Bayesian-Estimation-Algorithm-Based Gas Detection Modules
In this study, we develop two types of gas detection module using multiple sensors and applied them to the intelligent building system. Bayesian estimation algorithm is applied in the competitive gas detection module and complementary gas detection module, and the proposed algorithm is implemented f...
Saved in:
| Published in | Sensors and materials Vol. 25; no. 6; pp. 397 - 402 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0914-4935 2435-0869 |
| DOI | 10.18494/SAM.2013.872 |
Cover
| Abstract | In this study, we develop two types of gas detection module using multiple sensors and applied them to the intelligent building system. Bayesian estimation algorithm is applied in the competitive gas detection module and complementary gas detection module, and the proposed algorithm is implemented for various gas sensor combination methods. In the competitive gas detection module, we use two gas sensors to improve the accuracy of the proposed algorithm. In the complementary gas detection module, we use an NH sub(3) sensor, an air pollution sensor, an alcohol sensor, a HS sensor, a smoke sensor, a CO sensor, an LPG sensor, and a natural gas sensor. The module classifies various unknown gases using Bayesian estimation algorithm. The controller of the two gas detection modules is a Holtek microchip. The modules can communicate with the supervised computer via a wired series interface or a wireless RF interface and alarm users using the voice module. Finally, we present some experimental results to measure known and unknown gases using the two gas detection modules. |
|---|---|
| AbstractList | In this study, we develop two types of gas detection module using multiple sensors and applied them to the intelligent building system. Bayesian estimation algorithm is applied in the competitive gas detection module and complementary gas detection module, and the proposed algorithm is implemented for various gas sensor combination methods. In the competitive gas detection module, we use two gas sensors to improve the accuracy of the proposed algorithm. In the complementary gas detection module, we use an NH sub(3) sensor, an air pollution sensor, an alcohol sensor, a HS sensor, a smoke sensor, a CO sensor, an LPG sensor, and a natural gas sensor. The module classifies various unknown gases using Bayesian estimation algorithm. The controller of the two gas detection modules is a Holtek microchip. The modules can communicate with the supervised computer via a wired series interface or a wireless RF interface and alarm users using the voice module. Finally, we present some experimental results to measure known and unknown gases using the two gas detection modules. |
| Author | Su, Kuo-Lan Liao, Yi-Lin Guo, Hung Jr Shiau, Sheng-Wen |
| Author_xml | – sequence: 1 givenname: Kuo-Lan surname: Su fullname: Su, Kuo-Lan – sequence: 2 givenname: Yi-Lin surname: Liao fullname: Liao, Yi-Lin – sequence: 3 givenname: Sheng-Wen surname: Shiau fullname: Shiau, Sheng-Wen – sequence: 4 givenname: Hung surname: Guo middlename: Jr fullname: Guo, Hung Jr |
| BookMark | eNqFkL1PwzAQxT0UiVI6sndkcbDjjzhjW0pBasUAzNbFvUCQk5Q4Eep_j0uRGBiYbrj37n7vXZBR0zZIyBVnCTcylzdP822SMi4Sk6UjMmY5l1TmQp2TaQjvjDFuFNOpHpN8AQcMFTR0Ffqqhr5qGzr3r21X9W81XUDA3WwNYXaLPbrjdrZtd4PHcEnOSvABpz9zQl7uVs_Le7p5XD8s5xvqhJY9FVAU4HbocscloAFhIFNZlmuVOl7y0jAlJFNGFkIWmrnIadAZJUpkuXFiQpLT3aHZw-ETvLf7LpJ2B8uZ_c5rA9T2mNfGvNFwfTLsu_ZjwNDbugoOvYcG2yFYruN3KVMh_pcqnXEuuWZRSk9S17UhdFj-pYit_1J8AcTCdb8 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7TV C1K 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.18494/SAM.2013.872 |
| DatabaseName | CrossRef Pollution Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Pollution Abstracts Environmental Sciences and Pollution Management Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Pollution Abstracts Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 402 |
| ExternalDocumentID | 10.18494/sam.2013.872 10_18494_SAM_2013_872 |
| GroupedDBID | 123 AAYXX ADBBV ADMLS AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION FRP GROUPED_DOAJ OK1 TUS 7TV C1K 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c364t-3abbacdec9c14ae8a38a75779652c1f1f805340584b34b60c4938ec853fe098c3 |
| IEDL.DBID | UNPAY |
| ISSN | 0914-4935 2435-0869 |
| IngestDate | Mon Sep 15 08:17:47 EDT 2025 Thu Oct 02 07:38:02 EDT 2025 Tue Oct 07 09:25:29 EDT 2025 Tue Jul 01 02:37:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-3abbacdec9c14ae8a38a75779652c1f1f805340584b34b60c4938ec853fe098c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://sensors.myu-group.co.jp/sm_pdf/SM932.pdf |
| PQID | 1567114160 |
| PQPubID | 23462 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_18494_sam_2013_872 proquest_miscellaneous_1677944233 proquest_miscellaneous_1567114160 crossref_primary_10_18494_SAM_2013_872 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-00-00 20130101 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013-00-00 |
| PublicationDecade | 2010 |
| PublicationTitle | Sensors and materials |
| PublicationYear | 2013 |
| SSID | ssj0001850626 |
| Score | 1.8926567 |
| Snippet | In this study, we develop two types of gas detection module using multiple sensors and applied them to the intelligent building system. Bayesian estimation... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 397 |
| SubjectTerms | Air pollution Algorithms Bayesian analysis Construction Gas sensors Modules Natural gas Sensors |
| Title | Bayesian-Estimation-Algorithm-Based Gas Detection Modules |
| URI | https://www.proquest.com/docview/1567114160 https://www.proquest.com/docview/1677944233 https://sensors.myu-group.co.jp/sm_pdf/SM932.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text issn: 0914-4935 databaseCode: DOA dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0001850626 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3SzaH0kKZfZEMbXCjNSV7bkmXpuPmmsKEhWUhPRpLHbdpde1nblO2v73h3nY8GSnuyD4KR9UbMG6z3BPBBRkmU6wxZgtYyoW3OFMaSaWE4D3nGMW-1w6NzeTYWn67j6w0IOi1MRc1bOa_86aJhna7B_z4bVNN0luWDyxHxDZ_ensCmjIl992BzfP55-GVpqRcKira8UzMiFsCIreu1raYSWgwq00rPQ-6rJHpYhu645dOmmJnFTzOZ3CszJ8_hopvg6nTJD7-pre9-_eHd-D9fsA1ba87pDVdJ8gI2sHgJz-45Eb4CfWAW2Oop2THt-ZWckQ0nX8v5Tf1tyg6o1mXeqam8I6yXh7cKb1RmzQSr1zA-Ob46PGPrWxWY41LUjBtrjcvQaRcKg8pwZZI4SbSMIxfmYa5oXxKNU8JyYWXgaEkVOirrOQZaOf4GekVZ4A54Os50EFmMNTdC8UAHaMLYEEOgZ4KqDx-7RU5nK_OMtG06WjTSy-EobdFICY0-vO8gSCm9238WpsCyqVJqLxNq2UIZ_GWMpNkL4oW8D_u3-D2OSPjfRtz955FvoVfPG3xH3KO2e8uefW-ddL8BRczbgA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3SzaH0kCb9IFva4EJpT_LalixLx02TNAQ2tKQL6clI8jhfu_aytimbX5_x7jpJWyjtyT4IRtYbMW-w3hPABxklUa4zZAlay4S2OVMYS6aF4TzkGce81Q6PTuXxWJycx-cbEHRamIqat3Je-dNFwzpdg389G1TTdJblg7MR8Q2f3p7ApoyJffdgc3z6dfhjaakXCoq2vFMzIhbAiK3rta2mEloMKtNKz0PuqyT6tQw9cMunTTEzi59mMnlUZo6ew7dugqvTJTd-U1vf3f7m3fg_X7ANW2vO6Q1XSbIDG1i8gGePnAhfgt43C2z1lOyQ9vxKzsiGk4tyflVfTtk-1brM-2Iq7wDr5eGtwhuVWTPB6hWMjw6_fz5m61sVmONS1Iwba43L0GkXCoPKcGWSOEm0jCMX5mGuaF8SjVPCcmFl4GhJFToq6zkGWjn-GnpFWeAueDrOdBBZjDU3QvFAB2jC2BBDoGeCqg8fu0VOZyvzjLRtOlo00rPhKG3RSAmNPrzvIEgpvdt_FqbAsqlSai8TatlCGfxljKTZC-KFvA-f7vH7MyLhfx_xzT-PfAu9et7gO-Ietd1bp9sdJkzaiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian-Estimation-Algorithm-Based+Gas+Detection+Modules&rft.jtitle=Sensors+and+materials&rft.date=2013&rft.issn=0914-4935&rft.spage=397&rft_id=info:doi/10.18494%2FSAM.2013.872&rft.externalDBID=n%2Fa&rft.externalDocID=10_18494_SAM_2013_872 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-4935&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-4935&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-4935&client=summon |