Bayesian-Estimation-Algorithm-Based Gas Detection Modules

In this study, we develop two types of gas detection module using multiple sensors and applied them to the intelligent building system. Bayesian estimation algorithm is applied in the competitive gas detection module and complementary gas detection module, and the proposed algorithm is implemented f...

Full description

Saved in:
Bibliographic Details
Published inSensors and materials Vol. 25; no. 6; pp. 397 - 402
Main Authors Su, Kuo-Lan, Liao, Yi-Lin, Shiau, Sheng-Wen, Guo, Hung Jr
Format Journal Article
LanguageEnglish
Published 2013
Subjects
Online AccessGet full text
ISSN0914-4935
2435-0869
DOI10.18494/SAM.2013.872

Cover

Abstract In this study, we develop two types of gas detection module using multiple sensors and applied them to the intelligent building system. Bayesian estimation algorithm is applied in the competitive gas detection module and complementary gas detection module, and the proposed algorithm is implemented for various gas sensor combination methods. In the competitive gas detection module, we use two gas sensors to improve the accuracy of the proposed algorithm. In the complementary gas detection module, we use an NH sub(3) sensor, an air pollution sensor, an alcohol sensor, a HS sensor, a smoke sensor, a CO sensor, an LPG sensor, and a natural gas sensor. The module classifies various unknown gases using Bayesian estimation algorithm. The controller of the two gas detection modules is a Holtek microchip. The modules can communicate with the supervised computer via a wired series interface or a wireless RF interface and alarm users using the voice module. Finally, we present some experimental results to measure known and unknown gases using the two gas detection modules.
AbstractList In this study, we develop two types of gas detection module using multiple sensors and applied them to the intelligent building system. Bayesian estimation algorithm is applied in the competitive gas detection module and complementary gas detection module, and the proposed algorithm is implemented for various gas sensor combination methods. In the competitive gas detection module, we use two gas sensors to improve the accuracy of the proposed algorithm. In the complementary gas detection module, we use an NH sub(3) sensor, an air pollution sensor, an alcohol sensor, a HS sensor, a smoke sensor, a CO sensor, an LPG sensor, and a natural gas sensor. The module classifies various unknown gases using Bayesian estimation algorithm. The controller of the two gas detection modules is a Holtek microchip. The modules can communicate with the supervised computer via a wired series interface or a wireless RF interface and alarm users using the voice module. Finally, we present some experimental results to measure known and unknown gases using the two gas detection modules.
Author Su, Kuo-Lan
Liao, Yi-Lin
Guo, Hung Jr
Shiau, Sheng-Wen
Author_xml – sequence: 1
  givenname: Kuo-Lan
  surname: Su
  fullname: Su, Kuo-Lan
– sequence: 2
  givenname: Yi-Lin
  surname: Liao
  fullname: Liao, Yi-Lin
– sequence: 3
  givenname: Sheng-Wen
  surname: Shiau
  fullname: Shiau, Sheng-Wen
– sequence: 4
  givenname: Hung
  surname: Guo
  middlename: Jr
  fullname: Guo, Hung Jr
BookMark eNqFkL1PwzAQxT0UiVI6sndkcbDjjzhjW0pBasUAzNbFvUCQk5Q4Eep_j0uRGBiYbrj37n7vXZBR0zZIyBVnCTcylzdP822SMi4Sk6UjMmY5l1TmQp2TaQjvjDFuFNOpHpN8AQcMFTR0Ffqqhr5qGzr3r21X9W81XUDA3WwNYXaLPbrjdrZtd4PHcEnOSvABpz9zQl7uVs_Le7p5XD8s5xvqhJY9FVAU4HbocscloAFhIFNZlmuVOl7y0jAlJFNGFkIWmrnIadAZJUpkuXFiQpLT3aHZw-ETvLf7LpJ2B8uZ_c5rA9T2mNfGvNFwfTLsu_ZjwNDbugoOvYcG2yFYruN3KVMh_pcqnXEuuWZRSk9S17UhdFj-pYit_1J8AcTCdb8
ContentType Journal Article
DBID AAYXX
CITATION
7TV
C1K
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.18494/SAM.2013.872
DatabaseName CrossRef
Pollution Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Pollution Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Pollution Abstracts
Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 402
ExternalDocumentID 10.18494/sam.2013.872
10_18494_SAM_2013_872
GroupedDBID 123
AAYXX
ADBBV
ADMLS
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
FRP
GROUPED_DOAJ
OK1
TUS
7TV
C1K
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c364t-3abbacdec9c14ae8a38a75779652c1f1f805340584b34b60c4938ec853fe098c3
IEDL.DBID UNPAY
ISSN 0914-4935
2435-0869
IngestDate Mon Sep 15 08:17:47 EDT 2025
Thu Oct 02 07:38:02 EDT 2025
Tue Oct 07 09:25:29 EDT 2025
Tue Jul 01 02:37:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-3abbacdec9c14ae8a38a75779652c1f1f805340584b34b60c4938ec853fe098c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://sensors.myu-group.co.jp/sm_pdf/SM932.pdf
PQID 1567114160
PQPubID 23462
PageCount 6
ParticipantIDs unpaywall_primary_10_18494_sam_2013_872
proquest_miscellaneous_1677944233
proquest_miscellaneous_1567114160
crossref_primary_10_18494_SAM_2013_872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-00-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationTitle Sensors and materials
PublicationYear 2013
SSID ssj0001850626
Score 1.8926567
Snippet In this study, we develop two types of gas detection module using multiple sensors and applied them to the intelligent building system. Bayesian estimation...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 397
SubjectTerms Air pollution
Algorithms
Bayesian analysis
Construction
Gas sensors
Modules
Natural gas
Sensors
Title Bayesian-Estimation-Algorithm-Based Gas Detection Modules
URI https://www.proquest.com/docview/1567114160
https://www.proquest.com/docview/1677944233
https://sensors.myu-group.co.jp/sm_pdf/SM932.pdf
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  issn: 0914-4935
  databaseCode: DOA
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0001850626
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3SzaH0kKZfZEMbXCjNSV7bkmXpuPmmsKEhWUhPRpLHbdpde1nblO2v73h3nY8GSnuyD4KR9UbMG6z3BPBBRkmU6wxZgtYyoW3OFMaSaWE4D3nGMW-1w6NzeTYWn67j6w0IOi1MRc1bOa_86aJhna7B_z4bVNN0luWDyxHxDZ_ensCmjIl992BzfP55-GVpqRcKira8UzMiFsCIreu1raYSWgwq00rPQ-6rJHpYhu645dOmmJnFTzOZ3CszJ8_hopvg6nTJD7-pre9-_eHd-D9fsA1ba87pDVdJ8gI2sHgJz-45Eb4CfWAW2Oop2THt-ZWckQ0nX8v5Tf1tyg6o1mXeqam8I6yXh7cKb1RmzQSr1zA-Ob46PGPrWxWY41LUjBtrjcvQaRcKg8pwZZI4SbSMIxfmYa5oXxKNU8JyYWXgaEkVOirrOQZaOf4GekVZ4A54Os50EFmMNTdC8UAHaMLYEEOgZ4KqDx-7RU5nK_OMtG06WjTSy-EobdFICY0-vO8gSCm9238WpsCyqVJqLxNq2UIZ_GWMpNkL4oW8D_u3-D2OSPjfRtz955FvoVfPG3xH3KO2e8uefW-ddL8BRczbgA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3SzaH0kCb9IFva4EJpT_LalixLx02TNAQ2tKQL6clI8jhfu_aytimbX5_x7jpJWyjtyT4IRtYbMW-w3hPABxklUa4zZAlay4S2OVMYS6aF4TzkGce81Q6PTuXxWJycx-cbEHRamIqat3Je-dNFwzpdg389G1TTdJblg7MR8Q2f3p7ApoyJffdgc3z6dfhjaakXCoq2vFMzIhbAiK3rta2mEloMKtNKz0PuqyT6tQw9cMunTTEzi59mMnlUZo6ew7dugqvTJTd-U1vf3f7m3fg_X7ANW2vO6Q1XSbIDG1i8gGePnAhfgt43C2z1lOyQ9vxKzsiGk4tyflVfTtk-1brM-2Iq7wDr5eGtwhuVWTPB6hWMjw6_fz5m61sVmONS1Iwba43L0GkXCoPKcGWSOEm0jCMX5mGuaF8SjVPCcmFl4GhJFToq6zkGWjn-GnpFWeAueDrOdBBZjDU3QvFAB2jC2BBDoGeCqg8fu0VOZyvzjLRtOlo00rPhKG3RSAmNPrzvIEgpvdt_FqbAsqlSai8TatlCGfxljKTZC-KFvA-f7vH7MyLhfx_xzT-PfAu9et7gO-Ietd1bp9sdJkzaiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian-Estimation-Algorithm-Based+Gas+Detection+Modules&rft.jtitle=Sensors+and+materials&rft.date=2013&rft.issn=0914-4935&rft.spage=397&rft_id=info:doi/10.18494%2FSAM.2013.872&rft.externalDBID=n%2Fa&rft.externalDocID=10_18494_SAM_2013_872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-4935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-4935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-4935&client=summon