Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm

Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to these characteristics, sEMG is widely used in human-computer interaction, clinical diagnosis and rehabilitation medicine, sports medicine and ot...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 12; no. 1; p. 130
Main Authors Deng, Yanxia, Gao, Farong, Chen, Huihui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2020
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym12010130

Cover

Abstract Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to these characteristics, sEMG is widely used in human-computer interaction, clinical diagnosis and rehabilitation medicine, sports medicine and other fields. This paper aims to improve the estimation accuracy and real-time performance, in the case of the knee joint angle in the lower limb, using a sEMG signal, in a proposed estimation algorithm of the continuous motion, based on the principal component analysis (PCA) and the regularized extreme learning machine (RELM). First, the sEMG signals, collected during the lower limb motion, are preprocessed, while feature samples are extracted from the acquired and preconditioned sEMG signals. Next, the feature samples dimensions are reduced by the PCA, as well as the knee joint angle system is measured by the three-dimensional motion capture system, are followed by the normalization of the feature variable value. The normalized sEMG feature is used as the input layer, in the RELM model, while the joint angle is used as the output layer. After training, the RELM model estimates the knee joint angle of the lower limbs, while it uses the root mean square error (RMSE), Pearson correlation coefficient and model training time as key performance indicators (KPIs), to be further discussed. The RELM, the traditional BP neural network and the support vector machine (SVM) estimation results are compared. The conclusions prove that the RELM method, not only has ensured the validity of results, but also has greatly reduced the learning train time. The presented work is a valuable point of reference for further study of the motion estimation in lower limb.
AbstractList Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to these characteristics, sEMG is widely used in human-computer interaction, clinical diagnosis and rehabilitation medicine, sports medicine and other fields. This paper aims to improve the estimation accuracy and real-time performance, in the case of the knee joint angle in the lower limb, using a sEMG signal, in a proposed estimation algorithm of the continuous motion, based on the principal component analysis (PCA) and the regularized extreme learning machine (RELM). First, the sEMG signals, collected during the lower limb motion, are preprocessed, while feature samples are extracted from the acquired and preconditioned sEMG signals. Next, the feature samples dimensions are reduced by the PCA, as well as the knee joint angle system is measured by the three-dimensional motion capture system, are followed by the normalization of the feature variable value. The normalized sEMG feature is used as the input layer, in the RELM model, while the joint angle is used as the output layer. After training, the RELM model estimates the knee joint angle of the lower limbs, while it uses the root mean square error (RMSE), Pearson correlation coefficient and model training time as key performance indicators (KPIs), to be further discussed. The RELM, the traditional BP neural network and the support vector machine (SVM) estimation results are compared. The conclusions prove that the RELM method, not only has ensured the validity of results, but also has greatly reduced the learning train time. The presented work is a valuable point of reference for further study of the motion estimation in lower limb.
Author Chen, Huihui
Gao, Farong
Deng, Yanxia
Author_xml – sequence: 1
  givenname: Yanxia
  surname: Deng
  fullname: Deng, Yanxia
– sequence: 2
  givenname: Farong
  orcidid: 0000-0003-4984-2500
  surname: Gao
  fullname: Gao, Farong
– sequence: 3
  givenname: Huihui
  surname: Chen
  fullname: Chen, Huihui
BookMark eNp9kM1OwzAQhC1UJErpiReIxBECdhzH8TG05bcVCME5Ms66pErsYrugvj2h5VAhwV52Vvp2NJpD1DPWAELHBJ9TKvCFX7ckwQQTivdQP8GcxrkQaW9HH6Ch9wvcDcMszXAfjQszbyCa-FC3MtTWRNq66N4ARHe2NiGa2Q9ooROX0kMVdcDjqIifJtNZVDRz6-rw1h6hfS0bD8OfPUAvV5Pn0U08fbi-HRXTWNEsDTETFaO5wJJBlWtMcoY1zzMhgScZUOhOKitBtNRciyrRlMCryrgClTOVUzpAZ1vflVnK9adsmnLputxuXRJcfpdQ7pTQ4SdbfOns-wp8KBd25UyXsEwYwwlP-caUbCnlrPcOdKnqsKkiOFk3fzif_vr5L8cXHnB6PA
CitedBy_id crossref_primary_10_1109_JSEN_2024_3523941
crossref_primary_10_1109_ACCESS_2023_3328798
crossref_primary_10_3390_sym12101636
crossref_primary_10_1007_s13198_021_01261_1
crossref_primary_10_1109_JBHI_2022_3198640
crossref_primary_10_1109_JSEN_2024_3446868
crossref_primary_10_1109_TIM_2021_3096789
crossref_primary_10_3390_sym13030401
crossref_primary_10_1080_02564602_2021_1994477
crossref_primary_10_3390_s24020660
crossref_primary_10_3934_mbe_2021177
crossref_primary_10_1109_TNSRE_2022_3200485
crossref_primary_10_3389_frobt_2022_869476
crossref_primary_10_3389_fnbot_2021_692539
crossref_primary_10_1155_2021_6693206
crossref_primary_10_1155_2021_9988823
crossref_primary_10_1109_TTE_2023_3324822
Cites_doi 10.1371/journal.pone.0052618
10.1109/TPWRS.2008.926431
10.1109/TPWRS.2012.2190627
10.1109/TNNLS.2012.2202289
10.1007/s11063-014-9391-4
10.1016/j.dss.2008.07.009
10.3390/e19120697
10.1109/TSMCB.2011.2168604
10.1109/TRO.2009.2039378
10.1016/j.patcog.2011.03.013
10.1016/0169-7439(87)80084-9
10.1007/s10489-017-1062-5
10.1109/CIDM.2009.4938676
10.1109/34.58871
10.1109/JETCAS.2013.2266753
10.3390/s19245499
10.1186/s12984-019-0544-6
10.3389/fnins.2017.00280
10.3390/e19050229
10.1109/TBME.2006.880883
10.1016/j.neucom.2011.05.033
10.1109/ACCESS.2019.2904145
10.1016/j.jbiomech.2005.06.005
10.3390/e19070307
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.3390/sym12010130
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10.3390/sym12010130
10_3390_sym12010130
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-59d53890a5ed8f01850f7869ae726e3e50f3ad91faf7f9d2f31ebc67cec85c833
IEDL.DBID UNPAY
ISSN 2073-8994
IngestDate Sun Oct 26 03:06:49 EDT 2025
Fri Jul 25 11:59:17 EDT 2025
Thu Oct 16 04:35:14 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-59d53890a5ed8f01850f7869ae726e3e50f3ad91faf7f9d2f31ebc67cec85c833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4984-2500
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2073-8994/12/1/130/pdf?version=1579655814
PQID 2550274783
PQPubID 2032326
ParticipantIDs unpaywall_primary_10_3390_sym12010130
proquest_journals_2550274783
crossref_citationtrail_10_3390_sym12010130
crossref_primary_10_3390_sym12010130
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_14) 2012; 78
Nizar (ref_24) 2008; 23
Markatou (ref_37) 2005; 6
Chen (ref_4) 2016; 50
Chen (ref_12) 2015; 49
Wang (ref_13) 2005; 13
ref_36
Zhang (ref_16) 2017; 11
ref_34
ref_11
Ding (ref_17) 2014; 36
ref_32
Li (ref_38) 2015; 41
Huang (ref_28) 2012; 42
Liouane (ref_30) 2017; 48
Chen (ref_1) 2019; 10
Dai (ref_15) 2013; 34
Ali (ref_35) 2013; 3
Gumaei (ref_29) 2019; 7
Huang (ref_20) 2005; 11
Yang (ref_26) 2012; 23
Ding (ref_5) 2016; 42
Sun (ref_23) 2009; 46
Chen (ref_22) 2012; 27
Huang (ref_7) 2019; 16
Huang (ref_25) 2005; 2005
Artemiadis (ref_6) 2010; 26
Mu (ref_31) 2004; 20
Cavallaro (ref_10) 2006; 53
Scovil (ref_9) 2006; 39
Hansen (ref_33) 1990; 12
ref_3
ref_2
ref_27
ref_8
Wold (ref_18) 1987; 2
Mohammed (ref_21) 2011; 44
Huang (ref_19) 2004; 2
References_xml – volume: 10
  start-page: 1
  year: 2019
  ident: ref_1
  article-title: Surface electromyography feature extraction via convolutional neural network
  publication-title: Int. J. Mach. Learn. Cybern.
– ident: ref_11
  doi: 10.1371/journal.pone.0052618
– volume: 23
  start-page: 946
  year: 2008
  ident: ref_24
  article-title: Power utility nontechnical loss analysis with extreme learning machine method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.926431
– volume: 36
  start-page: 469
  year: 2014
  ident: ref_17
  article-title: EMG-based estimation for multi-joint continuous movement of human upper limb
  publication-title: Robot
– volume: 27
  start-page: 2055
  year: 2012
  ident: ref_22
  article-title: Electricity price forecasting with extreme learning machine and bootstrapping
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2190627
– volume: 23
  start-page: 1498
  year: 2012
  ident: ref_26
  article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2202289
– volume: 41
  start-page: 371
  year: 2015
  ident: ref_38
  article-title: Estimation of lower limb periodic motions from sEMG using least squares support vector regression
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-014-9391-4
– ident: ref_34
– volume: 20
  start-page: 323
  year: 2004
  ident: ref_31
  article-title: Time-frequency analysis of surface myoelectric signals during dynamic contractions
  publication-title: Acta Biophys. Sin.
– volume: 46
  start-page: 411
  year: 2009
  ident: ref_23
  article-title: Sales forecasting using extreme learning machine with applications in fashion retailing
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2008.07.009
– ident: ref_8
  doi: 10.3390/e19120697
– volume: 42
  start-page: 513
  year: 2012
  ident: ref_28
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2011.2168604
– volume: 6
  start-page: 1127
  year: 2005
  ident: ref_37
  article-title: Analysis of variance of cross-validation estimators of the generalization error
  publication-title: J. Mach. Learn. Res.
– volume: 2005
  start-page: 232
  year: 2005
  ident: ref_25
  article-title: On-line sequential extreme learning machine
  publication-title: Comput. Intell.
– volume: 34
  start-page: 845
  year: 2013
  ident: ref_15
  article-title: Yanan, Application of GRNN in ankle movement prediction based on surface electromyography
  publication-title: Chin. J. Sci. Instrum.
– volume: 26
  start-page: 393
  year: 2010
  ident: ref_6
  article-title: EMG-based control of a robot arm using low-dimensional embeddings
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2009.2039378
– volume: 44
  start-page: 2588
  year: 2011
  ident: ref_21
  article-title: Human face recognition based on multidimensional PCA and extreme learning machine
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.03.013
– volume: 2
  start-page: 37
  year: 1987
  ident: ref_18
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– volume: 48
  start-page: 2017
  year: 2017
  ident: ref_30
  article-title: An improved extreme learning machine model for the prediction of human scenarios in smart homes
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1062-5
– volume: 42
  start-page: 13
  year: 2016
  ident: ref_5
  article-title: A review on researches and applications of sEMG-based motion intent recognition methods
  publication-title: Acta Autom. Sin.
– volume: 13
  start-page: 39
  year: 2005
  ident: ref_13
  article-title: Predictive model based on improved BP neural networks and it’s application
  publication-title: Comput. Meas. Control
– volume: 49
  start-page: 26
  year: 2015
  ident: ref_12
  article-title: A novel design approach for lower limb rehabilitation training robot
  publication-title: J. Xi’an Jiaotong Univ.
– volume: 11
  start-page: 16
  year: 2005
  ident: ref_20
  article-title: Extreme learning machine with randomly assigned RBF kernels
  publication-title: Int. J. Inf. Technol.
– ident: ref_27
  doi: 10.1109/CIDM.2009.4938676
– volume: 2
  start-page: 985
  year: 2004
  ident: ref_19
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
  publication-title: Neural Netw.
– volume: 12
  start-page: 993
  year: 1990
  ident: ref_33
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.58871
– volume: 3
  start-page: 346
  year: 2013
  ident: ref_35
  article-title: Fractional order butterworth filter: Active and passive realizations
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2013.2266753
– ident: ref_3
  doi: 10.3390/s19245499
– volume: 16
  start-page: 73
  year: 2019
  ident: ref_7
  article-title: Innervation zone distribution of the biceps brachii muscle examined using voluntary and electrically-evoked high-density surface EMG
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-019-0544-6
– ident: ref_36
– volume: 11
  start-page: 280
  year: 2017
  ident: ref_16
  article-title: Simultaneous and continuous estimation of shoulder and elbow kinematics from surface EMG signals
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00280
– ident: ref_2
  doi: 10.3390/e19050229
– volume: 53
  start-page: 2387
  year: 2006
  ident: ref_10
  article-title: Real-time myoprocessors for a neural controlled powered exoskeleton arm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.880883
– volume: 78
  start-page: 139
  year: 2012
  ident: ref_14
  article-title: sEMG-based continuous estimation of joint angles of human legs by using BP neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.033
– volume: 7
  start-page: 36266
  year: 2019
  ident: ref_29
  article-title: A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904145
– volume: 50
  start-page: 61
  year: 2016
  ident: ref_4
  article-title: Surface electromyography decoding for continuous movement of human lower limb during walking
  publication-title: J. Xi’an Jiaotong Univ.
– volume: 39
  start-page: 2055
  year: 2006
  ident: ref_9
  article-title: Sensitivity of a Hill-based muscle model to perturbations in model parameters
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.06.005
– ident: ref_32
  doi: 10.3390/e19070307
SSID ssj0000505460
Score 2.2848651
Snippet Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 130
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Back propagation networks
Correlation coefficients
Datasets
Eigenvalues
Feature extraction
Gait
Human motion
Joints (anatomy)
Knee
Machine learning
Motion capture
Motion simulation
Neural networks
Parameter identification
Principal components analysis
Rehabilitation
Root-mean-square errors
Sports medicine
Support vector machines
Three dimensional motion
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50PehFfOL6IgcFFYJt0ybpQWTVFVF3EVHwVtpkokLtrm5F_Pcm3Xbdg3gsDIFMOvN9M8nMAOxxqQOpJVIjQk5DxTIaiyCj2kJfJNEGGZ6rHe71-dVjeP0UPc1Av6mFcc8qG59YOWo9UC5HfmypbxVBSXY6fKduapS7XW1GaKT1aAV9UrUYm4W5wHXGasHcWbd_dz_Juri5bSH3xoV6zMb7x6PvN9_dCPvuHfQ0NP3yzfnPYph-f6V5PgU9l0uwWHNG0hkf8jLMYLECy7VVjshB3Tr6cBUuOsVzjqRr7XZckkgsJyU3BSK5HrwWJekNqv7gJTmz6KWJFbg779D77m2PdPJnu9_y5W0NHi-7D-dXtJ6TQBXjYUmjWFu3FXtphFoazyKwZ4TkcYoi4MjQfrJUx75JjTCxDgzzMVNcKFQyUpKxdWgVgwI3gKDymWVU6BtPhYajtCCnGaLAUGRGijYcNSpKVN1E3M2yyBMbTDh9JlP6bMPeRHg47p3xt9h2o-ukNqBR8nvcbdif6P-_ZTb_X2YLFgIXKlfZk21olR-fuGP5RJnt1j_JD29CyM0
  priority: 102
  providerName: ProQuest
Title Angle Estimation for Knee Joint Movement Based on PCA-RELM Algorithm
URI https://www.proquest.com/docview/2550274783
https://www.mdpi.com/2073-8994/12/1/130/pdf?version=1579655814
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: ABDBF
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: AMVHM
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: ADMLS
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegfYAXYHxohVH5YUiA5CWO8-E8oWy0mwatqolK5SlK7POoyNJqTUHjr-fcuKNCCCEeLV2sRHe-3_2c-yDkMJY6kFoCM0kYs1CJkqVJUDKN0BdJQJLh29rh0Tg-m4bns2jmLtxWLq0Sqfh846QDtD-GhCD0eOBxD92tt9Tm3Td3k8RtHWUUSTvHuhtHGIt3SHc6nmSf7US57bNtUZ5Abu-tbq64_fvLbc7zLgz9ii3vretlcfO9qKodmBk-JPn2Bdvskq9H66Y8Uj9-6934_1_wiDxwESjNWpPZI3egfkz23Blf0deuEfWbJ-R9Vl9WQAfoBdoCR4oRLv1QA9Dzxbxu6Gix6Tbe0GPEQk1RYHKSsYvBxxHNqsvF9bz5cvWUTIeDTydnzE1dYErEYcOiVKMTTP0iAi2Nj3jum0TGaQFJEIMAXIpCp9wUJjGpDozgUKo4UaBkpKQQz0inXtSwTygoLjA-A258FZoYJEKmFgAJhElpZNIjb7dKyJVrSW4nY1Q5UhOrsXxHYz1yeCu8bDtx_FnsYKvN3B3HVY68aUO_peiRV7ca_ts2z_9R7gW5H1gGvrmUOSCd5noNLzFMaco-uSuHp33SPR6MJxe4Op3xvrPPn9DK428
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUQHOilKv1Ql9LWB5DaShFJ7NjOAVULLFrYDyEEErc0sce0UsgubBDaP9ff1nHWWfZQceMYyfLhZTzvzdgzQ8iuUCZWRkFgJRcB16wIUhkXgUHqSxRgkBG62uHRWPSv-Nl1cr1G_ra1MO5ZZesTG0dtJtrlyPdR-jYRlGI_p3eBmxrlblfbERq5H61gDpoWY76wYwDzRwzhZgenx_i_9-L4pHd51A_8lIFAM8HrIEkNHvo0zBMwyobIX6GVSqQ5yFgAA_xkuUkjm1tpUxNbFkGhhdSgVaKVS4giBWxwxlMM_jYOe-Pzi2WWx82J4yJcFAYylob7s_lt5G6gI_fuepUKn_Tt5kM1zeePeVmuUN3JG_Laa1TaXRjVFlmD6i3Z8l5gRr_5VtXf35HjbnVTAu2hn1iUQFLUwHRQAdCzyZ-qpqNJ04-8pofIlobigvOjbnDRG45ot7xBfOvft-_J1Ysg9oGsV5MKPhIKOmKo4CCyoeZWgEJSNQxAApeFVbJDfrQQZdo3LXezM8oMgxeHZ7aCZ4fsLhdPF706_r9sp8U68wd2lj2ZV4fsLfF_bpvt57f5Sjb7l6NhNjwdDz6RV7EL05vMzQ5Zr-8f4DNqmbr44g2Gkl8vbaP_ALP5BqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQSG0vCPpQF2jrA0htJWuTOLGdQ1Vt2V0eyyJUFYlbmthjQArZhQ1C-9f66zrOY9kD4sYx0siHL-P5ZsbzIGRXKBMoo4BZGQoWap6xWAYZM0h9kQIMMjzXOzw-FYfn4fFFdLFC_rW9MK6ssrWJlaE2E-1y5F10fasISvGubcoizvrDn9Nb5jZIuZfWdp1GrSIjmD9g-Db7cdTHf70XBMPBn_1D1mwYYJqLsGRRbPDCx14agVHWQ-7yrFQiTkEGAjjgJ09N7NvUShubwHIfMi2kBq0irVwyFM3_mnRT3F2X-vBgkd9xG-JC4dUtgZzHXnc2v_Hd27PvKq6XSfDRs319X0zT-UOa50skN9wg6413Snu1Om2SFSjeks3m_s_o12ZI9bd3pN8rLnOgA7QQdfMjRe-XjgoAejy5Lko6nlSTyEv6C3nSUBQ42--x34OTMe3ll4hmeXXznpy_CF4fyGoxKeAjoaB9jr4b-NbToRWgkE4NB5AQyswq2SHfW4gS3Ywrd1sz8gTDFodnsoRnh-wuhKf1lI6nxXZarJPmqs6SR8XqkL0F_s8ds_X8MV_IK9TM5OTodLRN3gQuPq9SNjtktby7h0_oxJTZ50pbKPn70ur5H4hZBD4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_k-qAv1vqBZ6vsQwUVtslmk93Nk8R6pVSvFPGgPoVkd7Y9THNHL6fUv97Zy149RER8DExCwszO_H6T-SBkX2qbaKuBOZVKlhpRs1wlNbMY-jINSDJi3zs8PpXHk_TkPDsPCbdFKKtEKj5dOekE7Y8hIUgjnkQ8Qncbza17-y1kkrjvo8wy7fdYb8kMsfiAbE1Oz4ovfqPc-t6-KU8gt48WN1fc__3lvuZ5Mwz9wpZ3l-28uvleNc1GmDnaJuX6Bfvqkq8Hy64-MD9-m934_1_wgNwPCJQWvcnskDvQPiQ74Ywv6KswiPr1I_K-aC8aoCP0An2DI0WESz-0APRkNm07Op6tpo139B3GQktR4OywYJ9GH8e0aC5m19Pu8uoxmRyNPh8es7B1gRkh045luUUnmMdVBla7GON57JSWeQUqkSAAL0Vlc-4qp1xuEyc41EYqA0ZnRgvxhAzaWQtPCQXDBeIz4C42qZOgMWRaAaAgVbXTakjerJVQmjCS3G_GaEqkJl5j5YbGhmT_VnjeT-L4s9jeWptlOI6LEnnTin5rMSQvbzX8t8c8-0e5XXIv8Qx8lZTZI4PuegnPEaZ09Ytgiz8BNgLf_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angle+Estimation+for+Knee+Joint+Movement+Based+on+PCA-RELM+Algorithm&rft.jtitle=Symmetry+%28Basel%29&rft.au=Deng%2C+Yanxia&rft.au=Chen%2C+Huihui&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=12&rft.issue=1&rft.spage=130&rft_id=info:doi/10.3390%2Fsym12010130&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon