Romer‐ EPTI : Rotating‐view motion‐robust super‐resolution EPTI for SNR ‐efficient distortion‐free in‐vivo mesoscale diffusion MRI and microstructure imaging
To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring,...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 93; no. 4; pp. 1535 - 1555 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.04.2025
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.30365 |
Cover
| Abstract | To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts.
A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T
/T
*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values.
Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm
) and time-dependent dMRI.
The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging. |
|---|---|
| AbstractList | To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts.PURPOSETo overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts.A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values.THEORY AND METHODSA novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values.Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm2) and time-dependent dMRI.RESULTSUsing Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm2) and time-dependent dMRI.The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.CONCLUSIONThe high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging. To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T /T *-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values. Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm ) and time-dependent dMRI. The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging. PurposeTo overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts.Theory and MethodsA novel Romer‐EPTI technique is developed to achieve SNR‐efficient acquisition while providing distortion‐free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi‐TE imaging. It introduces a ROtating‐view Motion‐robust supEr‐Resolution technique (Romer) combined with a distortion/blurring‐free Echo Planar Time‐resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi‐thick‐slice acquisition with rotating‐view encoding, while providing high motion‐robustness via a high‐fidelity, motion‐aware super‐resolution reconstruction. Instead of EPI, the in‐plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*‐blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super‐resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab‐boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b‐values.ResultsUsing Romer‐EPTI, we demonstrated distortion‐free whole‐brain mesoscale in‐vivo dMRI at both 3T (500‐μm isotropic [iso] resolution) and 7T (485‐μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high‐resolution diffusion images in the presence of subject motion. Romer‐EPTI also demonstrated high SNR gain and robustness in high b‐value (b = 5000 s/mm2) and time‐dependent dMRI.ConclusionThe high SNR efficiency, improved image quality, and motion robustness of Romer‐EPTI make it a highly efficient acquisition for high‐resolution dMRI and microstructure imaging. |
| Author | Wang, Fuyixue Huang, Susie Y. Dong, Zijing Wald, Lawrence L. Polimeni, Jonathan R. Reese, Timothy G. Lee, Hong‐Hsi |
| AuthorAffiliation | 2 Department of Radiology Harvard Medical School Boston Massachusetts USA 3 Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA 1 Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA |
| AuthorAffiliation_xml | – name: 3 Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA – name: 1 Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA – name: 2 Department of Radiology Harvard Medical School Boston Massachusetts USA |
| Author_xml | – sequence: 1 givenname: Zijing orcidid: 0000-0001-9334-0968 surname: Dong fullname: Dong, Zijing organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA – sequence: 2 givenname: Timothy G. surname: Reese fullname: Reese, Timothy G. organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA – sequence: 3 givenname: Hong‐Hsi orcidid: 0000-0002-3663-6559 surname: Lee fullname: Lee, Hong‐Hsi organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA – sequence: 4 givenname: Susie Y. surname: Huang fullname: Huang, Susie Y. organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA, Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA – sequence: 5 givenname: Jonathan R. surname: Polimeni fullname: Polimeni, Jonathan R. organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA, Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA – sequence: 6 givenname: Lawrence L. surname: Wald fullname: Wald, Lawrence L. organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA, Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA – sequence: 7 givenname: Fuyixue orcidid: 0000-0001-8975-2775 surname: Wang fullname: Wang, Fuyixue organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39552568$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUluFDEYhS0URDqBBRdAltgAUgcPZbvMBqEoQEthUBPWlqvabhxV2Y2HjrLLEXIPbsVJcA-MC1aW_b7_6f3PR-DAB28AeIjRCUaIPB_jeEIR5ewOmGBGyJQw2RyACRINmlIsm0NwlNIlQkhK0dwDh1QyRhhvJ-DbPIwmfr-5hWcfL2bwBZyHrLPzy_q0duYKjiG74Osthq6kDFNZbfloUhjKRttN2hDhp_dzWCVjreud8RkuXMoh7g1sNAY6vzVeBzhWg9TrwVTK2pI2Tu_mM6j9Ao6ujyHlWPpcYh0a9bJGug_uWj0k82B_HoPPr88uTt9Ozz-8mZ2-Op_2lDd5yhpmJemw6RoukRCiF7zDtus10qzFmgi7aDGlpG2FrPVpVosR2hLO-pZSTo_Bs51v8St9faWHQa1izRCvFUZq07iqjatt4xV-uYNXpRvNoq9rR_17IGin_la8-6KWYa0wFi0RFFeHJ3uHGL4Wk7IaXerNMGhvQkmKYiJ5S7iUFX38D3oZSvS1jEpxzFFLJa3Uoz8j_cry89cr8HQHbFpO0dj_7PcDiW_GCQ |
| Cites_doi | 10.1016/S1361-8415(01)00036-6 10.1101/2024.01.24.577002 10.1002/mrm.25391 10.1002/mrm.27189 10.1016/j.neuroimage.2006.10.037 10.1016/j.neuroimage.2017.07.035 10.1002/jmri.25664 10.1016/j.neuroimage.2015.08.075 10.1002/nbm.4056 10.1109/TMI.2008.2007348 10.1002/mrm.27196 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2023.120168 10.1016/j.neuroimage.2021.118673 10.1016/j.neuroimage.2012.01.021 10.1002/mrm.1910380113 10.1002/mrm.24427 10.1016/0022-2364(91)90253-P 10.1002/mrm.27673 10.1016/j.mri.2011.07.019 10.1002/mrm.25062 10.1016/j.neuroimage.2021.117897 10.1002/mrm.1910380509 10.1002/mrm.29277 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A 10.1016/j.neuroimage.2013.05.074 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L 10.1038/s41467-022-34510-3 10.1002/mrm.22024 10.1016/j.neuroimage.2016.01.018 10.1002/mrm.10200 10.1016/j.neuroimage.2016.08.054 10.1002/mrm.26102 10.1016/j.neuroimage.2015.03.061 10.1002/mrm.26059 10.1109/TCI.2016.2557069 10.1016/j.neuroimage.2010.06.010 10.1016/j.neuroimage.2021.118530 10.1002/mrm.26027 10.1002/mrm.24187 10.1002/mrm.22122 10.1016/j.neuroimage.2013.05.078 10.1016/S0730-725X(02)00511-8 10.1002/mrm.25594 10.1089/brain.2014.0305 10.1016/j.neuroimage.2021.118099 10.1002/mrm.25597 10.1002/mrm.28232 10.1002/mrm.25169 10.1016/j.neuroimage.2020.116906 10.1002/mrm.26861 10.1073/pnas.1316944111 10.1002/mrm.25168 10.1002/cmr.a.21249 10.1016/j.neuroimage.2015.06.016 10.1016/j.neuroimage.2015.01.001 10.1002/mrm.27413 10.1002/mrm.28963 10.1016/j.neuroimage.2022.118963 10.1016/j.neuroimage.2018.05.047 10.1016/j.neuroimage.2017.08.039 10.1002/mrm.22603 10.1038/s42003-020-1050-x 10.1016/j.neuroimage.2013.01.038 10.1002/mrm.24800 10.1002/mrm.26653 10.1002/mrm.1910380414 10.1002/mrm.20706 10.1016/j.neuroimage.2010.05.043 10.1016/j.neuroimage.2022.119033 10.1002/mrm.24594 10.1002/mrm.27899 10.1002/nbm.3841 10.1016/j.neuroimage.2011.03.070 10.1016/j.neuroimage.2020.116835 10.1002/mrm.28231 10.1371/journal.pone.0116378 10.1002/nbm.783 10.1117/12.2527183 10.1016/j.ejrad.2007.09.016 10.1002/mrm.24233 10.1016/j.neuroimage.2017.09.030 10.1117/1.JMI.3.2.023501 10.1038/s41592-023-02068-7 10.1002/mrm.29198 10.1002/mrm.26768 10.1109/ISBI.2007.357020 10.1016/j.neuroimage.2020.117054 10.1002/mrm.24320 10.1016/j.neuroimage.2015.07.074 10.1038/s41597-021-00904-z 10.1002/mrm.24229 10.1109/TMI.2019.2933982 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2012.11.065 10.1016/S1053-8119(03)00336-7 10.1016/j.neuroimage.2017.01.008 10.1002/mrm.23097 10.1016/S0006-3495(94)80775-1 10.1002/mrm.20071 10.1002/mrm.10171 10.1002/mrm.20261 10.1002/mrm.21739 10.1002/mrm.25897 10.1002/mrm.1910350518 10.1002/mrm.28295 10.1002/mp.12974 10.1002/mrm.26382 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.20508 10.1002/mrm.20288 10.1371/journal.pone.0073021 10.1002/mrm.25044 10.1016/j.neuroimage.2016.08.016 10.1162/imag_a_00049 10.1006/nimg.1998.0395 10.1002/mrm.29422 10.1002/mrm.29478 10.1016/j.neuroimage.2022.119277 10.1016/j.neuroimage.2021.118641 10.1093/cercor/bhaa049 10.1016/j.neuroimage.2012.03.072 10.1089/brain.2014.0270 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W 10.1016/j.neuroimage.2004.07.051 10.1002/mrm.28087 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/mrm.30365 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | DONG et al |
| EISSN | 1522-2594 |
| EndPage | 1555 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:11782731 PMC11782731 39552568 10_1002_mrm_30365 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIH HHS grantid: S10 OD023637 – fundername: NINDS NIH HHS grantid: U24 NS137077 – fundername: NIBIB NIH HHS grantid: R01EB019437 – fundername: NIA NIH HHS grantid: R21 AG085795 – fundername: NIBIB NIH HHS grantid: U01EB026996 – fundername: NINDS NIH HHS grantid: U24 NS129893 – fundername: NINDS NIH HHS grantid: U24NS129893 – fundername: NIDCR NIH HHS grantid: DP5OD031854 – fundername: NIA NIH HHS grantid: K99AG083056 – fundername: NINDS NIH HHS grantid: R01 NS118187 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c364t-545f92b1eb4690777c76b1fbca0a581a27fd813328879002a50007af265c83363 |
| IEDL.DBID | UNPAY |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Sun Oct 26 04:13:38 EDT 2025 Thu Aug 21 18:39:02 EDT 2025 Thu Oct 02 07:36:44 EDT 2025 Tue Oct 07 06:37:30 EDT 2025 Wed Jul 23 01:47:03 EDT 2025 Wed Oct 01 05:59:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | EPTI super‐resolution microstructure diffusion imaging mesoscale high resolution |
| Language | English |
| License | 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-545f92b1eb4690777c76b1fbca0a581a27fd813328879002a50007af265c83363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3663-6559 0000-0001-8975-2775 0000-0001-9334-0968 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11782731 |
| PMID | 39552568 |
| PQID | 3161608393 |
| PQPubID | 1016391 |
| PageCount | 21 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_30365 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11782731 proquest_miscellaneous_3129682699 proquest_journals_3161608393 pubmed_primary_39552568 crossref_primary_10_1002_mrm_30365 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | Wang F (e_1_2_7_96_1) 2023 e_1_2_7_3_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 Fadnavis S (e_1_2_7_133_1) 2022 e_1_2_7_49_1 Dong Z (e_1_2_7_94_1) 2022 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_135_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 Maffei C (e_1_2_7_122_1) 2022 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 Tamir JI (e_1_2_7_108_1) 2016 e_1_2_7_48_1 e_1_2_7_29_1 Lee H‐H (e_1_2_7_130_1) 2023; 2311 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_136_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Wang F (e_1_2_7_104_1) 2022 e_1_2_7_118_1 Dong Z (e_1_2_7_95_1) 2023 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_138_1 Henriques RN (e_1_2_7_131_1) 2023; 1 38352481 - bioRxiv. 2024 Apr 01:2024.01.26.577343. doi: 10.1101/2024.01.26.577343. |
| References_xml | – ident: e_1_2_7_111_1 doi: 10.1016/S1361-8415(01)00036-6 – ident: e_1_2_7_93_1 doi: 10.1101/2024.01.24.577002 – ident: e_1_2_7_66_1 doi: 10.1002/mrm.25391 – ident: e_1_2_7_125_1 doi: 10.1002/mrm.27189 – ident: e_1_2_7_17_1 doi: 10.1016/j.neuroimage.2006.10.037 – ident: e_1_2_7_39_1 doi: 10.1016/j.neuroimage.2017.07.035 – ident: e_1_2_7_32_1 doi: 10.1002/jmri.25664 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2015.08.075 – ident: e_1_2_7_34_1 doi: 10.1002/nbm.4056 – ident: e_1_2_7_53_1 doi: 10.1109/TMI.2008.2007348 – ident: e_1_2_7_44_1 doi: 10.1002/mrm.27196 – ident: e_1_2_7_112_1 doi: 10.1016/j.neuroimage.2011.09.015 – ident: e_1_2_7_80_1 doi: 10.1016/j.neuroimage.2023.120168 – ident: e_1_2_7_58_1 doi: 10.1016/j.neuroimage.2021.118673 – ident: e_1_2_7_119_1 doi: 10.1016/j.neuroimage.2012.01.021 – ident: e_1_2_7_62_1 doi: 10.1002/mrm.1910380113 – start-page: 3488 volume-title: Proceedings of the 30th Annual Meeting of ISMRM year: 2022 ident: e_1_2_7_94_1 – ident: e_1_2_7_127_1 doi: 10.1002/mrm.24427 – ident: e_1_2_7_38_1 – ident: e_1_2_7_103_1 doi: 10.1016/0022-2364(91)90253-P – ident: e_1_2_7_86_1 doi: 10.1002/mrm.27673 – ident: e_1_2_7_46_1 doi: 10.1016/j.mri.2011.07.019 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.25062 – ident: e_1_2_7_91_1 doi: 10.1016/j.neuroimage.2021.117897 – ident: e_1_2_7_81_1 doi: 10.1002/mrm.1910380509 – start-page: 484539 year: 2022 ident: e_1_2_7_133_1 article-title: Patch2Self denoising of diffusion MRI with self‐supervision and matrix sketching publication-title: bioRxiv – ident: e_1_2_7_92_1 doi: 10.1002/mrm.29277 – ident: e_1_2_7_16_1 doi: 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A – ident: e_1_2_7_15_1 doi: 10.1016/j.neuroimage.2013.05.074 – ident: e_1_2_7_97_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L – ident: e_1_2_7_10_1 doi: 10.1038/s41467-022-34510-3 – ident: e_1_2_7_64_1 doi: 10.1002/mrm.22024 – volume-title: Proceedings of the 30th Annual Meeting of ISMRM year: 2022 ident: e_1_2_7_122_1 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuroimage.2016.01.018 – ident: e_1_2_7_82_1 doi: 10.1002/mrm.10200 – ident: e_1_2_7_7_1 doi: 10.1016/j.neuroimage.2016.08.054 – ident: e_1_2_7_107_1 doi: 10.1002/mrm.26102 – ident: e_1_2_7_24_1 doi: 10.1016/j.neuroimage.2015.03.061 – ident: e_1_2_7_129_1 doi: 10.1002/mrm.26059 – ident: e_1_2_7_98_1 doi: 10.1109/TCI.2016.2557069 – ident: e_1_2_7_121_1 doi: 10.1016/j.neuroimage.2010.06.010 – ident: e_1_2_7_12_1 doi: 10.1016/j.neuroimage.2021.118530 – ident: e_1_2_7_49_1 doi: 10.1002/mrm.26027 – ident: e_1_2_7_54_1 doi: 10.1002/mrm.24187 – ident: e_1_2_7_65_1 doi: 10.1002/mrm.22122 – ident: e_1_2_7_109_1 – ident: e_1_2_7_14_1 doi: 10.1016/j.neuroimage.2013.05.078 – ident: e_1_2_7_52_1 doi: 10.1016/S0730-725X(02)00511-8 – ident: e_1_2_7_73_1 doi: 10.1002/mrm.25594 – ident: e_1_2_7_19_1 doi: 10.1089/brain.2014.0305 – ident: e_1_2_7_40_1 doi: 10.1016/j.neuroimage.2021.118099 – ident: e_1_2_7_57_1 doi: 10.1002/mrm.25597 – ident: e_1_2_7_138_1 doi: 10.1002/mrm.28232 – ident: e_1_2_7_48_1 doi: 10.1002/mrm.25169 – ident: e_1_2_7_100_1 doi: 10.1016/j.neuroimage.2020.116906 – ident: e_1_2_7_135_1 doi: 10.1002/mrm.26861 – ident: e_1_2_7_23_1 doi: 10.1073/pnas.1316944111 – ident: e_1_2_7_106_1 doi: 10.1002/mrm.25168 – ident: e_1_2_7_55_1 doi: 10.1002/cmr.a.21249 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroimage.2015.06.016 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroimage.2015.01.001 – ident: e_1_2_7_85_1 doi: 10.1002/mrm.27413 – ident: e_1_2_7_102_1 doi: 10.1002/mrm.28963 – ident: e_1_2_7_88_1 doi: 10.1016/j.neuroimage.2022.118963 – ident: e_1_2_7_21_1 doi: 10.1016/j.neuroimage.2018.05.047 – ident: e_1_2_7_31_1 doi: 10.1016/j.neuroimage.2017.08.039 – ident: e_1_2_7_118_1 doi: 10.1002/mrm.22603 – ident: e_1_2_7_29_1 doi: 10.1038/s42003-020-1050-x – ident: e_1_2_7_70_1 doi: 10.1016/j.neuroimage.2013.01.038 – ident: e_1_2_7_124_1 doi: 10.1002/mrm.24800 – start-page: 690 volume-title: Proceedings of the 31st Annual Meeting of ISMRM year: 2023 ident: e_1_2_7_96_1 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.26653 – ident: e_1_2_7_59_1 doi: 10.1002/mrm.1910380414 – ident: e_1_2_7_51_1 – ident: e_1_2_7_69_1 doi: 10.1002/mrm.20706 – ident: e_1_2_7_18_1 doi: 10.1016/j.neuroimage.2010.05.043 – ident: e_1_2_7_134_1 doi: 10.1016/j.neuroimage.2022.119033 – ident: e_1_2_7_35_1 doi: 10.1002/mrm.24594 – ident: e_1_2_7_45_1 doi: 10.1002/mrm.27899 – ident: e_1_2_7_33_1 doi: 10.1002/nbm.3841 – volume: 2311 year: 2023 ident: e_1_2_7_130_1 article-title: Universal sampling denoising (USD) for noise mapping and noise removal of non‐cartesian MRI publication-title: arXiv Preprint arXiv – ident: e_1_2_7_2_1 doi: 10.1016/j.neuroimage.2011.03.070 – ident: e_1_2_7_28_1 doi: 10.1016/j.neuroimage.2020.116835 – ident: e_1_2_7_50_1 doi: 10.1002/mrm.28231 – ident: e_1_2_7_72_1 doi: 10.1371/journal.pone.0116378 – ident: e_1_2_7_114_1 doi: 10.1002/nbm.783 – ident: e_1_2_7_79_1 doi: 10.1117/12.2527183 – ident: e_1_2_7_63_1 doi: 10.1016/j.ejrad.2007.09.016 – ident: e_1_2_7_56_1 doi: 10.1002/mrm.24233 – ident: e_1_2_7_26_1 doi: 10.1016/j.neuroimage.2017.09.030 – ident: e_1_2_7_37_1 doi: 10.1117/1.JMI.3.2.023501 – ident: e_1_2_7_126_1 doi: 10.1038/s41592-023-02068-7 – ident: e_1_2_7_89_1 doi: 10.1002/mrm.29198 – ident: e_1_2_7_75_1 doi: 10.1002/mrm.26768 – ident: e_1_2_7_105_1 doi: 10.1109/ISBI.2007.357020 – ident: e_1_2_7_27_1 doi: 10.1016/j.neuroimage.2020.117054 – ident: e_1_2_7_71_1 doi: 10.1002/mrm.24320 – ident: e_1_2_7_99_1 doi: 10.1016/j.neuroimage.2015.07.074 – ident: e_1_2_7_9_1 doi: 10.1038/s41597-021-00904-z – ident: e_1_2_7_136_1 doi: 10.1002/mrm.24229 – ident: e_1_2_7_101_1 doi: 10.1109/TMI.2019.2933982 – ident: e_1_2_7_110_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_7_3_1 doi: 10.1016/j.neuroimage.2012.11.065 – ident: e_1_2_7_77_1 doi: 10.1016/S1053-8119(03)00336-7 – ident: e_1_2_7_84_1 doi: 10.1016/j.neuroimage.2017.01.008 – ident: e_1_2_7_42_1 doi: 10.1002/mrm.23097 – ident: e_1_2_7_113_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_7_117_1 doi: 10.1002/mrm.20071 – ident: e_1_2_7_61_1 doi: 10.1002/mrm.10171 – ident: e_1_2_7_83_1 doi: 10.1002/mrm.20261 – ident: e_1_2_7_123_1 doi: 10.1002/mrm.21739 – ident: e_1_2_7_43_1 doi: 10.1002/mrm.25897 – ident: e_1_2_7_67_1 doi: 10.1002/mrm.1910350518 – ident: e_1_2_7_87_1 doi: 10.1002/mrm.28295 – ident: e_1_2_7_137_1 doi: 10.1002/mp.12974 – ident: e_1_2_7_74_1 doi: 10.1002/mrm.26382 – ident: e_1_2_7_60_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume-title: Generalized Magnetic Resonance Image Reconstruction Using the Berkeley Advanced Reconstruction Toolbox year: 2016 ident: e_1_2_7_108_1 – ident: e_1_2_7_116_1 doi: 10.1002/mrm.20508 – ident: e_1_2_7_68_1 doi: 10.1002/mrm.20288 – ident: e_1_2_7_115_1 doi: 10.1371/journal.pone.0073021 – ident: e_1_2_7_47_1 doi: 10.1002/mrm.25044 – ident: e_1_2_7_128_1 doi: 10.1016/j.neuroimage.2016.08.016 – volume: 1 start-page: 1 year: 2023 ident: e_1_2_7_131_1 article-title: Efficient PCA denoising of spatially correlated redundant MRI data publication-title: Imaging Neuroscience doi: 10.1162/imag_a_00049 – ident: e_1_2_7_120_1 doi: 10.1006/nimg.1998.0395 – ident: e_1_2_7_76_1 doi: 10.1002/mrm.29422 – ident: e_1_2_7_132_1 doi: 10.1002/mrm.29478 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2022.119277 – ident: e_1_2_7_90_1 doi: 10.1016/j.neuroimage.2021.118641 – ident: e_1_2_7_11_1 doi: 10.1093/cercor/bhaa049 – start-page: 3330 volume-title: Proceedings of the 30th Annual Meeting of ISMRM year: 2022 ident: e_1_2_7_104_1 – ident: e_1_2_7_22_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_7_4_1 doi: 10.1089/brain.2014.0270 – start-page: 541 volume-title: Proceedings of the 31st Annual Meeting of ISMRM year: 2023 ident: e_1_2_7_95_1 – ident: e_1_2_7_41_1 doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W – ident: e_1_2_7_78_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_7_13_1 doi: 10.1002/mrm.28087 – reference: 38352481 - bioRxiv. 2024 Apr 01:2024.01.26.577343. doi: 10.1101/2024.01.26.577343. |
| SSID | ssj0009974 |
| Score | 2.5001123 |
| Snippet | To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts.
A... PurposeTo overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion... To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 1535 |
| SubjectTerms | Algorithms Blurring Brain - diagnostic imaging Coding Diffusion Magnetic Resonance Imaging - methods Distortion Echo-Planar Imaging - methods Humans Image acquisition Image Processing, Computer-Assisted - methods Image quality Image reconstruction Imaging Methodology Magnetic resonance imaging Medical imaging Mesoscale phenomena Microstructure Motion Neuroimaging Phantoms, Imaging Phase variations Robustness Rotation Signal-To-Noise Ratio Spatial discrimination Spatial resolution Time dependence |
| Title | Romer‐ EPTI : Rotating‐view motion‐robust super‐resolution EPTI for SNR ‐efficient distortion‐free in‐vivo mesoscale diffusion MRI and microstructure imaging |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39552568 https://www.proquest.com/docview/3161608393 https://www.proquest.com/docview/3129682699 https://pubmed.ncbi.nlm.nih.gov/PMC11782731 https://www.ncbi.nlm.nih.gov/pmc/articles/11782731 |
| UnpaywallVersion | submittedVersion |
| Volume | 93 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLamTsBu-BkwAmMyP7dpEztOYu4mtGlDajWFVRpXke04UNEkVdKA4IpH4DF4Lp6EYyepKBMSXCY-TmL5O_bn-Pg7CL1kjORCBZ4b--BNAQ2Yyz2h3IDxPBJKEMHN2eHpLDybB2-u2NUOIsNZGBu0r-RiXC6Lcbn4YGMrV4WaDHFiE9-HSS0yR6d3Qwb8e4R257OL43ed3qYZVGz2Q5iXiAvcPhjkhDwyKepibIZstj0JXWOW1wMkb7XlSnz5LJbL32af0zvdicDGihaaoJOP43Ytx-rrH5KO_9ewu-h2T0bxcVd2D-3och_dnPbb7fvoho0PVc199COpCl3__Pb95OLy_BVOKrODX76HG2ZrAXe5gOCqrmTbrHHTrqw1rOV7aGNTEQNDxm9nCZRoK10BDceZFSrp6-e11nhR2ud-qnAB9RtAkcYmkUtr_uzhaXKORZnhwoQSdvK3bQ2VCptv6QGan55cvj5z-yQPrqJhsHaBweWcSF9Lu1CPIhWF0s-lEp5gsS9IlGeAI0pgNOTQiTaDQyRyEjIVUxrSh2hUVqV-hDAlEaE6y1VOvEBHlHuS5YoqkUkz0IQOej70errqtDzSTrWZpACN1ELDQYcDHtLenZuUAi8Ogaxy6qBnm2JwRLO7IkpdtcaG8BAWa5w76KCDz-YtlINPsDB2ULwFrI2BEfneLgGIWLHvARUOerHB4N-__vE_WT1Be8SkMbYBSIdoBF2lnwK3WssjWFUk5Kh3qV-QgC7c |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWqqYBueJRHAwWZxzaZxI6TmF2FWrVIM6qGjlRWkePYZcQkGSUTEKz4BD6D7-JLuHaSEUOFBMvE10ksn2sfx9fnIvSKMaKFDH03CcCbQhoyl_tCuiHjOhZSEMHN2eHJNDqdh28v2eUOIsNZGBu0L7OFVy4Lr1x8sLGVq0KOhzixcRDApBabo9O7EQP-PUK78-n50ftOb9MMKjb7IcxLxAVuHw5yQj4ZF3XhmSGbbU9C15jl9QDJW225El8-i-Xyt9nn5E53IrCxooUm6OSj164zT379Q9Lx_xp2F93uySg-6sruoR1V7qObk367fR_dsPGhsrmPfsyqQtU_v30_Pr84e41nldnBL6_ghtlawF0uILiqq6xt1rhpV9Ya1vI9tLGpiIEh43fTGZQoK10BDce5FSrp6-taKbwo7XM_VbiA-g2gSGGTyKU1f_bwZHaGRZnjwoQSdvK3bQ2VCptv6QGanxxfvDl1-yQPrqRRuHaBwWlOskBldqEexzKOskBnUviCJYEgsc4BR5TAaMihE20Gh1hoEjGZUBrRh2hUVqU6QJiSmFCVa6mJH6qYcj9jWlIp8swMNJGDXgy9nq46LY-0U20mKUAjtdBw0OGAh7R35yalwIsjIKucOuj5phgc0eyuiFJVrbEhPILFGucOetTBZ_MWysEnWJQ4KNkC1sbAiHxvlwBErNj3gAoHvdxg8O9f__ifrJ6gPWLSGNsApEM0gq5ST4FbrbNnvTP9An01LfM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Romer-EPTI%3A+Rotating-view+motion-robust+super-resolution+EPTI+for+SNR-efficient+distortion-free+in-vivo+mesoscale+diffusion+MRI+and+microstructure+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Dong%2C+Zijing&rft.au=Reese%2C+Timothy+G&rft.au=Lee%2C+Hong-Hsi&rft.au=Huang%2C+Susie+Y&rft.date=2025-04-01&rft.eissn=1522-2594&rft.volume=93&rft.issue=4&rft.spage=1535&rft_id=info:doi/10.1002%2Fmrm.30365&rft_id=info%3Apmid%2F39552568&rft.externalDocID=39552568 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |