Application Research on Risk Assessment of Municipal Pipeline Network Based on Random Forest Machine Learning Algorithm
Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the quality and quantity of data available for pipeline systems in recent years, traditional pipeline network risk assessment cannot cope with the imp...
        Saved in:
      
    
          | Published in | Water (Basel) Vol. 15; no. 10; p. 1964 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        22.05.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2073-4441 2073-4441  | 
| DOI | 10.3390/w15101964 | 
Cover
| Abstract | Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the quality and quantity of data available for pipeline systems in recent years, traditional pipeline network risk assessment cannot cope with the improvement of various monitoring methods. Therefore, this paper proposes a machine learning-based risk assessment method for municipal pipe network operation and maintenance and builds a model example based on the data of a pipeline network base in a park in Suzhou. We optimized the random forest learning model, compared it with other centralized learning methods, and finally evaluated the model’s learning effect. Finally, the risk probability associated with each pipe segment sample was obtained, the risk factors affecting the pipe segment’s failure were determined, and their relevance and importance ranking was established. The results showed that the most influential factors are pipe material, soil properties, service life, and the number of past failures. The random forest algorithm demonstrated better prediction accuracy and robustness on the dataset. | 
    
|---|---|
| AbstractList | Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the quality and quantity of data available for pipeline systems in recent years, traditional pipeline network risk assessment cannot cope with the improvement of various monitoring methods. Therefore, this paper proposes a machine learning-based risk assessment method for municipal pipe network operation and maintenance and builds a model example based on the data of a pipeline network base in a park in Suzhou. We optimized the random forest learning model, compared it with other centralized learning methods, and finally evaluated the model’s learning effect. Finally, the risk probability associated with each pipe segment sample was obtained, the risk factors affecting the pipe segment’s failure were determined, and their relevance and importance ranking was established. The results showed that the most influential factors are pipe material, soil properties, service life, and the number of past failures. The random forest algorithm demonstrated better prediction accuracy and robustness on the dataset. | 
    
| Audience | Academic | 
    
| Author | Liu, Qiang Cen, Hang Huang, Delong Zong, Zhongling Tang, Aiping  | 
    
| Author_xml | – sequence: 1 givenname: Hang surname: Cen fullname: Cen, Hang – sequence: 2 givenname: Delong surname: Huang fullname: Huang, Delong – sequence: 3 givenname: Qiang surname: Liu fullname: Liu, Qiang – sequence: 4 givenname: Zhongling surname: Zong fullname: Zong, Zhongling – sequence: 5 givenname: Aiping surname: Tang fullname: Tang, Aiping  | 
    
| BookMark | eNp9kV1rFDEUhoNUsNZe-A8C3qiwbTLJzCSXY7EqbFVEr4ezyZndtJlkTGZY-u_NdkWkiMlFDuF53_P1nJyEGJCQl5xdCKHZ5Z7XnHHdyCfktGKtWEkp-clf8TNynvMtK0dqpWp2SvbdNHlnYHYx0G-YEZLZ0UPs8h3tcsacRwwzjQO9WYIzbgJPv7oJvQtIP-O8j-mOvoOM9kEGwcaRXseEeaY3YHYHbF1sgwtb2vltTG7ejS_I0wF8xvPf7xn5cf3--9XH1frLh09X3XplRCPnlZZQS8Fby6uWWdbYwchWG4XAQNmNAOBKtKriqgLFKttoyS3WG90MG72BQZyRt0ffJUxwvwfv-ym5EdJ9z1l_mFr_Z2oFfn2EpxR_LqWBfnTZoPcQMC65F7wWvKlarQr66hF6G5cUSit9pbiWTSF1oS6O1BY89i4McU5gyrU4OlOWN7jy37V1JXUrW1EEb44Ck2LOCYf_Vnv5iDVuflhkSeL8PxS_AMFSqC8 | 
    
| CitedBy_id | crossref_primary_10_3390_w16142017 crossref_primary_10_1016_j_jpse_2024_100247 crossref_primary_10_1115_1_4065177 crossref_primary_10_1007_s11831_025_10251_6  | 
    
| Cites_doi | 10.1002/wics.2 10.1061/(ASCE)PS.1949-1204.0000037 10.1109/TPAMI.2009.187 10.2166/ws.2014.131 10.1061/(ASCE)WR.1943-5452.0000030 10.1016/j.wear.2023.204688 10.2166/hydro.2013.094 10.1016/j.jher.2009.02.003 10.1080/1573062X.2017.1279191 10.1007/s00521-017-2987-7 10.1016/j.asoc.2018.11.045 10.1007/s11269-016-1241-x 10.1007/s11069-021-04630-y 10.1016/j.scs.2019.102012 10.1016/j.ress.2008.03.011 10.1016/j.watres.2019.115058 10.1007/s12205-014-0537-8 10.2166/hydro.2014.120 10.1109/TIE.2017.2764861 10.1016/j.watres.2019.06.025 10.1109/TITS.2014.2366512 10.1016/j.powtec.2018.07.055 10.1016/j.tust.2019.04.019 10.2166/aqua.2018.074 10.3390/ma15041477 10.1061/(ASCE)0733-9429(1992)118:7(1031) 10.2166/wst.2002.0595 10.1016/j.compenvurbsys.2008.12.001 10.1016/j.jenvman.2022.114869 10.1016/j.jclepro.2020.123611 10.1016/j.ejor.2014.06.033 10.1016/j.aei.2010.09.001 10.1016/j.ress.2019.02.001 10.1016/j.patcog.2015.03.009 10.1016/S1566-2535(03)00034-4 10.1016/j.mcm.2009.12.033 10.1613/jair.953  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 ADTOC UNPAY  | 
    
| DOI | 10.3390/w15101964 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2073-4441 | 
    
| ExternalDocumentID | 10.3390/w15101964 A752497473 10_3390_w15101964  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c364t-94a54317d1270d06dfc479c8ea0a8db3aa183782182a802d6941de5b96fb9baf3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2073-4441 | 
    
| IngestDate | Sun Oct 26 02:40:13 EDT 2025 Sat Sep 27 16:28:41 EDT 2025 Mon Jun 30 07:29:31 EDT 2025 Mon Oct 20 16:20:17 EDT 2025 Thu Oct 16 04:29:40 EDT 2025 Thu Apr 24 23:06:33 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c364t-94a54317d1270d06dfc479c8ea0a8db3aa183782182a802d6941de5b96fb9baf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2819465319?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2819465319 | 
    
| PQPubID | 2032318 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_w15101964 proquest_miscellaneous_3153162798 proquest_journals_2819465319 gale_infotracacademiconefile_A752497473 crossref_primary_10_3390_w15101964 crossref_citationtrail_10_3390_w15101964  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-22 | 
    
| PublicationDateYYYYMMDD | 2023-05-22 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-22 day: 22  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Water (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Zhou (ref_1) 2019; 166 Kang (ref_11) 2017; 65 Creaco (ref_19) 2019; 161 Fares (ref_35) 2010; 1 Wu (ref_20) 2017; 06 Li (ref_21) 2010; 25 Hu (ref_14) 2020; 278 Yamijala (ref_30) 2009; 94 Sattar (ref_37) 2016; 30 Tao (ref_7) 2016; 10 Mounce (ref_27) 2010; 136 Kabir (ref_36) 2015; 240 Zhou (ref_13) 2019; 25 Pu (ref_33) 2019; 90 Shirzad (ref_40) 2014; 18 Shojaie (ref_3) 2023; 522 Romano (ref_5) 2013; 15 Morgenthaler (ref_44) 2009; 1 Mounce (ref_25) 2002; 45 Kohavi (ref_8) 1995; 14 Wu (ref_16) 2017; 14 Yang (ref_28) 2012; 48 Wong (ref_10) 2015; 48 Rodriguez (ref_9) 2009; 32 Zheng (ref_34) 2017; 3 Bakker (ref_6) 2014; 16 Chen (ref_31) 2021; 107 Shi (ref_22) 2020; 55 Ren (ref_42) 2022; 9 ref_45 Mounce (ref_26) 2003; 4 Zahedi (ref_2) 2018; 338 Li (ref_17) 2015; 15 Luo (ref_23) 2020; 49 Colombo (ref_15) 2009; 2 Tang (ref_24) 2019; 186 Chawla (ref_43) 2002; 16 Christodoulou (ref_29) 2009; 33 Pudar (ref_4) 1992; 118 Page (ref_18) 2019; 68 Vu (ref_46) 2022; 311 Hodge (ref_12) 2014; 16 Sattar (ref_38) 2019; 31 Jafar (ref_41) 2010; 51 Garrett (ref_39) 2011; 25 Liu (ref_32) 2019; 75  | 
    
| References_xml | – volume: 1 start-page: 33 year: 2009 ident: ref_44 article-title: Exploratory Data Analysis publication-title: Wiley Interdiscip. Rev. Comput Stat. doi: 10.1002/wics.2 – volume: 1 start-page: 53 year: 2010 ident: ref_35 article-title: Hierarchical Fuzzy Expert System for Risk of Failure of Water Mains publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000037 – volume: 48 start-page: 471 year: 2012 ident: ref_28 article-title: Water quality model of municipal network based on artificial neural network publication-title: Water Wastewater Eng. – volume: 32 start-page: 569 year: 2009 ident: ref_9 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 15 start-page: 429 year: 2015 ident: ref_17 article-title: A review of methods for burst/leakage detection and location in water distribution systems publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2014.131 – volume: 49 start-page: 269 year: 2020 ident: ref_23 article-title: Failure model for pitting fatigue damaged pipeline of subsea based on dynamic Bayesian network publication-title: Surf. Technol. – volume: 136 start-page: 309 year: 2010 ident: ref_27 article-title: Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000030 – volume: 522 start-page: 204688 year: 2023 ident: ref_3 article-title: A method to determine the uncertainties of solid particle erosion measurements utilizing machine learning techniques publication-title: Wear doi: 10.1016/j.wear.2023.204688 – volume: 3 start-page: 236 year: 2017 ident: ref_34 article-title: Research status and trends of municipal pipe network optimization technology research publication-title: Urban Constr. Theory Res. – volume: 15 start-page: 634 year: 2013 ident: ref_5 article-title: Geostatistical techniques for approximate location of pipe burst events in water distribution systems publication-title: J. Hydroinformatics doi: 10.2166/hydro.2013.094 – volume: 2 start-page: 212 year: 2009 ident: ref_15 article-title: A selective literature review of transient-based leak detection methods publication-title: J. Hydro-Environ. Res. doi: 10.1016/j.jher.2009.02.003 – volume: 14 start-page: 972 year: 2017 ident: ref_16 article-title: A review of data-driven approaches for burst detection in water distribution systems publication-title: Urban Water J. doi: 10.1080/1573062X.2017.1279191 – volume: 31 start-page: 157 year: 2019 ident: ref_38 article-title: Extreme learning machine model for water network management publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2987-7 – volume: 75 start-page: 702 year: 2019 ident: ref_32 article-title: Integration of feature vector selection and support vector machine for classification of imbalanced data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.045 – volume: 30 start-page: 1635 year: 2016 ident: ref_37 article-title: Prediction of Timing of Watermain Failure Using Gene Expression Models publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1241-x – volume: 107 start-page: 2671 year: 2021 ident: ref_31 article-title: An ensemble risk assessment model for urban rainstorm disasters based on random forest and deep belief nets: A case study of Nanjing, China publication-title: Nat. Hazards doi: 10.1007/s11069-021-04630-y – volume: 55 start-page: 5102012 year: 2020 ident: ref_22 article-title: A data-driven approach for pipe deformation prediction based on soil properties and weather conditions publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.102012 – volume: 94 start-page: 282 year: 2009 ident: ref_30 article-title: Statistical models for the analysis of water distribution system pipe break data publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2008.03.011 – volume: 166 start-page: 115058 year: 2019 ident: ref_1 article-title: Deep learning identifies accurate burst locations in water distribution networks publication-title: Water Res. doi: 10.1016/j.watres.2019.115058 – volume: 18 start-page: 941 year: 2014 ident: ref_40 article-title: A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-014-0537-8 – volume: 9 start-page: 1 year: 2022 ident: ref_42 article-title: The application of case teaching method for “python and application” under the concept of curriculum ideology and politics publication-title: Open Access Libr. J. – volume: 16 start-page: 1194 year: 2014 ident: ref_6 article-title: Heuristic burst detection method using flow and pressure measurements publication-title: J. Hydroinformatics doi: 10.2166/hydro.2014.120 – volume: 65 start-page: 4279 year: 2017 ident: ref_11 article-title: Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2764861 – volume: 161 start-page: 517 year: 2019 ident: ref_19 article-title: Real time control of water distribution networks: A state-of-the-art review publication-title: Water Res. doi: 10.1016/j.watres.2019.06.025 – volume: 25 start-page: 1 year: 2019 ident: ref_13 article-title: Identification and Analysis of Drainage Network Safety Operation Based on Online Monitoring Data of Distributed Senso publication-title: Archit. Eng. – volume: 10 start-page: 11 year: 2016 ident: ref_7 article-title: Pipe burst location analysis based on SCADA system pressure monitoring publication-title: Water Technol. – volume: 14 start-page: 1137 year: 1995 ident: ref_8 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: IJCAI – volume: 16 start-page: 1088 year: 2014 ident: ref_12 article-title: Wireless sensor networks for condition monitoring in the railway industry: A survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2366512 – volume: 06 start-page: 50 year: 2017 ident: ref_20 article-title: Discussion on Mining and Application of Pipeline Big-Data publication-title: Urban Geotech. Investig. Surv. – volume: 338 start-page: 983 year: 2018 ident: ref_2 article-title: Random forest regression prediction of solid particle Erosion in elbows publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.07.055 – volume: 90 start-page: 12 year: 2019 ident: ref_33 article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.04.019 – volume: 68 start-page: 20 year: 2019 ident: ref_18 article-title: Remote real-time pressure control via a variable speed pump in a specific water distribution system publication-title: J. Water Supply Res. Technol.—AQUA doi: 10.2166/aqua.2018.074 – ident: ref_45 doi: 10.3390/ma15041477 – volume: 118 start-page: 1031 year: 1992 ident: ref_4 article-title: Leaks in pipe networks publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1992)118:7(1031) – volume: 45 start-page: 237 year: 2002 ident: ref_25 article-title: A neural network approach to burst detection publication-title: Water Sci. Technol. doi: 10.2166/wst.2002.0595 – volume: 33 start-page: 138 year: 2009 ident: ref_29 article-title: Risk-based asset management of water piping networks using neurofuzzy systems publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2008.12.001 – volume: 311 start-page: 114869 year: 2022 ident: ref_46 article-title: Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.114869 – volume: 278 start-page: 123611 year: 2020 ident: ref_14 article-title: Novel leakage detection and water loss management of urban water supply network using multiscale neural networks publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123611 – volume: 240 start-page: 220 year: 2015 ident: ref_36 article-title: Evaluating risk of water mains failure using a Bayesian belief network model publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.06.033 – volume: 25 start-page: 380 year: 2011 ident: ref_39 article-title: A density-based spatial clustering approach for defining local indicators of drinking water distribution pipe breakage publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2010.09.001 – volume: 186 start-page: 24 year: 2019 ident: ref_24 article-title: Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.02.001 – volume: 48 start-page: 2839 year: 2015 ident: ref_10 article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.03.009 – volume: 25 start-page: 4 year: 2010 ident: ref_21 article-title: Seismic Topology Optimization of Life line Networks Based on seismic reliability publication-title: J. Catastrophology – volume: 4 start-page: 217 year: 2003 ident: ref_26 article-title: Sensor-fusion of hydraulic data for burst detection and location in a treated water distribution system publication-title: Inf. Fusion doi: 10.1016/S1566-2535(03)00034-4 – volume: 51 start-page: 1170 year: 2010 ident: ref_41 article-title: Application of Artificial Neural Networks (ANN) to model the failure of urban water mains publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2009.12.033 – volume: 16 start-page: 321 year: 2002 ident: ref_43 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953  | 
    
| SSID | ssj0000498850 | 
    
| Score | 2.3171954 | 
    
| Snippet | Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the... | 
    
| SourceID | unpaywall proquest gale crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1964 | 
    
| SubjectTerms | Acoustics Algorithms Big Data China Comparative analysis data collection Data mining durability forestry equipment Leak detection Machine learning Methods Neural networks Parameter estimation Pipe lines Pipes prediction Probability public water supply risk Risk assessment risk assessment process Risk factors soil water Water supply  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_k-qB9sPULY6usH6Av6V2SzW7yJKlYinBHHzyoT2GT3a2h1yT0cj3qX-_M5cOzKAi-BbIbNpmZ3ZnM_H4D8E5TmGz1Rnmly7mVZHPSlX5oAxuKQOaEd57OxOmcfzkPz7dQ_FRWiaF4sdmkfdQ_nM-9sReieY-JPGpca_vxpvuX5AncXMNAEoJvR4TojY9gZz47S75RT7l-dksoFGB0P157pIOx4L8dQ3c34124vyprdbtWi8XWaXOyB6pfZ1tkcnm0arKj_McdCsf_eZF9eNi5oixpdecR3DPlY9jdIih8AuvkV36b9UV6jK6L5SVLBlZPVlk2JZxJUeMTz4qaUO6Gzdoac3aMR6XeTFOlrq4Y9QNdNmy6KeQ0rON4vWDJ4qK6LprvV09hfvL566dTt2vV4OaB4I0bc0Wgeqkpka0nQtucyziPjJqoSGeBUh4x1xNdvIomvib4rDZhFgubxZmywTMYlVVpngNTBObFqA9dJ8XxQ6nICGNs6EW54RH3HPjQSy7NOx5zaqexSDGeISGng5AdeDMMrVvyjj8Nek_iT8mg8Tm56nAJuBqixkoTGWKIilFX4MBhryFpZ-nLlBKRxFHnxQ68Hm6jjVLiRZWmWi3TAI8VT_gyjhx4O2jW35f04p9GHcADHz0uKmXw_UMYNdcr8xI9pCZ71RnBT3cfCRs priority: 102 providerName: Unpaywall  | 
    
| Title | Application Research on Risk Assessment of Municipal Pipeline Network Based on Random Forest Machine Learning Algorithm | 
    
| URI | https://www.proquest.com/docview/2819465319 https://www.proquest.com/docview/3153162798 https://www.mdpi.com/2073-4441/15/10/1964/pdf?version=1684753709  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: A8Z dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db5RAEJ-01wftg7FVI1qbrTXRF9IDFhYemoY2_YjJkYvxkvOJLOzuefEK6HG5-N87wwFtjfYNwgKbnZmdmZ2Z3wB8UOQmG9Uwr7A5N4JkTtjC9Y1n_MATOdU7j5LgZsI_T_3pFiRdLQylVXZ7YrNRqzKnM_ITCvgQFpgTnVU_beoaRdHVroWGbFsrqNMGYmwbdlxCxhrAzvllMv7Sn7qgPRyG_nADMeShv3-ydogro4A_UEx_b8-78GRVVPL3Wi4W9_TP1XN41hqOLN5Qeg-2dLEPu_fgBF_AOr6LRrMupY7R9Xz5g8U9BicrDRtRVci8wi-O5xXVpGuWbDLC2TkqNtW8JgtV3jLq3rms2ahJu9SsRWSdsXgxwwWqv9--hMnV5deLG7ttrGDnXsBrO-KSSuCForCzGgbK5FxEeajlUIYq86R0CGeewN1lOHQVFbsq7WdRYLIok8Z7BYOiLPRrYJJKb9FHQ0NHclxGGepAa4M0yDUPuWPBp25V07xFHafmF4sUvQ8iQNoTwIL3_dBqA7Xxr0EfiTQpiR9-J5dtFQHOhoCs0lj46FCij-RZcNBRL23lcpnecZEFR_1jlCgKk8hCl6tl6qEScAJXRKEFxz3V_z-lN4__6C08pRb1lHHgugcwqH-t9Ds0ZOrssOXOQ9i-njp4N0nG8bc_5470sA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QDxFoIB5CS5Rk9h5HSqUQqst7a4q1Eq9uU7slBXbJJCsVv1z_DZmsklaEHDrLVISJ_J4PDOe-b4BeKMpTM51u3hDW4g8JJ0L7dDzc577AQ8zwjuPJ8HoRHw-9U9X4GePhaGyyn5PbDdqXWZ0Rr5FCR_iAnPjD9V3m7pGUXa1b6GhutYKerulGOuAHQfmcoEhXL29_wnl_dbz9naPP47srsuAnfFANHYsFOHBQ005WO0EOs9EGGeRUY6KdMqVcol0nZjOVeR4mpCf2vhpHORpnKqc47i3YE1wEWPwt7azOzn6MpzyoP8dRb6zpDTiPHa2Fi5pQRyI3wzhn-ZgA9bnRaUuF2o2u2bv9u7Cnc5RZclyZd2DFVPch41r9IUPYJFcZb9ZX8LH6Hpaf2PJwPnJypyNCYUyrXDEo2lFGHjDJssKdLaDhlS3r6lClxeMuoXWDRu3ZZ6GdQyw5yyZnaNAmq8XD-HkRqb4EawWZWEeA1ME9cWYEB0rJXAaVWQCY3KUeWZEJFwL3vezKrOO5ZyabcwkRjskADkIwIJXw6PVktrjbw-9I9FIUnccJ1MdagH_hoizZBL6GMBiTMYt2OylJ7t9oJZXq9aCl8Nt1GBKy6jClPNacjQ6buCFcWTB60Hq__6lJ___0AtYHx2PD-Xh_uTgKdz20CmjagfP24TV5sfcPEMnqkmfdyuVwdlNK8cvQlcu3A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoL2gHiKQAHzElyizcN5HSq0pV21lF2tEJV6C05styu2SSBZrfoX-VXMZJ20IODWW6QkTuTxeGY8830D8FpSmKxlu3gjm3Mdkc5FduQF2tdB6Ec54Z3Hk_DgmH88CU7W4GeHhaGyym5PbDdqWeZ0Rj6ghA9xgbnJQJuyiOne6H313aYOUpRp7dppCNNmQe60dGMG5HGkLpYYztU7h3so-zeeN9r_8uHANh0H7NwPeWMnXBA2PJKUj5VOKHXOoySPlXBELDNfCJcI2In1XMSOJwkFKlWQJaHOkkxoH8e9ARuU_MJNYmN3fzL93J_4oC8ex4Gzojfy_cQZLF3SiCTkvxnFP03DFtxaFJW4WIr5_IrtG92B28ZpZcPVKrsLa6q4B1tXqAzvw3J4mQlnXTkfo-tZ_Y0Ne_5PVmo2JkTKrMIRp7OK8PCKTVbV6GwXjapsXxOFLM8ZdQ6tGzZuSz4VM2ywp2w4P0WBNGfnD-D4Wqb4IawXZaEeARME-8X4EJ0swXEaRaxCpTTKPFc85q4F77pZTXPDeE6NN-YpRj4kgLQXgAUv-0erFc3H3x56S6JJSfVxnFwYBAP-DZFopcMowGAW4zPfgu1OeqnZE-r0cgVb8KK_jdpMKRpRqHJRpz4aIDf0oiS24FUv9X__0uP_f-g53EQlST8dTo6ewKaH_hkVPnjeNqw3PxbqKfpTTfbMLFQGX69bN34BKg0zCw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_k-qB9sPULY6usH6Av6V2SzW7yJKlYinBHHzyoT2GT3a2h1yT0cj3qX-_M5cOzKAi-BbIbNpmZ3ZnM_H4D8E5TmGz1Rnmly7mVZHPSlX5oAxuKQOaEd57OxOmcfzkPz7dQ_FRWiaF4sdmkfdQ_nM-9sReieY-JPGpca_vxpvuX5AncXMNAEoJvR4TojY9gZz47S75RT7l-dksoFGB0P157pIOx4L8dQ3c34124vyprdbtWi8XWaXOyB6pfZ1tkcnm0arKj_McdCsf_eZF9eNi5oixpdecR3DPlY9jdIih8AuvkV36b9UV6jK6L5SVLBlZPVlk2JZxJUeMTz4qaUO6Gzdoac3aMR6XeTFOlrq4Y9QNdNmy6KeQ0rON4vWDJ4qK6LprvV09hfvL566dTt2vV4OaB4I0bc0Wgeqkpka0nQtucyziPjJqoSGeBUh4x1xNdvIomvib4rDZhFgubxZmywTMYlVVpngNTBObFqA9dJ8XxQ6nICGNs6EW54RH3HPjQSy7NOx5zaqexSDGeISGng5AdeDMMrVvyjj8Nek_iT8mg8Tm56nAJuBqixkoTGWKIilFX4MBhryFpZ-nLlBKRxFHnxQ68Hm6jjVLiRZWmWi3TAI8VT_gyjhx4O2jW35f04p9GHcADHz0uKmXw_UMYNdcr8xI9pCZ71RnBT3cfCRs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+Research+on+Risk+Assessment+of+Municipal+Pipeline+Network+Based+on+Random+Forest+Machine+Learning+Algorithm&rft.jtitle=Water+%28Basel%29&rft.au=Cen%2C+Hang&rft.au=Huang%2C+Delong&rft.au=Liu%2C+Qiang&rft.au=Zong%2C+Zhongling&rft.date=2023-05-22&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=15&rft.issue=10&rft.spage=1964&rft_id=info:doi/10.3390%2Fw15101964&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_w15101964 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |