Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm
Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to these characteristics, sEMG is widely used in human-computer interaction, clinical diagnosis and rehabilitation medicine, sports medicine and ot...
Saved in:
| Published in | Symmetry (Basel) Vol. 12; no. 1; p. 130 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-8994 2073-8994 |
| DOI | 10.3390/sym12010130 |
Cover
| Abstract | Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to these characteristics, sEMG is widely used in human-computer interaction, clinical diagnosis and rehabilitation medicine, sports medicine and other fields. This paper aims to improve the estimation accuracy and real-time performance, in the case of the knee joint angle in the lower limb, using a sEMG signal, in a proposed estimation algorithm of the continuous motion, based on the principal component analysis (PCA) and the regularized extreme learning machine (RELM). First, the sEMG signals, collected during the lower limb motion, are preprocessed, while feature samples are extracted from the acquired and preconditioned sEMG signals. Next, the feature samples dimensions are reduced by the PCA, as well as the knee joint angle system is measured by the three-dimensional motion capture system, are followed by the normalization of the feature variable value. The normalized sEMG feature is used as the input layer, in the RELM model, while the joint angle is used as the output layer. After training, the RELM model estimates the knee joint angle of the lower limbs, while it uses the root mean square error (RMSE), Pearson correlation coefficient and model training time as key performance indicators (KPIs), to be further discussed. The RELM, the traditional BP neural network and the support vector machine (SVM) estimation results are compared. The conclusions prove that the RELM method, not only has ensured the validity of results, but also has greatly reduced the learning train time. The presented work is a valuable point of reference for further study of the motion estimation in lower limb. |
|---|---|
| AbstractList | Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to these characteristics, sEMG is widely used in human-computer interaction, clinical diagnosis and rehabilitation medicine, sports medicine and other fields. This paper aims to improve the estimation accuracy and real-time performance, in the case of the knee joint angle in the lower limb, using a sEMG signal, in a proposed estimation algorithm of the continuous motion, based on the principal component analysis (PCA) and the regularized extreme learning machine (RELM). First, the sEMG signals, collected during the lower limb motion, are preprocessed, while feature samples are extracted from the acquired and preconditioned sEMG signals. Next, the feature samples dimensions are reduced by the PCA, as well as the knee joint angle system is measured by the three-dimensional motion capture system, are followed by the normalization of the feature variable value. The normalized sEMG feature is used as the input layer, in the RELM model, while the joint angle is used as the output layer. After training, the RELM model estimates the knee joint angle of the lower limbs, while it uses the root mean square error (RMSE), Pearson correlation coefficient and model training time as key performance indicators (KPIs), to be further discussed. The RELM, the traditional BP neural network and the support vector machine (SVM) estimation results are compared. The conclusions prove that the RELM method, not only has ensured the validity of results, but also has greatly reduced the learning train time. The presented work is a valuable point of reference for further study of the motion estimation in lower limb. |
| Author | Chen, Huihui Gao, Farong Deng, Yanxia |
| Author_xml | – sequence: 1 givenname: Yanxia surname: Deng fullname: Deng, Yanxia – sequence: 2 givenname: Farong orcidid: 0000-0003-4984-2500 surname: Gao fullname: Gao, Farong – sequence: 3 givenname: Huihui surname: Chen fullname: Chen, Huihui |
| BookMark | eNp9kM1OwzAQhC1UJErpiReIxBECdhzH8TG05bcVCME5Ms66pErsYrugvj2h5VAhwV52Vvp2NJpD1DPWAELHBJ9TKvCFX7ckwQQTivdQP8GcxrkQaW9HH6Ch9wvcDcMszXAfjQszbyCa-FC3MtTWRNq66N4ARHe2NiGa2Q9ooROX0kMVdcDjqIifJtNZVDRz6-rw1h6hfS0bD8OfPUAvV5Pn0U08fbi-HRXTWNEsDTETFaO5wJJBlWtMcoY1zzMhgScZUOhOKitBtNRciyrRlMCryrgClTOVUzpAZ1vflVnK9adsmnLputxuXRJcfpdQ7pTQ4SdbfOns-wp8KBd25UyXsEwYwwlP-caUbCnlrPcOdKnqsKkiOFk3fzif_vr5L8cXHnB6PA |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3523941 crossref_primary_10_1109_ACCESS_2023_3328798 crossref_primary_10_3390_sym12101636 crossref_primary_10_1007_s13198_021_01261_1 crossref_primary_10_1109_JBHI_2022_3198640 crossref_primary_10_1109_JSEN_2024_3446868 crossref_primary_10_1109_TIM_2021_3096789 crossref_primary_10_3390_sym13030401 crossref_primary_10_1080_02564602_2021_1994477 crossref_primary_10_3390_s24020660 crossref_primary_10_3934_mbe_2021177 crossref_primary_10_1109_TNSRE_2022_3200485 crossref_primary_10_3389_frobt_2022_869476 crossref_primary_10_3389_fnbot_2021_692539 crossref_primary_10_1155_2021_6693206 crossref_primary_10_1155_2021_9988823 crossref_primary_10_1109_TTE_2023_3324822 |
| Cites_doi | 10.1371/journal.pone.0052618 10.1109/TPWRS.2008.926431 10.1109/TPWRS.2012.2190627 10.1109/TNNLS.2012.2202289 10.1007/s11063-014-9391-4 10.1016/j.dss.2008.07.009 10.3390/e19120697 10.1109/TSMCB.2011.2168604 10.1109/TRO.2009.2039378 10.1016/j.patcog.2011.03.013 10.1016/0169-7439(87)80084-9 10.1007/s10489-017-1062-5 10.1109/CIDM.2009.4938676 10.1109/34.58871 10.1109/JETCAS.2013.2266753 10.3390/s19245499 10.1186/s12984-019-0544-6 10.3389/fnins.2017.00280 10.3390/e19050229 10.1109/TBME.2006.880883 10.1016/j.neucom.2011.05.033 10.1109/ACCESS.2019.2904145 10.1016/j.jbiomech.2005.06.005 10.3390/e19070307 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.3390/sym12010130 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10.3390/sym12010130 10_3390_sym12010130 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c364t-59d53890a5ed8f01850f7869ae726e3e50f3ad91faf7f9d2f31ebc67cec85c833 |
| IEDL.DBID | UNPAY |
| ISSN | 2073-8994 |
| IngestDate | Sun Oct 26 03:06:49 EDT 2025 Fri Jul 25 11:59:17 EDT 2025 Thu Oct 16 04:35:14 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-59d53890a5ed8f01850f7869ae726e3e50f3ad91faf7f9d2f31ebc67cec85c833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4984-2500 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2073-8994/12/1/130/pdf?version=1579655814 |
| PQID | 2550274783 |
| PQPubID | 2032326 |
| ParticipantIDs | unpaywall_primary_10_3390_sym12010130 proquest_journals_2550274783 crossref_citationtrail_10_3390_sym12010130 crossref_primary_10_3390_sym12010130 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_14) 2012; 78 Nizar (ref_24) 2008; 23 Markatou (ref_37) 2005; 6 Chen (ref_4) 2016; 50 Chen (ref_12) 2015; 49 Wang (ref_13) 2005; 13 ref_36 Zhang (ref_16) 2017; 11 ref_34 ref_11 Ding (ref_17) 2014; 36 ref_32 Li (ref_38) 2015; 41 Huang (ref_28) 2012; 42 Liouane (ref_30) 2017; 48 Chen (ref_1) 2019; 10 Dai (ref_15) 2013; 34 Ali (ref_35) 2013; 3 Gumaei (ref_29) 2019; 7 Huang (ref_20) 2005; 11 Yang (ref_26) 2012; 23 Ding (ref_5) 2016; 42 Sun (ref_23) 2009; 46 Chen (ref_22) 2012; 27 Huang (ref_7) 2019; 16 Huang (ref_25) 2005; 2005 Artemiadis (ref_6) 2010; 26 Mu (ref_31) 2004; 20 Cavallaro (ref_10) 2006; 53 Scovil (ref_9) 2006; 39 Hansen (ref_33) 1990; 12 ref_3 ref_2 ref_27 ref_8 Wold (ref_18) 1987; 2 Mohammed (ref_21) 2011; 44 Huang (ref_19) 2004; 2 |
| References_xml | – volume: 10 start-page: 1 year: 2019 ident: ref_1 article-title: Surface electromyography feature extraction via convolutional neural network publication-title: Int. J. Mach. Learn. Cybern. – ident: ref_11 doi: 10.1371/journal.pone.0052618 – volume: 23 start-page: 946 year: 2008 ident: ref_24 article-title: Power utility nontechnical loss analysis with extreme learning machine method publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.926431 – volume: 36 start-page: 469 year: 2014 ident: ref_17 article-title: EMG-based estimation for multi-joint continuous movement of human upper limb publication-title: Robot – volume: 27 start-page: 2055 year: 2012 ident: ref_22 article-title: Electricity price forecasting with extreme learning machine and bootstrapping publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2012.2190627 – volume: 23 start-page: 1498 year: 2012 ident: ref_26 article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2202289 – volume: 41 start-page: 371 year: 2015 ident: ref_38 article-title: Estimation of lower limb periodic motions from sEMG using least squares support vector regression publication-title: Neural Process. Lett. doi: 10.1007/s11063-014-9391-4 – ident: ref_34 – volume: 20 start-page: 323 year: 2004 ident: ref_31 article-title: Time-frequency analysis of surface myoelectric signals during dynamic contractions publication-title: Acta Biophys. Sin. – volume: 46 start-page: 411 year: 2009 ident: ref_23 article-title: Sales forecasting using extreme learning machine with applications in fashion retailing publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2008.07.009 – ident: ref_8 doi: 10.3390/e19120697 – volume: 42 start-page: 513 year: 2012 ident: ref_28 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2011.2168604 – volume: 6 start-page: 1127 year: 2005 ident: ref_37 article-title: Analysis of variance of cross-validation estimators of the generalization error publication-title: J. Mach. Learn. Res. – volume: 2005 start-page: 232 year: 2005 ident: ref_25 article-title: On-line sequential extreme learning machine publication-title: Comput. Intell. – volume: 34 start-page: 845 year: 2013 ident: ref_15 article-title: Yanan, Application of GRNN in ankle movement prediction based on surface electromyography publication-title: Chin. J. Sci. Instrum. – volume: 26 start-page: 393 year: 2010 ident: ref_6 article-title: EMG-based control of a robot arm using low-dimensional embeddings publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2009.2039378 – volume: 44 start-page: 2588 year: 2011 ident: ref_21 article-title: Human face recognition based on multidimensional PCA and extreme learning machine publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.03.013 – volume: 2 start-page: 37 year: 1987 ident: ref_18 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – volume: 48 start-page: 2017 year: 2017 ident: ref_30 article-title: An improved extreme learning machine model for the prediction of human scenarios in smart homes publication-title: Appl. Intell. doi: 10.1007/s10489-017-1062-5 – volume: 42 start-page: 13 year: 2016 ident: ref_5 article-title: A review on researches and applications of sEMG-based motion intent recognition methods publication-title: Acta Autom. Sin. – volume: 13 start-page: 39 year: 2005 ident: ref_13 article-title: Predictive model based on improved BP neural networks and it’s application publication-title: Comput. Meas. Control – volume: 49 start-page: 26 year: 2015 ident: ref_12 article-title: A novel design approach for lower limb rehabilitation training robot publication-title: J. Xi’an Jiaotong Univ. – volume: 11 start-page: 16 year: 2005 ident: ref_20 article-title: Extreme learning machine with randomly assigned RBF kernels publication-title: Int. J. Inf. Technol. – ident: ref_27 doi: 10.1109/CIDM.2009.4938676 – volume: 2 start-page: 985 year: 2004 ident: ref_19 article-title: Extreme learning machine: A new learning scheme of feedforward neural networks publication-title: Neural Netw. – volume: 12 start-page: 993 year: 1990 ident: ref_33 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.58871 – volume: 3 start-page: 346 year: 2013 ident: ref_35 article-title: Fractional order butterworth filter: Active and passive realizations publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2013.2266753 – ident: ref_3 doi: 10.3390/s19245499 – volume: 16 start-page: 73 year: 2019 ident: ref_7 article-title: Innervation zone distribution of the biceps brachii muscle examined using voluntary and electrically-evoked high-density surface EMG publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-019-0544-6 – ident: ref_36 – volume: 11 start-page: 280 year: 2017 ident: ref_16 article-title: Simultaneous and continuous estimation of shoulder and elbow kinematics from surface EMG signals publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00280 – ident: ref_2 doi: 10.3390/e19050229 – volume: 53 start-page: 2387 year: 2006 ident: ref_10 article-title: Real-time myoprocessors for a neural controlled powered exoskeleton arm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.880883 – volume: 78 start-page: 139 year: 2012 ident: ref_14 article-title: sEMG-based continuous estimation of joint angles of human legs by using BP neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.05.033 – volume: 7 start-page: 36266 year: 2019 ident: ref_29 article-title: A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904145 – volume: 50 start-page: 61 year: 2016 ident: ref_4 article-title: Surface electromyography decoding for continuous movement of human lower limb during walking publication-title: J. Xi’an Jiaotong Univ. – volume: 39 start-page: 2055 year: 2006 ident: ref_9 article-title: Sensitivity of a Hill-based muscle model to perturbations in model parameters publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.06.005 – ident: ref_32 doi: 10.3390/e19070307 |
| SSID | ssj0000505460 |
| Score | 2.2848651 |
| Snippet | Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 130 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Back propagation networks Correlation coefficients Datasets Eigenvalues Feature extraction Gait Human motion Joints (anatomy) Knee Machine learning Motion capture Motion simulation Neural networks Parameter identification Principal components analysis Rehabilitation Root-mean-square errors Sports medicine Support vector machines Three dimensional motion Training |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50PehFfOL6IgcFFYJt0ybpQWTVFVF3EVHwVtpkokLtrm5F_Pcm3Xbdg3gsDIFMOvN9M8nMAOxxqQOpJVIjQk5DxTIaiyCj2kJfJNEGGZ6rHe71-dVjeP0UPc1Av6mFcc8qG59YOWo9UC5HfmypbxVBSXY6fKduapS7XW1GaKT1aAV9UrUYm4W5wHXGasHcWbd_dz_Juri5bSH3xoV6zMb7x6PvN9_dCPvuHfQ0NP3yzfnPYph-f6V5PgU9l0uwWHNG0hkf8jLMYLECy7VVjshB3Tr6cBUuOsVzjqRr7XZckkgsJyU3BSK5HrwWJekNqv7gJTmz6KWJFbg779D77m2PdPJnu9_y5W0NHi-7D-dXtJ6TQBXjYUmjWFu3FXtphFoazyKwZ4TkcYoi4MjQfrJUx75JjTCxDgzzMVNcKFQyUpKxdWgVgwI3gKDymWVU6BtPhYajtCCnGaLAUGRGijYcNSpKVN1E3M2yyBMbTDh9JlP6bMPeRHg47p3xt9h2o-ukNqBR8nvcbdif6P-_ZTb_X2YLFgIXKlfZk21olR-fuGP5RJnt1j_JD29CyM0 priority: 102 providerName: ProQuest |
| Title | Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm |
| URI | https://www.proquest.com/docview/2550274783 https://www.mdpi.com/2073-8994/12/1/130/pdf?version=1579655814 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: ABDBF dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: AMVHM dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: ADMLS dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegfYAXYHxohVH5YUiA5CWO8-E8oWy0mwatqolK5SlK7POoyNJqTUHjr-fcuKNCCCEeLV2sRHe-3_2c-yDkMJY6kFoCM0kYs1CJkqVJUDKN0BdJQJLh29rh0Tg-m4bns2jmLtxWLq0Sqfh846QDtD-GhCD0eOBxD92tt9Tm3Td3k8RtHWUUSTvHuhtHGIt3SHc6nmSf7US57bNtUZ5Abu-tbq64_fvLbc7zLgz9ii3vretlcfO9qKodmBk-JPn2Bdvskq9H66Y8Uj9-6934_1_wiDxwESjNWpPZI3egfkz23Blf0deuEfWbJ-R9Vl9WQAfoBdoCR4oRLv1QA9Dzxbxu6Gix6Tbe0GPEQk1RYHKSsYvBxxHNqsvF9bz5cvWUTIeDTydnzE1dYErEYcOiVKMTTP0iAi2Nj3jum0TGaQFJEIMAXIpCp9wUJjGpDozgUKo4UaBkpKQQz0inXtSwTygoLjA-A258FZoYJEKmFgAJhElpZNIjb7dKyJVrSW4nY1Q5UhOrsXxHYz1yeCu8bDtx_FnsYKvN3B3HVY68aUO_peiRV7ca_ts2z_9R7gW5H1gGvrmUOSCd5noNLzFMaco-uSuHp33SPR6MJxe4Op3xvrPPn9DK428 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUQHOilKv1Ql9LWB5DaShFJ7NjOAVULLFrYDyEEErc0sce0UsgubBDaP9ff1nHWWfZQceMYyfLhZTzvzdgzQ8iuUCZWRkFgJRcB16wIUhkXgUHqSxRgkBG62uHRWPSv-Nl1cr1G_ra1MO5ZZesTG0dtJtrlyPdR-jYRlGI_p3eBmxrlblfbERq5H61gDpoWY76wYwDzRwzhZgenx_i_9-L4pHd51A_8lIFAM8HrIEkNHvo0zBMwyobIX6GVSqQ5yFgAA_xkuUkjm1tpUxNbFkGhhdSgVaKVS4giBWxwxlMM_jYOe-Pzi2WWx82J4yJcFAYylob7s_lt5G6gI_fuepUKn_Tt5kM1zeePeVmuUN3JG_Laa1TaXRjVFlmD6i3Z8l5gRr_5VtXf35HjbnVTAu2hn1iUQFLUwHRQAdCzyZ-qpqNJ04-8pofIlobigvOjbnDRG45ot7xBfOvft-_J1Ysg9oGsV5MKPhIKOmKo4CCyoeZWgEJSNQxAApeFVbJDfrQQZdo3LXezM8oMgxeHZ7aCZ4fsLhdPF706_r9sp8U68wd2lj2ZV4fsLfF_bpvt57f5Sjb7l6NhNjwdDz6RV7EL05vMzQ5Zr-8f4DNqmbr44g2Gkl8vbaP_ALP5BqQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQSG0vCPpQF2jrA0htJWuTOLGdQ1Vt2V0eyyJUFYlbmthjQArZhQ1C-9f66zrOY9kD4sYx0siHL-P5ZsbzIGRXKBMoo4BZGQoWap6xWAYZM0h9kQIMMjzXOzw-FYfn4fFFdLFC_rW9MK6ssrWJlaE2E-1y5F10fasISvGubcoizvrDn9Nb5jZIuZfWdp1GrSIjmD9g-Db7cdTHf70XBMPBn_1D1mwYYJqLsGRRbPDCx14agVHWQ-7yrFQiTkEGAjjgJ09N7NvUShubwHIfMi2kBq0irVwyFM3_mnRT3F2X-vBgkd9xG-JC4dUtgZzHXnc2v_Hd27PvKq6XSfDRs319X0zT-UOa50skN9wg6413Snu1Om2SFSjeks3m_s_o12ZI9bd3pN8rLnOgA7QQdfMjRe-XjgoAejy5Lko6nlSTyEv6C3nSUBQ42--x34OTMe3ll4hmeXXznpy_CF4fyGoxKeAjoaB9jr4b-NbToRWgkE4NB5AQyswq2SHfW4gS3Ywrd1sz8gTDFodnsoRnh-wuhKf1lI6nxXZarJPmqs6SR8XqkL0F_s8ds_X8MV_IK9TM5OTodLRN3gQuPq9SNjtktby7h0_oxJTZ50pbKPn70ur5H4hZBD4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_k-qAv1vqBZ6vsQwUVtslmk93Nk8R6pVSvFPGgPoVkd7Y9THNHL6fUv97Zy149RER8DExCwszO_H6T-SBkX2qbaKuBOZVKlhpRs1wlNbMY-jINSDJi3zs8PpXHk_TkPDsPCbdFKKtEKj5dOekE7Y8hIUgjnkQ8Qncbza17-y1kkrjvo8wy7fdYb8kMsfiAbE1Oz4ovfqPc-t6-KU8gt48WN1fc__3lvuZ5Mwz9wpZ3l-28uvleNc1GmDnaJuX6Bfvqkq8Hy64-MD9-m934_1_wgNwPCJQWvcnskDvQPiQ74Ywv6KswiPr1I_K-aC8aoCP0An2DI0WESz-0APRkNm07Op6tpo139B3GQktR4OywYJ9GH8e0aC5m19Pu8uoxmRyNPh8es7B1gRkh045luUUnmMdVBla7GON57JSWeQUqkSAAL0Vlc-4qp1xuEyc41EYqA0ZnRgvxhAzaWQtPCQXDBeIz4C42qZOgMWRaAaAgVbXTakjerJVQmjCS3G_GaEqkJl5j5YbGhmT_VnjeT-L4s9jeWptlOI6LEnnTin5rMSQvbzX8t8c8-0e5XXIv8Qx8lZTZI4PuegnPEaZ09Ytgiz8BNgLf_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angle+Estimation+for+Knee+Joint+Movement+Based+on+PCA-RELM+Algorithm&rft.jtitle=Symmetry+%28Basel%29&rft.au=Deng%2C+Yanxia&rft.au=Chen%2C+Huihui&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=12&rft.issue=1&rft.spage=130&rft_id=info:doi/10.3390%2Fsym12010130&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |