Romer‐ EPTI : Rotating‐view motion‐robust super‐resolution EPTI for SNR ‐efficient distortion‐free in‐vivo mesoscale diffusion MRI and microstructure imaging

To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring,...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 93; no. 4; pp. 1535 - 1555
Main Authors Dong, Zijing, Reese, Timothy G., Lee, Hong‐Hsi, Huang, Susie Y., Polimeni, Jonathan R., Wald, Lawrence L., Wang, Fuyixue
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30365

Cover

Abstract To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T /T *-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values. Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm ) and time-dependent dMRI. The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
AbstractList To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts.PURPOSETo overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts.A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values.THEORY AND METHODSA novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values.Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm2) and time-dependent dMRI.RESULTSUsing Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm2) and time-dependent dMRI.The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.CONCLUSIONThe high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T /T *-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values. Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm ) and time-dependent dMRI. The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
PurposeTo overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts.Theory and MethodsA novel Romer‐EPTI technique is developed to achieve SNR‐efficient acquisition while providing distortion‐free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi‐TE imaging. It introduces a ROtating‐view Motion‐robust supEr‐Resolution technique (Romer) combined with a distortion/blurring‐free Echo Planar Time‐resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi‐thick‐slice acquisition with rotating‐view encoding, while providing high motion‐robustness via a high‐fidelity, motion‐aware super‐resolution reconstruction. Instead of EPI, the in‐plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*‐blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super‐resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab‐boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b‐values.ResultsUsing Romer‐EPTI, we demonstrated distortion‐free whole‐brain mesoscale in‐vivo dMRI at both 3T (500‐μm isotropic [iso] resolution) and 7T (485‐μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high‐resolution diffusion images in the presence of subject motion. Romer‐EPTI also demonstrated high SNR gain and robustness in high b‐value (b = 5000 s/mm2) and time‐dependent dMRI.ConclusionThe high SNR efficiency, improved image quality, and motion robustness of Romer‐EPTI make it a highly efficient acquisition for high‐resolution dMRI and microstructure imaging.
Author Wang, Fuyixue
Huang, Susie Y.
Dong, Zijing
Wald, Lawrence L.
Polimeni, Jonathan R.
Reese, Timothy G.
Lee, Hong‐Hsi
AuthorAffiliation 2 Department of Radiology Harvard Medical School Boston Massachusetts USA
3 Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA
1 Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA
AuthorAffiliation_xml – name: 3 Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA
– name: 1 Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA
– name: 2 Department of Radiology Harvard Medical School Boston Massachusetts USA
Author_xml – sequence: 1
  givenname: Zijing
  orcidid: 0000-0001-9334-0968
  surname: Dong
  fullname: Dong, Zijing
  organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA
– sequence: 2
  givenname: Timothy G.
  surname: Reese
  fullname: Reese, Timothy G.
  organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA
– sequence: 3
  givenname: Hong‐Hsi
  orcidid: 0000-0002-3663-6559
  surname: Lee
  fullname: Lee, Hong‐Hsi
  organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA
– sequence: 4
  givenname: Susie Y.
  surname: Huang
  fullname: Huang, Susie Y.
  organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA, Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA
– sequence: 5
  givenname: Jonathan R.
  surname: Polimeni
  fullname: Polimeni, Jonathan R.
  organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA, Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA
– sequence: 6
  givenname: Lawrence L.
  surname: Wald
  fullname: Wald, Lawrence L.
  organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA, Harvard‐MIT Health Sciences and Technology MIT Cambridge Massachusetts USA
– sequence: 7
  givenname: Fuyixue
  orcidid: 0000-0001-8975-2775
  surname: Wang
  fullname: Wang, Fuyixue
  organization: Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA, Department of Radiology Harvard Medical School Boston Massachusetts USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39552568$$D View this record in MEDLINE/PubMed
BookMark eNp9kUluFDEYhS0URDqBBRdAltgAUgcPZbvMBqEoQEthUBPWlqvabhxV2Y2HjrLLEXIPbsVJcA-MC1aW_b7_6f3PR-DAB28AeIjRCUaIPB_jeEIR5ewOmGBGyJQw2RyACRINmlIsm0NwlNIlQkhK0dwDh1QyRhhvJ-DbPIwmfr-5hWcfL2bwBZyHrLPzy_q0duYKjiG74Osthq6kDFNZbfloUhjKRttN2hDhp_dzWCVjreud8RkuXMoh7g1sNAY6vzVeBzhWg9TrwVTK2pI2Tu_mM6j9Ao6ujyHlWPpcYh0a9bJGug_uWj0k82B_HoPPr88uTt9Ozz-8mZ2-Op_2lDd5yhpmJemw6RoukRCiF7zDtus10qzFmgi7aDGlpG2FrPVpVosR2hLO-pZSTo_Bs51v8St9faWHQa1izRCvFUZq07iqjatt4xV-uYNXpRvNoq9rR_17IGin_la8-6KWYa0wFi0RFFeHJ3uHGL4Wk7IaXerNMGhvQkmKYiJ5S7iUFX38D3oZSvS1jEpxzFFLJa3Uoz8j_cry89cr8HQHbFpO0dj_7PcDiW_GCQ
Cites_doi 10.1016/S1361-8415(01)00036-6
10.1101/2024.01.24.577002
10.1002/mrm.25391
10.1002/mrm.27189
10.1016/j.neuroimage.2006.10.037
10.1016/j.neuroimage.2017.07.035
10.1002/jmri.25664
10.1016/j.neuroimage.2015.08.075
10.1002/nbm.4056
10.1109/TMI.2008.2007348
10.1002/mrm.27196
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2023.120168
10.1016/j.neuroimage.2021.118673
10.1016/j.neuroimage.2012.01.021
10.1002/mrm.1910380113
10.1002/mrm.24427
10.1016/0022-2364(91)90253-P
10.1002/mrm.27673
10.1016/j.mri.2011.07.019
10.1002/mrm.25062
10.1016/j.neuroimage.2021.117897
10.1002/mrm.1910380509
10.1002/mrm.29277
10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
10.1016/j.neuroimage.2013.05.074
10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
10.1038/s41467-022-34510-3
10.1002/mrm.22024
10.1016/j.neuroimage.2016.01.018
10.1002/mrm.10200
10.1016/j.neuroimage.2016.08.054
10.1002/mrm.26102
10.1016/j.neuroimage.2015.03.061
10.1002/mrm.26059
10.1109/TCI.2016.2557069
10.1016/j.neuroimage.2010.06.010
10.1016/j.neuroimage.2021.118530
10.1002/mrm.26027
10.1002/mrm.24187
10.1002/mrm.22122
10.1016/j.neuroimage.2013.05.078
10.1016/S0730-725X(02)00511-8
10.1002/mrm.25594
10.1089/brain.2014.0305
10.1016/j.neuroimage.2021.118099
10.1002/mrm.25597
10.1002/mrm.28232
10.1002/mrm.25169
10.1016/j.neuroimage.2020.116906
10.1002/mrm.26861
10.1073/pnas.1316944111
10.1002/mrm.25168
10.1002/cmr.a.21249
10.1016/j.neuroimage.2015.06.016
10.1016/j.neuroimage.2015.01.001
10.1002/mrm.27413
10.1002/mrm.28963
10.1016/j.neuroimage.2022.118963
10.1016/j.neuroimage.2018.05.047
10.1016/j.neuroimage.2017.08.039
10.1002/mrm.22603
10.1038/s42003-020-1050-x
10.1016/j.neuroimage.2013.01.038
10.1002/mrm.24800
10.1002/mrm.26653
10.1002/mrm.1910380414
10.1002/mrm.20706
10.1016/j.neuroimage.2010.05.043
10.1016/j.neuroimage.2022.119033
10.1002/mrm.24594
10.1002/mrm.27899
10.1002/nbm.3841
10.1016/j.neuroimage.2011.03.070
10.1016/j.neuroimage.2020.116835
10.1002/mrm.28231
10.1371/journal.pone.0116378
10.1002/nbm.783
10.1117/12.2527183
10.1016/j.ejrad.2007.09.016
10.1002/mrm.24233
10.1016/j.neuroimage.2017.09.030
10.1117/1.JMI.3.2.023501
10.1038/s41592-023-02068-7
10.1002/mrm.29198
10.1002/mrm.26768
10.1109/ISBI.2007.357020
10.1016/j.neuroimage.2020.117054
10.1002/mrm.24320
10.1016/j.neuroimage.2015.07.074
10.1038/s41597-021-00904-z
10.1002/mrm.24229
10.1109/TMI.2019.2933982
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2012.11.065
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2017.01.008
10.1002/mrm.23097
10.1016/S0006-3495(94)80775-1
10.1002/mrm.20071
10.1002/mrm.10171
10.1002/mrm.20261
10.1002/mrm.21739
10.1002/mrm.25897
10.1002/mrm.1910350518
10.1002/mrm.28295
10.1002/mp.12974
10.1002/mrm.26382
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.20508
10.1002/mrm.20288
10.1371/journal.pone.0073021
10.1002/mrm.25044
10.1016/j.neuroimage.2016.08.016
10.1162/imag_a_00049
10.1006/nimg.1998.0395
10.1002/mrm.29422
10.1002/mrm.29478
10.1016/j.neuroimage.2022.119277
10.1016/j.neuroimage.2021.118641
10.1093/cercor/bhaa049
10.1016/j.neuroimage.2012.03.072
10.1089/brain.2014.0270
10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
10.1016/j.neuroimage.2004.07.051
10.1002/mrm.28087
ContentType Journal Article
Copyright 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.30365
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate DONG et al
EISSN 1522-2594
EndPage 1555
ExternalDocumentID oai:pubmedcentral.nih.gov:11782731
PMC11782731
39552568
10_1002_mrm_30365
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD023637
– fundername: NINDS NIH HHS
  grantid: U24 NS137077
– fundername: NIBIB NIH HHS
  grantid: R01EB019437
– fundername: NIA NIH HHS
  grantid: R21 AG085795
– fundername: NIBIB NIH HHS
  grantid: U01EB026996
– fundername: NINDS NIH HHS
  grantid: U24 NS129893
– fundername: NINDS NIH HHS
  grantid: U24NS129893
– fundername: NIDCR NIH HHS
  grantid: DP5OD031854
– fundername: NIA NIH HHS
  grantid: K99AG083056
– fundername: NINDS NIH HHS
  grantid: R01 NS118187
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c364t-545f92b1eb4690777c76b1fbca0a581a27fd813328879002a50007af265c83363
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 04:13:38 EDT 2025
Thu Aug 21 18:39:02 EDT 2025
Thu Oct 02 07:36:44 EDT 2025
Tue Oct 07 06:37:30 EDT 2025
Wed Jul 23 01:47:03 EDT 2025
Wed Oct 01 05:59:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords EPTI
super‐resolution
microstructure
diffusion imaging
mesoscale
high resolution
Language English
License 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-545f92b1eb4690777c76b1fbca0a581a27fd813328879002a50007af265c83363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3663-6559
0000-0001-8975-2775
0000-0001-9334-0968
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11782731
PMID 39552568
PQID 3161608393
PQPubID 1016391
PageCount 21
ParticipantIDs unpaywall_primary_10_1002_mrm_30365
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11782731
proquest_miscellaneous_3129682699
proquest_journals_3161608393
pubmed_primary_39552568
crossref_primary_10_1002_mrm_30365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References Wang F (e_1_2_7_96_1) 2023
e_1_2_7_3_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
Fadnavis S (e_1_2_7_133_1) 2022
e_1_2_7_49_1
Dong Z (e_1_2_7_94_1) 2022
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_135_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
Maffei C (e_1_2_7_122_1) 2022
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
Tamir JI (e_1_2_7_108_1) 2016
e_1_2_7_48_1
e_1_2_7_29_1
Lee H‐H (e_1_2_7_130_1) 2023; 2311
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_136_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Wang F (e_1_2_7_104_1) 2022
e_1_2_7_118_1
Dong Z (e_1_2_7_95_1) 2023
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_138_1
Henriques RN (e_1_2_7_131_1) 2023; 1
38352481 - bioRxiv. 2024 Apr 01:2024.01.26.577343. doi: 10.1101/2024.01.26.577343.
References_xml – ident: e_1_2_7_111_1
  doi: 10.1016/S1361-8415(01)00036-6
– ident: e_1_2_7_93_1
  doi: 10.1101/2024.01.24.577002
– ident: e_1_2_7_66_1
  doi: 10.1002/mrm.25391
– ident: e_1_2_7_125_1
  doi: 10.1002/mrm.27189
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neuroimage.2006.10.037
– ident: e_1_2_7_39_1
  doi: 10.1016/j.neuroimage.2017.07.035
– ident: e_1_2_7_32_1
  doi: 10.1002/jmri.25664
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2015.08.075
– ident: e_1_2_7_34_1
  doi: 10.1002/nbm.4056
– ident: e_1_2_7_53_1
  doi: 10.1109/TMI.2008.2007348
– ident: e_1_2_7_44_1
  doi: 10.1002/mrm.27196
– ident: e_1_2_7_112_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_7_80_1
  doi: 10.1016/j.neuroimage.2023.120168
– ident: e_1_2_7_58_1
  doi: 10.1016/j.neuroimage.2021.118673
– ident: e_1_2_7_119_1
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: e_1_2_7_62_1
  doi: 10.1002/mrm.1910380113
– start-page: 3488
  volume-title: Proceedings of the 30th Annual Meeting of ISMRM
  year: 2022
  ident: e_1_2_7_94_1
– ident: e_1_2_7_127_1
  doi: 10.1002/mrm.24427
– ident: e_1_2_7_38_1
– ident: e_1_2_7_103_1
  doi: 10.1016/0022-2364(91)90253-P
– ident: e_1_2_7_86_1
  doi: 10.1002/mrm.27673
– ident: e_1_2_7_46_1
  doi: 10.1016/j.mri.2011.07.019
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.25062
– ident: e_1_2_7_91_1
  doi: 10.1016/j.neuroimage.2021.117897
– ident: e_1_2_7_81_1
  doi: 10.1002/mrm.1910380509
– start-page: 484539
  year: 2022
  ident: e_1_2_7_133_1
  article-title: Patch2Self denoising of diffusion MRI with self‐supervision and matrix sketching
  publication-title: bioRxiv
– ident: e_1_2_7_92_1
  doi: 10.1002/mrm.29277
– ident: e_1_2_7_16_1
  doi: 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
– ident: e_1_2_7_15_1
  doi: 10.1016/j.neuroimage.2013.05.074
– ident: e_1_2_7_97_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
– ident: e_1_2_7_10_1
  doi: 10.1038/s41467-022-34510-3
– ident: e_1_2_7_64_1
  doi: 10.1002/mrm.22024
– volume-title: Proceedings of the 30th Annual Meeting of ISMRM
  year: 2022
  ident: e_1_2_7_122_1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuroimage.2016.01.018
– ident: e_1_2_7_82_1
  doi: 10.1002/mrm.10200
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neuroimage.2016.08.054
– ident: e_1_2_7_107_1
  doi: 10.1002/mrm.26102
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2015.03.061
– ident: e_1_2_7_129_1
  doi: 10.1002/mrm.26059
– ident: e_1_2_7_98_1
  doi: 10.1109/TCI.2016.2557069
– ident: e_1_2_7_121_1
  doi: 10.1016/j.neuroimage.2010.06.010
– ident: e_1_2_7_12_1
  doi: 10.1016/j.neuroimage.2021.118530
– ident: e_1_2_7_49_1
  doi: 10.1002/mrm.26027
– ident: e_1_2_7_54_1
  doi: 10.1002/mrm.24187
– ident: e_1_2_7_65_1
  doi: 10.1002/mrm.22122
– ident: e_1_2_7_109_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroimage.2013.05.078
– ident: e_1_2_7_52_1
  doi: 10.1016/S0730-725X(02)00511-8
– ident: e_1_2_7_73_1
  doi: 10.1002/mrm.25594
– ident: e_1_2_7_19_1
  doi: 10.1089/brain.2014.0305
– ident: e_1_2_7_40_1
  doi: 10.1016/j.neuroimage.2021.118099
– ident: e_1_2_7_57_1
  doi: 10.1002/mrm.25597
– ident: e_1_2_7_138_1
  doi: 10.1002/mrm.28232
– ident: e_1_2_7_48_1
  doi: 10.1002/mrm.25169
– ident: e_1_2_7_100_1
  doi: 10.1016/j.neuroimage.2020.116906
– ident: e_1_2_7_135_1
  doi: 10.1002/mrm.26861
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.1316944111
– ident: e_1_2_7_106_1
  doi: 10.1002/mrm.25168
– ident: e_1_2_7_55_1
  doi: 10.1002/cmr.a.21249
– ident: e_1_2_7_5_1
  doi: 10.1016/j.neuroimage.2015.06.016
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2015.01.001
– ident: e_1_2_7_85_1
  doi: 10.1002/mrm.27413
– ident: e_1_2_7_102_1
  doi: 10.1002/mrm.28963
– ident: e_1_2_7_88_1
  doi: 10.1016/j.neuroimage.2022.118963
– ident: e_1_2_7_21_1
  doi: 10.1016/j.neuroimage.2018.05.047
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neuroimage.2017.08.039
– ident: e_1_2_7_118_1
  doi: 10.1002/mrm.22603
– ident: e_1_2_7_29_1
  doi: 10.1038/s42003-020-1050-x
– ident: e_1_2_7_70_1
  doi: 10.1016/j.neuroimage.2013.01.038
– ident: e_1_2_7_124_1
  doi: 10.1002/mrm.24800
– start-page: 690
  volume-title: Proceedings of the 31st Annual Meeting of ISMRM
  year: 2023
  ident: e_1_2_7_96_1
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.26653
– ident: e_1_2_7_59_1
  doi: 10.1002/mrm.1910380414
– ident: e_1_2_7_51_1
– ident: e_1_2_7_69_1
  doi: 10.1002/mrm.20706
– ident: e_1_2_7_18_1
  doi: 10.1016/j.neuroimage.2010.05.043
– ident: e_1_2_7_134_1
  doi: 10.1016/j.neuroimage.2022.119033
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.24594
– ident: e_1_2_7_45_1
  doi: 10.1002/mrm.27899
– ident: e_1_2_7_33_1
  doi: 10.1002/nbm.3841
– volume: 2311
  year: 2023
  ident: e_1_2_7_130_1
  article-title: Universal sampling denoising (USD) for noise mapping and noise removal of non‐cartesian MRI
  publication-title: arXiv Preprint arXiv
– ident: e_1_2_7_2_1
  doi: 10.1016/j.neuroimage.2011.03.070
– ident: e_1_2_7_28_1
  doi: 10.1016/j.neuroimage.2020.116835
– ident: e_1_2_7_50_1
  doi: 10.1002/mrm.28231
– ident: e_1_2_7_72_1
  doi: 10.1371/journal.pone.0116378
– ident: e_1_2_7_114_1
  doi: 10.1002/nbm.783
– ident: e_1_2_7_79_1
  doi: 10.1117/12.2527183
– ident: e_1_2_7_63_1
  doi: 10.1016/j.ejrad.2007.09.016
– ident: e_1_2_7_56_1
  doi: 10.1002/mrm.24233
– ident: e_1_2_7_26_1
  doi: 10.1016/j.neuroimage.2017.09.030
– ident: e_1_2_7_37_1
  doi: 10.1117/1.JMI.3.2.023501
– ident: e_1_2_7_126_1
  doi: 10.1038/s41592-023-02068-7
– ident: e_1_2_7_89_1
  doi: 10.1002/mrm.29198
– ident: e_1_2_7_75_1
  doi: 10.1002/mrm.26768
– ident: e_1_2_7_105_1
  doi: 10.1109/ISBI.2007.357020
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neuroimage.2020.117054
– ident: e_1_2_7_71_1
  doi: 10.1002/mrm.24320
– ident: e_1_2_7_99_1
  doi: 10.1016/j.neuroimage.2015.07.074
– ident: e_1_2_7_9_1
  doi: 10.1038/s41597-021-00904-z
– ident: e_1_2_7_136_1
  doi: 10.1002/mrm.24229
– ident: e_1_2_7_101_1
  doi: 10.1109/TMI.2019.2933982
– ident: e_1_2_7_110_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_7_3_1
  doi: 10.1016/j.neuroimage.2012.11.065
– ident: e_1_2_7_77_1
  doi: 10.1016/S1053-8119(03)00336-7
– ident: e_1_2_7_84_1
  doi: 10.1016/j.neuroimage.2017.01.008
– ident: e_1_2_7_42_1
  doi: 10.1002/mrm.23097
– ident: e_1_2_7_113_1
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_7_117_1
  doi: 10.1002/mrm.20071
– ident: e_1_2_7_61_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_7_83_1
  doi: 10.1002/mrm.20261
– ident: e_1_2_7_123_1
  doi: 10.1002/mrm.21739
– ident: e_1_2_7_43_1
  doi: 10.1002/mrm.25897
– ident: e_1_2_7_67_1
  doi: 10.1002/mrm.1910350518
– ident: e_1_2_7_87_1
  doi: 10.1002/mrm.28295
– ident: e_1_2_7_137_1
  doi: 10.1002/mp.12974
– ident: e_1_2_7_74_1
  doi: 10.1002/mrm.26382
– ident: e_1_2_7_60_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume-title: Generalized Magnetic Resonance Image Reconstruction Using the Berkeley Advanced Reconstruction Toolbox
  year: 2016
  ident: e_1_2_7_108_1
– ident: e_1_2_7_116_1
  doi: 10.1002/mrm.20508
– ident: e_1_2_7_68_1
  doi: 10.1002/mrm.20288
– ident: e_1_2_7_115_1
  doi: 10.1371/journal.pone.0073021
– ident: e_1_2_7_47_1
  doi: 10.1002/mrm.25044
– ident: e_1_2_7_128_1
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 1
  start-page: 1
  year: 2023
  ident: e_1_2_7_131_1
  article-title: Efficient PCA denoising of spatially correlated redundant MRI data
  publication-title: Imaging Neuroscience
  doi: 10.1162/imag_a_00049
– ident: e_1_2_7_120_1
  doi: 10.1006/nimg.1998.0395
– ident: e_1_2_7_76_1
  doi: 10.1002/mrm.29422
– ident: e_1_2_7_132_1
  doi: 10.1002/mrm.29478
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2022.119277
– ident: e_1_2_7_90_1
  doi: 10.1016/j.neuroimage.2021.118641
– ident: e_1_2_7_11_1
  doi: 10.1093/cercor/bhaa049
– start-page: 3330
  volume-title: Proceedings of the 30th Annual Meeting of ISMRM
  year: 2022
  ident: e_1_2_7_104_1
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_7_4_1
  doi: 10.1089/brain.2014.0270
– start-page: 541
  volume-title: Proceedings of the 31st Annual Meeting of ISMRM
  year: 2023
  ident: e_1_2_7_95_1
– ident: e_1_2_7_41_1
  doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
– ident: e_1_2_7_78_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.28087
– reference: 38352481 - bioRxiv. 2024 Apr 01:2024.01.26.577343. doi: 10.1101/2024.01.26.577343.
SSID ssj0009974
Score 2.5001123
Snippet To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. A...
PurposeTo overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion...
To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1535
SubjectTerms Algorithms
Blurring
Brain - diagnostic imaging
Coding
Diffusion Magnetic Resonance Imaging - methods
Distortion
Echo-Planar Imaging - methods
Humans
Image acquisition
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Imaging Methodology
Magnetic resonance imaging
Medical imaging
Mesoscale phenomena
Microstructure
Motion
Neuroimaging
Phantoms, Imaging
Phase variations
Robustness
Rotation
Signal-To-Noise Ratio
Spatial discrimination
Spatial resolution
Time dependence
Title Romer‐ EPTI : Rotating‐view motion‐robust super‐resolution EPTI for SNR ‐efficient distortion‐free in‐vivo mesoscale diffusion MRI and microstructure imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/39552568
https://www.proquest.com/docview/3161608393
https://www.proquest.com/docview/3129682699
https://pubmed.ncbi.nlm.nih.gov/PMC11782731
https://www.ncbi.nlm.nih.gov/pmc/articles/11782731
UnpaywallVersion submittedVersion
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLamTsBu-BkwAmMyP7dpEztOYu4mtGlDajWFVRpXke04UNEkVdKA4IpH4DF4Lp6EYyepKBMSXCY-TmL5O_bn-Pg7CL1kjORCBZ4b--BNAQ2Yyz2h3IDxPBJKEMHN2eHpLDybB2-u2NUOIsNZGBu0r-RiXC6Lcbn4YGMrV4WaDHFiE9-HSS0yR6d3Qwb8e4R257OL43ed3qYZVGz2Q5iXiAvcPhjkhDwyKepibIZstj0JXWOW1wMkb7XlSnz5LJbL32af0zvdicDGihaaoJOP43Ytx-rrH5KO_9ewu-h2T0bxcVd2D-3och_dnPbb7fvoho0PVc199COpCl3__Pb95OLy_BVOKrODX76HG2ZrAXe5gOCqrmTbrHHTrqw1rOV7aGNTEQNDxm9nCZRoK10BDceZFSrp6-e11nhR2ud-qnAB9RtAkcYmkUtr_uzhaXKORZnhwoQSdvK3bQ2VCptv6QGan55cvj5z-yQPrqJhsHaBweWcSF9Lu1CPIhWF0s-lEp5gsS9IlGeAI0pgNOTQiTaDQyRyEjIVUxrSh2hUVqV-hDAlEaE6y1VOvEBHlHuS5YoqkUkz0IQOej70errqtDzSTrWZpACN1ELDQYcDHtLenZuUAi8Ogaxy6qBnm2JwRLO7IkpdtcaG8BAWa5w76KCDz-YtlINPsDB2ULwFrI2BEfneLgGIWLHvARUOerHB4N-__vE_WT1Be8SkMbYBSIdoBF2lnwK3WssjWFUk5Kh3qV-QgC7c
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWqqYBueJRHAwWZxzaZxI6TmF2FWrVIM6qGjlRWkePYZcQkGSUTEKz4BD6D7-JLuHaSEUOFBMvE10ksn2sfx9fnIvSKMaKFDH03CcCbQhoyl_tCuiHjOhZSEMHN2eHJNDqdh28v2eUOIsNZGBu0L7OFVy4Lr1x8sLGVq0KOhzixcRDApBabo9O7EQP-PUK78-n50ftOb9MMKjb7IcxLxAVuHw5yQj4ZF3XhmSGbbU9C15jl9QDJW225El8-i-Xyt9nn5E53IrCxooUm6OSj164zT379Q9Lx_xp2F93uySg-6sruoR1V7qObk367fR_dsPGhsrmPfsyqQtU_v30_Pr84e41nldnBL6_ghtlawF0uILiqq6xt1rhpV9Ya1vI9tLGpiIEh43fTGZQoK10BDce5FSrp6-taKbwo7XM_VbiA-g2gSGGTyKU1f_bwZHaGRZnjwoQSdvK3bQ2VCptv6QGanxxfvDl1-yQPrqRRuHaBwWlOskBldqEexzKOskBnUviCJYEgsc4BR5TAaMihE20Gh1hoEjGZUBrRh2hUVqU6QJiSmFCVa6mJH6qYcj9jWlIp8swMNJGDXgy9nq46LY-0U20mKUAjtdBw0OGAh7R35yalwIsjIKucOuj5phgc0eyuiFJVrbEhPILFGucOetTBZ_MWysEnWJQ4KNkC1sbAiHxvlwBErNj3gAoHvdxg8O9f__ifrJ6gPWLSGNsApEM0gq5ST4FbrbNnvTP9An01LfM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Romer-EPTI%3A+Rotating-view+motion-robust+super-resolution+EPTI+for+SNR-efficient+distortion-free+in-vivo+mesoscale+diffusion+MRI+and+microstructure+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Dong%2C+Zijing&rft.au=Reese%2C+Timothy+G&rft.au=Lee%2C+Hong-Hsi&rft.au=Huang%2C+Susie+Y&rft.date=2025-04-01&rft.eissn=1522-2594&rft.volume=93&rft.issue=4&rft.spage=1535&rft_id=info:doi/10.1002%2Fmrm.30365&rft_id=info%3Apmid%2F39552568&rft.externalDocID=39552568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon