year: 2012
  ident: ref_28
  article-title: Water quality model of municipal network based on artificial neural network
  publication-title: Water Wastewater Eng.
– volume: 32
  start-page: 569
  year: 2009
  ident: ref_9
  article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.187
– volume: 15
  start-page: 429
  year: 2015
  ident: ref_17
  article-title: A review of methods for burst/leakage detection and location in water distribution systems
  publication-title: Water Sci. Technol. Water Supply
  doi: 10.2166/ws.2014.131
– volume: 49
  start-page: 269
  year: 2020
  ident: ref_23
  article-title: Failure model for pitting fatigue damaged pipeline of subsea based on dynamic Bayesian network
  publication-title: Surf. Technol.
– volume: 136
  start-page: 309
  year: 2010
  ident: ref_27
  article-title: Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000030
– volume: 522
  start-page: 204688
  year: 2023
  ident: ref_3
  article-title: A method to determine the uncertainties of solid particle erosion measurements utilizing machine learning techniques
  publication-title: Wear
  doi: 10.1016/j.wear.2023.204688
– volume: 3
  start-page: 236
  year: 2017
  ident: ref_34
  article-title: Research status and trends of municipal pipe network optimization technology research
  publication-title: Urban Constr. Theory Res.
– volume: 15
  start-page: 634
  year: 2013
  ident: ref_5
  article-title: Geostatistical techniques for approximate location of pipe burst events in water distribution systems
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2013.094
– volume: 2
  start-page: 212
  year: 2009
  ident: ref_15
  article-title: A selective literature review of transient-based leak detection methods
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2009.02.003
– volume: 14
  start-page: 972
  year: 2017
  ident: ref_16
  article-title: A review of data-driven approaches for burst detection in water distribution systems
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2017.1279191
– volume: 31
  start-page: 157
  year: 2019
  ident: ref_38
  article-title: Extreme learning machine model for water network management
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2987-7
– volume: 75
  start-page: 702
  year: 2019
  ident: ref_32
  article-title: Integration of feature vector selection and support vector machine for classification of imbalanced data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.045
– volume: 30
  start-page: 1635
  year: 2016
  ident: ref_37
  article-title: Prediction of Timing of Watermain Failure Using Gene Expression Models
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1241-x
– volume: 107
  start-page: 2671
  year: 2021
  ident: ref_31
  article-title: An ensemble risk assessment model for urban rainstorm disasters based on random forest and deep belief nets: A case study of Nanjing, China
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-04630-y
– volume: 55
  start-page: 5102012
  year: 2020
  ident: ref_22
  article-title: A data-driven approach for pipe deformation prediction based on soil properties and weather conditions
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.102012
– volume: 94
  start-page: 282
  year: 2009
  ident: ref_30
  article-title: Statistical models for the analysis of water distribution system pipe break data
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2008.03.011
– volume: 166
  start-page: 115058
  year: 2019
  ident: ref_1
  article-title: Deep learning identifies accurate burst locations in water distribution networks
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115058
– volume: 18
  start-page: 941
  year: 2014
  ident: ref_40
  article-title: A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-014-0537-8
– volume: 9
  start-page: 1
  year: 2022
  ident: ref_42
  article-title: The application of case teaching method for “python and application” under the concept of curriculum ideology and politics
  publication-title: Open Access Libr. J.
– volume: 16
  start-page: 1194
  year: 2014
  ident: ref_6
  article-title: Heuristic burst detection method using flow and pressure measurements
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2014.120
– volume: 65
  start-page: 4279
  year: 2017
  ident: ref_11
  article-title: Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2764861
– volume: 161
  start-page: 517
  year: 2019
  ident: ref_19
  article-title: Real time control of water distribution networks: A state-of-the-art review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.06.025
– volume: 25
  start-page: 1
  year: 2019
  ident: ref_13
  article-title: Identification and Analysis of Drainage Network Safety Operation Based on Online Monitoring Data of Distributed Senso
  publication-title: Archit. Eng.
– volume: 10
  start-page: 11
  year: 2016
  ident: ref_7
  article-title: Pipe burst location analysis based on SCADA system pressure monitoring
  publication-title: Water Technol.
– volume: 14
  start-page: 1137
  year: 1995
  ident: ref_8
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: IJCAI
– volume: 16
  start-page: 1088
  year: 2014
  ident: ref_12
  article-title: Wireless sensor networks for condition monitoring in the railway industry: A survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2366512
– volume: 06
  start-page: 50
  year: 2017
  ident: ref_20
  article-title: Discussion on Mining and Application of Pipeline Big-Data
  publication-title: Urban Geotech. Investig. Surv.
– volume: 338
  start-page: 983
  year: 2018
  ident: ref_2
  article-title: Random forest regression prediction of solid particle Erosion in elbows
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.07.055
– volume: 90
  start-page: 12
  year: 2019
  ident: ref_33
  article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.04.019
– volume: 68
  start-page: 20
  year: 2019
  ident: ref_18
  article-title: Remote real-time pressure control via a variable speed pump in a specific water distribution system
  publication-title: J. Water Supply Res. Technol.—AQUA
  doi: 10.2166/aqua.2018.074
– ident: ref_45
  doi: 10.3390/ma15041477
– volume: 118
  start-page: 1031
  year: 1992
  ident: ref_4
  article-title: Leaks in pipe networks
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1992)118:7(1031)
– volume: 45
  start-page: 237
  year: 2002
  ident: ref_25
  article-title: A neural network approach to burst detection
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2002.0595
– volume: 33
  start-page: 138
  year: 2009
  ident: ref_29
  article-title: Risk-based asset management of water piping networks using neurofuzzy systems
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2008.12.001
– volume: 311
  start-page: 114869
  year: 2022
  ident: ref_46
  article-title: Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.114869
– volume: 278
  start-page: 123611
  year: 2020
  ident: ref_14
  article-title: Novel leakage detection and water loss management of urban water supply network using multiscale neural networks
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123611
– volume: 240
  start-page: 220
  year: 2015
  ident: ref_36
  article-title: Evaluating risk of water mains failure using a Bayesian belief network model
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.06.033
– volume: 25
  start-page: 380
  year: 2011
  ident: ref_39
  article-title: A density-based spatial clustering approach for defining local indicators of drinking water distribution pipe breakage
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2010.09.001
– volume: 186
  start-page: 24
  year: 2019
  ident: ref_24
  article-title: Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.02.001
– volume: 48
  start-page: 2839
  year: 2015
  ident: ref_10
  article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.009
– volume: 25
  start-page: 4
  year: 2010
  ident: ref_21
  article-title: Seismic Topology Optimization of Life line Networks Based on seismic reliability
  publication-title: J. Catastrophology
– volume: 4
  start-page: 217
  year: 2003
  ident: ref_26
  article-title: Sensor-fusion of hydraulic data for burst detection and location in a treated water distribution system
  publication-title: Inf. Fusion
  doi: 10.1016/S1566-2535(03)00034-4
– volume: 51
  start-page: 1170
  year: 2010
  ident: ref_41
  article-title: Application of Artificial Neural Networks (ANN) to model the failure of urban water mains
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2009.12.033
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_43
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
SSID ssj0000498850
Score 2.3171954
Snippet Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1964
SubjectTerms Acoustics
Algorithms
Big Data
China
Comparative analysis
data collection
Data mining
durability
forestry equipment
Leak detection
Machine learning
Methods
Neural networks
Parameter estimation
Pipe lines
Pipes
prediction
Probability
public water supply
risk
Risk assessment
risk assessment process
Risk factors
soil
water
Water supply
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_k-qB9sPULY6usH6Av6V2SzW7yJKlYinBHHzyoT2GT3a2h1yT0cj3qX-_M5cOzKAi-BbIbNpmZ3ZnM_H4D8E5TmGz1Rnmly7mVZHPSlX5oAxuKQOaEd57OxOmcfzkPz7dQ_FRWiaF4sdmkfdQ_nM-9sReieY-JPGpca_vxpvuX5AncXMNAEoJvR4TojY9gZz47S75RT7l-dksoFGB0P157pIOx4L8dQ3c34124vyprdbtWi8XWaXOyB6pfZ1tkcnm0arKj_McdCsf_eZF9eNi5oixpdecR3DPlY9jdIih8AuvkV36b9UV6jK6L5SVLBlZPVlk2JZxJUeMTz4qaUO6Gzdoac3aMR6XeTFOlrq4Y9QNdNmy6KeQ0rON4vWDJ4qK6LprvV09hfvL566dTt2vV4OaB4I0bc0Wgeqkpka0nQtucyziPjJqoSGeBUh4x1xNdvIomvib4rDZhFgubxZmywTMYlVVpngNTBObFqA9dJ8XxQ6nICGNs6EW54RH3HPjQSy7NOx5zaqexSDGeISGng5AdeDMMrVvyjj8Nek_iT8mg8Tm56nAJuBqixkoTGWKIilFX4MBhryFpZ-nLlBKRxFHnxQ68Hm6jjVLiRZWmWi3TAI8VT_gyjhx4O2jW35f04p9GHcADHz0uKmXw_UMYNdcr8xI9pCZ71RnBT3cfCRs
  priority: 102
  providerName: Unpaywall
Title Application Research on Risk Assessment of Municipal Pipeline Network Based on Random Forest Machine Learning Algorithm
URI https://www.proquest.com/docview/2819465319
https://www.proquest.com/docview/3153162798
https://www.mdpi.com/2073-4441/15/10/1964/pdf?version=1684753709
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: A8Z
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db5RAEJ-01wftg7FVI1qbrTXRF9IDFhYemoY2_YjJkYvxkvOJLOzuefEK6HG5-N87wwFtjfYNwgKbnZmdmZ2Z3wB8UOQmG9Uwr7A5N4JkTtjC9Y1n_MATOdU7j5LgZsI_T_3pFiRdLQylVXZ7YrNRqzKnM_ITCvgQFpgTnVU_beoaRdHVroWGbFsrqNMGYmwbdlxCxhrAzvllMv7Sn7qgPRyG_nADMeShv3-ydogro4A_UEx_b8-78GRVVPL3Wi4W9_TP1XN41hqOLN5Qeg-2dLEPu_fgBF_AOr6LRrMupY7R9Xz5g8U9BicrDRtRVci8wi-O5xXVpGuWbDLC2TkqNtW8JgtV3jLq3rms2ahJu9SsRWSdsXgxwwWqv9--hMnV5deLG7ttrGDnXsBrO-KSSuCForCzGgbK5FxEeajlUIYq86R0CGeewN1lOHQVFbsq7WdRYLIok8Z7BYOiLPRrYJJKb9FHQ0NHclxGGepAa4M0yDUPuWPBp25V07xFHafmF4sUvQ8iQNoTwIL3_dBqA7Xxr0EfiTQpiR9-J5dtFQHOhoCs0lj46FCij-RZcNBRL23lcpnecZEFR_1jlCgKk8hCl6tl6qEScAJXRKEFxz3V_z-lN4__6C08pRb1lHHgugcwqH-t9Ds0ZOrssOXOQ9i-njp4N0nG8bc_5470sA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QDxFoIB5CS5Rk9h5HSqUQqst7a4q1Eq9uU7slBXbJJCsVv1z_DZmsklaEHDrLVISJ_J4PDOe-b4BeKMpTM51u3hDW4g8JJ0L7dDzc577AQ8zwjuPJ8HoRHw-9U9X4GePhaGyyn5PbDdqXWZ0Rr5FCR_iAnPjD9V3m7pGUXa1b6GhutYKerulGOuAHQfmcoEhXL29_wnl_dbz9naPP47srsuAnfFANHYsFOHBQ005WO0EOs9EGGeRUY6KdMqVcol0nZjOVeR4mpCf2vhpHORpnKqc47i3YE1wEWPwt7azOzn6MpzyoP8dRb6zpDTiPHa2Fi5pQRyI3wzhn-ZgA9bnRaUuF2o2u2bv9u7Cnc5RZclyZd2DFVPch41r9IUPYJFcZb9ZX8LH6Hpaf2PJwPnJypyNCYUyrXDEo2lFGHjDJssKdLaDhlS3r6lClxeMuoXWDRu3ZZ6GdQyw5yyZnaNAmq8XD-HkRqb4EawWZWEeA1ME9cWYEB0rJXAaVWQCY3KUeWZEJFwL3vezKrOO5ZyabcwkRjskADkIwIJXw6PVktrjbw-9I9FIUnccJ1MdagH_hoizZBL6GMBiTMYt2OylJ7t9oJZXq9aCl8Nt1GBKy6jClPNacjQ6buCFcWTB60Hq__6lJ___0AtYHx2PD-Xh_uTgKdz20CmjagfP24TV5sfcPEMnqkmfdyuVwdlNK8cvQlcu3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoL2gHiKQAHzElyizcN5HSq0pV21lF2tEJV6C05styu2SSBZrfoX-VXMZJ20IODWW6QkTuTxeGY8830D8FpSmKxlu3gjm3Mdkc5FduQF2tdB6Ec54Z3Hk_DgmH88CU7W4GeHhaGyym5PbDdqWeZ0Rj6ghA9xgbnJQJuyiOne6H313aYOUpRp7dppCNNmQe60dGMG5HGkLpYYztU7h3so-zeeN9r_8uHANh0H7NwPeWMnXBA2PJKUj5VOKHXOoySPlXBELDNfCJcI2In1XMSOJwkFKlWQJaHOkkxoH8e9ARuU_MJNYmN3fzL93J_4oC8ex4Gzojfy_cQZLF3SiCTkvxnFP03DFtxaFJW4WIr5_IrtG92B28ZpZcPVKrsLa6q4B1tXqAzvw3J4mQlnXTkfo-tZ_Y0Ne_5PVmo2JkTKrMIRp7OK8PCKTVbV6GwXjapsXxOFLM8ZdQ6tGzZuSz4VM2ywp2w4P0WBNGfnD-D4Wqb4IawXZaEeARME-8X4EJ0swXEaRaxCpTTKPFc85q4F77pZTXPDeE6NN-YpRj4kgLQXgAUv-0erFc3H3x56S6JJSfVxnFwYBAP-DZFopcMowGAW4zPfgu1OeqnZE-r0cgVb8KK_jdpMKRpRqHJRpz4aIDf0oiS24FUv9X__0uP_f-g53EQlST8dTo6ewKaH_hkVPnjeNqw3PxbqKfpTTfbMLFQGX69bN34BKg0zCw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_k-qB9sPULY6usH6Av6V2SzW7yJKlYinBHHzyoT2GT3a2h1yT0cj3qX-_M5cOzKAi-BbIbNpmZ3ZnM_H4D8E5TmGz1Rnmly7mVZHPSlX5oAxuKQOaEd57OxOmcfzkPz7dQ_FRWiaF4sdmkfdQ_nM-9sReieY-JPGpca_vxpvuX5AncXMNAEoJvR4TojY9gZz47S75RT7l-dksoFGB0P157pIOx4L8dQ3c34124vyprdbtWi8XWaXOyB6pfZ1tkcnm0arKj_McdCsf_eZF9eNi5oixpdecR3DPlY9jdIih8AuvkV36b9UV6jK6L5SVLBlZPVlk2JZxJUeMTz4qaUO6Gzdoac3aMR6XeTFOlrq4Y9QNdNmy6KeQ0rON4vWDJ4qK6LprvV09hfvL566dTt2vV4OaB4I0bc0Wgeqkpka0nQtucyziPjJqoSGeBUh4x1xNdvIomvib4rDZhFgubxZmywTMYlVVpngNTBObFqA9dJ8XxQ6nICGNs6EW54RH3HPjQSy7NOx5zaqexSDGeISGng5AdeDMMrVvyjj8Nek_iT8mg8Tm56nAJuBqixkoTGWKIilFX4MBhryFpZ-nLlBKRxFHnxQ68Hm6jjVLiRZWmWi3TAI8VT_gyjhx4O2jW35f04p9GHcADHz0uKmXw_UMYNdcr8xI9pCZ71RnBT3cfCRs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+Research+on+Risk+Assessment+of+Municipal+Pipeline+Network+Based+on+Random+Forest+Machine+Learning+Algorithm&rft.jtitle=Water+%28Basel%29&rft.au=Cen%2C+Hang&rft.au=Huang%2C+Delong&rft.au=Liu%2C+Qiang&rft.au=Zong%2C+Zhongling&rft.date=2023-05-22&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=15&rft.issue=10&rft.spage=1964&rft_id=info:doi/10.3390%2Fw15101964&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_w15101964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon