Nonparametric IPSS: fast, flexible feature selection with false discovery control
Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives. We introduce a...
Saved in:
| Published in | Bioinformatics (Oxford, England) Vol. 41; no. 5 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
13.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4811 1367-4803 1367-4811 |
| DOI | 10.1093/bioinformatics/btaf299 |
Cover
| Abstract | Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives.
We introduce a general feature selection method with finite-sample false discovery control based on applying integrated path stability selection (IPSS) to arbitrary feature importance scores. The method is nonparametric whenever the importance scores are nonparametric, and it estimates q-values, which are better suited to high-dimensional data than P-values. We focus on two special cases using importance scores from gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive nonlinear simulations with RNA sequencing data show that both methods accurately control the false discovery rate and detect more true positives than existing methods. Both methods are also efficient, running in under 20 s when there are 500 samples and 5000 features. We apply IPSSGB and IPSSRF to detect microRNAs and genes related to cancer, finding that they yield better predictions with fewer features than existing approaches.
All code and data used in this work are available on GitHub (https://github.com/omelikechi/ipss_bioinformatics) and permanently archived on Zenodo (https://doi.org/10.5281/zenodo.15335289). A Python package for implementing IPSS is available on GitHub (https://github.com/omelikechi/ipss) and PyPI (https://pypi.org/project/ipss/). An R implementation of IPSS is also available on GitHub (https://github.com/omelikechi/ipssR). |
|---|---|
| AbstractList | Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives.
We introduce a general feature selection method with finite-sample false discovery control based on applying integrated path stability selection (IPSS) to arbitrary feature importance scores. The method is nonparametric whenever the importance scores are nonparametric, and it estimates q-values, which are better suited to high-dimensional data than P-values. We focus on two special cases using importance scores from gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive nonlinear simulations with RNA sequencing data show that both methods accurately control the false discovery rate and detect more true positives than existing methods. Both methods are also efficient, running in under 20 s when there are 500 samples and 5000 features. We apply IPSSGB and IPSSRF to detect microRNAs and genes related to cancer, finding that they yield better predictions with fewer features than existing approaches.
All code and data used in this work are available on GitHub (https://github.com/omelikechi/ipss_bioinformatics) and permanently archived on Zenodo (https://doi.org/10.5281/zenodo.15335289). A Python package for implementing IPSS is available on GitHub (https://github.com/omelikechi/ipss) and PyPI (https://pypi.org/project/ipss/). An R implementation of IPSS is also available on GitHub (https://github.com/omelikechi/ipssR). Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives.MOTIVATIONFeature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such as linear or generalized linear models, (ii) lack theoretical false discovery control, or (iii) identify few true positives.We introduce a general feature selection method with finite-sample false discovery control based on applying integrated path stability selection (IPSS) to arbitrary feature importance scores. The method is nonparametric whenever the importance scores are nonparametric, and it estimates q-values, which are better suited to high-dimensional data than p-values. We focus on two special cases using importance scores from gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive nonlinear simulations with RNA sequencing data show that both methods accurately control the false discovery rate and detect more true positives than existing methods. Both methods are also efficient, running in under 20 seconds when there are 500 samples and 5000 features. We apply IPSSGB and IPSSRF to detect microRNAs and genes related to cancer, finding that they yield better predictions with fewer features than existing approaches.RESULTSWe introduce a general feature selection method with finite-sample false discovery control based on applying integrated path stability selection (IPSS) to arbitrary feature importance scores. The method is nonparametric whenever the importance scores are nonparametric, and it estimates q-values, which are better suited to high-dimensional data than p-values. We focus on two special cases using importance scores from gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive nonlinear simulations with RNA sequencing data show that both methods accurately control the false discovery rate and detect more true positives than existing methods. Both methods are also efficient, running in under 20 seconds when there are 500 samples and 5000 features. We apply IPSSGB and IPSSRF to detect microRNAs and genes related to cancer, finding that they yield better predictions with fewer features than existing approaches.All code and data used in this work are available on GitHub (https://github.com/omelikechi/ipss_bioinformatics) and permanently archived on Zenodo (https://doi.org/10.5281/zenodo.15335289). A Python package for implementing IPSS is available on GitHub (https://github.com/omelikechi/ipss) and PyPI (https://pypi.org/project/ipss/). An R implementation of IPSS is also available on GitHub (https://github.com/omelikechi/ipssR).AVAILABILITY AND IMPLEMENTATIONAll code and data used in this work are available on GitHub (https://github.com/omelikechi/ipss_bioinformatics) and permanently archived on Zenodo (https://doi.org/10.5281/zenodo.15335289). A Python package for implementing IPSS is available on GitHub (https://github.com/omelikechi/ipss) and PyPI (https://pypi.org/project/ipss/). An R implementation of IPSS is also available on GitHub (https://github.com/omelikechi/ipssR).Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. |
| Author | Melikechi, Omar Dunson, David B Miller, Jeffrey W |
| Author_xml | – sequence: 1 givenname: Omar orcidid: 0000-0003-1052-7300 surname: Melikechi fullname: Melikechi, Omar – sequence: 2 givenname: David B surname: Dunson fullname: Dunson, David B – sequence: 3 givenname: Jeffrey W surname: Miller fullname: Miller, Jeffrey W |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40358526$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUctOHDEQtBCIZ34BzZEDG-zxY8ZcEEIkQUIBBDlbtqcNRp7xYnuA_fsM2U0CN07dUldVd1XvoPUhDoDQPsFfCZb0yPjoBxdTr4u3-cgU7Wop19A2oaKZsZaQ9Xf9FtrJ-RFjzDEXm2iLYcpbXottdPMzDnOddA8leVtdXN_eHldO53JYuQCv3gSoHOgyJqgyBLDFx6F68eVhQoUMVeezjc-QFpWNQ0kx7KGNP5Mvq7qLfn07vzv7Mbu8-n5xdno5s1SwMqO2IW3j2s4JIyk3XQ1GY6plZ7kQ3LW2wbStoTWM1YwJJttOMCu0bLCRrqG7qFnqjpOBxYsOQc2T73VaKILVW0jqY0hqFdLEPFky56PpobMw3a3_s6P26uNk8A_qPj4rUhMiCWWTwsFKIcWnEXJR_RQDhKAHiGNWtMaUYsEln6D775f92_L3BRNALAE2xZwTuM_a-A20y6Sv |
| Cites_doi | 10.1016/j.inffus.2021.11.011 10.1073/pnas.1530509100 10.1093/nar/gkx1090 10.1007/s11749-016-0481-7 10.1186/s12859-015-0575-3 10.1158/0008-5472.CAN-11-0640 10.1111/j.1467-9868.2010.00740.x 10.1214/aos/1013203451 10.1007/978-0-387-84858-7 10.1016/j.eswa.2019.05.028 10.1111/rssb.12265 10.1007/s10115-023-02010-5 10.1111/j.1467-9868.2011.01034.x 10.1023/A:1010933404324 10.1093/bib/bbx124 10.1016/j.compbiolchem.2022.107747 10.1214/aos/1074290335 10.1038/ng.2764 10.14569/IJACSA.2022.0130454 10.1093/bioinformatics/btaa770 10.1016/j.patrec.2010.03.014 10.1007/s11060-015-2050-4 10.1007/s11634-016-0276-4 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. 2025 |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btaf299 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| ExternalDocumentID | 10.1093/bioinformatics/btaf299 PMC12119134 40358526 10_1093_bioinformatics_btaf299 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES035625 – fundername: NIH HHS grantid: R01ES035625 – fundername: ; grantid: R01ES035625 |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM .-4 .GJ 1TH AAJQQ AAUQX ABEFU ABNGD ABPQP ACUKT ACUXJ ADGKP ADRDM ADTOC ADVEK AFFNX AFGWE AGQPQ AI. AJEEA AQDSO ATTQO AZFZN C1A CAG COF DIK EJD ELUNK HVGLF NTWIH NU- NVLIB O0~ O~Y PB- RNI RZF RZO UNPAY VH1 W8F ZGI |
| ID | FETCH-LOGICAL-c364t-3c7187f8df6b935bd2eba03a9dc5665f8c70382e8b442446498d64c6a970b9f73 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4811 1367-4803 |
| IngestDate | Sun Oct 26 04:05:08 EDT 2025 Thu Aug 21 18:37:37 EDT 2025 Thu May 15 19:37:46 EDT 2025 Sun Jun 01 01:35:36 EDT 2025 Wed Oct 01 05:57:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-3c7187f8df6b935bd2eba03a9dc5665f8c70382e8b442446498d64c6a970b9f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1052-7300 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf299/63166536/btaf299.pdf |
| PMID | 40358526 |
| PQID | 3203306595 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btaf299 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12119134 proquest_miscellaneous_3203306595 pubmed_primary_40358526 crossref_primary_10_1093_bioinformatics_btaf299 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250513 |
| PublicationDateYYYYMMDD | 2025-05-13 |
| PublicationDate_xml | – month: 5 year: 2025 text: 20250513 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2025 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Storey (2025052819562753600_btaf299-B28) 2003; 31 Breiman (2025052819562753600_btaf299-B2) 2001; 45 Shah (2025052819562753600_btaf299-B25) 2013; 75 Biau (2025052819562753600_btaf299-B1) 2016; 25 Janitza (2025052819562753600_btaf299-B13) 2018; 12 Vasaikar (2025052819562753600_btaf299-B31) 2018; 46 Chen (2025052819562753600_btaf299-B4) 2016 Kursa (2025052819562753600_btaf299-B15) 2010; 101 Grinsztajn (2025052819562753600_btaf299-B10) 2022; 35 Theng (2025052819562753600_btaf299-B30) 2024; 66 Degenhardt (2025052819562753600_btaf299-B6) 2019; 20 Hastie (2025052819562753600_btaf299-B11) 2009 Lundberg (2025052819562753600_btaf299-B19) 2017; 30 Storey (2025052819562753600_btaf299-B29) 2003; 100 Music (2025052819562753600_btaf299-B22) 2016; 127 Hofner (2025052819562753600_btaf299-B12) 2015; 16 Raychaudhuri (2025052819562753600_btaf299-B24) 2011; 71 Li (2025052819562753600_btaf299-B16) 2022; 100 Candes (2025052819562753600_btaf299-B3) 2018; 80 Speiser (2025052819562753600_btaf299-B27) 2019; 134 Meinshausen (2025052819562753600_btaf299-B20) 2010; 72 Coleman (2025052819562753600_btaf299-B5) 2022; 23 Shwartz-Ziv (2025052819562753600_btaf299-B26) 2022; 81 Louppe (2025052819562753600_btaf299-B17) 2013; 26 Lu (2025052819562753600_btaf299-B18) 2018; 31 Friedman (2025052819562753600_btaf299-B8) 2001; 29 Nogueira (2025052819562753600_btaf299-B23) 2018; 18 Jiang (2025052819562753600_btaf299-B14) 2021; 37 Genuer (2025052819562753600_btaf299-B9) 2010; 31 Weinstein (2025052819562753600_btaf299-B32) 2013; 45 Melikechi (2025052819562753600_btaf299-B21) 2024 Fayaz (2025052819562753600_btaf299-B7) 2022; 13 |
| References_xml | – volume: 81 start-page: 84 year: 2022 ident: 2025052819562753600_btaf299-B26 article-title: Tabular data: deep learning is not all you need publication-title: Inform Fusion doi: 10.1016/j.inffus.2021.11.011 – volume: 100 start-page: 9440 year: 2003 ident: 2025052819562753600_btaf299-B29 article-title: Statistical significance for genomewide studies publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1530509100 – volume: 46 start-page: D956 year: 2018 ident: 2025052819562753600_btaf299-B31 article-title: Linkedomics: analyzing multi-omics data within and across 32 cancer types publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1090 – volume: 25 start-page: 197 year: 2016 ident: 2025052819562753600_btaf299-B1 article-title: A random forest guided tour publication-title: Test doi: 10.1007/s11749-016-0481-7 – volume: 16 start-page: 144 year: 2015 ident: 2025052819562753600_btaf299-B12 article-title: Controlling false discoveries in high-dimensional situations: boosting with stability selection publication-title: BMC Bioinform doi: 10.1186/s12859-015-0575-3 – volume: 71 start-page: 4329 year: 2011 ident: 2025052819562753600_btaf299-B24 article-title: FoxM1: a master regulator of tumor metastasis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0640 – volume: 72 start-page: 417 year: 2010 ident: 2025052819562753600_btaf299-B20 article-title: Stability selection publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.1467-9868.2010.00740.x – volume: 29 start-page: 1189 year: 2001 ident: 2025052819562753600_btaf299-B8 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2009 ident: 2025052819562753600_btaf299-B11 doi: 10.1007/978-0-387-84858-7 – volume: 134 start-page: 93 year: 2019 ident: 2025052819562753600_btaf299-B27 article-title: A comparison of random forest variable selection methods for classification prediction modeling publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.05.028 – volume: 80 start-page: 551 year: 2018 ident: 2025052819562753600_btaf299-B3 article-title: Panning for gold: ‘model-x’ knockoffs for high dimensional controlled variable selection publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/rssb.12265 – volume: 66 start-page: 1575 year: 2024 ident: 2025052819562753600_btaf299-B30 article-title: Feature selection techniques for machine learning: a survey of more than two decades of research publication-title: Knowl Inf Syst doi: 10.1007/s10115-023-02010-5 – volume: 31 start-page: 1 year: 2018 ident: 2025052819562753600_btaf299-B18 article-title: DeepPINK: reproducible feature selection in deep neural networks publication-title: Adv Neural Inform Process Syst – volume: 75 start-page: 55 year: 2013 ident: 2025052819562753600_btaf299-B25 article-title: Variable selection with error control: another look at stability selection publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.1467-9868.2011.01034.x – volume: 23 start-page: 1 year: 2022 ident: 2025052819562753600_btaf299-B5 article-title: Scalable and efficient hypothesis testing with random forests publication-title: J Mach Learn Res – volume: 101 start-page: 271 year: 2010 ident: 2025052819562753600_btaf299-B15 article-title: Boruta—a system for feature selection publication-title: Fund Inform – volume: 45 start-page: 5 year: 2001 ident: 2025052819562753600_btaf299-B2 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 20 start-page: 492 year: 2019 ident: 2025052819562753600_btaf299-B6 article-title: Evaluation of variable selection methods for random forests and omics data sets publication-title: Brief Bioinform doi: 10.1093/bib/bbx124 – volume: 26 start-page: 1 year: 2013 ident: 2025052819562753600_btaf299-B17 article-title: Understanding variable importances in forests of randomized trees publication-title: Adv Neural Inform Process Syst – volume: 18 start-page: 1 year: 2018 ident: 2025052819562753600_btaf299-B23 article-title: On the stability of feature selection algorithms publication-title: J Mach Learn Res – volume: 100 start-page: 107747 year: 2022 ident: 2025052819562753600_btaf299-B16 article-title: Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2022.107747 – volume: 35 start-page: 507 year: 2022 ident: 2025052819562753600_btaf299-B10 article-title: Why do tree-based models still outperform deep learning on typical tabular data? publication-title: Adv Neural Inform Process Syst – volume: 31 start-page: 2013 year: 2003 ident: 2025052819562753600_btaf299-B28 article-title: The positive false discovery rate: a bayesian interpretation and the q-value publication-title: Ann Stat doi: 10.1214/aos/1074290335 – volume: 45 start-page: 1113 year: 2013 ident: 2025052819562753600_btaf299-B32 article-title: The cancer genome atlas pan-cancer analysis project publication-title: Nature Genetics doi: 10.1038/ng.2764 – volume: 13 start-page: 466 year: 2022 ident: 2025052819562753600_btaf299-B7 article-title: Is deep learning on tabular data enough? An assessment publication-title: IJACSA doi: 10.14569/IJACSA.2022.0130454 – volume: 37 start-page: 976 year: 2021 ident: 2025052819562753600_btaf299-B14 article-title: Knockoff boosted tree for model-free variable selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa770 – volume: 31 start-page: 2225 year: 2010 ident: 2025052819562753600_btaf299-B9 article-title: Variable selection using random forests publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2010.03.014 – volume: 127 start-page: 381 year: 2016 ident: 2025052819562753600_btaf299-B22 article-title: Expression and prognostic value of the WEE1 kinase in gliomas publication-title: J Neurooncol doi: 10.1007/s11060-015-2050-4 – volume: 12 start-page: 885 year: 2018 ident: 2025052819562753600_btaf299-B13 article-title: A computationally fast variable importance test for random forests for high-dimensional data publication-title: Adv Data Anal Classif doi: 10.1007/s11634-016-0276-4 – start-page: 785 year: 2016 ident: 2025052819562753600_btaf299-B4 – volume: 30 start-page: 1 year: 2017 ident: 2025052819562753600_btaf299-B19 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inform Process Syst – year: 2024 ident: 2025052819562753600_btaf299-B21 |
| SSID | ssj0005056 |
| Score | 2.4874797 |
| Snippet | Feature selection is a critical task in machine learning and statistics. However, existing feature selection methods either (i) rely on parametric methods such... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| SubjectTerms | Algorithms Computational Biology - methods Humans Machine Learning MicroRNAs - genetics Neoplasms - genetics Original Paper Sequence Analysis, RNA - methods Software |
| Title | Nonparametric IPSS: fast, flexible feature selection with false discovery control |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40358526 https://www.proquest.com/docview/3203306595 https://pubmed.ncbi.nlm.nih.gov/PMC12119134 https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf299/63166536/btaf299.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3db9MwED-NTgheGN-Ej8lIPOI2jT_i8DZNTAOJamhUGk-R7dhioqQVTYW6v2N_MOfEKXQTErzwEkWJfYrOZ_sX393vAF7J1KlCVZ5K5y3lUmmqPXdU4FVqVynbkvp8mMjjKX9_Js52YNnnwugYFT7sUxrM-TxSiAba4lH0jPdhY3RR-V8kBAW72tw02uOCO5JsLKVgsn8wxH43YFcKBPAD2J1OTg4-dxlaOeWqracc78fjPq_4j9K3t7RrOPV6uOWtVb3Q6x96NvttLzvag8teC10Iy9fhqjFDe3GFIPI_q-ku3InYmBx00u7Bjqvvw82uWub6AXyczOvAVP4tFAGz5N3J6ekb4vWyeU18oPU0M0e8a4lKybIt74M2R8JBM7ZCBEBCBnKIWF2TGKD_EKZHbz8dHtNYEYJaJnlDmcWtNPdoW9IUTJgqc0anTBeVRVgqvLK4gKnMKcNDAp_kaIaSW6mLPDWFz9kjGNTz2j0BIoqQtaxUZXPPK5Fq6zxHfGtQqK88S2DUD2q56Ig_ys5hz8pt7ZVRWQm87Me-xDkaHC-6dvPVsmRZylhwYIsEHne2sJHJU4Z_bJlMQG1ZyaZB4P_eflOff2l5wDt2PsYTSDcG9Zff-vTfuzyD21mofRyYa9lzGDTfV-4FArLG7LcHGftxGv0E-LZA-Q |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3db9MwED-NTgheNr4JA2QkHnGbxh9xeJsQ00CiGhqVxlNkO7Y2UdKKpkLd38EfzDlxCt2EBC-8RFFin6Lz2T7n7vc7gJcydapQlafSeUu5VJpqzx0VeJXaVcq2pD4fJvJ4yt-fibMdWPZYGB2zwoc9pMFczCOFaKAtHsXIeJ82RheV_0VCULCrzU2jPS64I8nGUgom-wdD7HcDdqVAB34Au9PJyeHnDqGVU67aesrxfjzuccV_lL69pV3zU6-nW95a1Qu9_q5ns9_2sqN9-NFroUth-TJcNWZoL68QRP5nNd2Bvegbk8NO2l3YcfU9uNlVy1zfh4-TeR2Yyr-GImCWvDs5PX1NvF42r4gPtJ5m5oh3LVEpWbblfdDmSPjRjK3QAyABgRwyVtckJug_gOnR209vjmmsCEEtk7yhzOJWmnu0LWkKJkyVOaNTpovKolsqvLK4gKnMKcMDgE9yNEPJrdRFnprC5-whDOp57R4DEUVALStV2dzzSqTaOs_RvzUo1FeeJTDqB7VcdMQfZRewZ-W29sqorARe9GNf4hwNgRddu_lqWbIsZSwEsEUCjzpb2MjkKcMTWyYTUFtWsmkQ-L-339QX5y0PeMfOx3gC6cag_vJbn_x7lwO4nYXax4G5lj2FQfNt5Z6hQ9aY53EC_QR4nEAE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+IPSS%3A+fast%2C+flexible+feature+selection+with+false+discovery+control&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Melikechi%2C+Omar&rft.au=Dunson%2C+David+B&rft.au=Miller%2C+Jeffrey+W&rft.date=2025-05-13&rft.eissn=1367-4811&rft.volume=41&rft.issue=5&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf299&rft_id=info%3Apmid%2F40358526&rft.externalDocID=40358526 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |