The exploration of a Temporal Convolutional Network combined with Encoder-Decoder framework for runoff forecasting
The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the Jianxi basin, China. The results indicate that the forecast horizon has a great impa...
Saved in:
Published in | Hydrology Research Vol. 51; no. 5; pp. 1136 - 1149 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-1277 1998-9563 2224-7955 2224-7955 |
DOI | 10.2166/nh.2020.100 |
Cover
Abstract | The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the Jianxi basin, China. The results indicate that the forecast horizon has a great impact on the forecast ability, and the concentration time of the basin is a critical threshold to the effective forecast horizon for both models. Both models perform poorly in the low flow and well in the medium and high flow at most forecast horizons, while it is subject to the forecast horizon in forecasting peak flow. TCN-ED has better performance than TCN in runoff forecasting, with higher accuracy, better stability, and insensitivity to fluctuations in the rainfall process. Therefore, TCN-ED is an effective deep learning solution in runoff forecasting within an appropriate forecast horizon. |
---|---|
AbstractList | The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the Jianxi basin, China. The results indicate that the forecast horizon has a great impact on the forecast ability, and the concentration time of the basin is a critical threshold to the effective forecast horizon for both models. Both models perform poorly in the low flow and well in the medium and high flow at most forecast horizons, while it is subject to the forecast horizon in forecasting peak flow. TCN-ED has better performance than TCN in runoff forecasting, with higher accuracy, better stability, and insensitivity to fluctuations in the rainfall process. Therefore, TCN-ED is an effective deep learning solution in runoff forecasting within an appropriate forecast horizon. The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the Jianxi basin, China. The results indicate that the forecast horizon has a great impact on the forecast ability, and the concentration time of the basin is a critical threshold to the effective forecast horizon for both models. Both models perform poorly in the low flow and well in the medium and high flow at most forecast horizons, while it is subject to the forecast horizon in forecasting peak flow. TCN-ED has better performance than TCN in runoff forecasting, with higher accuracy, better stability, and insensitivity to fluctuations in the rainfall process. Therefore, TCN-ED is an effective deep learning solution in runoff forecasting within an appropriate forecast horizon. HIGHLIGHTS For the first time, TCN and TCN-ED models are proposed to forecast runoff.; TCN-ED has better performance than TCN in runoff forecast in this study.; The concentration time is a critical threshold to the effective forecast horizon.; Both models perform better in median and high flow than in low flow.; It is subject to the forecast horizon for both models to forecast peak flow.; |
Author | Xu, Chong-Yu Guo, Shenglian Lin, Kangling Zhou, Yanlai Sheng, Sheng Li, Zhiyu Liu, Feng Chen, Hua Chen, Jie |
Author_xml | – sequence: 1 givenname: Kangling surname: Lin fullname: Lin, Kangling organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China – sequence: 2 givenname: Sheng surname: Sheng fullname: Sheng, Sheng organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China – sequence: 3 givenname: Yanlai surname: Zhou fullname: Zhou, Yanlai organization: Department of Geosciences, University of Oslo, P O Box 1047, Blindern, N-0316, Oslo, Norway – sequence: 4 givenname: Feng surname: Liu fullname: Liu, Feng organization: School of Computer Science, Wuhan University, Wuhan 430072, China – sequence: 5 givenname: Zhiyu surname: Li fullname: Li, Zhiyu organization: Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA – sequence: 6 givenname: Hua surname: Chen fullname: Chen, Hua organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China, Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA – sequence: 7 givenname: Chong-Yu surname: Xu fullname: Xu, Chong-Yu organization: Department of Geosciences, University of Oslo, P O Box 1047, Blindern, N-0316, Oslo, Norway – sequence: 8 givenname: Jie surname: Chen fullname: Chen, Jie organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China – sequence: 9 givenname: Shenglian surname: Guo fullname: Guo, Shenglian organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China and Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China |
BookMark | eNp9UU1vEzEUtFCRSD9O_QOWOMIG2-v12kcUClSq6CWcLX82Dht78XoJ_fc4G8QBCU7jGc8bPc27BBcxRQfALUZrghl7F3drgghaY4RegBUhhDa96LoLsEKIiAaTvn8FLqdpXymjol2BvN056H6OQ8qqhBRh8lDBrTuMVRjgJsUfaZhPP5V9ceWY8jdo0kGH6Cw8hrKDd9Ek63LzwS0IfVYHt_h8yjDPMXl_ejqjphLi0zV46dUwuZvfeAW-frzbbj43D4-f7jfvHxrTMlqaVmvSa0SsbYkRVCiO254KrAjjnGluicKWcMI08pxoSm1XNW0Z6rmz1rRX4P6ca5PayzGHg8rPMqkgFyHlJ6lyCWZwEgvOu75DxnhBKwhhRadbS50yyjNfs96es-Y4quejGoY_gRjJU_cy7uSp-8pRtb8-28ecvs9uKnKf5lwrnCShvMVC0MWFzy6T0zRl56UJZblCySoM_0h-89fM__b4BQgSpSA |
CitedBy_id | crossref_primary_10_1109_TIP_2024_3441821 crossref_primary_10_1002_2050_7038_13148 crossref_primary_10_1016_j_jhydrol_2021_127255 crossref_primary_10_1016_j_jhydrol_2024_131819 crossref_primary_10_1038_s41598_024_81574_w crossref_primary_10_3390_app14010012 crossref_primary_10_1016_j_acags_2024_100181 crossref_primary_10_1016_j_wroa_2024_100297 crossref_primary_10_2166_nh_2021_021 crossref_primary_10_1007_s11269_025_04166_x crossref_primary_10_1016_j_jhydrol_2023_130141 crossref_primary_10_1016_j_scitotenv_2023_164494 crossref_primary_10_1016_j_jclepro_2024_140809 crossref_primary_10_1016_j_jhydrol_2021_126945 crossref_primary_10_3390_en17205163 crossref_primary_10_2166_nh_2021_061 crossref_primary_10_1016_j_jhydrol_2024_131923 crossref_primary_10_1007_s11269_024_03748_5 crossref_primary_10_1016_j_jhydrol_2024_130937 crossref_primary_10_1016_j_jhydrol_2022_127764 crossref_primary_10_3390_app13031891 crossref_primary_10_1016_j_jhydrol_2025_132774 crossref_primary_10_1016_j_envsoft_2024_106029 crossref_primary_10_1109_ACCESS_2022_3141767 crossref_primary_10_1016_j_eswa_2023_122935 crossref_primary_10_2166_nh_2021_016 crossref_primary_10_1016_j_geoderma_2021_115656 crossref_primary_10_3389_fenvs_2022_1049840 crossref_primary_10_1029_2022WR033091 crossref_primary_10_1109_TETCI_2023_3259434 crossref_primary_10_1007_s11356_024_35528_4 |
Cites_doi | 10.1109/CVPR.2016.90 10.1002/hyp.9472 10.2166/hydro.2001.0014 10.3390/w10111543 10.1016/j.eswa.2007.06.023 10.13031/2013.34915 10.1016/0022-1694(84)90159-8 10.2166/nh.2008.026 10.2166/nh.2013.045 10.2166/nh.2012.074 10.5194/hess-16-231-2012 10.1029/1998WR900018 10.1016/j.jhydrol.2018.12.052 10.1016/0022-1694(70)90255-6 10.2166/nh.2013.112 10.1007/s11269-017-1874-4 10.1002/hyp.1015 10.3115/v1/D14-1179 10.2166/nh.2010.015 10.1080/02626669809492102 10.1016/j.jpowsour.2019.227558 10.1007/s00477-018-1560-y 10.1016/j.jhydrol.2018.09.064 10.1016/0022-1694(92)90096-E 10.1016/j.jhydrol.2020.124631 10.1002/hyp.7072 10.1080/00401706.1971.10488811 10.1016/j.jhydrol.2010.06.033 10.1029/95WR01955 10.1016/S0022-1694(96)03330-6 10.2166/nh.2009.012 10.1109/ACCESS.2020.2993874 10.1016/j.knosys.2019.104932 10.1111/j.1752-1688.2002.tb01544.x 10.1061/(ASCE)0733-9496(1995)121:6(499) |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Oct 2020 |
Copyright_xml | – notice: Copyright IWA Publishing Oct 2020 |
DBID | AAYXX CITATION 7QH 7TG 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY ADTOC UNPAY DOA |
DOI | 10.2166/nh.2020.100 |
DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2224-7955 |
EndPage | 1149 |
ExternalDocumentID | oai_doaj_org_article_19885750ccf9450c99d95b3d4eacaf6f 10.2166/nh.2020.100 10_2166_nh_2020_100 |
GroupedDBID | 4.4 5GY 7XC 8FE 8FH AAJVE AAQKY AAYXX ABFYC ABLGR AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION FRP GEUZO GROUPED_DOAJ HCIFZ LK5 M7R PATMY PCBAR PHGZM PHGZT PUEGO PYCSY ~02 7QH 7TG 7UA AZQEC C1K DWQXO F1W GNUQQ H96 KL. L.G PKEHL PQEST PQQKQ PQUKI ADTOC EJD UNPAY |
ID | FETCH-LOGICAL-c364t-3bb27b02dd32c949a8137491a26886b8d2a1d2826b0f82b44d58d2bd6078eddc3 |
IEDL.DBID | UNPAY |
ISSN | 0029-1277 1998-9563 2224-7955 |
IngestDate | Wed Aug 27 01:23:12 EDT 2025 Tue Aug 19 15:27:12 EDT 2025 Mon Jun 30 15:31:40 EDT 2025 Wed Oct 01 00:40:23 EDT 2025 Thu Apr 24 23:07:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-3bb27b02dd32c949a8137491a26886b8d2a1d2826b0f82b44d58d2bd6078eddc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iwaponline.com/hr/article-pdf/51/5/1136/775680/nh0511136.pdf |
PQID | 2483199400 |
PQPubID | 2044530 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19885750ccf9450c99d95b3d4eacaf6f unpaywall_primary_10_2166_nh_2020_100 proquest_journals_2483199400 crossref_citationtrail_10_2166_nh_2020_100 crossref_primary_10_2166_nh_2020_100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Hydrology Research |
PublicationYear | 2020 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | He (key-10.2166/nh.2020.100-19) 2019; 1213 Loyola (key-10.2166/nh.2020.100-32) 2017 key-10.2166/nh.2020.100-18 Moor (key-10.2166/nh.2020.100-33) 2019 Claveria (key-10.2166/nh.2020.100-12) 2016; 24 key-10.2166/nh.2020.100-11 Deng (key-10.2166/nh.2020.100-15) 2019 key-10.2166/nh.2020.100-10 key-10.2166/nh.2020.100-13 key-10.2166/nh.2020.100-35 key-10.2166/nh.2020.100-37 key-10.2166/nh.2020.100-14 key-10.2166/nh.2020.100-36 key-10.2166/nh.2020.100-17 key-10.2166/nh.2020.100-39 key-10.2166/nh.2020.100-31 key-10.2166/nh.2020.100-8 key-10.2166/nh.2020.100-7 key-10.2166/nh.2020.100-6 key-10.2166/nh.2020.100-5 key-10.2166/nh.2020.100-4 Shi (key-10.2166/nh.2020.100-38) 2015; 28 key-10.2166/nh.2020.100-3 He (key-10.2166/nh.2020.100-20) 2016 key-10.2166/nh.2020.100-2 key-10.2166/nh.2020.100-1 Xu (key-10.2166/nh.2020.100-45) 2019 key-10.2166/nh.2020.100-29 Dodge (key-10.2166/nh.2020.100-16) 2006; 31 key-10.2166/nh.2020.100-22 key-10.2166/nh.2020.100-44 key-10.2166/nh.2020.100-21 key-10.2166/nh.2020.100-43 Cardenas-Barrera (key-10.2166/nh.2020.100-9) 2013 key-10.2166/nh.2020.100-24 key-10.2166/nh.2020.100-46 key-10.2166/nh.2020.100-23 Nash (key-10.2166/nh.2020.100-34) 1970; 10 key-10.2166/nh.2020.100-26 key-10.2166/nh.2020.100-25 key-10.2166/nh.2020.100-47 key-10.2166/nh.2020.100-28 key-10.2166/nh.2020.100-27 key-10.2166/nh.2020.100-40 Liu (key-10.2166/nh.2020.100-30) 2019; 1187 key-10.2166/nh.2020.100-42 key-10.2166/nh.2020.100-41 |
References_xml | – year: 2016 ident: key-10.2166/nh.2020.100-20 article-title: Deep residual learning for image recognition doi: 10.1109/CVPR.2016.90 – ident: key-10.2166/nh.2020.100-42 doi: 10.1002/hyp.9472 – ident: key-10.2166/nh.2020.100-26 – volume: 28 start-page: 802 year: 2015 ident: key-10.2166/nh.2020.100-38 article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – ident: key-10.2166/nh.2020.100-40 doi: 10.2166/hydro.2001.0014 – ident: key-10.2166/nh.2020.100-22 doi: 10.3390/w10111543 – ident: key-10.2166/nh.2020.100-47 doi: 10.1016/j.eswa.2007.06.023 – start-page: 243 year: 2013 ident: key-10.2166/nh.2020.100-9 article-title: A neural network approach to multi-step-ahead, short-term wind speed forecasting – ident: key-10.2166/nh.2020.100-17 doi: 10.13031/2013.34915 – ident: key-10.2166/nh.2020.100-7 doi: 10.1016/0022-1694(84)90159-8 – ident: key-10.2166/nh.2020.100-27 doi: 10.2166/nh.2008.026 – ident: key-10.2166/nh.2020.100-1 doi: 10.2166/nh.2013.045 – ident: key-10.2166/nh.2020.100-5 doi: 10.2166/nh.2012.074 – ident: key-10.2166/nh.2020.100-44 doi: 10.5194/hess-16-231-2012 – ident: key-10.2166/nh.2020.100-28 doi: 10.1029/1998WR900018 – ident: key-10.2166/nh.2020.100-18 doi: 10.1016/j.jhydrol.2018.12.052 – volume: 24 start-page: 109 issue: 72 year: 2016 ident: key-10.2166/nh.2020.100-12 article-title: Modelling tourism demand to Spain with machine learning techniques. The impact of forecast horizon on model selection publication-title: Revista De Economia Aplicada – volume: 10 start-page: 0 issue: 3 year: 1970 ident: key-10.2166/nh.2020.100-34 article-title: River flow forecasting through conceptual models part I – a discussion of principles publication-title: Journal of Hydrology doi: 10.1016/0022-1694(70)90255-6 – ident: key-10.2166/nh.2020.100-39 doi: 10.2166/nh.2013.112 – ident: key-10.2166/nh.2020.100-24 doi: 10.1007/s11269-017-1874-4 – ident: key-10.2166/nh.2020.100-10 doi: 10.1002/hyp.1015 – ident: key-10.2166/nh.2020.100-11 doi: 10.3115/v1/D14-1179 – ident: key-10.2166/nh.2020.100-43 doi: 10.2166/nh.2010.015 – ident: key-10.2166/nh.2020.100-14 doi: 10.1080/02626669809492102 – volume: 1213 start-page: 042050 issue: 4 year: 2019 ident: key-10.2166/nh.2020.100-19 article-title: Temporal convolutional networks for anomaly detection in time series publication-title: Journal of Physics: Conference Series – ident: key-10.2166/nh.2020.100-8 doi: 10.1016/j.jpowsour.2019.227558 – ident: key-10.2166/nh.2020.100-46 doi: 10.1007/s00477-018-1560-y – ident: key-10.2166/nh.2020.100-23 doi: 10.1016/j.jhydrol.2018.09.064 – ident: key-10.2166/nh.2020.100-36 doi: 10.1016/0022-1694(92)90096-E – ident: key-10.2166/nh.2020.100-6 – ident: key-10.2166/nh.2020.100-25 doi: 10.1016/j.jhydrol.2020.124631 – volume: 1187 start-page: 042111 year: 2019 ident: key-10.2166/nh.2020.100-30 article-title: Anomaly detection for time series using temporal convolutional networks and Gaussian mixture model publication-title: Journal of Physics: Conference Series – ident: key-10.2166/nh.2020.100-13 doi: 10.1002/hyp.7072 – ident: key-10.2166/nh.2020.100-3 doi: 10.1080/00401706.1971.10488811 – year: 2019 ident: key-10.2166/nh.2020.100-33 article-title: Early recognition of sepsis with Gaussian process temporal convolutional networks and dynamic time warping publication-title: Machine Learning for Healthcare – ident: key-10.2166/nh.2020.100-2 doi: 10.1016/j.jhydrol.2010.06.033 – start-page: 147 year: 2017 ident: key-10.2166/nh.2020.100-32 article-title: Modeling user session and intent with an attention-based encoder-decoder architecture – ident: key-10.2166/nh.2020.100-21 doi: 10.1029/95WR01955 – ident: key-10.2166/nh.2020.100-37 doi: 10.1016/S0022-1694(96)03330-6 – volume: 31 start-page: 63 issue: 1 year: 2006 ident: key-10.2166/nh.2020.100-16 article-title: Coefficient of determination publication-title: Alphascript Publishing – start-page: 678 year: 2019 ident: key-10.2166/nh.2020.100-15 article-title: Knowledge-driven stock trend prediction and explanation via temporal convolutional network – ident: key-10.2166/nh.2020.100-4 doi: 10.2166/nh.2009.012 – ident: key-10.2166/nh.2020.100-31 doi: 10.1109/ACCESS.2020.2993874 – ident: key-10.2166/nh.2020.100-35 doi: 10.1016/j.knosys.2019.104932 – ident: key-10.2166/nh.2020.100-29 doi: 10.1111/j.1752-1688.2002.tb01544.x – ident: key-10.2166/nh.2020.100-41 doi: 10.1061/(ASCE)0733-9496(1995)121:6(499) – start-page: 494 year: 2019 ident: key-10.2166/nh.2020.100-45 article-title: Dadu river runoff forecasting via Seq2Seq |
SSID | ssj0026493 ssj0061028 |
Score | 2.4101734 |
Snippet | The Temporal Convolutional Network (TCN) and TCN combined with the Encoder-Decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both... |
SourceID | doaj unpaywall proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1136 |
SubjectTerms | artificial neural network Coders Concentration time deep learning encoder-decoder architecture Encoders-Decoders Forecasting High flow Horizon Hydrology Low flow Mathematical models Neural networks Precipitation Rain Rainfall Runoff Runoff forecasting Stability Stream flow Support vector machines temporal convolutional network |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yl_UiPnF9kYNehGI3r22OPhFBTy54K3niYcnKPpT998403UVB9OKpbQhtmJlk5msm3xByqkrufJCyKB1MNyFFKAz44cJxVwEkQkPCHd3HJ3U_FA8v8uVLqS_MCcv0wFlwFwCKsYhk6VzUAi5aey0t9wJWDBNVxNUX3NgSTOU1WKHbbPaTNUxnqXg-mcf6Sl0k3IJgTXrAN1_UUPZ_izO78_RmFh9mNPricu42yUYbK9LLPMYtshbSNum2ZctfFztkAkqmocmiawRMx5Ea-pzZpkb0epzeW8uCp6ec8E3BxAANB0_xFyy9TXiofVLchOZK4zJZi0I0SyfzNI4Rb4MzU8yQ3iXDu9vn6_uiLaIA4lZiVnBr2cCWzHvOnBbagAoGQvcNU1WlbOWZ6XvAXcqWsWJWCC-hzXoFsUPw3vE90knjFPYJ9SaWXobIpFEilExbMzDBV7a0ClAT75HzpThr1zKMY6GLUQ1IA2Vfp9caZY9EyT1yuur8lok1fu52hXpZdUE27KYBbKRubaT-y0Z65Gip1bqdotOaiYojMTJ-42yl6d_GcvAfYzkk6_i-nA94RDqzyTwcQ1wzsyeNCX8CO5T1cw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxMNTrQ30RP_G0Sh7qi7A0l01ymwcRW68UwUOkhb4t-bQPR_bc3in9985ks6cF6VN2w7As8z2ZyQwhR4rVzgcpK-ZA3IQUoTJghytXuwZCImQkzOh-XarzS_HlSl7tkeV4FwbLKkedmBW17xyekR9z0dTYx5axj-ufFU6NwuzqOELDlNEK_kNuMfaA7KNKFhOyf7JYfvs-6maF5jTnmTWIuVT1cGOPz5Q6Tpia4Lls4I6Nyq387_ifB9u0Nre_zWr1jyk6e0weFR-SfhqI_oTshfSUHJRx5te3z0gPxKchV9dlxNMuUkMvhi5UK3rapV-F4-BtORSCU0ADRMnBUzyapYuEl9376nPIK41jERcFL5f229TFiI_BmRusnH5OLs8WF6fnVRmuAGRQYlPV1vK5Zdz7mjsttAHSzIWeGa6aRtnGczPzEI8py2LDrRBewp71CnyK4L2rX5BJ6lJ4Sag3kXkZIpdGicC4tmZugm8sswqiqXpK3o_obF3pPI4DMFYtRCCI-zZdt4h7bKA8JUc74PXQcOP_YCdIlx0IdsnOG13_oy1C1850gwNImXNRC1i09lra2guwNiaqOCWHI1XbIro37V9Gm5J3O0rf9y-v7v_Ma_IQIYcKwEMy2fTb8AY8mY19W9jzD0Pr8tc priority: 102 providerName: ProQuest |
Title | The exploration of a Temporal Convolutional Network combined with Encoder-Decoder framework for runoff forecasting |
URI | https://www.proquest.com/docview/2483199400 https://iwaponline.com/hr/article-pdf/51/5/1136/775680/nh0511136.pdf https://doaj.org/article/19885750ccf9450c99d95b3d4eacaf6f |
UnpaywallVersion | publishedVersion |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2224-7955 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0061028 issn: 1998-9563 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2224-7955 dateEnd: 20241005 omitProxy: true ssIdentifier: ssj0061028 issn: 1998-9563 databaseCode: BENPR dateStart: 20080201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdd8tCndZ8spQt66F4Gjm1Zkq3HfqSUQkMZDXRPRp8LLNjBTVq6v34nWQnrGGOwJ9nyCcu-k-5OOv0OoWOeFdpYxpJMw3CjjNpEgh5OdKErcIm8IPkd3esZv5zTqzt2t4fOd2dhHuWqx4gI0_SiS-MfTFbGpSxPWeqzkKRlyXiVpc0ChMpXTODxCzTkDHzoARrOZzcnX8OGsoDxzEJCNdCENCkFY_0xPZJzDu3BRSQhVuCZYgr4_c-Mzv1Ns5JPj3K5_EX_XBwgu-15H3byfbJZq4n-8Ruo4_9-2iv0Mhqo-KRv9Brt2eYN2o-50hdPb1EHkoVtCN0LXMWtwxLf9hBXS3zWNg9RnOFu1keZY-gKuODWYL_ui6eNP0nfJec2lNhtI8QwmNC42zStc_7Sannvw7LfofnF9PbsMomZG4DHnK6TQilSqowYUxAtqJDA95KKXBJeVVxVhsjcgLPHVeYqoig1DOqU4WCwWGN08R4NmraxHxA20mWGWUeY5NRmRChZSmsqlSkOrloxQp-3bKt1hDX32TWWNbg3nsd1s6g9jz068wgd74hXPZrHn8lOPf93JB6CO1S03bc6Mq3OReWzm2ZaO0GhEMIIpgpDQZVJx90IHW2lp47zwn1NaFV4NGb_jk87ifpbXw7_ke4IDdbdxn4EE2mtxmh4Op3dfBmHJYZxHA8_AfaoETY |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtww0KLLYXup-lS30NYHuFSK8DqONz6gqsCipcCqqhaJW-pnOayS7T5A-3P9ts4kzrZIFTdOTiwnsmbG8_C8CNmTLLXOZ1nCLBw3kQmfaJDDiU1tDiYREhJ6dC_HcnQlvl5n11vkd5sLg2GVLU-sGbWrLN6RH3CRp1jHlrHPs18Jdo1C72rbQkPH1grusC4xFhM7zv36Dky4xeHZCeB7n_PT4eR4lMQuA7AfKZZJagwfGMadS7lVQmnY40CovuYyz6XJHdd9B4aJNCzk3AjhMpgzToJw9c7ZFP77hGyD2sFFh2wfDcffvreyQKL4rv3aCthKJtMmQ5D3pTwo0RXC6zCFezKxbh1wT9_trsqZXt_p6fQf0Xf6nDyLOiv90hDZC7Lly5ekG9un36xfkTkQG_V1NF-NaFoFqumkqXo1pcdVeRspHN7GTeA5BbCDVe4dxatgOiwxuX6enPh6pKENGqOgVdP5qqxCwEdv9QIjtV-Tq0cB8xvSKavSvyXU6cBc5gPPtBSecWX0QHuXG2YkWG9pj3xqwVnYWOkcG25MC7B4EPZFeVMg7LFgc4_sbRbPmgIf_192hHjZLMGq3PVENf9ZxENe9FWODU-ZtUEJGJRyKjOpEyDddJChR3ZbrBaRVSyKv4TdI_sbTD-0l3cP_-Yj6Y4mlxfFxdn4fIc8xa-a6MNd0lnOV_49aFFL8yGSKiU_Hvt0_AGKzy8v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Lb9Mw2BqdxLggnqJjgA_bBSmq6zhufJgQW1ttDKoJbdJuwU92qJLSx6b-RX4V35c4hUlot52cWE5kfU9__l6E7EuWWuezLGEW2E1kwica9HBiU5uDSYSEhB7dbxN5cim-XGVXW-R3mwuDYZWtTKwFtass3pH3uMhTrGPLWC_EsIjz4fjT7FeCHaTQ09q209CxzYI7rMuNxSSPM7--BXNucXg6BNwfcD4eXRyfJLHjAOxNimWSGsMHhnHnUm6VUBr2OxCqr7nMc2lyx3XfgZEiDQs5N0K4DOaMk6BovXM2hf8-ItuDVOWsQ7aPRpPz761ekKjKax-3AhGTybTJFuR9KXslukV4HbJwRz_WbQTunH13VuVMr2_1dPqPGhw_I0_j-ZV-bgjuOdny5QuyE1upX69fkjkQHvV1ZF-NdFoFqulFUwFrSo-r8iZSO7xNmiB0CigAC907itfCdFRiov08Gfp6pKENIKNwwqbzVVmFgI_e6gVGbb8ilw8C5tekU1alf0Oo04G5zAeeaSk848rogfYuN8xIsOTSLvnYgrOwseo5Nt-YFmD9IOyL8rpA2GPx5i7Z3yyeNcU-_r_sCPGyWYIVuuuJav6ziAxf9FWOzU-ZtUEJGJRyKjOpE6DpdJChS_ZarBZRbCyKv0TeJQcbTN-3l937f_OBPAYuKb6eTs7ekif4UROIuEc6y_nKv4MD1dK8j5RKyY-HZo4_mAIzaQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbp5pBT2_RBtyRBh_RS8NqWJdk65kkodOkhC-nJ6NmFLvLi7Cakv74jWbs0oZRCTrZlCcv-RpoZa_QNQse8qLSxjGWFhuFGGbWZBD2c6Uo34BIFQQorul-n_GpGv9ywmx10vt0Lcy-XA0dEnKbnfZ6-YLY0LmdlzvKQhSSva8abIvdzEKpQMIHbL9AuZ-BDj9DubPrt5HtcUBYwnllMqAaakGa1YGzYpkdKzqE9uIgkxgo8UkyRv_-R0bm39kv5cC8Xiz_0z-UrZDc9H8JOfk7WKzXRv56QOj731V6jl8lAxSdDo320Y_0btJdypc8f3qIeJAvbGLoXUcWdwxJfDxRXC3zW-bskznA1HaLMMXQFXHBrcPjviy982EnfZ-c2HrHbRIhhMKFxv_adc-HUankbwrLfodnlxfXZVZYyNwDGnK6ySilSq4IYUxEtqJCAe01FKQlvGq4aQ2RpwNnjqnANUZQaBmXKcDBYrDG6eo9GvvP2A8JGusIw6wiTnNqCCCVraU2jCsXBVavG6PMGtlYnWvOQXWPRgnsTMG79vA0YB3bmMTreVl4ObB5_r3Ya8N9WCRTcsaDrf7QJtLYUTchuWmjtBIWDEEYwVRkKqkw67sboYCM9bZoXbltCmyqwMYdnfNpK1L_68vE_6x2g0apf20MwkVbqKI2A3xtfDqc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+exploration+of+a+Temporal+Convolutional+Network+combined+with+Encoder-Decoder+framework+for+runoff+forecasting&rft.jtitle=Hydrology+research&rft.au=Lin%2C+Kangling&rft.au=Sheng%2C+Sheng&rft.au=Zhou%2C+Yanlai&rft.au=Liu%2C+Feng&rft.date=2020-10-01&rft.pub=IWA+Publishing&rft.issn=1998-9563&rft.eissn=2224-7955&rft.volume=51&rft.issue=5&rft.spage=1136&rft_id=info:doi/10.2166%2Fnh.2020.100&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-1277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-1277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-1277&client=summon |