Optimising the Workflow for Fish Detection in DIDSON (Dual-Frequency IDentification SONar) Data with the Use of Optical Flow and a Genetic Algorithm
DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature of the recordings,...
Saved in:
| Published in | Water (Basel) Vol. 13; no. 9; p. 1304 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4441 2073-4441 |
| DOI | 10.3390/w13091304 |
Cover
| Abstract | DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature of the recordings, tools and techniques from the field of computer vision can be applied in order to facilitate the relatively involved workflows. Furthermore, machine learning techniques can be used to minimise user intervention and optimise for specific detection and tracking scenarios. This study explored the feasibility of combining optical flow with a genetic algorithm, with the aim of automating motion detection and optimising target-to-background segmentation (masking) under custom criteria, expressed in terms of the result. A 1000-frame video sequence sample with sparse, smoothly moving targets, reconstructed from a 125 s DIDSON recording, was analysed under two distinct scenarios, and an elementary detection method was used to assess and compare the resulting foreground (target) masks. The results indicate a high sensitivity to motion, as well as to the visual characteristics of targets, with the resulting foreground masks generally capturing fish targets on the majority of frames, potentially with small gaps of undetected targets, lasting for no more than a few frames. Despite the high computational overhead, implementation refinements could increase computational feasibility, while an extension of the algorithms, in order to include the steps of target detection and tracking, could further improve automation and potentially provide an efficient tool for the automated preliminary assessment of voluminous DIDSON data recordings. |
|---|---|
| AbstractList | DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature of the recordings, tools and techniques from the field of computer vision can be applied in order to facilitate the relatively involved workflows. Furthermore, machine learning techniques can be used to minimise user intervention and optimise for specific detection and tracking scenarios. This study explored the feasibility of combining optical flow with a genetic algorithm, with the aim of automating motion detection and optimising target-to-background segmentation (masking) under custom criteria, expressed in terms of the result. A 1000-frame video sequence sample with sparse, smoothly moving targets, reconstructed from a 125 s DIDSON recording, was analysed under two distinct scenarios, and an elementary detection method was used to assess and compare the resulting foreground (target) masks. The results indicate a high sensitivity to motion, as well as to the visual characteristics of targets, with the resulting foreground masks generally capturing fish targets on the majority of frames, potentially with small gaps of undetected targets, lasting for no more than a few frames. Despite the high computational overhead, implementation refinements could increase computational feasibility, while an extension of the algorithms, in order to include the steps of target detection and tracking, could further improve automation and potentially provide an efficient tool for the automated preliminary assessment of voluminous DIDSON data recordings. |
| Audience | Academic |
| Author | Perivolioti, Triantafyllia-Maria Sgardelis, Stefanos P. Antoniou, Ioannis Terzopoulos, Dimitrios Tušer, Michal |
| Author_xml | – sequence: 1 givenname: Triantafyllia-Maria surname: Perivolioti fullname: Perivolioti, Triantafyllia-Maria – sequence: 2 givenname: Michal orcidid: 0000-0003-2881-392X surname: Tušer fullname: Tušer, Michal – sequence: 3 givenname: Dimitrios surname: Terzopoulos fullname: Terzopoulos, Dimitrios – sequence: 4 givenname: Stefanos P. surname: Sgardelis fullname: Sgardelis, Stefanos P. – sequence: 5 givenname: Ioannis surname: Antoniou fullname: Antoniou, Ioannis |
| BookMark | eNp1kdFq2zAUhk3poF3Xi72BYDftwK1sWbZ1GeqmC5Tloiu7NCfyUaJOkTJJJuQ99sBTkjFGWSWEhPjO-fX_ep-dWmcxyz4W9IYxQW-3BaMireokOy9pw_KqqorTf85n2WUILzSNSrQtp-fZr_km6rUO2i5JXCH57vwPZdyWKOfJVIcV6TCijNpZoi3pZt3T_Cu56kYw-dTjzxGt3JFZhzZqpSUcwISAvyYdRCBbHVeHzs8BiVNkryfBkOleBOxAgDygxXRJJmbpfMLXH7J3CkzAyz_7RfY8vf929yV_nD_M7iaPuWR1FXNRtazhIKRoOQxFi4NaJGsDq5FyxoEPFVAQAmmjagYlXzS44DVgIxco6oZdZJ-PfUe7gd0WjOk3Xq_B7_qC9vtI-7-RJvjqCG-8S7ZD7FNsEo0Bi24MfcnrgpdtU9QJ_fQKfXGjt8lKohhN7Vq-V785Uksw2GurXPQg0xxwrWX6WaXT_aRJ8qVgJU0Ft8cC6V0IHlUvdTwkngq1-e-br19VvO3vNxMisMc |
| CitedBy_id | crossref_primary_10_1007_s10452_022_09967_5 crossref_primary_10_1111_faf_12693 crossref_primary_10_3390_fishes9090346 crossref_primary_10_1093_icesjms_fsad182 crossref_primary_10_1109_ACCESS_2023_3294710 |
| Cites_doi | 10.14712/23361980.2020.11 10.1007/3-540-45103-X_50 10.1007/978-3-642-32714-8_8 10.1016/j.fishres.2014.02.031 10.1109/UT.2002.1002424 10.1007/978-1-4020-9210-7 10.2307/1941848 10.3390/proceedings2110634 10.1109/TSMC.1985.6313443 10.1080/14634988.2020.1816771 10.1016/j.fishres.2011.11.018 10.1111/faf.12071 10.1016/j.procs.2016.09.366 10.1577/T09-173.1 10.1016/j.ecohyd.2018.07.001 10.1016/j.fishres.2008.01.012 10.1016/S1054-3139(03)00036-5 10.5004/dwt.2018.23239 10.1109/TSMC.1979.4310076 10.1007/s12562-009-0162-5 10.1006/jmsc.2001.1158 10.1111/j.1365-2400.2011.00843.x 10.1016/0734-189X(90)90053-X 10.1111/j.1365-2664.2005.01004.x 10.1002/9780470995303 10.1111/fme.12427 10.1145/175247.175255 10.1007/s00027-015-0430-7 10.1111/jfb.13996 10.1577/M08-033.1 10.1109/21.478444 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 MDPI AG 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2021 MDPI AG – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 ADTOC UNPAY |
| DOI | 10.3390/w13091304 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2073-4441 |
| ExternalDocumentID | 10.3390/w13091304 A791329320 10_3390_w13091304 |
| GeographicLocations | Greece United States--US Vltava River |
| GeographicLocations_xml | – name: Greece – name: Vltava River – name: United States--US |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c364t-948375a9c985ad18edfb000d36e0535a5d4a0a99e07f63a25b7eb56ae7cbe9673 |
| IEDL.DBID | UNPAY |
| ISSN | 2073-4441 |
| IngestDate | Sun Oct 26 02:20:46 EDT 2025 Sun Sep 28 08:13:48 EDT 2025 Mon Jun 30 07:27:12 EDT 2025 Mon Oct 20 17:05:26 EDT 2025 Thu Oct 16 04:42:47 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-948375a9c985ad18edfb000d36e0535a5d4a0a99e07f63a25b7eb56ae7cbe9673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2881-392X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/w13091304 |
| PQID | 2530130857 |
| PQPubID | 2032318 |
| ParticipantIDs | unpaywall_primary_10_3390_w13091304 proquest_miscellaneous_2561528716 proquest_journals_2530130857 gale_infotracacademiconefile_A791329320 crossref_citationtrail_10_3390_w13091304 crossref_primary_10_3390_w13091304 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mouratidis (ref_4) 2013; 199659 Otsu (ref_29) 1979; 9 Solichin (ref_25) 2018; 9 Balk (ref_35) 2014; 155 ref_14 Lee (ref_30) 1990; 52 ref_12 ref_11 ref_33 Tulp (ref_17) 2020; 27 Bizzi (ref_1) 2016; 78 Domakinis (ref_3) 2020; 55 Ghalandari (ref_39) 2019; 13 Karr (ref_6) 1991; 1 (ref_24) 2003; 2749 Maclennan (ref_28) 2002; 59 Mueller (ref_22) 2008; 28 Palmer (ref_5) 2005; 42 Moursund (ref_9) 2003; 60 Han (ref_23) 2009; 75 Zadeh (ref_37) 1994; 37 Belcher (ref_10) 2001; Volume 1 Martignac (ref_19) 2015; 16 Lenihan (ref_20) 2019; 19 Sentas (ref_32) 2018; 133 Pipal (ref_13) 2010; 96 Dogan (ref_38) 2016; 102 Bhanu (ref_26) 1995; 25 Kittler (ref_31) 1985; SMC-15 Fayyad (ref_36) 1996; 17 Daroux (ref_16) 2019; 95 Bhat (ref_2) 2020; 23 ref_27 ref_8 Langkau (ref_21) 2012; 19 Suryanarayana (ref_34) 2008; 92 Burwen (ref_15) 2010; 139 Rakowitz (ref_18) 2012; 123–124 ref_7 |
| References_xml | – volume: 55 start-page: 149 year: 2020 ident: ref_3 article-title: Flood Susceptibility Mapping in Erythropotamos River Basin with the Aid of Remote Sensing and GIS publication-title: AUC Geogr. doi: 10.14712/23361980.2020.11 – volume: 2749 start-page: 363 year: 2003 ident: ref_24 article-title: Two-Frame Motion Estimation Based On publication-title: Lect. Notes Comput. Sci. doi: 10.1007/3-540-45103-X_50 – volume: 199659 start-page: 125 year: 2013 ident: ref_4 article-title: Flash-Flood Monitoring and Damage Assessment with SAR Data: Issues and Future Challenges for Earth Observation from Space Sustained by Case Studies from the Balkans and Eastern Europe publication-title: Lect. Notes Geoinf. Cart. doi: 10.1007/978-3-642-32714-8_8 – volume: 155 start-page: 114 year: 2014 ident: ref_35 article-title: Evaluation of potential bias in observing fish with a DIDSON acoustic camera publication-title: Fish. Res. doi: 10.1016/j.fishres.2014.02.031 – ident: ref_11 doi: 10.1109/UT.2002.1002424 – volume: Volume 1 start-page: 6 year: 2001 ident: ref_10 article-title: Object Identification with Acoustic Lenses publication-title: TS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 5–8 November 2001 – ident: ref_8 doi: 10.1007/978-1-4020-9210-7 – volume: 1 start-page: 66 year: 1991 ident: ref_6 article-title: Biological Integrity: A Long-Neglected Aspect of Water Resource Management publication-title: Ecol. Soc. Am. Ecol. Appl. doi: 10.2307/1941848 – ident: ref_33 doi: 10.3390/proceedings2110634 – volume: SMC-15 start-page: 652 year: 1985 ident: ref_31 article-title: On Threshold Selection Using Clustering Criteria publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/TSMC.1985.6313443 – volume: 9 start-page: 174 year: 2018 ident: ref_25 article-title: Movement Direction Estimation on Video Using Optical Flow Analysis on Multiple Frames publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 23 start-page: 274 year: 2020 ident: ref_2 article-title: Water Quality Assessment and Monitoring of Kashmir Himalayan Freshwater Springs-A Case Study publication-title: Aquat. Ecosyst. Heal. Manag. doi: 10.1080/14634988.2020.1816771 – ident: ref_14 – volume: 123–124 start-page: 37 year: 2012 ident: ref_18 article-title: Use of High-Frequency Imaging Sonar (DIDSON) to Observe Fish Behaviour towards a Surface Trawl publication-title: Fish. Res. doi: 10.1016/j.fishres.2011.11.018 – volume: 16 start-page: 486 year: 2015 ident: ref_19 article-title: The Use of Acoustic Cameras in Shallow Waters: New Hydroacoustic Tools for Monitoring Migratory Fish Population. A Review of DIDSON Technology publication-title: Fish Fish. doi: 10.1111/faf.12071 – volume: 17 start-page: 37 year: 1996 ident: ref_36 article-title: From Data Mining to Knowledge Discovery in Databases publication-title: AI Mag. – volume: 102 start-page: 34 year: 2016 ident: ref_38 article-title: An Overview of Soft Computing publication-title: Proc. Comp. Sci. doi: 10.1016/j.procs.2016.09.366 – volume: 139 start-page: 1306 year: 2010 ident: ref_15 article-title: Accuracy and Precision of Salmon Length Estimates Taken from DIDSON Sonar Images publication-title: Trans. Am. Fish. Soc. doi: 10.1577/T09-173.1 – volume: 19 start-page: 289 year: 2019 ident: ref_20 article-title: Use of an Acoustic Camera to Monitor Seaward Migrating Silver-Phase Eels (Anguilla Anguilla) in a Regulated River publication-title: Ecohydrol. Hydrobiol. doi: 10.1016/j.ecohyd.2018.07.001 – volume: 92 start-page: 115 year: 2008 ident: ref_34 article-title: Neural Networks in Fisheries Research publication-title: Fish. Res. doi: 10.1016/j.fishres.2008.01.012 – volume: 60 start-page: 678 year: 2003 ident: ref_9 article-title: A Fisheries Application of a Dual-Frequency Identification Sonar Acoustic Camera publication-title: ICES J. Mar. Sci. doi: 10.1016/S1054-3139(03)00036-5 – ident: ref_27 – volume: 13 start-page: 892 year: 2019 ident: ref_39 article-title: Aeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experiments publication-title: Eng. App. Comp. Fl. Mech. – ident: ref_12 – volume: 133 start-page: 336 year: 2018 ident: ref_32 article-title: Monitoring, Modeling, and Assessment of Water Quality and Quantity in River Pinios, Using ARIMA Models publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2018.23239 – volume: 9 start-page: 62 year: 1979 ident: ref_29 article-title: A Threshold Selection Method from Gray-Level Histograms publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 75 start-page: 1359 year: 2009 ident: ref_23 article-title: Automated Acoustic Method for Counting and Sizing Farmed Fish during Transfer Using DIDSON publication-title: Fish. Sci. doi: 10.1007/s12562-009-0162-5 – volume: 59 start-page: 365 year: 2002 ident: ref_28 article-title: A Consistent Approach to Definitions and Symbols in Fisheries Acoustics publication-title: Ices J. Mar. Sci. doi: 10.1006/jmsc.2001.1158 – volume: 19 start-page: 313 year: 2012 ident: ref_21 article-title: Can Acoustic Shadows Identify Fish Species? A Novel Application of Imaging Sonar Data publication-title: Fish. Manag. Ecol. doi: 10.1111/j.1365-2400.2011.00843.x – volume: 52 start-page: 171 year: 1990 ident: ref_30 article-title: A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/0734-189X(90)90053-X – volume: 42 start-page: 208 year: 2005 ident: ref_5 article-title: Standards for Ecologically Successful River Restoration publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2005.01004.x – ident: ref_7 doi: 10.1002/9780470995303 – volume: 27 start-page: 464 year: 2020 ident: ref_17 article-title: Behavioural Responses of Eel (Anguilla Anguilla) Approaching a Large Pumping Station with Trash Rack Using an Acoustic Camera (DIDSON) publication-title: Fish. Manag. Ecol. doi: 10.1111/fme.12427 – volume: 37 start-page: 77 year: 1994 ident: ref_37 article-title: Fuzzy Logic, Neural Networks and Soft Computing publication-title: Comm. ACM doi: 10.1145/175247.175255 – volume: 78 start-page: 57 year: 2016 ident: ref_1 article-title: The Use of Remote Sensing to Characterise Hydromorphological Properties of European Rivers publication-title: Aquat. Sci. doi: 10.1007/s00027-015-0430-7 – volume: 95 start-page: 480 year: 2019 ident: ref_16 article-title: Manual Fish Length Measurement Accuracy for Adult River Fish Using an Acoustic Camera (DIDSON) publication-title: J. Fish Biol. doi: 10.1111/jfb.13996 – volume: 28 start-page: 1876 year: 2008 ident: ref_22 article-title: Classifying Sonar Images: Can a Computer-Driven Process Identify Eels? publication-title: North Am. J. Fish. Manag. doi: 10.1577/M08-033.1 – volume: 96 start-page: 90 year: 2010 ident: ref_13 article-title: Using Dual-Frequency Identification Sonar (DIDSON) to Estimate Adult Steelhead Escapement in the San Lorenzo River, California publication-title: Calif. Fish Game – volume: 25 start-page: 1543 year: 1995 ident: ref_26 article-title: Adaptive Image Segmentation Using a Genetic Algorithm publication-title: IEEE Trans. Syst. ManCybern. doi: 10.1109/21.478444 |
| SSID | ssj0000498850 |
| Score | 2.2505603 |
| Snippet | DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1304 |
| SubjectTerms | Acoustics Algorithms Automation Cameras computer software computer vision Fish Genetic algorithms Machine learning Machine vision Software sonar Values water |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gA9IJ5iaamGh0Q5RM3DzuOAqoV01SKxRcBKvUUT2wGkkGy3Wa36P_jBzGSTUBBwyCHJyLb8-TEzHn8jxIsozyOrpesY2swcmVjtJNLXjqcwiQNPYthGVb6fhSdz-e5cnW-JWX8XhsMq-zWxXahNrdlHfuirgA_ZYhUdLS4czhrFp6t9Cg3sUiuY1y3F2A2x7TMz1khsvzmeffg4eF1IH45j5W4ohgKy9w_XVGhCj_xtY_pzed4RN1fVAq_WWJbX9p_pHXG7UxxhskH6rtiy1T2xc41O8L74cUbzn3CjFyC9DtgRXpT1GkgxBc5xDqlt2tCrCr5VkJ6mn85mcJCusHSmy01M9RWcpl0AUYsZkAguX0GKDQI7bduS55cW6gK4PsIYplwJVgYQmMaaPsKk_EK913z9_kDMp8ef3544XdYFRwehbAgqslkJKZ3ECo0XW1OwpmCCkLNIKFRGootJYt2oCAP0FYGdqxBtpHObhFHwUIyqurKPBHjSNyo3uWdyLW2QoNIRs2GTGRVEReyOxUHf5ZnuKMk5M0aZkWnC6GQDOmPxbBBdbHg4_ib0knHLeG5SORq7KwbUGma5yiYRiZF-41PNez20WTdpL7NfQ2wsng6_CTY-Q8HK1iuWIRWwtTLH4vkwJP7dpMf_r2hX3PI5SKaNoNwTo2a5sk9Iy2ny_W7o_gSpCvsi priority: 102 providerName: ProQuest |
| Title | Optimising the Workflow for Fish Detection in DIDSON (Dual-Frequency IDentification SONar) Data with the Use of Optical Flow and a Genetic Algorithm |
| URI | https://www.proquest.com/docview/2530130857 https://www.proquest.com/docview/2561528716 https://doi.org/10.3390/w13091304 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: A8Z dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPsgW9EYVQ3QGI8ZDSJnY_HQlY2JLoJqNQ9RY7jIERIpi5RNf4O_mDukrR0EyAe8pDkZFv-ne07-_w7gBd-kvhGi5GV0mJmidBoKxSOtmypwsC1hfKaqMoPU-9oJt7P5XwL9lZ3YTbO711yx18vaY4N6RHb0Pckmds96M-mp-MzThpH6mkJWs9bxqCr8lfWmeuz7Q7cqItzdblUeb6xnExu_76U00aRfDuoq-RA_7jG0fjPlt6BW50xieMW_buwZYp7sLNBMXgffp7QnEBY0guSrYe8OZ7l5RLJWEXOe46RqZpwrAK_FhgdR59Oprgf1Sq3Jos2zvoSj6MuqKjBEUlELV5hpCqFvJHblDy7MFhmyPUR7jjhSlSRokKmtqaPOM6_lAsS__4AZpPDz2-PrC4Tg6VdT1QEH_mxhJ4OA6lSOzBpxtZD6nqcWUIqmQo1UmFoRn7mucqRpACJ9JTxdWJCz3cfQq8oC_MI0BZOKpM0sdNEC-OGSmqfGbLJtXL9LBgNYH-FW6w7mnLOlpHH5K5wR8frjh7As7XoecvN8Sehlwx-zOOVytGqu3ZArWHmq3jskxjZPA7VvLvSj7gbyBexI10-2w2kP4C99W-Cjc9VVGHKmmXILGw8zwE8X-vV35v0-L-knsBNh-NnmuDKXehVi9o8JQOoSobQf3M4Pf04hO13c3vYDYhfvlQB_Q |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXaQ-kB8RSBAsNLlINV27trew8VCrhRQtsUQSP1Zta7G0AyTkgcRfkPvodvY8ZxQkHArQcfbI92Zz3jee3sDGPP4jyPnRG-Z1GZeUI54ykRGi-QWiU8EDqqsypP-lF3IN6ey_MN9mN1FobSKlcysRbUdmQoRr4fSk6bbImMX42_edQ1inZXVy00dNNawR7UJcaagx1HbjFHF2560EuR3s_DsHN49qbrNV0GPMMjUSFq6KMhZkYlUtsgcXZImtHyiLomSC2t0L5WyvnxMOI6lLi4XEbaxSZ3Koo5jnuFbQkuFDp_W68P--_er6M8aH8nifSXJY04V_7-HBeh8BK_KcI_1cEO256VY72Y66K4oO8619m1xlCF9pKzbrANV95kOxfKF95i309R3iCf4A2gHQkUeB8WozmgIQzUUx1SV9WpXiV8KSHtpR9O-7CXznThdSbLHO4F9NImYanmEUAQPXkJqa40UJC4HnkwdTAaAs2HPAUdmkSXFjRQ2Wx8CO3iE1Kr-vz1Nhtcyve_wzbLUenuMghEaGVu88DmRjiutDQxVd9Gt43Hw8Rvsb3VJ89MUwKdOnEUGbpCRJ1sTZ0We7IGHS_rfvwN6AXRLSNZgOMY3RxpQGyoqlbWjhEM7akQZ95dkTZrhMQ0-8XSLfZ4_RrJRns2unSjGcGgyVl7tS32dM0S_0bp3v8nesS2u2cnx9lxr390n10NKUGnzt7cZZvVZOYeoIVV5Q8bNgb28bL_nJ_eujhr |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtBPSAeIqFAsNLlEPUvJzHoUILadSlsK2AlXoLju0AUkiW3axW-x98FV_FTNYJBQG3HnJIMrLHnvE87PEMY0_CPA-19G1LoTKz_FhLK_ZdaTlcxJHn-CJooyrfjoPDif_6lJ9usB_dXRgKq-xkYiuoVS1pj3zP5R4dskXowBcmLOIkSV9Mv1lUQYpOWrtyGsKUWVD7bboxc8njSK-W6M7N90cJ0v6p66YHH14dWqbigCW9wG8QTfTXEEsZR1woJ9KqIC2pvIAqKHDBlS9sEcfaDovAEy7HgeY8EDqUuY6D0MN2L7AtOvxCIbH18mB88q7f8UFbPIq4vU5v5HmxvbfEAcX4-L8pxT9Vwza7tKimYrUUZXlG96VX2RVjtMJwzWXX2IaurrPtM6kMb7Dvxyh7kGfwBdCmBNqEL8p6CWgUA9VXh0Q3bdhXBV8qSEbJ--Mx7CYLUVrpbB3PvYJRYoKXWn4BBBGz55CIRgBtGLctT-Ya6gKoP-QvSKkTUSkQQCm08SMMy09Irebz15tsci7zf4ttVnWlbzNwfFfxXOWOyqWvvVhwGVImbnThvLCI7AHb7aY8kyYdOlXlKDN0i4g6WU-dAXvUg07XOUD-BvSM6JaRXMB2pDDXGxAbyrCVDUMEQ9vKxZ53OtJmRmDMs1_sPWAP-99INjq_EZWuFwSD5mfr4Q7Y454l_o3Snf939IBdxBWUvRmNj-6yyy7F6rSBnDtss5kt9D00tpr8vuFiYB_Pe-H8BEO4PJo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF64I26UNAUkCiHlE1i53FcEVYtElskWKmcoonjRaghqbaJVuV38IOZSbLLtgLEIYckI9vyN7Zn7PE3AC_DLAutUSMn58XMUbE1Tqw847ia4sh3FQVtVOWHaXA0U-9P9ekW7K_uwmyc3_vsjr9Z8hwb86NuwHag2dwewPZs-nH8RZLGsXo6itfzjjHoqvyVdeb6bLsDN5vynC6XVBQby8nkzu9LOV0UydlhU2eH5sc1jsZ_tvQu3O6NSRx36N-DLVveh50NisEH8POE5wTGkl-QbT2UzfF5US2RjVWUvOeY2LoNxyrxW4nJcfLpZIoHSUOFM1l0cdaXeJz0QUUtjsgitHiNCdWEspHbljy7sFjNUepj3HEilVCZI6FQW_NHHBdfqwWLf38Is8m7z2-PnD4Tg2P8QNUMH_uxjJ6JI025G9l8LtZD7geSWUKTzhWNKI7tKJwHPnmaFSDTAdnQZDYOQv8RDMqqtLuArvJyneWZm2dGWT8mbUJhyGbXyg_n0WgIByvcUtPTlEu2jCJld0U6Ol139BCer0XPO26OPwm9EvBTGa9cjqH-2gG3Rpiv0nHIYmzzeFzz3ko_0n4gX6Se9uVsN9LhEPbXvxk2OVeh0laNyLBZ2HqeQ3ix1qu_N-nxf0k9gVuexM-0wZV7MKgXjX3KBlCdPeuHwC-4Bv9j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimising+the+Workflow+for+Fish+Detection+in+DIDSON+%28Dual-Frequency+IDentification+SONar%29+Data+with+the+Use+of+Optical+Flow+and+a+Genetic+Algorithm&rft.jtitle=Water+%28Basel%29&rft.au=Perivolioti%2C+Triantafyllia-Maria&rft.au=Tu%C5%A1er%2C+Michal&rft.au=Terzopoulos%2C+Dimitrios&rft.au=Sgardelis%2C+Stefanos+P.&rft.date=2021-05-01&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=13&rft.issue=9&rft.spage=1304&rft_id=info:doi/10.3390%2Fw13091304&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_w13091304 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |