WearMoCap: multimodal pose tracking for ubiquitous robot control using a smartwatch

We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartpho...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in robotics and AI Vol. 11; p. 1478016
Main Authors Weigend, Fabian C., Kumar, Neelesh, Aran, Oya, Ben Amor, Heni
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2024
Subjects
Online AccessGet full text
ISSN2296-9144
2296-9144
DOI10.3389/frobt.2024.1478016

Cover

Abstract We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices. Further, we discuss real-robot applications of underlying works and evaluate WearMoCap in handover and teleoperation tasks, resulting in performances that are within 2 cm of the accuracy of the gold-standard motion capture system. Our Upper Arm mode provides the most accurate wrist position estimates with a Root Mean Squared prediction error of 6.79 cm. To evaluate WearMoCap in more scenarios and investigate strategies to mitigate sensor drift, we publish the WearMoCap system with thorough documentation as open source. The system is designed to foster future research in smartwatch-based motion capture for robotics applications where ubiquity matters. www.github.com/wearable-motion-capture .
AbstractList We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices. Further, we discuss real-robot applications of underlying works and evaluate WearMoCap in handover and teleoperation tasks, resulting in performances that are within 2 cm of the accuracy of the gold-standard motion capture system. Our Upper Arm mode provides the most accurate wrist position estimates with a Root Mean Squared prediction error of 6.79 cm. To evaluate WearMoCap in more scenarios and investigate strategies to mitigate sensor drift, we publish the WearMoCap system with thorough documentation as open source. The system is designed to foster future research in smartwatch-based motion capture for robotics applications where ubiquity matters. www.github.com/wearable-motion-capture .
We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices. Further, we discuss real-robot applications of underlying works and evaluate WearMoCap in handover and teleoperation tasks, resulting in performances that are within 2 cm of the accuracy of the gold-standard motion capture system. Our Upper Arm mode provides the most accurate wrist position estimates with a Root Mean Squared prediction error of 6.79 cm. To evaluate WearMoCap in more scenarios and investigate strategies to mitigate sensor drift, we publish the WearMoCap system with thorough documentation as open source. The system is designed to foster future research in smartwatch-based motion capture for robotics applications where ubiquity matters. www.github.com/wearable-motion-capture.We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices. Further, we discuss real-robot applications of underlying works and evaluate WearMoCap in handover and teleoperation tasks, resulting in performances that are within 2 cm of the accuracy of the gold-standard motion capture system. Our Upper Arm mode provides the most accurate wrist position estimates with a Root Mean Squared prediction error of 6.79 cm. To evaluate WearMoCap in more scenarios and investigate strategies to mitigate sensor drift, we publish the WearMoCap system with thorough documentation as open source. The system is designed to foster future research in smartwatch-based motion capture for robotics applications where ubiquity matters. www.github.com/wearable-motion-capture.
We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices. Further, we discuss real-robot applications of underlying works and evaluate WearMoCap in handover and teleoperation tasks, resulting in performances that are within 2 cm of the accuracy of the gold-standard motion capture system. Our Upper Arm mode provides the most accurate wrist position estimates with a Root Mean Squared prediction error of 6.79 cm. To evaluate WearMoCap in more scenarios and investigate strategies to mitigate sensor drift, we publish the WearMoCap system with thorough documentation as open source. The system is designed to foster future research in smartwatch-based motion capture for robotics applications where ubiquity matters. www.github.com/wearable-motion-capture.
Author Kumar, Neelesh
Weigend, Fabian C.
Aran, Oya
Ben Amor, Heni
Author_xml – sequence: 1
  givenname: Fabian C.
  surname: Weigend
  fullname: Weigend, Fabian C.
– sequence: 2
  givenname: Neelesh
  surname: Kumar
  fullname: Kumar, Neelesh
– sequence: 3
  givenname: Oya
  surname: Aran
  fullname: Aran, Oya
– sequence: 4
  givenname: Heni
  surname: Ben Amor
  fullname: Ben Amor, Heni
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39831285$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFuFSEUhompsbX2BVwYlm7ulQPDAO7MTdUmNS7UuCRnGKZOZYYpMGn69nJ7r41LVxDynf_8-XhJTuY4e0JeA9sKoc27IcWubDnjzRYapRm0z8gZ56bdGGiak3_up-Qi51vGGEjdCKVekFNhtACu5Rn59tNj-hJ3uLyn0xrKOMUeA11i9rQkdL_H-YYOMdG1G-_WscQ107o5FuriXFIMdM17BGmeMJV7LO7XK_J8wJD9xfE8Jz8-Xn7ffd5cf_10tftwvXGibcpGoOcDcuDMIzItlQEtjTJSOd47IWtHA60HHIQQxoDyXAOaTjnnpPRMnJOrQ24f8dYuaawNHmzE0T4-xHRja6XRBW-NFB361vctEw1gXd2idso3g1HAYKhZ4pC1zgs-3GMIT4HA7N64fTRu98bt0XidenuYWlK8W30udhqz8yHg7KspK0AqKQGYquibI7p2k--f0v9-RQX4AXAp5pz88D8F_gBvU51P
Cites_doi 10.1016/j.jbiomech.2020.1098202020.109820
10.17667/riim.2018.1/13
10.1109/MeMeA.2018.8438623
10.1109/tbme.2023.3275775
10.1109/jiot.2021.3119328
10.1109/ICRA40945.2020.9196664
10.1007/s10514-019-09889-6
10.1145/3586183.3606821
10.1145/3272127.3275108
10.1016/j.cviu.2021.103275
10.1155/2021/6628320
10.1109/TRO.2023.3236952
10.1145/3570731
10.1109/JSEN.2020.3001635
10.1109/ICRA57147.2024.10610805
10.1109/access.2024.3350338ACCESS.2024.3350338
10.1145/3597623
10.1007/s12369-023-01095-w
10.1109/IROS.2017.8206016
ContentType Journal Article
Copyright Copyright © 2025 Weigend, Kumar, Aran and Ben Amor.
Copyright_xml – notice: Copyright © 2025 Weigend, Kumar, Aran and Ben Amor.
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.3389/frobt.2024.1478016
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-9144
ExternalDocumentID oai_doaj_org_article_953bae6ed60341a3ae6a8c7e4f97101f
10.3389/frobt.2024.1478016
39831285
10_3389_frobt_2024_1478016
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
PGMZT
RPM
ACXDI
IAO
ICD
IEA
IPNFZ
ISR
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c364t-3ae2fa2120eaa0857918597957c2dc35983916e1af3339917e281a9b7ccc55e03
IEDL.DBID UNPAY
ISSN 2296-9144
IngestDate Fri Oct 03 12:31:44 EDT 2025
Sun Oct 26 04:06:35 EDT 2025
Fri Sep 05 13:00:58 EDT 2025
Thu Jan 30 12:29:58 EST 2025
Wed Oct 01 04:23:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords smartwatch
human-robot interaction
IMU motion capture
teleoperation
drone control
wearables
motion capture
Language English
License Copyright © 2025 Weigend, Kumar, Aran and Ben Amor.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-3ae2fa2120eaa0857918597957c2dc35983916e1af3339917e281a9b7ccc55e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3389/frobt.2024.1478016
PMID 39831285
PQID 3157551107
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_953bae6ed60341a3ae6a8c7e4f97101f
unpaywall_primary_10_3389_frobt_2024_1478016
proquest_miscellaneous_3157551107
pubmed_primary_39831285
crossref_primary_10_3389_frobt_2024_1478016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in robotics and AI
PublicationTitleAlternate Front Robot AI
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Roetenberg (B23) 2009; 1
Li (B13) 2021; 9
Prayudi (B20) 2012
Shin (B24) 2023; 70
Weigend (B33)
Hindle (B8) 2021; 2021
Macchini (B15) 2020
Nagymáté (B18) 2018; 5
Walker (B28) 2023; 12
Liu (B14) 2023
Topley (B25) 2020; 106
Gal (B6) 2016
Villani (B27); 20
Wang (B29) 2016
B31
Joukov (B10) 2017
Robinson (B22) 2023; 12
Beange (B1) 2018
Huang (B9) 2018; 37
Yang (B34) 2016
Wei (B30) 2021
Raghavendra (B21) 2017
Villani (B26); 44
DeVrio (B5) 2023
Mollyn (B17) 2023
Lee (B12) 2024
B3
Darvish (B2) 2023; 39
Desmarais (B4) 2021; 212
Lee (B11) 2015
Malleson (B16) 2017
Hauser (B7) 2024
Noh (B19) 2024; 12
Weigend (B32) 2024
References_xml – volume: 106
  start-page: 109820
  year: 2020
  ident: B25
  article-title: A comparison of currently available optoelectronic motion capture systems
  publication-title: J. Biomechanics
  doi: 10.1016/j.jbiomech.2020.1098202020.109820
– volume: 5
  start-page: 1
  year: 2018
  ident: B18
  article-title: Application of optitrack motion capture systems in human movement analysis: a systematic literature review
  publication-title: Recent Innovations Mechatronics
  doi: 10.17667/riim.2018.1/13
– start-page: 389
  year: 2016
  ident: B34
  article-title: Neural learning enhanced teleoperation control of baxter robot using imu based motion capture
– start-page: 1
  volume-title: 2018 IEEE international symposium on medical measurements and applications (MeMeA)
  year: 2018
  ident: B1
  article-title: Evaluation of wearable imu performance for orientation estimation and motion tracking
  doi: 10.1109/MeMeA.2018.8438623
– volume: 70
  start-page: 3082
  year: 2023
  ident: B24
  article-title: Markerless motion tracking with noisy video and imu data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2023.3275775
– ident: B3
– start-page: 4193
  volume-title: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS)
  year: 2016
  ident: B29
  article-title: AprilTag 2: efficient and robust fiducial detection
– volume: 9
  start-page: 8953
  year: 2021
  ident: B13
  article-title: Real-time human motion capture based on wearable inertial sensor networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/jiot.2021.3119328
– start-page: 3811
  ident: B33
  article-title: Anytime, anywhere: human arm pose from smartwatch data for ubiquitous robot control and teleoperation
– start-page: 1091
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  year: 2024
  ident: B12
  article-title: Mocap everyone everywhere: lightweight motion capture with smartwatches and a head-mounted camera
– start-page: 10212
  volume-title: 2020 IEEE international conference on robotics and automation (ICRA)
  year: 2020
  ident: B15
  article-title: Hand-worn haptic interface for drone teleoperation
  doi: 10.1109/ICRA40945.2020.9196664
– volume: 44
  start-page: 601
  ident: B26
  article-title: Humans interacting with multi-robot systems: a natural affect-based approach
  publication-title: Aut. Robots
  doi: 10.1007/s10514-019-09889-6
– volume-title: Proceedings of the 36th annual ACM symposium on user interface software and technology
  year: 2023
  ident: B5
  article-title: Smartposer: arm pose estimation with a smartphone and smartwatch using uwb and imu data
  doi: 10.1145/3586183.3606821
– volume: 37
  start-page: 1
  year: 2018
  ident: B9
  article-title: Deep inertial poser: learning to reconstruct human pose from sparse inertial measurements in real time
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/3272127.3275108
– volume: 212
  start-page: 103275
  year: 2021
  ident: B4
  article-title: A review of 3d human pose estimation algorithms for markerless motion capture
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103275
– volume: 2021
  start-page: 6628320
  year: 2021
  ident: B8
  article-title: Inertial-based human motion capture: a technical summary of current processing methodologies for spatiotemporal and kinematic measures
  publication-title: Appl. Bionics Biomechanics
  doi: 10.1155/2021/6628320
– start-page: 449
  year: 2017
  ident: B16
  article-title: Real-time full-body motion capture from video and imus
– start-page: 1
  year: 2023
  ident: B17
  article-title: Imuposer: full-body pose estimation using imus in phones, watches, and earbuds
– start-page: 6126
  volume-title: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
  year: 2015
  ident: B11
  article-title: Smartwatch-based driver alertness monitoring with wearable motion and physiological sensor
– start-page: 670
  year: 2012
  ident: B20
  article-title: Design and implementation of imu-based human arm motion capture system
– ident: B31
– start-page: 155
  year: 2017
  ident: B21
  article-title: Design and development of a real-time, low-cost imu based human motion capture system
– start-page: 120
  year: 2023
  ident: B14
  article-title: Real-time tracking of smartwatch orientation and location by multitask learning
– volume: 1
  start-page: 1
  year: 2009
  ident: B23
  article-title: Xsens mvn: full 6dof human motion tracking using miniature inertial sensors
  publication-title: Xsens Motion Technol. BV, Tech. Rep.
– volume: 39
  start-page: 1706
  year: 2023
  ident: B2
  article-title: Teleoperation of humanoid robots: a survey
  publication-title: IEEE Trans. Robotics
  doi: 10.1109/TRO.2023.3236952
– volume: 12
  start-page: 1
  year: 2023
  ident: B22
  article-title: Robotic vision for human-robot interaction and collaboration: a survey and systematic review
  publication-title: J. Hum.-Robot Interact.
  doi: 10.1145/3570731
– volume: 20
  start-page: 13047
  ident: B27
  article-title: Wearable devices for the assessment of cognitive effort for human–robot interaction
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2020.3001635
– start-page: 17800
  volume-title: 2024 IEEE international conference on robotics and automation (ICRA)
  year: 2024
  ident: B32
  article-title: iRoCo: intuitive robot control from anywhere using a smartwatch
  doi: 10.1109/ICRA57147.2024.10610805
– start-page: 7152
  volume-title: 2021 43rd annual international conference of the IEEE engineering in medicine and biology society (EMBC)
  year: 2021
  ident: B30
  article-title: Real-time limb motion tracking with a single imu sensor for physical therapy exercises
– start-page: 1050
  year: 2016
  ident: B6
  article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning
– volume: 12
  start-page: 5684
  year: 2024
  ident: B19
  article-title: A decade of progress in human motion recognition: a comprehensive survey from 2010 to 2020
  publication-title: IEEE Access
  doi: 10.1109/access.2024.3350338ACCESS.2024.3350338
– volume: 12
  start-page: 1
  year: 2023
  ident: B28
  article-title: Virtual, augmented, and mixed reality for human-robot interaction: a survey and virtual design element taxonomy
  publication-title: J. Hum.-Robot Interact.
  doi: 10.1145/3597623
– year: 2024
  ident: B7
  article-title: Analysis and perspectives on the ana avatar xprize competition
  publication-title: Int. J. Soc. Robotics
  doi: 10.1007/s12369-023-01095-w
– start-page: 1965
  volume-title: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS)
  year: 2017
  ident: B10
  article-title: Human motion estimation on lie groups using imu measurements
  doi: 10.1109/IROS.2017.8206016
SSID ssj0001584377
Score 2.252448
Snippet We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control....
SourceID doaj
unpaywall
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1478016
SubjectTerms drone control
human-robot interaction
motion capture
smartwatch
teleoperation
wearables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VXFoOVUtpm1KQK_VGIzZ2HMfcyqoIVdpeCoKbNfEDkCBZdhMh_j3jJKy2UiV66C2K8ph8Y89848yMAb76ssydK2yaIVdpjqhTDI6nDrVVopK5LWPt8OxXcXKW_7yQF2tbfcWcsKE98ADcgZaiQl94V0zI4KKgYyyt8nnQ5ByzEK3vpNRrwdRQH1zmQqmhSoaiMH0QFk0Vcyd5TsZBkV0u_vBEfcP-v7HMTXjZ1XN8uMebmzXPc_wGXo-UkX0fRH0LL3y9BZtrjQTfwe9zGrCzZorzQ9anCN42jm6ZN0vP2gXauB7OiJ6yrrq-62gSd0tGkjYtG1PVWcx_v2TIlrcEyT3Z56ttODv-cTo9ScftElIrirxNCRoekFzRxCPGxvWafLFWWirLnY2d-mKRrc8wCEG0JFOelxnqSllrpfQT8R426qb2H4EJ5Yg4EPMLxLcU58i5C0FilhUF6ZwnsP8EnZkPXTEMRRMRaNMDbSLQZgQ6gaOI7urK2NG6P0F6NqOezXN6TuDLk24MzYD4WwNrT3AZkRHllDGOTeDDoLTVqwR9NHlgmcC3lRb_QeJP_0PiHXgVnzms13yGjXbR-V1iMG211w_WRxaB7Ys
  priority: 102
  providerName: Directory of Open Access Journals
Title WearMoCap: multimodal pose tracking for ubiquitous robot control using a smartwatch
URI https://www.ncbi.nlm.nih.gov/pubmed/39831285
https://www.proquest.com/docview/3157551107
https://doi.org/10.3389/frobt.2024.1478016
https://doaj.org/article/953bae6ed60341a3ae6a8c7e4f97101f
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2296-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001584377
  issn: 2296-9144
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA98KaER2UkbpB242fMrVRUFVIrJFhRTtHEsQG1TZbdRBX8esZJuloQSOUYy5bj8Yznsz3zGeCFz3NZVdqlGXKTSkSbYqh4WqF1RpRKujzmDh8d68OZfHeiTkaanJgLs3Z_T5snuxsWTRlDHrkkmza0nOrrsKEV4e4JbMyO3-99jq_HcavJaqUcsmL-0fA3z9MT9P8NVW7Cja6e448LPDtb8zQHt4cni5Y9QWEMMDnd6dpyx_38g77xaoO4A7dGwMn2Bg25C9d8fQ8212gI78OHT6TuR80-zl-zPsDwvKmoybxZetYu0MXTdEbglnXlt-8dLQHdklFfTcvGQHcWo-e_MGTLc9LEC1rdvz6A2cHbj_uH6fjYQuqElm0q0POA5MimHjHS3lvy5NZYZRyvXOT5iym6PsMgBIGazHieZ2hL45xTyk_FQ5jUTe0fAROmIthBuDEQWjOcI-dVCAqzTGvSGJ7Ay8uJKOYDp0ZBe5EoqqIXVRFFVYyiSuBNnKtVzciH3ReQhIvRvAqrRIle-0pPyS0jDUZj7oyXwRKEykICzy9nuiD7iZciWHsSVyEyAqwq7oIT2BpUYNWVoEGT_1YJvFrpxBX--PH_VX8CN-PncK7zFCbtovPPCOm05XZ_QrA9Kvovhmf4vg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA98C6EAjISN0jZ-Bn3ViqqCqkVEqwop2ji2BTRJstuogp-PeMkXS0IpHKMZcvxeMbz2Z75DPDC57msKu3SDLlJJaJNMVQ8rdA6I0olXR5zh4-O9eFMvjtRJyNNTsyFWbu_p82TfR0WTRlDHrkkmza0nOrrsKEV4e4JbMyO3-99jq_HcavJaqUcsmL-0fA3z9MT9P8NVW7Cja6e448LPDtb8zQHt4cni5Y9QWEMMPm207Xljvv5B33j1QZxB26NgJPtDRpyF675-h5srtEQ3ocPn0jdj5p9nO-yPsDwvKmoybxZetYu0MXTdEbglnXl1-8dLQHdklFfTcvGQHcWo-e_MGTLc9LEC1rdTx_A7ODtx_3DdHxsIXVCyzYV6HlAcmRTjxhp7y15cmusMo5XLvL8xRRdn2EQgkBNZjzPM7Slcc4p5adiCyZ1U_tHwISpCHYQbgyE1gznyHkVgsIs05o0hifw8nIiivnAqVHQXiSKquhFVURRFaOoEngT52pVM_Jh9wUk4WI0r8IqUaLXvtJTcstIg9GYO-NlsAShspDA88uZLsh-4qUI1p7EVYiMAKuKu-AEHg4qsOpK0KDJf6sEXq104gp__Pj_qm_Dzfg5nOs8gUm76PxTQjpt-WxU8V-3ZPfJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WearMoCap%3A+multimodal+pose+tracking+for+ubiquitous+robot+control+using+a+smartwatch&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Weigend%2C+Fabian+C.&rft.au=Kumar%2C+Neelesh&rft.au=Aran%2C+Oya&rft.au=Ben+Amor%2C+Heni&rft.date=2024&rft.issn=2296-9144&rft.eissn=2296-9144&rft.volume=11&rft_id=info:doi/10.3389%2Ffrobt.2024.1478016&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_frobt_2024_1478016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon