The exploration of a Temporal Convolutional Network combined with Encoder-Decoder framework for runoff forecasting

The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the Jianxi basin, China. The results indicate that the forecast horizon has a great impa...

Full description

Saved in:
Bibliographic Details
Published inHydrology Research Vol. 51; no. 5; pp. 1136 - 1149
Main Authors Lin, Kangling, Sheng, Sheng, Zhou, Yanlai, Liu, Feng, Li, Zhiyu, Chen, Hua, Xu, Chong-Yu, Chen, Jie, Guo, Shenglian
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.10.2020
Subjects
Online AccessGet full text
ISSN0029-1277
1998-9563
2224-7955
2224-7955
DOI10.2166/nh.2020.100

Cover

Abstract The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the Jianxi basin, China. The results indicate that the forecast horizon has a great impact on the forecast ability, and the concentration time of the basin is a critical threshold to the effective forecast horizon for both models. Both models perform poorly in the low flow and well in the medium and high flow at most forecast horizons, while it is subject to the forecast horizon in forecasting peak flow. TCN-ED has better performance than TCN in runoff forecasting, with higher accuracy, better stability, and insensitivity to fluctuations in the rainfall process. Therefore, TCN-ED is an effective deep learning solution in runoff forecasting within an appropriate forecast horizon.
AbstractList The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the Jianxi basin, China. The results indicate that the forecast horizon has a great impact on the forecast ability, and the concentration time of the basin is a critical threshold to the effective forecast horizon for both models. Both models perform poorly in the low flow and well in the medium and high flow at most forecast horizons, while it is subject to the forecast horizon in forecasting peak flow. TCN-ED has better performance than TCN in runoff forecasting, with higher accuracy, better stability, and insensitivity to fluctuations in the rainfall process. Therefore, TCN-ED is an effective deep learning solution in runoff forecasting within an appropriate forecast horizon.
The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the Jianxi basin, China. The results indicate that the forecast horizon has a great impact on the forecast ability, and the concentration time of the basin is a critical threshold to the effective forecast horizon for both models. Both models perform poorly in the low flow and well in the medium and high flow at most forecast horizons, while it is subject to the forecast horizon in forecasting peak flow. TCN-ED has better performance than TCN in runoff forecasting, with higher accuracy, better stability, and insensitivity to fluctuations in the rainfall process. Therefore, TCN-ED is an effective deep learning solution in runoff forecasting within an appropriate forecast horizon. HIGHLIGHTS For the first time, TCN and TCN-ED models are proposed to forecast runoff.; TCN-ED has better performance than TCN in runoff forecast in this study.; The concentration time is a critical threshold to the effective forecast horizon.; Both models perform better in median and high flow than in low flow.; It is subject to the forecast horizon for both models to forecast peak flow.;
Author Xu, Chong-Yu
Guo, Shenglian
Lin, Kangling
Zhou, Yanlai
Sheng, Sheng
Li, Zhiyu
Liu, Feng
Chen, Hua
Chen, Jie
Author_xml – sequence: 1
  givenname: Kangling
  surname: Lin
  fullname: Lin, Kangling
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Sheng
  surname: Sheng
  fullname: Sheng, Sheng
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
– sequence: 3
  givenname: Yanlai
  surname: Zhou
  fullname: Zhou, Yanlai
  organization: Department of Geosciences, University of Oslo, P O Box 1047, Blindern, N-0316, Oslo, Norway
– sequence: 4
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 5
  givenname: Zhiyu
  surname: Li
  fullname: Li, Zhiyu
  organization: Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
– sequence: 6
  givenname: Hua
  surname: Chen
  fullname: Chen, Hua
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China, Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
– sequence: 7
  givenname: Chong-Yu
  surname: Xu
  fullname: Xu, Chong-Yu
  organization: Department of Geosciences, University of Oslo, P O Box 1047, Blindern, N-0316, Oslo, Norway
– sequence: 8
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
– sequence: 9
  givenname: Shenglian
  surname: Guo
  fullname: Guo, Shenglian
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
BookMark eNp9UU1vEzEUtFCRSD9O_QOWOMIG2-v12kcUClSq6CWcLX82Dht78XoJ_fc4G8QBCU7jGc8bPc27BBcxRQfALUZrghl7F3drgghaY4RegBUhhDa96LoLsEKIiAaTvn8FLqdpXymjol2BvN056H6OQ8qqhBRh8lDBrTuMVRjgJsUfaZhPP5V9ceWY8jdo0kGH6Cw8hrKDd9Ek63LzwS0IfVYHt_h8yjDPMXl_ejqjphLi0zV46dUwuZvfeAW-frzbbj43D4-f7jfvHxrTMlqaVmvSa0SsbYkRVCiO254KrAjjnGluicKWcMI08pxoSm1XNW0Z6rmz1rRX4P6ca5PayzGHg8rPMqkgFyHlJ6lyCWZwEgvOu75DxnhBKwhhRadbS50yyjNfs96es-Y4quejGoY_gRjJU_cy7uSp-8pRtb8-28ecvs9uKnKf5lwrnCShvMVC0MWFzy6T0zRl56UJZblCySoM_0h-89fM__b4BQgSpSA
CitedBy_id crossref_primary_10_1109_TIP_2024_3441821
crossref_primary_10_1002_2050_7038_13148
crossref_primary_10_1016_j_jhydrol_2021_127255
crossref_primary_10_1016_j_jhydrol_2024_131819
crossref_primary_10_1038_s41598_024_81574_w
crossref_primary_10_3390_app14010012
crossref_primary_10_1016_j_acags_2024_100181
crossref_primary_10_1016_j_wroa_2024_100297
crossref_primary_10_2166_nh_2021_021
crossref_primary_10_1007_s11269_025_04166_x
crossref_primary_10_1016_j_jhydrol_2023_130141
crossref_primary_10_1016_j_scitotenv_2023_164494
crossref_primary_10_1016_j_jclepro_2024_140809
crossref_primary_10_1016_j_jhydrol_2021_126945
crossref_primary_10_3390_en17205163
crossref_primary_10_2166_nh_2021_061
crossref_primary_10_1016_j_jhydrol_2024_131923
crossref_primary_10_1007_s11269_024_03748_5
crossref_primary_10_1016_j_jhydrol_2024_130937
crossref_primary_10_1016_j_jhydrol_2022_127764
crossref_primary_10_3390_app13031891
crossref_primary_10_1016_j_jhydrol_2025_132774
crossref_primary_10_1016_j_envsoft_2024_106029
crossref_primary_10_1109_ACCESS_2022_3141767
crossref_primary_10_1016_j_eswa_2023_122935
crossref_primary_10_2166_nh_2021_016
crossref_primary_10_1016_j_geoderma_2021_115656
crossref_primary_10_3389_fenvs_2022_1049840
crossref_primary_10_1029_2022WR033091
crossref_primary_10_1109_TETCI_2023_3259434
crossref_primary_10_1007_s11356_024_35528_4
Cites_doi 10.1109/CVPR.2016.90
10.1002/hyp.9472
10.2166/hydro.2001.0014
10.3390/w10111543
10.1016/j.eswa.2007.06.023
10.13031/2013.34915
10.1016/0022-1694(84)90159-8
10.2166/nh.2008.026
10.2166/nh.2013.045
10.2166/nh.2012.074
10.5194/hess-16-231-2012
10.1029/1998WR900018
10.1016/j.jhydrol.2018.12.052
10.1016/0022-1694(70)90255-6
10.2166/nh.2013.112
10.1007/s11269-017-1874-4
10.1002/hyp.1015
10.3115/v1/D14-1179
10.2166/nh.2010.015
10.1080/02626669809492102
10.1016/j.jpowsour.2019.227558
10.1007/s00477-018-1560-y
10.1016/j.jhydrol.2018.09.064
10.1016/0022-1694(92)90096-E
10.1016/j.jhydrol.2020.124631
10.1002/hyp.7072
10.1080/00401706.1971.10488811
10.1016/j.jhydrol.2010.06.033
10.1029/95WR01955
10.1016/S0022-1694(96)03330-6
10.2166/nh.2009.012
10.1109/ACCESS.2020.2993874
10.1016/j.knosys.2019.104932
10.1111/j.1752-1688.2002.tb01544.x
10.1061/(ASCE)0733-9496(1995)121:6(499)
ContentType Journal Article
Copyright Copyright IWA Publishing Oct 2020
Copyright_xml – notice: Copyright IWA Publishing Oct 2020
DBID AAYXX
CITATION
7QH
7TG
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
ADTOC
UNPAY
DOA
DOI 10.2166/nh.2020.100
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2224-7955
EndPage 1149
ExternalDocumentID oai_doaj_org_article_19885750ccf9450c99d95b3d4eacaf6f
10.2166/nh.2020.100
10_2166_nh_2020_100
GroupedDBID 4.4
5GY
7XC
8FE
8FH
AAJVE
AAQKY
AAYXX
ABFYC
ABLGR
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
FRP
GEUZO
GROUPED_DOAJ
HCIFZ
LK5
M7R
PATMY
PCBAR
PHGZM
PHGZT
PUEGO
PYCSY
~02
7QH
7TG
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c364t-3bb27b02dd32c949a8137491a26886b8d2a1d2826b0f82b44d58d2bd6078eddc3
IEDL.DBID UNPAY
ISSN 0029-1277
1998-9563
2224-7955
IngestDate Wed Aug 27 01:23:12 EDT 2025
Tue Aug 19 15:27:12 EDT 2025
Mon Jun 30 15:31:40 EDT 2025
Wed Oct 01 00:40:23 EDT 2025
Thu Apr 24 23:07:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-3bb27b02dd32c949a8137491a26886b8d2a1d2826b0f82b44d58d2bd6078eddc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iwaponline.com/hr/article-pdf/51/5/1136/775680/nh0511136.pdf
PQID 2483199400
PQPubID 2044530
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_19885750ccf9450c99d95b3d4eacaf6f
unpaywall_primary_10_2166_nh_2020_100
proquest_journals_2483199400
crossref_citationtrail_10_2166_nh_2020_100
crossref_primary_10_2166_nh_2020_100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Hydrology Research
PublicationYear 2020
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References He (key-10.2166/nh.2020.100-19) 2019; 1213
Loyola (key-10.2166/nh.2020.100-32) 2017
key-10.2166/nh.2020.100-18
Moor (key-10.2166/nh.2020.100-33) 2019
Claveria (key-10.2166/nh.2020.100-12) 2016; 24
key-10.2166/nh.2020.100-11
Deng (key-10.2166/nh.2020.100-15) 2019
key-10.2166/nh.2020.100-10
key-10.2166/nh.2020.100-13
key-10.2166/nh.2020.100-35
key-10.2166/nh.2020.100-37
key-10.2166/nh.2020.100-14
key-10.2166/nh.2020.100-36
key-10.2166/nh.2020.100-17
key-10.2166/nh.2020.100-39
key-10.2166/nh.2020.100-31
key-10.2166/nh.2020.100-8
key-10.2166/nh.2020.100-7
key-10.2166/nh.2020.100-6
key-10.2166/nh.2020.100-5
key-10.2166/nh.2020.100-4
Shi (key-10.2166/nh.2020.100-38) 2015; 28
key-10.2166/nh.2020.100-3
He (key-10.2166/nh.2020.100-20) 2016
key-10.2166/nh.2020.100-2
key-10.2166/nh.2020.100-1
Xu (key-10.2166/nh.2020.100-45) 2019
key-10.2166/nh.2020.100-29
Dodge (key-10.2166/nh.2020.100-16) 2006; 31
key-10.2166/nh.2020.100-22
key-10.2166/nh.2020.100-44
key-10.2166/nh.2020.100-21
key-10.2166/nh.2020.100-43
Cardenas-Barrera (key-10.2166/nh.2020.100-9) 2013
key-10.2166/nh.2020.100-24
key-10.2166/nh.2020.100-46
key-10.2166/nh.2020.100-23
Nash (key-10.2166/nh.2020.100-34) 1970; 10
key-10.2166/nh.2020.100-26
key-10.2166/nh.2020.100-25
key-10.2166/nh.2020.100-47
key-10.2166/nh.2020.100-28
key-10.2166/nh.2020.100-27
key-10.2166/nh.2020.100-40
Liu (key-10.2166/nh.2020.100-30) 2019; 1187
key-10.2166/nh.2020.100-42
key-10.2166/nh.2020.100-41
References_xml – year: 2016
  ident: key-10.2166/nh.2020.100-20
  article-title: Deep residual learning for image recognition
  doi: 10.1109/CVPR.2016.90
– ident: key-10.2166/nh.2020.100-42
  doi: 10.1002/hyp.9472
– ident: key-10.2166/nh.2020.100-26
– volume: 28
  start-page: 802
  year: 2015
  ident: key-10.2166/nh.2020.100-38
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– ident: key-10.2166/nh.2020.100-40
  doi: 10.2166/hydro.2001.0014
– ident: key-10.2166/nh.2020.100-22
  doi: 10.3390/w10111543
– ident: key-10.2166/nh.2020.100-47
  doi: 10.1016/j.eswa.2007.06.023
– start-page: 243
  year: 2013
  ident: key-10.2166/nh.2020.100-9
  article-title: A neural network approach to multi-step-ahead, short-term wind speed forecasting
– ident: key-10.2166/nh.2020.100-17
  doi: 10.13031/2013.34915
– ident: key-10.2166/nh.2020.100-7
  doi: 10.1016/0022-1694(84)90159-8
– ident: key-10.2166/nh.2020.100-27
  doi: 10.2166/nh.2008.026
– ident: key-10.2166/nh.2020.100-1
  doi: 10.2166/nh.2013.045
– ident: key-10.2166/nh.2020.100-5
  doi: 10.2166/nh.2012.074
– ident: key-10.2166/nh.2020.100-44
  doi: 10.5194/hess-16-231-2012
– ident: key-10.2166/nh.2020.100-28
  doi: 10.1029/1998WR900018
– ident: key-10.2166/nh.2020.100-18
  doi: 10.1016/j.jhydrol.2018.12.052
– volume: 24
  start-page: 109
  issue: 72
  year: 2016
  ident: key-10.2166/nh.2020.100-12
  article-title: Modelling tourism demand to Spain with machine learning techniques. The impact of forecast horizon on model selection
  publication-title: Revista De Economia Aplicada
– volume: 10
  start-page: 0
  issue: 3
  year: 1970
  ident: key-10.2166/nh.2020.100-34
  article-title: River flow forecasting through conceptual models part I – a discussion of principles
  publication-title: Journal of Hydrology
  doi: 10.1016/0022-1694(70)90255-6
– ident: key-10.2166/nh.2020.100-39
  doi: 10.2166/nh.2013.112
– ident: key-10.2166/nh.2020.100-24
  doi: 10.1007/s11269-017-1874-4
– ident: key-10.2166/nh.2020.100-10
  doi: 10.1002/hyp.1015
– ident: key-10.2166/nh.2020.100-11
  doi: 10.3115/v1/D14-1179
– ident: key-10.2166/nh.2020.100-43
  doi: 10.2166/nh.2010.015
– ident: key-10.2166/nh.2020.100-14
  doi: 10.1080/02626669809492102
– volume: 1213
  start-page: 042050
  issue: 4
  year: 2019
  ident: key-10.2166/nh.2020.100-19
  article-title: Temporal convolutional networks for anomaly detection in time series
  publication-title: Journal of Physics: Conference Series
– ident: key-10.2166/nh.2020.100-8
  doi: 10.1016/j.jpowsour.2019.227558
– ident: key-10.2166/nh.2020.100-46
  doi: 10.1007/s00477-018-1560-y
– ident: key-10.2166/nh.2020.100-23
  doi: 10.1016/j.jhydrol.2018.09.064
– ident: key-10.2166/nh.2020.100-36
  doi: 10.1016/0022-1694(92)90096-E
– ident: key-10.2166/nh.2020.100-6
– ident: key-10.2166/nh.2020.100-25
  doi: 10.1016/j.jhydrol.2020.124631
– volume: 1187
  start-page: 042111
  year: 2019
  ident: key-10.2166/nh.2020.100-30
  article-title: Anomaly detection for time series using temporal convolutional networks and Gaussian mixture model
  publication-title: Journal of Physics: Conference Series
– ident: key-10.2166/nh.2020.100-13
  doi: 10.1002/hyp.7072
– ident: key-10.2166/nh.2020.100-3
  doi: 10.1080/00401706.1971.10488811
– year: 2019
  ident: key-10.2166/nh.2020.100-33
  article-title: Early recognition of sepsis with Gaussian process temporal convolutional networks and dynamic time warping
  publication-title: Machine Learning for Healthcare
– ident: key-10.2166/nh.2020.100-2
  doi: 10.1016/j.jhydrol.2010.06.033
– start-page: 147
  year: 2017
  ident: key-10.2166/nh.2020.100-32
  article-title: Modeling user session and intent with an attention-based encoder-decoder architecture
– ident: key-10.2166/nh.2020.100-21
  doi: 10.1029/95WR01955
– ident: key-10.2166/nh.2020.100-37
  doi: 10.1016/S0022-1694(96)03330-6
– volume: 31
  start-page: 63
  issue: 1
  year: 2006
  ident: key-10.2166/nh.2020.100-16
  article-title: Coefficient of determination
  publication-title: Alphascript Publishing
– start-page: 678
  year: 2019
  ident: key-10.2166/nh.2020.100-15
  article-title: Knowledge-driven stock trend prediction and explanation via temporal convolutional network
– ident: key-10.2166/nh.2020.100-4
  doi: 10.2166/nh.2009.012
– ident: key-10.2166/nh.2020.100-31
  doi: 10.1109/ACCESS.2020.2993874
– ident: key-10.2166/nh.2020.100-35
  doi: 10.1016/j.knosys.2019.104932
– ident: key-10.2166/nh.2020.100-29
  doi: 10.1111/j.1752-1688.2002.tb01544.x
– ident: key-10.2166/nh.2020.100-41
  doi: 10.1061/(ASCE)0733-9496(1995)121:6(499)
– start-page: 494
  year: 2019
  ident: key-10.2166/nh.2020.100-45
  article-title: Dadu river runoff forecasting via Seq2Seq
SSID ssj0026493
ssj0061028
Score 2.4101734
Snippet The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1136
SubjectTerms artificial neural network
Coders
Concentration time
deep learning
encoder-decoder architecture
Encoders-Decoders
Forecasting
High flow
Horizon
Hydrology
Low flow
Mathematical models
Neural networks
Precipitation
Rain
Rainfall
Runoff
Runoff forecasting
Stability
Stream flow
Support vector machines
temporal convolutional network
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yl_UiPnF9kYNehGI3r22OPhFBTy54K3niYcnKPpT998403UVB9OKpbQhtmJlk5msm3xByqkrufJCyKB1MNyFFKAz44cJxVwEkQkPCHd3HJ3U_FA8v8uVLqS_MCcv0wFlwFwCKsYhk6VzUAi5aey0t9wJWDBNVxNUX3NgSTOU1WKHbbPaTNUxnqXg-mcf6Sl0k3IJgTXrAN1_UUPZ_izO78_RmFh9mNPricu42yUYbK9LLPMYtshbSNum2ZctfFztkAkqmocmiawRMx5Ea-pzZpkb0epzeW8uCp6ec8E3BxAANB0_xFyy9TXiofVLchOZK4zJZi0I0SyfzNI4Rb4MzU8yQ3iXDu9vn6_uiLaIA4lZiVnBr2cCWzHvOnBbagAoGQvcNU1WlbOWZ6XvAXcqWsWJWCC-hzXoFsUPw3vE90knjFPYJ9SaWXobIpFEilExbMzDBV7a0ClAT75HzpThr1zKMY6GLUQ1IA2Vfp9caZY9EyT1yuur8lok1fu52hXpZdUE27KYBbKRubaT-y0Z65Gip1bqdotOaiYojMTJ-42yl6d_GcvAfYzkk6_i-nA94RDqzyTwcQ1wzsyeNCX8CO5T1cw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxMNTrQ30RP_G0Sh7qi7A0l01ymwcRW68UwUOkhb4t-bQPR_bc3in9985ks6cF6VN2w7As8z2ZyQwhR4rVzgcpK-ZA3IQUoTJghytXuwZCImQkzOh-XarzS_HlSl7tkeV4FwbLKkedmBW17xyekR9z0dTYx5axj-ufFU6NwuzqOELDlNEK_kNuMfaA7KNKFhOyf7JYfvs-6maF5jTnmTWIuVT1cGOPz5Q6Tpia4Lls4I6Nyq387_ifB9u0Nre_zWr1jyk6e0weFR-SfhqI_oTshfSUHJRx5te3z0gPxKchV9dlxNMuUkMvhi5UK3rapV-F4-BtORSCU0ADRMnBUzyapYuEl9376nPIK41jERcFL5f229TFiI_BmRusnH5OLs8WF6fnVRmuAGRQYlPV1vK5Zdz7mjsttAHSzIWeGa6aRtnGczPzEI8py2LDrRBewp71CnyK4L2rX5BJ6lJ4Sag3kXkZIpdGicC4tmZugm8sswqiqXpK3o_obF3pPI4DMFYtRCCI-zZdt4h7bKA8JUc74PXQcOP_YCdIlx0IdsnOG13_oy1C1850gwNImXNRC1i09lra2guwNiaqOCWHI1XbIro37V9Gm5J3O0rf9y-v7v_Ma_IQIYcKwEMy2fTb8AY8mY19W9jzD0Pr8tc
  priority: 102
  providerName: ProQuest
Title The exploration of a Temporal Convolutional Network combined with Encoder-Decoder framework for runoff forecasting
URI https://www.proquest.com/docview/2483199400
https://iwaponline.com/hr/article-pdf/51/5/1136/775680/nh0511136.pdf
https://doaj.org/article/19885750ccf9450c99d95b3d4eacaf6f
UnpaywallVersion publishedVersion
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2224-7955
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0061028
  issn: 1998-9563
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2224-7955
  dateEnd: 20241005
  omitProxy: true
  ssIdentifier: ssj0061028
  issn: 1998-9563
  databaseCode: BENPR
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdd8tCndZ8spQt66F4Gjm1Zkq3HfqSUQkMZDXRPRp8LLNjBTVq6v34nWQnrGGOwJ9nyCcu-k-5OOv0OoWOeFdpYxpJMw3CjjNpEgh5OdKErcIm8IPkd3esZv5zTqzt2t4fOd2dhHuWqx4gI0_SiS-MfTFbGpSxPWeqzkKRlyXiVpc0ChMpXTODxCzTkDHzoARrOZzcnX8OGsoDxzEJCNdCENCkFY_0xPZJzDu3BRSQhVuCZYgr4_c-Mzv1Ns5JPj3K5_EX_XBwgu-15H3byfbJZq4n-8Ruo4_9-2iv0Mhqo-KRv9Brt2eYN2o-50hdPb1EHkoVtCN0LXMWtwxLf9hBXS3zWNg9RnOFu1keZY-gKuODWYL_ui6eNP0nfJec2lNhtI8QwmNC42zStc_7Sannvw7LfofnF9PbsMomZG4DHnK6TQilSqowYUxAtqJDA95KKXBJeVVxVhsjcgLPHVeYqoig1DOqU4WCwWGN08R4NmraxHxA20mWGWUeY5NRmRChZSmsqlSkOrloxQp-3bKt1hDX32TWWNbg3nsd1s6g9jz068wgd74hXPZrHn8lOPf93JB6CO1S03bc6Mq3OReWzm2ZaO0GhEMIIpgpDQZVJx90IHW2lp47zwn1NaFV4NGb_jk87ifpbXw7_ke4IDdbdxn4EE2mtxmh4Op3dfBmHJYZxHA8_AfaoETY
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtww0KLLYXup-lS30NYHuFSK8DqONz6gqsCipcCqqhaJW-pnOayS7T5A-3P9ts4kzrZIFTdOTiwnsmbG8_C8CNmTLLXOZ1nCLBw3kQmfaJDDiU1tDiYREhJ6dC_HcnQlvl5n11vkd5sLg2GVLU-sGbWrLN6RH3CRp1jHlrHPs18Jdo1C72rbQkPH1grusC4xFhM7zv36Dky4xeHZCeB7n_PT4eR4lMQuA7AfKZZJagwfGMadS7lVQmnY40CovuYyz6XJHdd9B4aJNCzk3AjhMpgzToJw9c7ZFP77hGyD2sFFh2wfDcffvreyQKL4rv3aCthKJtMmQ5D3pTwo0RXC6zCFezKxbh1wT9_trsqZXt_p6fQf0Xf6nDyLOiv90hDZC7Lly5ekG9un36xfkTkQG_V1NF-NaFoFqumkqXo1pcdVeRspHN7GTeA5BbCDVe4dxatgOiwxuX6enPh6pKENGqOgVdP5qqxCwEdv9QIjtV-Tq0cB8xvSKavSvyXU6cBc5gPPtBSecWX0QHuXG2YkWG9pj3xqwVnYWOkcG25MC7B4EPZFeVMg7LFgc4_sbRbPmgIf_192hHjZLMGq3PVENf9ZxENe9FWODU-ZtUEJGJRyKjOpEyDddJChR3ZbrBaRVSyKv4TdI_sbTD-0l3cP_-Yj6Y4mlxfFxdn4fIc8xa-a6MNd0lnOV_49aFFL8yGSKiU_Hvt0_AGKzy8v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Lb9Mw2BqdxLggnqJjgA_bBSmq6zhufJgQW1ttDKoJbdJuwU92qJLSx6b-RX4V35c4hUlot52cWE5kfU9__l6E7EuWWuezLGEW2E1kwica9HBiU5uDSYSEhB7dbxN5cim-XGVXW-R3mwuDYZWtTKwFtass3pH3uMhTrGPLWC_EsIjz4fjT7FeCHaTQ09q209CxzYI7rMuNxSSPM7--BXNucXg6BNwfcD4eXRyfJLHjAOxNimWSGsMHhnHnUm6VUBr2OxCqr7nMc2lyx3XfgZEiDQs5N0K4DOaMk6BovXM2hf8-ItuDVOWsQ7aPRpPz761ekKjKax-3AhGTybTJFuR9KXslukV4HbJwRz_WbQTunH13VuVMr2_1dPqPGhw_I0_j-ZV-bgjuOdny5QuyE1upX69fkjkQHvV1ZF-NdFoFqulFUwFrSo-r8iZSO7xNmiB0CigAC907itfCdFRiov08Gfp6pKENIKNwwqbzVVmFgI_e6gVGbb8ilw8C5tekU1alf0Oo04G5zAeeaSk848rogfYuN8xIsOTSLvnYgrOwseo5Nt-YFmD9IOyL8rpA2GPx5i7Z3yyeNcU-_r_sCPGyWYIVuuuJav6ziAxf9FWOzU-ZtUEJGJRyKjOpE6DpdJChS_ZarBZRbCyKv0TeJQcbTN-3l937f_OBPAYuKb6eTs7ekif4UROIuEc6y_nKv4MD1dK8j5RKyY-HZo4_mAIzaQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbp5pBT2_RBtyRBh_RS8NqWJdk65kkodOkhC-nJ6NmFLvLi7Cakv74jWbs0oZRCTrZlCcv-RpoZa_QNQse8qLSxjGWFhuFGGbWZBD2c6Uo34BIFQQorul-n_GpGv9ywmx10vt0Lcy-XA0dEnKbnfZ6-YLY0LmdlzvKQhSSva8abIvdzEKpQMIHbL9AuZ-BDj9DubPrt5HtcUBYwnllMqAaakGa1YGzYpkdKzqE9uIgkxgo8UkyRv_-R0bm39kv5cC8Xiz_0z-UrZDc9H8JOfk7WKzXRv56QOj731V6jl8lAxSdDo320Y_0btJdypc8f3qIeJAvbGLoXUcWdwxJfDxRXC3zW-bskznA1HaLMMXQFXHBrcPjviy982EnfZ-c2HrHbRIhhMKFxv_adc-HUankbwrLfodnlxfXZVZYyNwDGnK6ySilSq4IYUxEtqJCAe01FKQlvGq4aQ2RpwNnjqnANUZQaBmXKcDBYrDG6eo9GvvP2A8JGusIw6wiTnNqCCCVraU2jCsXBVavG6PMGtlYnWvOQXWPRgnsTMG79vA0YB3bmMTreVl4ObB5_r3Ya8N9WCRTcsaDrf7QJtLYUTchuWmjtBIWDEEYwVRkKqkw67sboYCM9bZoXbltCmyqwMYdnfNpK1L_68vE_6x2g0apf20MwkVbqKI2A3xtfDqc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+exploration+of+a+Temporal+Convolutional+Network+combined+with+Encoder-Decoder+framework+for+runoff+forecasting&rft.jtitle=Hydrology+research&rft.au=Lin%2C+Kangling&rft.au=Sheng%2C+Sheng&rft.au=Zhou%2C+Yanlai&rft.au=Liu%2C+Feng&rft.date=2020-10-01&rft.pub=IWA+Publishing&rft.issn=1998-9563&rft.eissn=2224-7955&rft.volume=51&rft.issue=5&rft.spage=1136&rft_id=info:doi/10.2166%2Fnh.2020.100&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-1277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-1277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-1277&client=summon