AJGM: joint learning of heterogeneous gene networks with adaptive graphical model
Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassific...
        Saved in:
      
    
          | Published in | Bioinformatics (Oxford, England) Vol. 41; no. 3 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Oxford University Press
    
        04.03.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4811 1367-4803 1367-4811  | 
| DOI | 10.1093/bioinformatics/btaf096 | 
Cover
| Abstract | Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data.
We propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach outperforms existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relationships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while also revealing novel biological insights.
The Python code and demonstrations of the proposed approaches are available at https://github.com/yyytim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972. | 
    
|---|---|
| AbstractList | Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data.
We propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach outperforms existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relationships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while also revealing novel biological insights.
The Python code and demonstrations of the proposed approaches are available at https://github.com/yyytim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972. Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data.MOTIVATIONInferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model (GGM) for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships. Additionally, GGM assumes data follows a multivariate Gaussian distribution, which is often not the case with zero-inflated scRNA-seq data.We propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach outperforms existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relationships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while also revealing novel biological insights.RESULTSWe propose an Adaptive Joint Graphical Model (AJGM) for estimating multiple gene networks from single-cell or bulk data with unknown heterogeneity. In AJGM, an overall network is introduced to capture relationships shared by all samples. The model establishes connections between the subtype networks and the overall network through adaptive weights, enabling it to focus more effectively on gene relationships shared across all networks, thereby enhancing the accuracy of network estimation. On synthetic data, the proposed approach outperforms existing methods in terms of sample classification and network inference, particularly excelling in the identification of shared relationships. Applying this method to gene expression data from triple-negative breast cancer confirms known gene pathways and hub genes, while also revealing novel biological insights.The Python code and demonstrations of the proposed approaches are available at https://github.com/yyytim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972.AVAILABILITY AND IMPLEMENTATIONThe Python code and demonstrations of the proposed approaches are available at https://github.com/yyytim/AJGM, and the software is archived in Zenodo with DOI: 10.5281/zenodo.14740972.  | 
    
| Author | Hu, Lingyi Zeng, Xiangxiang Yang, Shunqi Mao, Shanjun Chen, Pengzhou  | 
    
| Author_xml | – sequence: 1 givenname: Shunqi surname: Yang fullname: Yang, Shunqi – sequence: 2 givenname: Lingyi surname: Hu fullname: Hu, Lingyi – sequence: 3 givenname: Pengzhou surname: Chen fullname: Chen, Pengzhou – sequence: 4 givenname: Xiangxiang surname: Zeng fullname: Zeng, Xiangxiang – sequence: 5 givenname: Shanjun orcidid: 0000-0001-9212-4761 surname: Mao fullname: Mao, Shanjun  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40073230$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUUtv1DAQtlARfcBfqHzkstSOEzvmgqqqlKKiqhKcrYkz3nVJ7GB7u-q_J-0ufdw4fSPN99B8c0j2QgxIyDFnnzjT4qTz0QcX0wjF23zSFXBMyzfkgAupFnXL-d6LeZ8c5nzLGGtYI9-R_ZoxJSrBDsjN6feLH5_p7exW6ICQgg9LGh1dYcEUlxgwrjN9QBqwbGL6nenGlxWFHqbi75AuE0wrb2GgY-xxeE_eOhgyftjhEfn19fzn2bfF1fXF5dnp1cIKWZeFrqquRcGkq7jgTjEObdNL1cmec7AohGoUtFVrha0aYaVTUlvoOl1XTgsUR0RtfddhgvsNDIOZkh8h3RvOzENJ5nVJZlfSrPyyVU7rbsTeYigJntURvHm9CX5llvHOcK6F0o2aHT7uHFL8s8ZczOizxWGAx7qM4EpKpWutZ-rxy7CnlH8vmAlyS7Ap5pzQ_e8ZfwEjvaRu | 
    
| Cites_doi | 10.1038/nature11412 10.1111/rssb.12033 10.1093/bioinformatics/btv316 10.1214/17-EJS1331 10.1371/journal.pcbi.1006436 10.1200/JCO.2008.18.1370 10.1016/j.cell.2015.04.044 10.1111/biom.13426 10.1371/journal.pcbi.1010758 10.1561/2200000016 10.3389/fonc.2018.00374 10.1073/pnas.1522586113 10.21037/tcr-20-1756 10.1038/s43018-023-00717-6 10.1038/ncomms15081 10.1038/nri.2017.76 10.1214/21-AOAS1582 10.7150/ijbs.31009 10.1214/16-EJS1135 10.1101/gr.216721.116 10.1016/j.csbj.2020.09.004 10.1093/biomet/asm018 10.1073/pnas.1704553114 10.1038/s41467-018-03405-7 10.1038/s41598-017-09094-4 10.1007/s13402-023-00805-w 10.1111/j.2517-6161.1977.tb01600.x 10.3109/10799893.2015.1030412 10.1016/j.devcel.2022.01.008 10.1109/TCBB.2020.3002906 10.1186/1471-2105-9-559 10.1371/journal.pcbi.1006369 10.1093/bioinformatics/btaa873  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. 2025  | 
    
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. 2025  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/bioinformatics/btaf096 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1367-4811 | 
    
| ExternalDocumentID | 10.1093/bioinformatics/btaf096 PMC11937957 40073230 10_1093_bioinformatics_btaf096  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12401381 – fundername: ; grantid: 12401381  | 
    
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM .-4 .GJ 1TH AAJQQ AAUQX ABEFU ABNGD ABPQP ACUKT ACUXJ ADGKP ADRDM ADTOC ADVEK AFFNX AFGWE AGQPQ AI. AJEEA AQDSO ATTQO AZFZN C1A CAG COF DIK EJD ELUNK HVGLF NTWIH NU- NVLIB O0~ O~Y PB- RNI RZF RZO UNPAY VH1 W8F ZGI  | 
    
| ID | FETCH-LOGICAL-c364t-922b8e306f2131f701a85d67b6d11ace33757a828c3c253c6f769cabb942f93e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1367-4811 1367-4803  | 
    
| IngestDate | Sun Oct 26 02:19:08 EDT 2025 Thu Aug 21 18:39:44 EDT 2025 Thu Jul 10 22:11:25 EDT 2025 Thu May 15 23:27:09 EDT 2025 Wed Oct 01 06:36:51 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c364t-922b8e306f2131f701a85d67b6d11ace33757a828c3c253c6f769cabb942f93e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-9212-4761 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btaf096 | 
    
| PMID | 40073230 | 
    
| PQID | 3176679499 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btaf096 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11937957 proquest_miscellaneous_3176679499 pubmed_primary_40073230 crossref_primary_10_1093_bioinformatics_btaf096  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-Mar-04 | 
    
| PublicationDateYYYYMMDD | 2025-03-04 | 
    
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-Mar-04 day: 04  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Bioinformatics (Oxford, England) | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2025 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Li (2025032802555603500_btaf096-B13) 2018; 9 Lyu (2025032802555603500_btaf096-B14) 2018; 14 Chung (2025032802555603500_btaf096-B2) 2017; 8 Ficklin (2025032802555603500_btaf096-B8) 2017; 7 Ren (2025032802555603500_btaf096-B19) 2022; 78 Tan (2025032802555603500_btaf096-B24) 2022 Boyd (2025032802555603500_btaf096-B1) 2010; 3 Yuan (2025032802555603500_btaf096-B32) 2007; 94 Dempster (2025032802555603500_btaf096-B5) 1977; 39 2025032802555603500_btaf096-B29 El-Kebir (2025032802555603500_btaf096-B7) 2015; 31 Langfelder (2025032802555603500_btaf096-B11) 2008; 9 Wu (2025032802555603500_btaf096-B30) 2022; 16 Tan (2025032802555603500_btaf096-B26) 2022; 19 Papalexi (2025032802555603500_btaf096-B17) 2018; 18 Wu (2025032802555603500_btaf096-B33510762) 2017; 11 Parker (2025032802555603500_btaf096-B18) 2009; 27 Zhao (2025032802555603500_btaf096-B34) 2016; 113 Minoura (2025032802555603500_btaf096-B15) 2021; 37 Danaher (2025032802555603500_btaf096-B4) 2014; 76 Dai (2025032802555603500_btaf096-B3) 2019; 15 Nikolski (2025032802555603500_btaf096-B16) 2024; 5 Wu (2025032802555603500_btaf096-B31) 2020; 18 Wei (2025032802555603500_btaf096-B28) 2020; 9 The Cancer Genome Atlas Network (2025032802555603500_btaf096-B27) 2012; 490 Klein (2025032802555603500_btaf096-B10) 2015; 161 Shahan (2025032802555603500_btaf096-B22) 2022; 57 Gao (2025032802555603500_btaf096-B9) 2016; 10 Sun (2025032802555603500_btaf096-B23) 2015; 35 Saha (2025032802555603500_btaf096-B20) 2017; 27 Zhang (2025032802555603500_btaf096-B33) 2018; 14 Kuo (2025032802555603500_btaf096-B111) 2023; 46 Seal (2025032802555603500_btaf096-B21) 2023; 19 Tang (2025032802555603500_btaf096-B25) 2018; 8 Lee (2025032802555603500_btaf096-B12) 2015; 16 Duren (2025032802555603500_btaf096-B6) 2017; 114  | 
    
| References_xml | – volume: 490 start-page: 61 year: 2012 ident: 2025032802555603500_btaf096-B27 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/nature11412 – volume: 76 start-page: 373 year: 2014 ident: 2025032802555603500_btaf096-B4 article-title: The joint graphical lasso for inverse covariance estimation across multiple classes publication-title: J R Stat Soc Series B Stat Methodol doi: 10.1111/rssb.12033 – volume: 31 start-page: 3147 year: 2015 ident: 2025032802555603500_btaf096-B7 article-title: xHeinz: an algorithm for mining cross-species network modules under a flexible conservation model publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv316 – volume: 11 year: 2017 ident: 2025032802555603500_btaf096-B33510762 article-title: Graphical model selection with latent variables publication-title: Electron J Stat doi: 10.1214/17-EJS1331 – volume: 14 start-page: e1006436 year: 2018 ident: 2025032802555603500_btaf096-B14 article-title: Conditionadaptive fused graphical lasso (CFGL): an adaptive procedure for inferring condition-specific gene co-expression network publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006436 – volume: 27 start-page: 1160 year: 2009 ident: 2025032802555603500_btaf096-B18 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J Clin Oncol doi: 10.1200/JCO.2008.18.1370 – volume: 161 start-page: 1187 year: 2015 ident: 2025032802555603500_btaf096-B10 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 78 start-page: 524 year: 2022 ident: 2025032802555603500_btaf096-B19 article-title: Gaussian graphical model-based heterogeneity analysis via penalized fusion publication-title: Biometrics doi: 10.1111/biom.13426 – volume: 19 start-page: e1010758 year: 2023 ident: 2025032802555603500_btaf096-B21 article-title: RCFGL: rapid condition adaptive fused graphical lasso and application to modeling brain region co-expression networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1010758 – volume: 3 start-page: 1 year: 2010 ident: 2025032802555603500_btaf096-B1 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: FNT Mach Learn doi: 10.1561/2200000016 – volume: 8 start-page: 374 year: 2018 ident: 2025032802555603500_btaf096-B25 article-title: Prognostic genes of breast cancer identified by gene co-expression network analysis publication-title: Front Oncol doi: 10.3389/fonc.2018.00374 – volume: 113 start-page: 5130 year: 2016 ident: 2025032802555603500_btaf096-B34 article-title: Part mutual information for quantifying direct associations in networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1522586113 – volume: 9 start-page: 6881 year: 2020 ident: 2025032802555603500_btaf096-B28 article-title: Fibroblast growth factor receptor 4 as a prognostic indicator in triple-negative breast cancer publication-title: Transl Cancer Res doi: 10.21037/tcr-20-1756 – volume: 5 start-page: 367 year: 2024 ident: 2025032802555603500_btaf096-B16 article-title: Roadmap for a European cancer data management and precision medicine infrastructure publication-title: Nat Cancer doi: 10.1038/s43018-023-00717-6 – volume: 8 start-page: 15081 year: 2017 ident: 2025032802555603500_btaf096-B2 article-title: Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer publication-title: Nat Commun doi: 10.1038/ncomms15081 – volume: 18 start-page: 35 year: 2018 ident: 2025032802555603500_btaf096-B17 article-title: Single-cell RNA sequencing to explore immune cell heterogeneity publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.76 – volume: 16 start-page: 1035 year: 2015 ident: 2025032802555603500_btaf096-B12 article-title: Joint estimation of multiple precision matrices with common structures publication-title: J Mach Learn Res – volume: 16 start-page: 2183 year: 2022 ident: 2025032802555603500_btaf096-B30 article-title: Estimating heterogeneous gene regulatory networks from zero-inflated single-cell expression data publication-title: Ann Appl Stat doi: 10.1214/21-AOAS1582 – volume: 15 start-page: 1030 year: 2019 ident: 2025032802555603500_btaf096-B3 article-title: FOXA1 is prognostic of triple negative breast cancers by transcriptionally suppressing SOD2 and IL6 publication-title: Int J Biol Sci doi: 10.7150/ijbs.31009 – volume: 10 start-page: 1133 year: 2016 ident: 2025032802555603500_btaf096-B9 article-title: Estimation of multiple networks in gaussian mixture models publication-title: Electron J Stat doi: 10.1214/16-EJS1135 – volume: 27 start-page: 1843 year: 2017 ident: 2025032802555603500_btaf096-B20 article-title: Co-expression networks reveal the tissue-specific regulation of transcription and splicing publication-title: Genome Res doi: 10.1101/gr.216721.116 – volume: 18 start-page: 2583 year: 2020 ident: 2025032802555603500_btaf096-B31 article-title: Joint learning of multiple gene networks from single-cell gene expression data publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.09.004 – volume: 94 start-page: 19 year: 2007 ident: 2025032802555603500_btaf096-B32 article-title: Model selection and estimation in the gaussian graphical model publication-title: Biometrika doi: 10.1093/biomet/asm018 – volume: 114 start-page: E4914 year: 2017 ident: 2025032802555603500_btaf096-B6 article-title: Modeling gene regulation from paired expression and chromatin accessibility data publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1704553114 – volume: 9 start-page: 997 year: 2018 ident: 2025032802555603500_btaf096-B13 article-title: An accurate and robust imputation method scimpute for single-cell RNA-seq data publication-title: Nat Commun doi: 10.1038/s41467-018-03405-7 – volume: 7 start-page: 8617 year: 2017 ident: 2025032802555603500_btaf096-B8 article-title: Discovering condition-specific gene co-expression patterns using gaussian mixture models: a cancer case study publication-title: Sci Rep doi: 10.1038/s41598-017-09094-4 – volume: 46 start-page: 1213 year: 2023 ident: 2025032802555603500_btaf096-B111 article-title: MAP3K1 expression is associated with progression and poor prognosis of hormone receptor-positive, HER2-negative early-stage breast cancer publication-title: Cell Oncol doi: 10.1007/s13402-023-00805-w – volume: 39 start-page: 1 year: 1977 ident: 2025032802555603500_btaf096-B5 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 35 start-page: 600 year: 2015 ident: 2025032802555603500_btaf096-B23 article-title: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis publication-title: J Recept Signal Transduct Res doi: 10.3109/10799893.2015.1030412 – volume: 57 start-page: 543 year: 2022 ident: 2025032802555603500_btaf096-B22 article-title: A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants publication-title: Dev Cell doi: 10.1016/j.devcel.2022.01.008 – volume: 19 start-page: 513 year: 2022 ident: 2025032802555603500_btaf096-B26 article-title: Identifying gene network rewiring based on partial correlation publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2020.3002906 – volume: 9 start-page: 559 year: 2008 ident: 2025032802555603500_btaf096-B11 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – year: 2022 ident: 2025032802555603500_btaf096-B24 – volume: 14 start-page: e1006369 year: 2018 ident: 2025032802555603500_btaf096-B33 article-title: Silggm: an extensive r package for efficient statistical inference in large-scale gene networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006369 – volume: 37 start-page: 1632 year: 2021 ident: 2025032802555603500_btaf096-B15 article-title: CYBERTRACK2.0: zero-inflated model-based cell clustering and population tracking method for longitudinal mass cytometry data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa873 – start-page: 336 ident: 2025032802555603500_btaf096-B29  | 
    
| SSID | ssj0005056 | 
    
| Score | 2.4766471 | 
    
| Snippet | Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database  | 
    
| SubjectTerms | Algorithms Computational Biology - methods Female Gene Expression Profiling Gene Regulatory Networks Humans Normal Distribution Original Paper Triple Negative Breast Neoplasms - genetics Triple Negative Breast Neoplasms - metabolism  | 
    
| Title | AJGM: joint learning of heterogeneous gene networks with adaptive graphical model | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40073230 https://www.proquest.com/docview/3176679499 https://pubmed.ncbi.nlm.nih.gov/PMC11937957 https://doi.org/10.1093/bioinformatics/btaf096  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 41 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VXVVwKaVAG6DIlbiGjR-xk95WiIdW4lGJleAU2Y7NQlGygqwq-utrJ9kVASHRUyIltmLPOJ7xzHwfwF6iKeOG2zDXhIUM2yiUkWKhIZrZXEeaaV_gfHrGT8ZsdBVftY6ir4XpxO9TOlC3ZYsg6lGLB6qS1hndS9DnsbO9e9Afn10Mr5viKhGypKZCbu8xnpcEv9lRdzd6ZWK-zpRcnhVT-fRH3t8_24aOVuF8PoAm--T3_qxS-_rvC2zH94_wM3xqLVI0bFRoDT6Y4gt8bDgqn9bh13B0fPoT3bnmFWo5Jm5QadHEJ9KUTv9MOXtE_oqKJqf8EfnTXSRzOfU_U1SDYntlQDXvzgaMjw4vD07Cloch1JSzKkwJUYlxvoUlmGIrIiyTOOdC8RxjqQ2lIhbSuW6aahJTza3gqZZKpYzYlBq6Cb2iLMw3QFxxynKuSK6dH2aJTHiqcmeiSCOsESSAwVwe2bSB28iaMDnNuhOVtRMVwI-52DK3Mny4Q9YDz6jHvhQefCeAr40YF316NnjqvK8Ako6AFy941O3uk-J2UqNvY2fyijQWAUQLXXjnt279f5NtWCGecdhnvbEd6FUPM_PdmUGV2q2PD3bbFfAPlRYP4A | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD6sM4i-6Hrv3siCr3WaS5N234ZFVwbUXXBAn0qSJo4X2kE7iP56k7YzbFcE96mFNqHJOW2-05zzfQD7iaaMG27DXBMWMmyjUEaKhYZoZnMdaaZ9gfPJKT8es9FFfNEGir4WprN_n9KBui5bBlHPWjxQlbQOdC9Bn8cOe_egPz79PbxsiqtEyJJaCrk9x3heEvxmR93V6BXEfJ0puTIrpvLpUd7d_bUMHa3D2XwATfbJ7cGsUgf6-R9ux_eP8COstYgUDRsX2oAPptiE5Uaj8mkL_gxHv05-oBvXvEKtxsQVKi2a-ESa0vmfKWcPyB9R0eSUPyD_dxfJXE79xxTVpNjeGVCtu7MN46PD85_HYavDEGrKWRWmhKjEuNjCEkyxFRGWSZxzoXiOsdSGUhEL6UI3TTWJqeZW8FRLpVJGbEoN3YFeURZmDxBXnLKcK5JrF4dZIhOeqtxBFGmENYIEMJjbI5s2dBtZs01Os-5EZe1EBfB9brbMvRl-u0PWA8-o574UnnwngN3GjIs-vRo8ddFXAEnHwIsbPOt290pxPanZt7GDvCKNRQDRwhfe-ayf_r_JZ1glXnHYZ72xL9Cr7mfmq4NBlfrW-v4LO6EO6w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AJGM%3A+joint+learning+of+heterogeneous+gene+networks+with+adaptive+graphical+model&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Yang%2C+Shunqi&rft.au=Hu%2C+Lingyi&rft.au=Chen%2C+Pengzhou&rft.au=Zeng%2C+Xiangxiang&rft.date=2025-03-04&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=41&rft.issue=3&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btaf096 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |