Optimising the Workflow for Fish Detection in DIDSON (Dual-Frequency IDentification SONar) Data with the Use of Optical Flow and a Genetic Algorithm

DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature of the recordings,...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 13; no. 9; p. 1304
Main Authors Perivolioti, Triantafyllia-Maria, Tušer, Michal, Terzopoulos, Dimitrios, Sgardelis, Stefanos P., Antoniou, Ioannis
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2021
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w13091304

Cover

Abstract DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature of the recordings, tools and techniques from the field of computer vision can be applied in order to facilitate the relatively involved workflows. Furthermore, machine learning techniques can be used to minimise user intervention and optimise for specific detection and tracking scenarios. This study explored the feasibility of combining optical flow with a genetic algorithm, with the aim of automating motion detection and optimising target-to-background segmentation (masking) under custom criteria, expressed in terms of the result. A 1000-frame video sequence sample with sparse, smoothly moving targets, reconstructed from a 125 s DIDSON recording, was analysed under two distinct scenarios, and an elementary detection method was used to assess and compare the resulting foreground (target) masks. The results indicate a high sensitivity to motion, as well as to the visual characteristics of targets, with the resulting foreground masks generally capturing fish targets on the majority of frames, potentially with small gaps of undetected targets, lasting for no more than a few frames. Despite the high computational overhead, implementation refinements could increase computational feasibility, while an extension of the algorithms, in order to include the steps of target detection and tracking, could further improve automation and potentially provide an efficient tool for the automated preliminary assessment of voluminous DIDSON data recordings.
AbstractList DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature of the recordings, tools and techniques from the field of computer vision can be applied in order to facilitate the relatively involved workflows. Furthermore, machine learning techniques can be used to minimise user intervention and optimise for specific detection and tracking scenarios. This study explored the feasibility of combining optical flow with a genetic algorithm, with the aim of automating motion detection and optimising target-to-background segmentation (masking) under custom criteria, expressed in terms of the result. A 1000-frame video sequence sample with sparse, smoothly moving targets, reconstructed from a 125 s DIDSON recording, was analysed under two distinct scenarios, and an elementary detection method was used to assess and compare the resulting foreground (target) masks. The results indicate a high sensitivity to motion, as well as to the visual characteristics of targets, with the resulting foreground masks generally capturing fish targets on the majority of frames, potentially with small gaps of undetected targets, lasting for no more than a few frames. Despite the high computational overhead, implementation refinements could increase computational feasibility, while an extension of the algorithms, in order to include the steps of target detection and tracking, could further improve automation and potentially provide an efficient tool for the automated preliminary assessment of voluminous DIDSON data recordings.
Audience Academic
Author Perivolioti, Triantafyllia-Maria
Sgardelis, Stefanos P.
Antoniou, Ioannis
Terzopoulos, Dimitrios
Tušer, Michal
Author_xml – sequence: 1
  givenname: Triantafyllia-Maria
  surname: Perivolioti
  fullname: Perivolioti, Triantafyllia-Maria
– sequence: 2
  givenname: Michal
  orcidid: 0000-0003-2881-392X
  surname: Tušer
  fullname: Tušer, Michal
– sequence: 3
  givenname: Dimitrios
  surname: Terzopoulos
  fullname: Terzopoulos, Dimitrios
– sequence: 4
  givenname: Stefanos P.
  surname: Sgardelis
  fullname: Sgardelis, Stefanos P.
– sequence: 5
  givenname: Ioannis
  surname: Antoniou
  fullname: Antoniou, Ioannis
BookMark eNp1kdFq2zAUhk3poF3Xi72BYDftwK1sWbZ1GeqmC5Tloiu7NCfyUaJOkTJJJuQ99sBTkjFGWSWEhPjO-fX_ep-dWmcxyz4W9IYxQW-3BaMireokOy9pw_KqqorTf85n2WUILzSNSrQtp-fZr_km6rUO2i5JXCH57vwPZdyWKOfJVIcV6TCijNpZoi3pZt3T_Cu56kYw-dTjzxGt3JFZhzZqpSUcwISAvyYdRCBbHVeHzs8BiVNkryfBkOleBOxAgDygxXRJJmbpfMLXH7J3CkzAyz_7RfY8vf929yV_nD_M7iaPuWR1FXNRtazhIKRoOQxFi4NaJGsDq5FyxoEPFVAQAmmjagYlXzS44DVgIxco6oZdZJ-PfUe7gd0WjOk3Xq_B7_qC9vtI-7-RJvjqCG-8S7ZD7FNsEo0Bi24MfcnrgpdtU9QJ_fQKfXGjt8lKohhN7Vq-V785Uksw2GurXPQg0xxwrWX6WaXT_aRJ8qVgJU0Ft8cC6V0IHlUvdTwkngq1-e-br19VvO3vNxMisMc
CitedBy_id crossref_primary_10_1007_s10452_022_09967_5
crossref_primary_10_1111_faf_12693
crossref_primary_10_3390_fishes9090346
crossref_primary_10_1093_icesjms_fsad182
crossref_primary_10_1109_ACCESS_2023_3294710
Cites_doi 10.14712/23361980.2020.11
10.1007/3-540-45103-X_50
10.1007/978-3-642-32714-8_8
10.1016/j.fishres.2014.02.031
10.1109/UT.2002.1002424
10.1007/978-1-4020-9210-7
10.2307/1941848
10.3390/proceedings2110634
10.1109/TSMC.1985.6313443
10.1080/14634988.2020.1816771
10.1016/j.fishres.2011.11.018
10.1111/faf.12071
10.1016/j.procs.2016.09.366
10.1577/T09-173.1
10.1016/j.ecohyd.2018.07.001
10.1016/j.fishres.2008.01.012
10.1016/S1054-3139(03)00036-5
10.5004/dwt.2018.23239
10.1109/TSMC.1979.4310076
10.1007/s12562-009-0162-5
10.1006/jmsc.2001.1158
10.1111/j.1365-2400.2011.00843.x
10.1016/0734-189X(90)90053-X
10.1111/j.1365-2664.2005.01004.x
10.1002/9780470995303
10.1111/fme.12427
10.1145/175247.175255
10.1007/s00027-015-0430-7
10.1111/jfb.13996
10.1577/M08-033.1
10.1109/21.478444
ContentType Journal Article
Copyright COPYRIGHT 2021 MDPI AG
2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 MDPI AG
– notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ADTOC
UNPAY
DOI 10.3390/w13091304
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10.3390/w13091304
A791329320
10_3390_w13091304
GeographicLocations Greece
United States--US
Vltava River
GeographicLocations_xml – name: Greece
– name: Vltava River
– name: United States--US
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-948375a9c985ad18edfb000d36e0535a5d4a0a99e07f63a25b7eb56ae7cbe9673
IEDL.DBID UNPAY
ISSN 2073-4441
IngestDate Sun Oct 26 02:20:46 EDT 2025
Sun Sep 28 08:13:48 EDT 2025
Mon Jun 30 07:27:12 EDT 2025
Mon Oct 20 17:05:26 EDT 2025
Thu Oct 16 04:42:47 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-948375a9c985ad18edfb000d36e0535a5d4a0a99e07f63a25b7eb56ae7cbe9673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2881-392X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/w13091304
PQID 2530130857
PQPubID 2032318
ParticipantIDs unpaywall_primary_10_3390_w13091304
proquest_miscellaneous_2561528716
proquest_journals_2530130857
gale_infotracacademiconefile_A791329320
crossref_citationtrail_10_3390_w13091304
crossref_primary_10_3390_w13091304
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mouratidis (ref_4) 2013; 199659
Otsu (ref_29) 1979; 9
Solichin (ref_25) 2018; 9
Balk (ref_35) 2014; 155
ref_14
Lee (ref_30) 1990; 52
ref_12
ref_11
ref_33
Tulp (ref_17) 2020; 27
Bizzi (ref_1) 2016; 78
Domakinis (ref_3) 2020; 55
Ghalandari (ref_39) 2019; 13
Karr (ref_6) 1991; 1
(ref_24) 2003; 2749
Maclennan (ref_28) 2002; 59
Mueller (ref_22) 2008; 28
Palmer (ref_5) 2005; 42
Moursund (ref_9) 2003; 60
Han (ref_23) 2009; 75
Zadeh (ref_37) 1994; 37
Belcher (ref_10) 2001; Volume 1
Martignac (ref_19) 2015; 16
Lenihan (ref_20) 2019; 19
Sentas (ref_32) 2018; 133
Pipal (ref_13) 2010; 96
Dogan (ref_38) 2016; 102
Bhanu (ref_26) 1995; 25
Kittler (ref_31) 1985; SMC-15
Fayyad (ref_36) 1996; 17
Daroux (ref_16) 2019; 95
Bhat (ref_2) 2020; 23
ref_27
ref_8
Langkau (ref_21) 2012; 19
Suryanarayana (ref_34) 2008; 92
Burwen (ref_15) 2010; 139
Rakowitz (ref_18) 2012; 123–124
ref_7
References_xml – volume: 55
  start-page: 149
  year: 2020
  ident: ref_3
  article-title: Flood Susceptibility Mapping in Erythropotamos River Basin with the Aid of Remote Sensing and GIS
  publication-title: AUC Geogr.
  doi: 10.14712/23361980.2020.11
– volume: 2749
  start-page: 363
  year: 2003
  ident: ref_24
  article-title: Two-Frame Motion Estimation Based On
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/3-540-45103-X_50
– volume: 199659
  start-page: 125
  year: 2013
  ident: ref_4
  article-title: Flash-Flood Monitoring and Damage Assessment with SAR Data: Issues and Future Challenges for Earth Observation from Space Sustained by Case Studies from the Balkans and Eastern Europe
  publication-title: Lect. Notes Geoinf. Cart.
  doi: 10.1007/978-3-642-32714-8_8
– volume: 155
  start-page: 114
  year: 2014
  ident: ref_35
  article-title: Evaluation of potential bias in observing fish with a DIDSON acoustic camera
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2014.02.031
– ident: ref_11
  doi: 10.1109/UT.2002.1002424
– volume: Volume 1
  start-page: 6
  year: 2001
  ident: ref_10
  article-title: Object Identification with Acoustic Lenses
  publication-title: TS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 5–8 November 2001
– ident: ref_8
  doi: 10.1007/978-1-4020-9210-7
– volume: 1
  start-page: 66
  year: 1991
  ident: ref_6
  article-title: Biological Integrity: A Long-Neglected Aspect of Water Resource Management
  publication-title: Ecol. Soc. Am. Ecol. Appl.
  doi: 10.2307/1941848
– ident: ref_33
  doi: 10.3390/proceedings2110634
– volume: SMC-15
  start-page: 652
  year: 1985
  ident: ref_31
  article-title: On Threshold Selection Using Clustering Criteria
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1985.6313443
– volume: 9
  start-page: 174
  year: 2018
  ident: ref_25
  article-title: Movement Direction Estimation on Video Using Optical Flow Analysis on Multiple Frames
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 23
  start-page: 274
  year: 2020
  ident: ref_2
  article-title: Water Quality Assessment and Monitoring of Kashmir Himalayan Freshwater Springs-A Case Study
  publication-title: Aquat. Ecosyst. Heal. Manag.
  doi: 10.1080/14634988.2020.1816771
– ident: ref_14
– volume: 123–124
  start-page: 37
  year: 2012
  ident: ref_18
  article-title: Use of High-Frequency Imaging Sonar (DIDSON) to Observe Fish Behaviour towards a Surface Trawl
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2011.11.018
– volume: 16
  start-page: 486
  year: 2015
  ident: ref_19
  article-title: The Use of Acoustic Cameras in Shallow Waters: New Hydroacoustic Tools for Monitoring Migratory Fish Population. A Review of DIDSON Technology
  publication-title: Fish Fish.
  doi: 10.1111/faf.12071
– volume: 17
  start-page: 37
  year: 1996
  ident: ref_36
  article-title: From Data Mining to Knowledge Discovery in Databases
  publication-title: AI Mag.
– volume: 102
  start-page: 34
  year: 2016
  ident: ref_38
  article-title: An Overview of Soft Computing
  publication-title: Proc. Comp. Sci.
  doi: 10.1016/j.procs.2016.09.366
– volume: 139
  start-page: 1306
  year: 2010
  ident: ref_15
  article-title: Accuracy and Precision of Salmon Length Estimates Taken from DIDSON Sonar Images
  publication-title: Trans. Am. Fish. Soc.
  doi: 10.1577/T09-173.1
– volume: 19
  start-page: 289
  year: 2019
  ident: ref_20
  article-title: Use of an Acoustic Camera to Monitor Seaward Migrating Silver-Phase Eels (Anguilla Anguilla) in a Regulated River
  publication-title: Ecohydrol. Hydrobiol.
  doi: 10.1016/j.ecohyd.2018.07.001
– volume: 92
  start-page: 115
  year: 2008
  ident: ref_34
  article-title: Neural Networks in Fisheries Research
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2008.01.012
– volume: 60
  start-page: 678
  year: 2003
  ident: ref_9
  article-title: A Fisheries Application of a Dual-Frequency Identification Sonar Acoustic Camera
  publication-title: ICES J. Mar. Sci.
  doi: 10.1016/S1054-3139(03)00036-5
– ident: ref_27
– volume: 13
  start-page: 892
  year: 2019
  ident: ref_39
  article-title: Aeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experiments
  publication-title: Eng. App. Comp. Fl. Mech.
– ident: ref_12
– volume: 133
  start-page: 336
  year: 2018
  ident: ref_32
  article-title: Monitoring, Modeling, and Assessment of Water Quality and Quantity in River Pinios, Using ARIMA Models
  publication-title: Desalin. Water Treat.
  doi: 10.5004/dwt.2018.23239
– volume: 9
  start-page: 62
  year: 1979
  ident: ref_29
  article-title: A Threshold Selection Method from Gray-Level Histograms
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 75
  start-page: 1359
  year: 2009
  ident: ref_23
  article-title: Automated Acoustic Method for Counting and Sizing Farmed Fish during Transfer Using DIDSON
  publication-title: Fish. Sci.
  doi: 10.1007/s12562-009-0162-5
– volume: 59
  start-page: 365
  year: 2002
  ident: ref_28
  article-title: A Consistent Approach to Definitions and Symbols in Fisheries Acoustics
  publication-title: Ices J. Mar. Sci.
  doi: 10.1006/jmsc.2001.1158
– volume: 19
  start-page: 313
  year: 2012
  ident: ref_21
  article-title: Can Acoustic Shadows Identify Fish Species? A Novel Application of Imaging Sonar Data
  publication-title: Fish. Manag. Ecol.
  doi: 10.1111/j.1365-2400.2011.00843.x
– volume: 52
  start-page: 171
  year: 1990
  ident: ref_30
  article-title: A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(90)90053-X
– volume: 42
  start-page: 208
  year: 2005
  ident: ref_5
  article-title: Standards for Ecologically Successful River Restoration
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2005.01004.x
– ident: ref_7
  doi: 10.1002/9780470995303
– volume: 27
  start-page: 464
  year: 2020
  ident: ref_17
  article-title: Behavioural Responses of Eel (Anguilla Anguilla) Approaching a Large Pumping Station with Trash Rack Using an Acoustic Camera (DIDSON)
  publication-title: Fish. Manag. Ecol.
  doi: 10.1111/fme.12427
– volume: 37
  start-page: 77
  year: 1994
  ident: ref_37
  article-title: Fuzzy Logic, Neural Networks and Soft Computing
  publication-title: Comm. ACM
  doi: 10.1145/175247.175255
– volume: 78
  start-page: 57
  year: 2016
  ident: ref_1
  article-title: The Use of Remote Sensing to Characterise Hydromorphological Properties of European Rivers
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-015-0430-7
– volume: 95
  start-page: 480
  year: 2019
  ident: ref_16
  article-title: Manual Fish Length Measurement Accuracy for Adult River Fish Using an Acoustic Camera (DIDSON)
  publication-title: J. Fish Biol.
  doi: 10.1111/jfb.13996
– volume: 28
  start-page: 1876
  year: 2008
  ident: ref_22
  article-title: Classifying Sonar Images: Can a Computer-Driven Process Identify Eels?
  publication-title: North Am. J. Fish. Manag.
  doi: 10.1577/M08-033.1
– volume: 96
  start-page: 90
  year: 2010
  ident: ref_13
  article-title: Using Dual-Frequency Identification Sonar (DIDSON) to Estimate Adult Steelhead Escapement in the San Lorenzo River, California
  publication-title: Calif. Fish Game
– volume: 25
  start-page: 1543
  year: 1995
  ident: ref_26
  article-title: Adaptive Image Segmentation Using a Genetic Algorithm
  publication-title: IEEE Trans. Syst. ManCybern.
  doi: 10.1109/21.478444
SSID ssj0000498850
Score 2.2505603
Snippet DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1304
SubjectTerms Acoustics
Algorithms
Automation
Cameras
computer software
computer vision
Fish
Genetic algorithms
Machine learning
Machine vision
Software
sonar
Values
water
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gA9IJ5iaamGh0Q5RM3DzuOAqoV01SKxRcBKvUUT2wGkkGy3Wa36P_jBzGSTUBBwyCHJyLb8-TEzHn8jxIsozyOrpesY2swcmVjtJNLXjqcwiQNPYthGVb6fhSdz-e5cnW-JWX8XhsMq-zWxXahNrdlHfuirgA_ZYhUdLS4czhrFp6t9Cg3sUiuY1y3F2A2x7TMz1khsvzmeffg4eF1IH45j5W4ohgKy9w_XVGhCj_xtY_pzed4RN1fVAq_WWJbX9p_pHXG7UxxhskH6rtiy1T2xc41O8L74cUbzn3CjFyC9DtgRXpT1GkgxBc5xDqlt2tCrCr5VkJ6mn85mcJCusHSmy01M9RWcpl0AUYsZkAguX0GKDQI7bduS55cW6gK4PsIYplwJVgYQmMaaPsKk_EK913z9_kDMp8ef3544XdYFRwehbAgqslkJKZ3ECo0XW1OwpmCCkLNIKFRGootJYt2oCAP0FYGdqxBtpHObhFHwUIyqurKPBHjSNyo3uWdyLW2QoNIRs2GTGRVEReyOxUHf5ZnuKMk5M0aZkWnC6GQDOmPxbBBdbHg4_ib0knHLeG5SORq7KwbUGma5yiYRiZF-41PNez20WTdpL7NfQ2wsng6_CTY-Q8HK1iuWIRWwtTLH4vkwJP7dpMf_r2hX3PI5SKaNoNwTo2a5sk9Iy2ny_W7o_gSpCvsi
  priority: 102
  providerName: ProQuest
Title Optimising the Workflow for Fish Detection in DIDSON (Dual-Frequency IDentification SONar) Data with the Use of Optical Flow and a Genetic Algorithm
URI https://www.proquest.com/docview/2530130857
https://www.proquest.com/docview/2561528716
https://doi.org/10.3390/w13091304
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: A8Z
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPsgW9EYVQ3QGI8ZDSJnY_HQlY2JLoJqNQ9RY7jIERIpi5RNf4O_mDukrR0EyAe8pDkZFv-ne07-_w7gBd-kvhGi5GV0mJmidBoKxSOtmypwsC1hfKaqMoPU-9oJt7P5XwL9lZ3YTbO711yx18vaY4N6RHb0Pckmds96M-mp-MzThpH6mkJWs9bxqCr8lfWmeuz7Q7cqItzdblUeb6xnExu_76U00aRfDuoq-RA_7jG0fjPlt6BW50xieMW_buwZYp7sLNBMXgffp7QnEBY0guSrYe8OZ7l5RLJWEXOe46RqZpwrAK_FhgdR59Oprgf1Sq3Jos2zvoSj6MuqKjBEUlELV5hpCqFvJHblDy7MFhmyPUR7jjhSlSRokKmtqaPOM6_lAsS__4AZpPDz2-PrC4Tg6VdT1QEH_mxhJ4OA6lSOzBpxtZD6nqcWUIqmQo1UmFoRn7mucqRpACJ9JTxdWJCz3cfQq8oC_MI0BZOKpM0sdNEC-OGSmqfGbLJtXL9LBgNYH-FW6w7mnLOlpHH5K5wR8frjh7As7XoecvN8Sehlwx-zOOVytGqu3ZArWHmq3jskxjZPA7VvLvSj7gbyBexI10-2w2kP4C99W-Cjc9VVGHKmmXILGw8zwE8X-vV35v0-L-knsBNh-NnmuDKXehVi9o8JQOoSobQf3M4Pf04hO13c3vYDYhfvlQB_Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXaQ-kB8RSBAsNLlINV27trew8VCrhRQtsUQSP1Zta7G0AyTkgcRfkPvodvY8ZxQkHArQcfbI92Zz3jee3sDGPP4jyPnRG-Z1GZeUI54ykRGi-QWiU8EDqqsypP-lF3IN6ey_MN9mN1FobSKlcysRbUdmQoRr4fSk6bbImMX42_edQ1inZXVy00dNNawR7UJcaagx1HbjFHF2560EuR3s_DsHN49qbrNV0GPMMjUSFq6KMhZkYlUtsgcXZImtHyiLomSC2t0L5WyvnxMOI6lLi4XEbaxSZ3Koo5jnuFbQkuFDp_W68P--_er6M8aH8nifSXJY04V_7-HBeh8BK_KcI_1cEO256VY72Y66K4oO8619m1xlCF9pKzbrANV95kOxfKF95i309R3iCf4A2gHQkUeB8WozmgIQzUUx1SV9WpXiV8KSHtpR9O-7CXznThdSbLHO4F9NImYanmEUAQPXkJqa40UJC4HnkwdTAaAs2HPAUdmkSXFjRQ2Wx8CO3iE1Kr-vz1Nhtcyve_wzbLUenuMghEaGVu88DmRjiutDQxVd9Gt43Hw8Rvsb3VJ89MUwKdOnEUGbpCRJ1sTZ0We7IGHS_rfvwN6AXRLSNZgOMY3RxpQGyoqlbWjhEM7akQZ95dkTZrhMQ0-8XSLfZ4_RrJRns2unSjGcGgyVl7tS32dM0S_0bp3v8nesS2u2cnx9lxr390n10NKUGnzt7cZZvVZOYeoIVV5Q8bNgb28bL_nJ_eujhr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtBPSAeIqFAsNLlEPUvJzHoUILadSlsK2AlXoLju0AUkiW3axW-x98FV_FTNYJBQG3HnJIMrLHnvE87PEMY0_CPA-19G1LoTKz_FhLK_ZdaTlcxJHn-CJooyrfjoPDif_6lJ9usB_dXRgKq-xkYiuoVS1pj3zP5R4dskXowBcmLOIkSV9Mv1lUQYpOWrtyGsKUWVD7bboxc8njSK-W6M7N90cJ0v6p66YHH14dWqbigCW9wG8QTfTXEEsZR1woJ9KqIC2pvIAqKHDBlS9sEcfaDovAEy7HgeY8EDqUuY6D0MN2L7AtOvxCIbH18mB88q7f8UFbPIq4vU5v5HmxvbfEAcX4-L8pxT9Vwza7tKimYrUUZXlG96VX2RVjtMJwzWXX2IaurrPtM6kMb7Dvxyh7kGfwBdCmBNqEL8p6CWgUA9VXh0Q3bdhXBV8qSEbJ--Mx7CYLUVrpbB3PvYJRYoKXWn4BBBGz55CIRgBtGLctT-Ya6gKoP-QvSKkTUSkQQCm08SMMy09Irebz15tsci7zf4ttVnWlbzNwfFfxXOWOyqWvvVhwGVImbnThvLCI7AHb7aY8kyYdOlXlKDN0i4g6WU-dAXvUg07XOUD-BvSM6JaRXMB2pDDXGxAbyrCVDUMEQ9vKxZ53OtJmRmDMs1_sPWAP-99INjq_EZWuFwSD5mfr4Q7Y454l_o3Snf939IBdxBWUvRmNj-6yyy7F6rSBnDtss5kt9D00tpr8vuFiYB_Pe-H8BEO4PJo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF64I26UNAUkCiHlE1i53FcEVYtElskWKmcoonjRaghqbaJVuV38IOZSbLLtgLEIYckI9vyN7Zn7PE3AC_DLAutUSMn58XMUbE1Tqw847ia4sh3FQVtVOWHaXA0U-9P9ekW7K_uwmyc3_vsjr9Z8hwb86NuwHag2dwewPZs-nH8RZLGsXo6itfzjjHoqvyVdeb6bLsDN5vynC6XVBQby8nkzu9LOV0UydlhU2eH5sc1jsZ_tvQu3O6NSRx36N-DLVveh50NisEH8POE5wTGkl-QbT2UzfF5US2RjVWUvOeY2LoNxyrxW4nJcfLpZIoHSUOFM1l0cdaXeJz0QUUtjsgitHiNCdWEspHbljy7sFjNUepj3HEilVCZI6FQW_NHHBdfqwWLf38Is8m7z2-PnD4Tg2P8QNUMH_uxjJ6JI025G9l8LtZD7geSWUKTzhWNKI7tKJwHPnmaFSDTAdnQZDYOQv8RDMqqtLuArvJyneWZm2dGWT8mbUJhyGbXyg_n0WgIByvcUtPTlEu2jCJld0U6Ol139BCer0XPO26OPwm9EvBTGa9cjqH-2gG3Rpiv0nHIYmzzeFzz3ko_0n4gX6Se9uVsN9LhEPbXvxk2OVeh0laNyLBZ2HqeQ3ix1qu_N-nxf0k9gVuexM-0wZV7MKgXjX3KBlCdPeuHwC-4Bv9j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimising+the+Workflow+for+Fish+Detection+in+DIDSON+%28Dual-Frequency+IDentification+SONar%29+Data+with+the+Use+of+Optical+Flow+and+a+Genetic+Algorithm&rft.jtitle=Water+%28Basel%29&rft.au=Perivolioti%2C+Triantafyllia-Maria&rft.au=Tu%C5%A1er%2C+Michal&rft.au=Terzopoulos%2C+Dimitrios&rft.au=Sgardelis%2C+Stefanos+P.&rft.date=2021-05-01&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=13&rft.issue=9&rft.spage=1304&rft_id=info:doi/10.3390%2Fw13091304&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_w13091304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon