Nonparametric IPSS: fast, flexible feature selection with false discovery control

Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives. We introduce a...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 5
Main Authors Melikechi, Omar, Dunson, David B, Miller, Jeffrey W
Format Journal Article
LanguageEnglish
Published England Oxford University Press 13.05.2025
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btaf299

Cover

Abstract Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives. We introduce a general feature selection method with finite-sample false discovery control based on applying integrated path stability selection (IPSS) to arbitrary feature importance scores. The method is nonparametric whenever the importance scores are nonparametric, and it estimates q-values, which are better suited to high-dimensional data than P-values. We focus on two special cases using importance scores from gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive nonlinear simulations with RNA sequencing data show that both methods accurately control the false discovery rate and detect more true positives than existing methods. Both methods are also efficient, running in under 20 s when there are 500 samples and 5000 features. We apply IPSSGB and IPSSRF to detect microRNAs and genes related to cancer, finding that they yield better predictions with fewer features than existing approaches. All code and data used in this work are available on GitHub (https://github.com/omelikechi/ipss_bioinformatics) and permanently archived on Zenodo (https://doi.org/10.5281/zenodo.15335289). A Python package for implementing IPSS is available on GitHub (https://github.com/omelikechi/ipss) and PyPI (https://pypi.org/project/ipss/). An R implementation of IPSS is also available on GitHub (https://github.com/omelikechi/ipssR).
AbstractList Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives. We introduce a general feature selection method with finite-sample false discovery control based on applying integrated path stability selection (IPSS) to arbitrary feature importance scores. The method is nonparametric whenever the importance scores are nonparametric, and it estimates q-values, which are better suited to high-dimensional data than P-values. We focus on two special cases using importance scores from gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive nonlinear simulations with RNA sequencing data show that both methods accurately control the false discovery rate and detect more true positives than existing methods. Both methods are also efficient, running in under 20 s when there are 500 samples and 5000 features. We apply IPSSGB and IPSSRF to detect microRNAs and genes related to cancer, finding that they yield better predictions with fewer features than existing approaches. All code and data used in this work are available on GitHub (https://github.com/omelikechi/ipss_bioinformatics) and permanently archived on Zenodo (https://doi.org/10.5281/zenodo.15335289). A Python package for implementing IPSS is available on GitHub (https://github.com/omelikechi/ipss) and PyPI (https://pypi.org/project/ipss/). An R implementation of IPSS is also available on GitHub (https://github.com/omelikechi/ipssR).
Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives.MOTIVATIONFeature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives.We introduce a general feature selection method with finite-sample false discovery control based on applying integrated path stability selection (IPSS) to arbitrary feature importance scores. The method is nonparametric whenever the importance scores are nonparametric, and it estimates q-values, which are better suited to high-dimensional data than p-values. We focus on two special cases using importance scores from gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive nonlinear simulations with RNA sequencing data show that both methods accurately control the false discovery rate and detect more true positives than existing methods. Both methods are also efficient, running in under 20 seconds when there are 500 samples and 5000 features. We apply IPSSGB and IPSSRF to detect microRNAs and genes related to cancer, finding that they yield better predictions with fewer features than existing approaches.RESULTSWe introduce a general feature selection method with finite-sample false discovery control based on applying integrated path stability selection (IPSS) to arbitrary feature importance scores. The method is nonparametric whenever the importance scores are nonparametric, and it estimates q-values, which are better suited to high-dimensional data than p-values. We focus on two special cases using importance scores from gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive nonlinear simulations with RNA sequencing data show that both methods accurately control the false discovery rate and detect more true positives than existing methods. Both methods are also efficient, running in under 20 seconds when there are 500 samples and 5000 features. We apply IPSSGB and IPSSRF to detect microRNAs and genes related to cancer, finding that they yield better predictions with fewer features than existing approaches.All code and data used in this work are available on GitHub (https://github.com/omelikechi/ipss_bioinformatics) and permanently archived on Zenodo (https://doi.org/10.5281/zenodo.15335289). A Python package for implementing IPSS is available on GitHub (https://github.com/omelikechi/ipss) and PyPI (https://pypi.org/project/ipss/). An R implementation of IPSS is also available on GitHub (https://github.com/omelikechi/ipssR).AVAILABILITY AND IMPLEMENTATIONAll code and data used in this work are available on GitHub (https://github.com/omelikechi/ipss_bioinformatics) and permanently archived on Zenodo (https://doi.org/10.5281/zenodo.15335289). A Python package for implementing IPSS is available on GitHub (https://github.com/omelikechi/ipss) and PyPI (https://pypi.org/project/ipss/). An R implementation of IPSS is also available on GitHub (https://github.com/omelikechi/ipssR).Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Melikechi, Omar
Dunson, David B
Miller, Jeffrey W
Author_xml – sequence: 1
  givenname: Omar
  orcidid: 0000-0003-1052-7300
  surname: Melikechi
  fullname: Melikechi, Omar
– sequence: 2
  givenname: David B
  surname: Dunson
  fullname: Dunson, David B
– sequence: 3
  givenname: Jeffrey W
  surname: Miller
  fullname: Miller, Jeffrey W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40358526$$D View this record in MEDLINE/PubMed
BookMark eNqNUctOHDEQtBCIZ34BzZEDG-zxY8ZcEEIkQUIBBDlbtqcNRp7xYnuA_fsM2U0CN07dUldVd1XvoPUhDoDQPsFfCZb0yPjoBxdTr4u3-cgU7Wop19A2oaKZsZaQ9Xf9FtrJ-RFjzDEXm2iLYcpbXottdPMzDnOddA8leVtdXN_eHldO53JYuQCv3gSoHOgyJqgyBLDFx6F68eVhQoUMVeezjc-QFpWNQ0kx7KGNP5Mvq7qLfn07vzv7Mbu8-n5xdno5s1SwMqO2IW3j2s4JIyk3XQ1GY6plZ7kQ3LW2wbStoTWM1YwJJttOMCu0bLCRrqG7qFnqjpOBxYsOQc2T73VaKILVW0jqY0hqFdLEPFky56PpobMw3a3_s6P26uNk8A_qPj4rUhMiCWWTwsFKIcWnEXJR_RQDhKAHiGNWtMaUYsEln6D775f92_L3BRNALAE2xZwTuM_a-A20y6Sv
Cites_doi 10.1016/j.inffus.2021.11.011
10.1073/pnas.1530509100
10.1093/nar/gkx1090
10.1007/s11749-016-0481-7
10.1186/s12859-015-0575-3
10.1158/0008-5472.CAN-11-0640
10.1111/j.1467-9868.2010.00740.x
10.1214/aos/1013203451
10.1007/978-0-387-84858-7
10.1016/j.eswa.2019.05.028
10.1111/rssb.12265
10.1007/s10115-023-02010-5
10.1111/j.1467-9868.2011.01034.x
10.1023/A:1010933404324
10.1093/bib/bbx124
10.1016/j.compbiolchem.2022.107747
10.1214/aos/1074290335
10.1038/ng.2764
10.14569/IJACSA.2022.0130454
10.1093/bioinformatics/btaa770
10.1016/j.patrec.2010.03.014
10.1007/s11060-015-2050-4
10.1007/s11634-016-0276-4
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press.
The Author(s) 2025. Published by Oxford University Press. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press.
– notice: The Author(s) 2025. Published by Oxford University Press. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btaf299
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 10.1093/bioinformatics/btaf299
PMC12119134
40358526
10_1093_bioinformatics_btaf299
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES035625
– fundername: NIH HHS
  grantid: R01ES035625
– fundername: ;
  grantid: R01ES035625
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
.-4
.GJ
1TH
AAJQQ
AAUQX
ABEFU
ABNGD
ABPQP
ACUKT
ACUXJ
ADGKP
ADRDM
ADTOC
ADVEK
AFFNX
AFGWE
AGQPQ
AI.
AJEEA
AQDSO
ATTQO
AZFZN
C1A
CAG
COF
DIK
EJD
ELUNK
HVGLF
NTWIH
NU-
NVLIB
O0~
O~Y
PB-
RNI
RZF
RZO
UNPAY
VH1
W8F
ZGI
ID FETCH-LOGICAL-c364t-3c7187f8df6b935bd2eba03a9dc5665f8c70382e8b442446498d64c6a970b9f73
IEDL.DBID UNPAY
ISSN 1367-4811
1367-4803
IngestDate Sun Oct 26 04:05:08 EDT 2025
Thu Aug 21 18:37:37 EDT 2025
Thu May 15 19:37:46 EDT 2025
Sun Jun 01 01:35:36 EDT 2025
Wed Oct 01 05:57:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-3c7187f8df6b935bd2eba03a9dc5665f8c70382e8b442446498d64c6a970b9f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1052-7300
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf299/63166536/btaf299.pdf
PMID 40358526
PQID 3203306595
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btaf299
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12119134
proquest_miscellaneous_3203306595
pubmed_primary_40358526
crossref_primary_10_1093_bioinformatics_btaf299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250513
PublicationDateYYYYMMDD 2025-05-13
PublicationDate_xml – month: 5
  year: 2025
  text: 20250513
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Storey (2025052819562753600_btaf299-B28) 2003; 31
Breiman (2025052819562753600_btaf299-B2) 2001; 45
Shah (2025052819562753600_btaf299-B25) 2013; 75
Biau (2025052819562753600_btaf299-B1) 2016; 25
Janitza (2025052819562753600_btaf299-B13) 2018; 12
Vasaikar (2025052819562753600_btaf299-B31) 2018; 46
Chen (2025052819562753600_btaf299-B4) 2016
Kursa (2025052819562753600_btaf299-B15) 2010; 101
Grinsztajn (2025052819562753600_btaf299-B10) 2022; 35
Theng (2025052819562753600_btaf299-B30) 2024; 66
Degenhardt (2025052819562753600_btaf299-B6) 2019; 20
Hastie (2025052819562753600_btaf299-B11) 2009
Lundberg (2025052819562753600_btaf299-B19) 2017; 30
Storey (2025052819562753600_btaf299-B29) 2003; 100
Music (2025052819562753600_btaf299-B22) 2016; 127
Hofner (2025052819562753600_btaf299-B12) 2015; 16
Raychaudhuri (2025052819562753600_btaf299-B24) 2011; 71
Li (2025052819562753600_btaf299-B16) 2022; 100
Candes (2025052819562753600_btaf299-B3) 2018; 80
Speiser (2025052819562753600_btaf299-B27) 2019; 134
Meinshausen (2025052819562753600_btaf299-B20) 2010; 72
Coleman (2025052819562753600_btaf299-B5) 2022; 23
Shwartz-Ziv (2025052819562753600_btaf299-B26) 2022; 81
Louppe (2025052819562753600_btaf299-B17) 2013; 26
Lu (2025052819562753600_btaf299-B18) 2018; 31
Friedman (2025052819562753600_btaf299-B8) 2001; 29
Nogueira (2025052819562753600_btaf299-B23) 2018; 18
Jiang (2025052819562753600_btaf299-B14) 2021; 37
Genuer (2025052819562753600_btaf299-B9) 2010; 31
Weinstein (2025052819562753600_btaf299-B32) 2013; 45
Melikechi (2025052819562753600_btaf299-B21) 2024
Fayaz (2025052819562753600_btaf299-B7) 2022; 13
References_xml – volume: 81
  start-page: 84
  year: 2022
  ident: 2025052819562753600_btaf299-B26
  article-title: Tabular data: deep learning is not all you need
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2021.11.011
– volume: 100
  start-page: 9440
  year: 2003
  ident: 2025052819562753600_btaf299-B29
  article-title: Statistical significance for genomewide studies
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1530509100
– volume: 46
  start-page: D956
  year: 2018
  ident: 2025052819562753600_btaf299-B31
  article-title: Linkedomics: analyzing multi-omics data within and across 32 cancer types
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1090
– volume: 25
  start-page: 197
  year: 2016
  ident: 2025052819562753600_btaf299-B1
  article-title: A random forest guided tour
  publication-title: Test
  doi: 10.1007/s11749-016-0481-7
– volume: 16
  start-page: 144
  year: 2015
  ident: 2025052819562753600_btaf299-B12
  article-title: Controlling false discoveries in high-dimensional situations: boosting with stability selection
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-015-0575-3
– volume: 71
  start-page: 4329
  year: 2011
  ident: 2025052819562753600_btaf299-B24
  article-title: FoxM1: a master regulator of tumor metastasis
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-0640
– volume: 72
  start-page: 417
  year: 2010
  ident: 2025052819562753600_btaf299-B20
  article-title: Stability selection
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 29
  start-page: 1189
  year: 2001
  ident: 2025052819562753600_btaf299-B8
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: 2025052819562753600_btaf299-B11
  doi: 10.1007/978-0-387-84858-7
– volume: 134
  start-page: 93
  year: 2019
  ident: 2025052819562753600_btaf299-B27
  article-title: A comparison of random forest variable selection methods for classification prediction modeling
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.05.028
– volume: 80
  start-page: 551
  year: 2018
  ident: 2025052819562753600_btaf299-B3
  article-title: Panning for gold: ‘model-x’ knockoffs for high dimensional controlled variable selection
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/rssb.12265
– volume: 66
  start-page: 1575
  year: 2024
  ident: 2025052819562753600_btaf299-B30
  article-title: Feature selection techniques for machine learning: a survey of more than two decades of research
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-023-02010-5
– volume: 31
  start-page: 1
  year: 2018
  ident: 2025052819562753600_btaf299-B18
  article-title: DeepPINK: reproducible feature selection in deep neural networks
  publication-title: Adv Neural Inform Process Syst
– volume: 75
  start-page: 55
  year: 2013
  ident: 2025052819562753600_btaf299-B25
  article-title: Variable selection with error control: another look at stability selection
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2011.01034.x
– volume: 23
  start-page: 1
  year: 2022
  ident: 2025052819562753600_btaf299-B5
  article-title: Scalable and efficient hypothesis testing with random forests
  publication-title: J Mach Learn Res
– volume: 101
  start-page: 271
  year: 2010
  ident: 2025052819562753600_btaf299-B15
  article-title: Boruta—a system for feature selection
  publication-title: Fund Inform
– volume: 45
  start-page: 5
  year: 2001
  ident: 2025052819562753600_btaf299-B2
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 20
  start-page: 492
  year: 2019
  ident: 2025052819562753600_btaf299-B6
  article-title: Evaluation of variable selection methods for random forests and omics data sets
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx124
– volume: 26
  start-page: 1
  year: 2013
  ident: 2025052819562753600_btaf299-B17
  article-title: Understanding variable importances in forests of randomized trees
  publication-title: Adv Neural Inform Process Syst
– volume: 18
  start-page: 1
  year: 2018
  ident: 2025052819562753600_btaf299-B23
  article-title: On the stability of feature selection algorithms
  publication-title: J Mach Learn Res
– volume: 100
  start-page: 107747
  year: 2022
  ident: 2025052819562753600_btaf299-B16
  article-title: Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2022.107747
– volume: 35
  start-page: 507
  year: 2022
  ident: 2025052819562753600_btaf299-B10
  article-title: Why do tree-based models still outperform deep learning on typical tabular data?
  publication-title: Adv Neural Inform Process Syst
– volume: 31
  start-page: 2013
  year: 2003
  ident: 2025052819562753600_btaf299-B28
  article-title: The positive false discovery rate: a bayesian interpretation and the q-value
  publication-title: Ann Stat
  doi: 10.1214/aos/1074290335
– volume: 45
  start-page: 1113
  year: 2013
  ident: 2025052819562753600_btaf299-B32
  article-title: The cancer genome atlas pan-cancer analysis project
  publication-title: Nature Genetics
  doi: 10.1038/ng.2764
– volume: 13
  start-page: 466
  year: 2022
  ident: 2025052819562753600_btaf299-B7
  article-title: Is deep learning on tabular data enough? An assessment
  publication-title: IJACSA
  doi: 10.14569/IJACSA.2022.0130454
– volume: 37
  start-page: 976
  year: 2021
  ident: 2025052819562753600_btaf299-B14
  article-title: Knockoff boosted tree for model-free variable selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa770
– volume: 31
  start-page: 2225
  year: 2010
  ident: 2025052819562753600_btaf299-B9
  article-title: Variable selection using random forests
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2010.03.014
– volume: 127
  start-page: 381
  year: 2016
  ident: 2025052819562753600_btaf299-B22
  article-title: Expression and prognostic value of the WEE1 kinase in gliomas
  publication-title: J Neurooncol
  doi: 10.1007/s11060-015-2050-4
– volume: 12
  start-page: 885
  year: 2018
  ident: 2025052819562753600_btaf299-B13
  article-title: A computationally fast variable importance test for random forests for high-dimensional data
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-016-0276-4
– start-page: 785
  year: 2016
  ident: 2025052819562753600_btaf299-B4
– volume: 30
  start-page: 1
  year: 2017
  ident: 2025052819562753600_btaf299-B19
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inform Process Syst
– year: 2024
  ident: 2025052819562753600_btaf299-B21
SSID ssj0005056
Score 2.4874797
Snippet Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Algorithms
Computational Biology - methods
Humans
Machine Learning
MicroRNAs - genetics
Neoplasms - genetics
Original Paper
Sequence Analysis, RNA - methods
Software
Title Nonparametric IPSS: fast, flexible feature selection with false discovery control
URI https://www.ncbi.nlm.nih.gov/pubmed/40358526
https://www.proquest.com/docview/3203306595
https://pubmed.ncbi.nlm.nih.gov/PMC12119134
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf299/63166536/btaf299.pdf
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3db9MwED-NTgheGN-Ej8lIPOI2jT_i8DZNTAOJamhUGk-R7dhioqQVTYW6v2N_MOfEKXQTErzwEkWJfYrOZ_sX393vAF7J1KlCVZ5K5y3lUmmqPXdU4FVqVynbkvp8mMjjKX9_Js52YNnnwugYFT7sUxrM-TxSiAba4lH0jPdhY3RR-V8kBAW72tw02uOCO5JsLKVgsn8wxH43YFcKBPAD2J1OTg4-dxlaOeWqracc78fjPq_4j9K3t7RrOPV6uOWtVb3Q6x96NvttLzvag8teC10Iy9fhqjFDe3GFIPI_q-ku3InYmBx00u7Bjqvvw82uWub6AXyczOvAVP4tFAGz5N3J6ekb4vWyeU18oPU0M0e8a4lKybIt74M2R8JBM7ZCBEBCBnKIWF2TGKD_EKZHbz8dHtNYEYJaJnlDmcWtNPdoW9IUTJgqc0anTBeVRVgqvLK4gKnMKcNDAp_kaIaSW6mLPDWFz9kjGNTz2j0BIoqQtaxUZXPPK5Fq6zxHfGtQqK88S2DUD2q56Ig_ys5hz8pt7ZVRWQm87Me-xDkaHC-6dvPVsmRZylhwYIsEHne2sJHJU4Z_bJlMQG1ZyaZB4P_eflOff2l5wDt2PsYTSDcG9Zff-vTfuzyD21mofRyYa9lzGDTfV-4FArLG7LcHGftxGv0E-LZA-Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3db9MwED-NTgheNr4JA2QkHnGbxh9xeJsQ00CiGhqVxlNkO7Y2UdKKpkLd38EfzDlxCt2EBC-8RFFin6Lz2T7n7vc7gJcydapQlafSeUu5VJpqzx0VeJXaVcq2pD4fJvJ4yt-fibMdWPZYGB2zwoc9pMFczCOFaKAtHsXIeJ82RheV_0VCULCrzU2jPS64I8nGUgom-wdD7HcDdqVAB34Au9PJyeHnDqGVU67aesrxfjzuccV_lL69pV3zU6-nW95a1Qu9_q5ns9_2sqN9-NFroUth-TJcNWZoL68QRP5nNd2Bvegbk8NO2l3YcfU9uNlVy1zfh4-TeR2Yyr-GImCWvDs5PX1NvF42r4gPtJ5m5oh3LVEpWbblfdDmSPjRjK3QAyABgRwyVtckJug_gOnR209vjmmsCEEtk7yhzOJWmnu0LWkKJkyVOaNTpovKolsqvLK4gKnMKcMDgE9yNEPJrdRFnprC5-whDOp57R4DEUVALStV2dzzSqTaOs_RvzUo1FeeJTDqB7VcdMQfZRewZ-W29sqorARe9GNf4hwNgRddu_lqWbIsZSwEsEUCjzpb2MjkKcMTWyYTUFtWsmkQ-L-339QX5y0PeMfOx3gC6cag_vJbn_x7lwO4nYXax4G5lj2FQfNt5Z6hQ9aY53EC_QR4nEAE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+IPSS%3A+fast%2C+flexible+feature+selection+with+false+discovery+control&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Melikechi%2C+Omar&rft.au=Dunson%2C+David+B&rft.au=Miller%2C+Jeffrey+W&rft.date=2025-05-13&rft.eissn=1367-4811&rft.volume=41&rft.issue=5&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf299&rft_id=info%3Apmid%2F40358526&rft.externalDocID=40358526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon