Vision-Based Structural FE Model Updating Using Genetic Algorithm

Structural members can be damaged from earthquakes or deterioration. The finite element (FE) model of a structure should be updated to reflect the damage conditions. If the stiffness reduction is ignored, the analysis results will be unreliable. Conventional FE model updating techniques measure the...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 4; p. 1622
Main Authors Park, Gun, Hong, Ki-Nam, Yoon, Hyungchul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2021
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app11041622

Cover

More Information
Summary:Structural members can be damaged from earthquakes or deterioration. The finite element (FE) model of a structure should be updated to reflect the damage conditions. If the stiffness reduction is ignored, the analysis results will be unreliable. Conventional FE model updating techniques measure the structure response with accelerometers to update the FE model. However, accelerometers can measure the response only where the sensor is installed. This paper introduces a new computer-vision based method for structural FE model updating using genetic algorithm. The system measures the displacement of the structure using seven different object tracking algorithms, and optimizes the structural parameters using genetic algorithm. To validate the performance, a lab-scale test with a three-story building was conducted. The displacement of each story of the building was measured before and after reducing the stiffness of one column. Genetic algorithm automatically optimized the non-damaged state of the FE model to the damaged state. The proposed method successfully updated the FE model to the damaged state. The proposed method is expected to reduce the time and cost of FE model updating.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app11041622