AJGM: joint learning of heterogeneous gene networks with adaptive graphical model

Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassific...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 3
Main Authors Yang, Shunqi, Hu, Lingyi, Chen, Pengzhou, Zeng, Xiangxiang, Mao, Shanjun
Format Journal Article
LanguageEnglish
Published England Oxford University Press 04.03.2025
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btaf096

Cover

Abstract Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data. We propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach outperforms existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relationships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while also revealing novel biological insights. The Python code and demonstrations of the proposed approaches are available at https://github.com/yyytim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972.
AbstractList Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data. We propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach outperforms existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relationships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while also revealing novel biological insights. The Python code and demonstrations of the proposed approaches are available at https://github.com/yyytim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972.
Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data.MOTIVATIONInferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data.We propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach outperforms existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relationships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while also revealing novel biological insights.RESULTSWe propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach outperforms existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relationships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while also revealing novel biological insights.The Python code and demonstrations of the proposed approaches are available at https://github.com/yyytim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972.AVAILABILITY AND IMPLEMENTATIONThe Python code and demonstrations of the proposed approaches are available at https://github.com/yyytim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972.
Author Hu, Lingyi
Zeng, Xiangxiang
Yang, Shunqi
Mao, Shanjun
Chen, Pengzhou
Author_xml – sequence: 1
  givenname: Shunqi
  surname: Yang
  fullname: Yang, Shunqi
– sequence: 2
  givenname: Lingyi
  surname: Hu
  fullname: Hu, Lingyi
– sequence: 3
  givenname: Pengzhou
  surname: Chen
  fullname: Chen, Pengzhou
– sequence: 4
  givenname: Xiangxiang
  surname: Zeng
  fullname: Zeng, Xiangxiang
– sequence: 5
  givenname: Shanjun
  orcidid: 0000-0001-9212-4761
  surname: Mao
  fullname: Mao, Shanjun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40073230$$D View this record in MEDLINE/PubMed
BookMark eNqNUUtv1DAQtlARfcBfqHzkstSOEzvmgqqqlKKiqhKcrYkz3nVJ7GB7u-q_J-0ufdw4fSPN99B8c0j2QgxIyDFnnzjT4qTz0QcX0wjF23zSFXBMyzfkgAupFnXL-d6LeZ8c5nzLGGtYI9-R_ZoxJSrBDsjN6feLH5_p7exW6ICQgg9LGh1dYcEUlxgwrjN9QBqwbGL6nenGlxWFHqbi75AuE0wrb2GgY-xxeE_eOhgyftjhEfn19fzn2bfF1fXF5dnp1cIKWZeFrqquRcGkq7jgTjEObdNL1cmec7AohGoUtFVrha0aYaVTUlvoOl1XTgsUR0RtfddhgvsNDIOZkh8h3RvOzENJ5nVJZlfSrPyyVU7rbsTeYigJntURvHm9CX5llvHOcK6F0o2aHT7uHFL8s8ZczOizxWGAx7qM4EpKpWutZ-rxy7CnlH8vmAlyS7Ap5pzQ_e8ZfwEjvaRu
Cites_doi 10.1038/nature11412
10.1111/rssb.12033
10.1093/bioinformatics/btv316
10.1214/17-EJS1331
10.1371/journal.pcbi.1006436
10.1200/JCO.2008.18.1370
10.1016/j.cell.2015.04.044
10.1111/biom.13426
10.1371/journal.pcbi.1010758
10.1561/2200000016
10.3389/fonc.2018.00374
10.1073/pnas.1522586113
10.21037/tcr-20-1756
10.1038/s43018-023-00717-6
10.1038/ncomms15081
10.1038/nri.2017.76
10.1214/21-AOAS1582
10.7150/ijbs.31009
10.1214/16-EJS1135
10.1101/gr.216721.116
10.1016/j.csbj.2020.09.004
10.1093/biomet/asm018
10.1073/pnas.1704553114
10.1038/s41467-018-03405-7
10.1038/s41598-017-09094-4
10.1007/s13402-023-00805-w
10.1111/j.2517-6161.1977.tb01600.x
10.3109/10799893.2015.1030412
10.1016/j.devcel.2022.01.008
10.1109/TCBB.2020.3002906
10.1186/1471-2105-9-559
10.1371/journal.pcbi.1006369
10.1093/bioinformatics/btaa873
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press.
The Author(s) 2025. Published by Oxford University Press. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press.
– notice: The Author(s) 2025. Published by Oxford University Press. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btaf096
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 10.1093/bioinformatics/btaf096
PMC11937957
40073230
10_1093_bioinformatics_btaf096
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12401381
– fundername: ;
  grantid: 12401381
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
.-4
.GJ
1TH
AAJQQ
AAUQX
ABEFU
ABNGD
ABPQP
ACUKT
ACUXJ
ADGKP
ADRDM
ADTOC
ADVEK
AFFNX
AFGWE
AGQPQ
AI.
AJEEA
AQDSO
ATTQO
AZFZN
C1A
CAG
COF
DIK
EJD
ELUNK
HVGLF
NTWIH
NU-
NVLIB
O0~
O~Y
PB-
RNI
RZF
RZO
UNPAY
VH1
W8F
ZGI
ID FETCH-LOGICAL-c364t-922b8e306f2131f701a85d67b6d11ace33757a828c3c253c6f769cabb942f93e3
IEDL.DBID UNPAY
ISSN 1367-4811
1367-4803
IngestDate Sun Oct 26 02:19:08 EDT 2025
Thu Aug 21 18:39:44 EDT 2025
Thu Jul 10 22:11:25 EDT 2025
Thu May 15 23:27:09 EDT 2025
Wed Oct 01 06:36:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-922b8e306f2131f701a85d67b6d11ace33757a828c3c253c6f769cabb942f93e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9212-4761
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btaf096
PMID 40073230
PQID 3176679499
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btaf096
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11937957
proquest_miscellaneous_3176679499
pubmed_primary_40073230
crossref_primary_10_1093_bioinformatics_btaf096
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Mar-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-Mar-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Li (2025032802555603500_btaf096-B13) 2018; 9
Lyu (2025032802555603500_btaf096-B14) 2018; 14
Chung (2025032802555603500_btaf096-B2) 2017; 8
Ficklin (2025032802555603500_btaf096-B8) 2017; 7
Ren (2025032802555603500_btaf096-B19) 2022; 78
Tan (2025032802555603500_btaf096-B24) 2022
Boyd (2025032802555603500_btaf096-B1) 2010; 3
Yuan (2025032802555603500_btaf096-B32) 2007; 94
Dempster (2025032802555603500_btaf096-B5) 1977; 39
2025032802555603500_btaf096-B29
El-Kebir (2025032802555603500_btaf096-B7) 2015; 31
Langfelder (2025032802555603500_btaf096-B11) 2008; 9
Wu (2025032802555603500_btaf096-B30) 2022; 16
Tan (2025032802555603500_btaf096-B26) 2022; 19
Papalexi (2025032802555603500_btaf096-B17) 2018; 18
Wu (2025032802555603500_btaf096-B33510762) 2017; 11
Parker (2025032802555603500_btaf096-B18) 2009; 27
Zhao (2025032802555603500_btaf096-B34) 2016; 113
Minoura (2025032802555603500_btaf096-B15) 2021; 37
Danaher (2025032802555603500_btaf096-B4) 2014; 76
Dai (2025032802555603500_btaf096-B3) 2019; 15
Nikolski (2025032802555603500_btaf096-B16) 2024; 5
Wu (2025032802555603500_btaf096-B31) 2020; 18
Wei (2025032802555603500_btaf096-B28) 2020; 9
The Cancer Genome Atlas Network (2025032802555603500_btaf096-B27) 2012; 490
Klein (2025032802555603500_btaf096-B10) 2015; 161
Shahan (2025032802555603500_btaf096-B22) 2022; 57
Gao (2025032802555603500_btaf096-B9) 2016; 10
Sun (2025032802555603500_btaf096-B23) 2015; 35
Saha (2025032802555603500_btaf096-B20) 2017; 27
Zhang (2025032802555603500_btaf096-B33) 2018; 14
Kuo (2025032802555603500_btaf096-B111) 2023; 46
Seal (2025032802555603500_btaf096-B21) 2023; 19
Tang (2025032802555603500_btaf096-B25) 2018; 8
Lee (2025032802555603500_btaf096-B12) 2015; 16
Duren (2025032802555603500_btaf096-B6) 2017; 114
References_xml – volume: 490
  start-page: 61
  year: 2012
  ident: 2025032802555603500_btaf096-B27
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 76
  start-page: 373
  year: 2014
  ident: 2025032802555603500_btaf096-B4
  article-title: The joint graphical lasso for inverse covariance estimation across multiple classes
  publication-title: J R Stat Soc Series B Stat Methodol
  doi: 10.1111/rssb.12033
– volume: 31
  start-page: 3147
  year: 2015
  ident: 2025032802555603500_btaf096-B7
  article-title: xHeinz: an algorithm for mining cross-species network modules under a flexible conservation model
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv316
– volume: 11
  year: 2017
  ident: 2025032802555603500_btaf096-B33510762
  article-title: Graphical model selection with latent variables
  publication-title: Electron J Stat
  doi: 10.1214/17-EJS1331
– volume: 14
  start-page: e1006436
  year: 2018
  ident: 2025032802555603500_btaf096-B14
  article-title: Conditionadaptive fused graphical lasso (CFGL): an adaptive procedure for inferring condition-specific gene co-expression network
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006436
– volume: 27
  start-page: 1160
  year: 2009
  ident: 2025032802555603500_btaf096-B18
  article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.18.1370
– volume: 161
  start-page: 1187
  year: 2015
  ident: 2025032802555603500_btaf096-B10
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 78
  start-page: 524
  year: 2022
  ident: 2025032802555603500_btaf096-B19
  article-title: Gaussian graphical model-based heterogeneity analysis via penalized fusion
  publication-title: Biometrics
  doi: 10.1111/biom.13426
– volume: 19
  start-page: e1010758
  year: 2023
  ident: 2025032802555603500_btaf096-B21
  article-title: RCFGL: rapid condition adaptive fused graphical lasso and application to modeling brain region co-expression networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1010758
– volume: 3
  start-page: 1
  year: 2010
  ident: 2025032802555603500_btaf096-B1
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: FNT Mach Learn
  doi: 10.1561/2200000016
– volume: 8
  start-page: 374
  year: 2018
  ident: 2025032802555603500_btaf096-B25
  article-title: Prognostic genes of breast cancer identified by gene co-expression network analysis
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00374
– volume: 113
  start-page: 5130
  year: 2016
  ident: 2025032802555603500_btaf096-B34
  article-title: Part mutual information for quantifying direct associations in networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1522586113
– volume: 9
  start-page: 6881
  year: 2020
  ident: 2025032802555603500_btaf096-B28
  article-title: Fibroblast growth factor receptor 4 as a prognostic indicator in triple-negative breast cancer
  publication-title: Transl Cancer Res
  doi: 10.21037/tcr-20-1756
– volume: 5
  start-page: 367
  year: 2024
  ident: 2025032802555603500_btaf096-B16
  article-title: Roadmap for a European cancer data management and precision medicine infrastructure
  publication-title: Nat Cancer
  doi: 10.1038/s43018-023-00717-6
– volume: 8
  start-page: 15081
  year: 2017
  ident: 2025032802555603500_btaf096-B2
  article-title: Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer
  publication-title: Nat Commun
  doi: 10.1038/ncomms15081
– volume: 18
  start-page: 35
  year: 2018
  ident: 2025032802555603500_btaf096-B17
  article-title: Single-cell RNA sequencing to explore immune cell heterogeneity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.76
– volume: 16
  start-page: 1035
  year: 2015
  ident: 2025032802555603500_btaf096-B12
  article-title: Joint estimation of multiple precision matrices with common structures
  publication-title: J Mach Learn Res
– volume: 16
  start-page: 2183
  year: 2022
  ident: 2025032802555603500_btaf096-B30
  article-title: Estimating heterogeneous gene regulatory networks from zero-inflated single-cell expression data
  publication-title: Ann Appl Stat
  doi: 10.1214/21-AOAS1582
– volume: 15
  start-page: 1030
  year: 2019
  ident: 2025032802555603500_btaf096-B3
  article-title: FOXA1 is prognostic of triple negative breast cancers by transcriptionally suppressing SOD2 and IL6
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.31009
– volume: 10
  start-page: 1133
  year: 2016
  ident: 2025032802555603500_btaf096-B9
  article-title: Estimation of multiple networks in gaussian mixture models
  publication-title: Electron J Stat
  doi: 10.1214/16-EJS1135
– volume: 27
  start-page: 1843
  year: 2017
  ident: 2025032802555603500_btaf096-B20
  article-title: Co-expression networks reveal the tissue-specific regulation of transcription and splicing
  publication-title: Genome Res
  doi: 10.1101/gr.216721.116
– volume: 18
  start-page: 2583
  year: 2020
  ident: 2025032802555603500_btaf096-B31
  article-title: Joint learning of multiple gene networks from single-cell gene expression data
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.09.004
– volume: 94
  start-page: 19
  year: 2007
  ident: 2025032802555603500_btaf096-B32
  article-title: Model selection and estimation in the gaussian graphical model
  publication-title: Biometrika
  doi: 10.1093/biomet/asm018
– volume: 114
  start-page: E4914
  year: 2017
  ident: 2025032802555603500_btaf096-B6
  article-title: Modeling gene regulation from paired expression and chromatin accessibility data
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1704553114
– volume: 9
  start-page: 997
  year: 2018
  ident: 2025032802555603500_btaf096-B13
  article-title: An accurate and robust imputation method scimpute for single-cell RNA-seq data
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03405-7
– volume: 7
  start-page: 8617
  year: 2017
  ident: 2025032802555603500_btaf096-B8
  article-title: Discovering condition-specific gene co-expression patterns using gaussian mixture models: a cancer case study
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09094-4
– volume: 46
  start-page: 1213
  year: 2023
  ident: 2025032802555603500_btaf096-B111
  article-title: MAP3K1 expression is associated with progression and poor prognosis of hormone receptor-positive, HER2-negative early-stage breast cancer
  publication-title: Cell Oncol
  doi: 10.1007/s13402-023-00805-w
– volume: 39
  start-page: 1
  year: 1977
  ident: 2025032802555603500_btaf096-B5
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 35
  start-page: 600
  year: 2015
  ident: 2025032802555603500_btaf096-B23
  article-title: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis
  publication-title: J Recept Signal Transduct Res
  doi: 10.3109/10799893.2015.1030412
– volume: 57
  start-page: 543
  year: 2022
  ident: 2025032802555603500_btaf096-B22
  article-title: A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2022.01.008
– volume: 19
  start-page: 513
  year: 2022
  ident: 2025032802555603500_btaf096-B26
  article-title: Identifying gene network rewiring based on partial correlation
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2020.3002906
– volume: 9
  start-page: 559
  year: 2008
  ident: 2025032802555603500_btaf096-B11
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– year: 2022
  ident: 2025032802555603500_btaf096-B24
– volume: 14
  start-page: e1006369
  year: 2018
  ident: 2025032802555603500_btaf096-B33
  article-title: Silggm: an extensive r package for efficient statistical inference in large-scale gene networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006369
– volume: 37
  start-page: 1632
  year: 2021
  ident: 2025032802555603500_btaf096-B15
  article-title: CYBERTRACK2.0: zero-inflated model-based cell clustering and population tracking method for longitudinal mass cytometry data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa873
– start-page: 336
  ident: 2025032802555603500_btaf096-B29
SSID ssj0005056
Score 2.4766471
Snippet Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Algorithms
Computational Biology - methods
Female
Gene Expression Profiling
Gene Regulatory Networks
Humans
Normal Distribution
Original Paper
Triple Negative Breast Neoplasms - genetics
Triple Negative Breast Neoplasms - metabolism
Title AJGM: joint learning of heterogeneous gene networks with adaptive graphical model
URI https://www.ncbi.nlm.nih.gov/pubmed/40073230
https://www.proquest.com/docview/3176679499
https://pubmed.ncbi.nlm.nih.gov/PMC11937957
https://doi.org/10.1093/bioinformatics/btaf096
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VXVVwKaVAG6DIlbiGjR-xk95WiIdW4lGJleAU2Y7NQlGygqwq-utrJ9kVASHRUyIltmLPOJ7xzHwfwF6iKeOG2zDXhIUM2yiUkWKhIZrZXEeaaV_gfHrGT8ZsdBVftY6ir4XpxO9TOlC3ZYsg6lGLB6qS1hndS9DnsbO9e9Afn10Mr5viKhGypKZCbu8xnpcEv9lRdzd6ZWK-zpRcnhVT-fRH3t8_24aOVuF8PoAm--T3_qxS-_rvC2zH94_wM3xqLVI0bFRoDT6Y4gt8bDgqn9bh13B0fPoT3bnmFWo5Jm5QadHEJ9KUTv9MOXtE_oqKJqf8EfnTXSRzOfU_U1SDYntlQDXvzgaMjw4vD07Cloch1JSzKkwJUYlxvoUlmGIrIiyTOOdC8RxjqQ2lIhbSuW6aahJTza3gqZZKpYzYlBq6Cb2iLMw3QFxxynKuSK6dH2aJTHiqcmeiSCOsESSAwVwe2bSB28iaMDnNuhOVtRMVwI-52DK3Mny4Q9YDz6jHvhQefCeAr40YF316NnjqvK8Ako6AFy941O3uk-J2UqNvY2fyijQWAUQLXXjnt279f5NtWCGecdhnvbEd6FUPM_PdmUGV2q2PD3bbFfAPlRYP4A
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD6sM4i-6Hrv3siCr3WaS5N234ZFVwbUXXBAn0qSJo4X2kE7iP56k7YzbFcE96mFNqHJOW2-05zzfQD7iaaMG27DXBMWMmyjUEaKhYZoZnMdaaZ9gfPJKT8es9FFfNEGir4WprN_n9KBui5bBlHPWjxQlbQOdC9Bn8cOe_egPz79PbxsiqtEyJJaCrk9x3heEvxmR93V6BXEfJ0puTIrpvLpUd7d_bUMHa3D2XwATfbJ7cGsUgf6-R9ux_eP8COstYgUDRsX2oAPptiE5Uaj8mkL_gxHv05-oBvXvEKtxsQVKi2a-ESa0vmfKWcPyB9R0eSUPyD_dxfJXE79xxTVpNjeGVCtu7MN46PD85_HYavDEGrKWRWmhKjEuNjCEkyxFRGWSZxzoXiOsdSGUhEL6UI3TTWJqeZW8FRLpVJGbEoN3YFeURZmDxBXnLKcK5JrF4dZIhOeqtxBFGmENYIEMJjbI5s2dBtZs01Os-5EZe1EBfB9brbMvRl-u0PWA8-o574UnnwngN3GjIs-vRo8ddFXAEnHwIsbPOt290pxPanZt7GDvCKNRQDRwhfe-ayf_r_JZ1glXnHYZ72xL9Cr7mfmq4NBlfrW-v4LO6EO6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AJGM%3A+joint+learning+of+heterogeneous+gene+networks+with+adaptive+graphical+model&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Yang%2C+Shunqi&rft.au=Hu%2C+Lingyi&rft.au=Chen%2C+Pengzhou&rft.au=Zeng%2C+Xiangxiang&rft.date=2025-03-04&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=41&rft.issue=3&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btaf096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon