On the Classification of MR Images Using “ELM-SSA” Coated Hybrid Model
Computer-aided diagnosis permits biopsy specimen analysis by creating quantitative images of brain diseases which enable the pathologists to examine the data properly. It has been observed from other image classification algorithms that the Extreme Learning Machine (ELM) demonstrates superior perfor...
Saved in:
| Published in | Mathematics (Basel) Vol. 9; no. 17; p. 2095 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-7390 2227-7390 |
| DOI | 10.3390/math9172095 |
Cover
| Abstract | Computer-aided diagnosis permits biopsy specimen analysis by creating quantitative images of brain diseases which enable the pathologists to examine the data properly. It has been observed from other image classification algorithms that the Extreme Learning Machine (ELM) demonstrates superior performance in terms of computational efforts. In this study, to classify the brain Magnetic Resonance Images as either normal or diseased, a hybridized Salp Swarm Algorithm-based ELM (ELM-SSA) is proposed. The SSA is employed to optimize the parameters associated with ELM model, whereas the Discrete Wavelet Transformation and Principal Component Analysis have been used for the feature extraction and reduction, respectively. The performance of the proposed “ELM-SSA” is evaluated through simulation study and compared with the standard classifiers such as Back-Propagation Neural Network, Functional Link Artificial Neural Network, and Radial Basis Function Network. All experimental validations have been carried out using two different brain disease datasets: Alzheimer’s and Hemorrhage. The simulation results demonstrate that the “ELM-SSA” is potentially superior to other hybrid methods in terms of ROC, AUC, and accuracy. To achieve better performance, reduce randomness, and overfitting, each algorithm has been run multiple times and a k-fold stratified cross-validation strategy has been used. |
|---|---|
| AbstractList | Computer-aided diagnosis permits biopsy specimen analysis by creating quantitative images of brain diseases which enable the pathologists to examine the data properly. It has been observed from other image classification algorithms that the Extreme Learning Machine (ELM) demonstrates superior performance in terms of computational efforts. In this study, to classify the brain Magnetic Resonance Images as either normal or diseased, a hybridized Salp Swarm Algorithm-based ELM (ELM-SSA) is proposed. The SSA is employed to optimize the parameters associated with ELM model, whereas the Discrete Wavelet Transformation and Principal Component Analysis have been used for the feature extraction and reduction, respectively. The performance of the proposed “ELM-SSA” is evaluated through simulation study and compared with the standard classifiers such as Back-Propagation Neural Network, Functional Link Artificial Neural Network, and Radial Basis Function Network. All experimental validations have been carried out using two different brain disease datasets: Alzheimer’s and Hemorrhage. The simulation results demonstrate that the “ELM-SSA” is potentially superior to other hybrid methods in terms of ROC, AUC, and accuracy. To achieve better performance, reduce randomness, and overfitting, each algorithm has been run multiple times and a k-fold stratified cross-validation strategy has been used. |
| Author | Panda, Ganapati Kumar, Sachin Mishra, Debahuti Zymbler, Mikhail Das, Kaberi Pradhan, Ashwini |
| Author_xml | – sequence: 1 givenname: Ashwini orcidid: 0000-0002-1822-4235 surname: Pradhan fullname: Pradhan, Ashwini – sequence: 2 givenname: Debahuti surname: Mishra fullname: Mishra, Debahuti – sequence: 3 givenname: Kaberi surname: Das fullname: Das, Kaberi – sequence: 4 givenname: Ganapati surname: Panda fullname: Panda, Ganapati – sequence: 5 givenname: Sachin orcidid: 0000-0003-3949-0302 surname: Kumar fullname: Kumar, Sachin – sequence: 6 givenname: Mikhail orcidid: 0000-0001-7491-8656 surname: Zymbler fullname: Zymbler, Mikhail |
| BookMark | eNp9kN1KAzEQhYMoqLVXvkDAS13NJtnu5lKKP5UWwZ_rMNlk25TtpiYp0jsfRF-uT-K2FRFB52aGw5mPM3OIdhvXGISOU3LOmCAXM4gTkeaUiGwHHVBK8yRv9d0f8z7qhjAlbYmUFVwcoLv7BseJwf0aQrCVLSFa12BX4dEDHsxgbAJ-DrYZ49Xb-9VwlDw-Xq7ePnDfQTQa3y6VtxqPnDb1EdqroA6m-9U76Pn66ql_mwzvbwb9y2FSsh6PCaOk0OvAVdYzlCuaC8rLtFCZpjkrKRioGC-oUZwxU2lNeopRozmFXBBQrIMGW652MJVzb2fgl9KBlRvB-bEEH21ZGyko0SRTpWKCc0gBuC6Y6gnSJiF5wVrW2Za1aOawfIW6_gamRK5Tyh9vbe0nW_vcu5eFCVFO3cI37bWSZnnKhCgIb13p1lV6F4I3lSxt3Pw1erD1H-TTXzv_5fgEmDGWLg |
| CitedBy_id | crossref_primary_10_1007_s11042_022_13826_8 crossref_primary_10_3390_math10203736 crossref_primary_10_1111_exsy_13235 crossref_primary_10_1007_s11356_022_21277_9 crossref_primary_10_1016_j_neucom_2023_126618 crossref_primary_10_3390_axioms11010034 crossref_primary_10_3390_electronics12010149 crossref_primary_10_1007_s11042_023_16637_7 crossref_primary_10_1007_s40846_023_00801_3 crossref_primary_10_1007_s11227_023_05549_w crossref_primary_10_3390_math12040588 crossref_primary_10_1038_s41598_024_73803_z crossref_primary_10_3390_make6040111 crossref_primary_10_1080_21681163_2023_2199891 crossref_primary_10_1088_2631_8695_ad63fa crossref_primary_10_3390_computers11010010 crossref_primary_10_1049_cit2_12276 |
| Cites_doi | 10.1061/(ASCE)0733-9496(2003)129:3(210) 10.1109/ICACI.2015.7184751 10.1002/cnm.3225 10.1016/j.bspc.2006.05.002 10.1109/ICTSS.2013.6588092 10.1016/j.dsp.2009.07.002 10.2528/PIER13010105 10.1016/j.advengsoft.2017.07.002 10.1007/s00521-021-06240-y 10.1186/s40708-018-0080-3 10.1186/s40537-020-00311-y 10.1016/j.aasri.2012.11.059 10.1007/978-3-319-14063-6_27 10.1080/03052150500384759 10.1007/s10462-011-9208-z 10.1023/B:VLSI.0000028532.53893.82 10.1016/j.eswa.2011.02.012 10.1016/j.jvcir.2019.102578 10.1016/j.eswa.2014.01.021 10.1007/978-3-030-12127-3_11 10.1016/j.bspc.2006.12.001 10.1016/j.knosys.2017.12.037 10.1109/ACCESS.2019.2920448 10.2528/PIER08040504 10.1007/s10489-016-0767-1 10.33422/ejest.v3i2.487 10.1007/s00521-016-2559-2 10.1016/j.jss.2012.01.025 10.1109/34.107014 10.1007/s00779-020-01492-2 10.1007/s13042-018-0833-6 10.1007/11759966_95 10.1016/S0305-0483(99)00027-4 10.1016/S0377-2217(98)00114-3 10.1155/2017/4670187 10.1016/j.eswa.2014.03.039 10.1007/s12559-017-9542-9 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/math9172095 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_920d05bcb3944a1aa4d83b6903640783 10.3390/math9172095 10_3390_math9172095 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c364t-3208d3390f56e24b27924c18b5d273c2aeaf3482eb433efdd06b32ed42a790ab3 |
| IEDL.DBID | BENPR |
| ISSN | 2227-7390 |
| IngestDate | Fri Oct 03 12:41:24 EDT 2025 Sun Oct 26 02:01:51 EDT 2025 Fri Jul 25 12:06:41 EDT 2025 Thu Oct 16 04:31:31 EDT 2025 Thu Apr 24 23:14:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-3208d3390f56e24b27924c18b5d273c2aeaf3482eb433efdd06b32ed42a790ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3949-0302 0000-0001-7491-8656 0000-0002-1822-4235 |
| OpenAccessLink | https://www.proquest.com/docview/2571399804?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2571399804 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_920d05bcb3944a1aa4d83b6903640783 unpaywall_primary_10_3390_math9172095 proquest_journals_2571399804 crossref_citationtrail_10_3390_math9172095 crossref_primary_10_3390_math9172095 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mohsen (ref_21) 2014; 41 Khan (ref_38) 2019; 7 Ding (ref_11) 2011; 36 Maitra (ref_4) 2006; 1 Mirjalili (ref_7) 2017; 114 Sexton (ref_14) 1999; 114 ref_35 Goceri (ref_37) 2019; 35 Kirithika (ref_41) 2020; 7 Eshtay (ref_6) 2019; 10 ref_10 Reddy (ref_33) 2020; 7 Nejad (ref_27) 2019; 119 ref_31 ref_30 Xiao (ref_29) 2017; 2017 Hosny (ref_16) 2010; 20 ref_19 Dehuri (ref_22) 2012; 85 ref_15 Eusuff (ref_25) 2006; 38 Zhang (ref_2) 2011; 38 Reza (ref_32) 2004; 38 Luo (ref_26) 2014; 41 Farid (ref_39) 2020; 3 Aljarah (ref_8) 2018; 29 DGori (ref_12) 1992; 1 Chaplot (ref_3) 2006; 1 Mohsin (ref_1) 2008; 83 Aljarah (ref_17) 2018; 10 Huang (ref_28) 2012; 3 Mafarja (ref_18) 2018; 145 ref_20 ref_42 ref_40 Islam (ref_36) 2018; 5 Ma (ref_23) 2017; 15 Gupta (ref_13) 1999; 27 Das (ref_5) 2013; 137 Faris (ref_9) 2016; 45 Eusuff (ref_24) 2003; 129 Ma (ref_34) 2019; 63 |
| References_xml | – volume: 129 start-page: 210 year: 2003 ident: ref_24 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2003)129:3(210) – ident: ref_20 doi: 10.1109/ICACI.2015.7184751 – volume: 35 start-page: e3225 year: 2019 ident: ref_37 article-title: Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.3225 – volume: 1 start-page: 86 year: 2006 ident: ref_3 article-title: Classification of magnetic resonance brain images using wavelets an input to support vector machine and neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.05.002 – ident: ref_31 doi: 10.1109/ICTSS.2013.6588092 – volume: 20 start-page: 433 year: 2010 ident: ref_16 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2009.07.002 – volume: 137 start-page: 1 year: 2013 ident: ref_5 article-title: Brain MR image classification using multiscale geometric analysis of ripplet publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER13010105 – volume: 114 start-page: 163 year: 2017 ident: ref_7 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref_10 doi: 10.1007/s00521-021-06240-y – volume: 5 start-page: 1 year: 2018 ident: ref_36 article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks publication-title: Brain Inform. doi: 10.1186/s40708-018-0080-3 – volume: 7 start-page: 1 year: 2020 ident: ref_33 article-title: Analyzing MRI scans to detect glioblastoma tumor using hybrid deep belief networks publication-title: J. Big Data doi: 10.1186/s40537-020-00311-y – ident: ref_42 – volume: 3 start-page: 375 year: 2012 ident: ref_28 article-title: Hidden node optimization for extreme learning machine publication-title: Aasri Procedia doi: 10.1016/j.aasri.2012.11.059 – ident: ref_30 doi: 10.1007/978-3-319-14063-6_27 – volume: 38 start-page: 129 year: 2006 ident: ref_25 article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. doi: 10.1080/03052150500384759 – volume: 36 start-page: 153 year: 2011 ident: ref_11 article-title: An optimizing BP neural network algorithm based on genetic algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9208-z – volume: 38 start-page: 35 year: 2004 ident: ref_32 article-title: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol. doi: 10.1023/B:VLSI.0000028532.53893.82 – volume: 38 start-page: 10049 year: 2011 ident: ref_2 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.012 – volume: 63 start-page: 102578 year: 2019 ident: ref_34 article-title: Dimension reduction of image deep feature using PCA publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.102578 – volume: 41 start-page: 5526 year: 2014 ident: ref_21 article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.021 – ident: ref_35 doi: 10.1007/978-3-030-12127-3_11 – volume: 1 start-page: 299 year: 2006 ident: ref_4 article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.12.001 – volume: 145 start-page: 25 year: 2018 ident: ref_18 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.12.037 – volume: 7 start-page: 72726 year: 2019 ident: ref_38 article-title: Transfer learning with intelligent training data selection for prediction of Alzheimer’s disease publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920448 – volume: 83 start-page: 81 year: 2008 ident: ref_1 article-title: MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER08040504 – volume: 45 start-page: 322 year: 2016 ident: ref_9 article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems publication-title: Appl. Intell. doi: 10.1007/s10489-016-0767-1 – volume: 3 start-page: 58 year: 2020 ident: ref_39 article-title: Applying artificial intelligence techniques to improve clinical diagnosis of Alzheimer’s disease publication-title: Eur. J. Eng. Sci. Technol. doi: 10.33422/ejest.v3i2.487 – volume: 29 start-page: 529 year: 2018 ident: ref_8 article-title: Training radial basis function networks using a biogeography-based optimizer publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2559-2 – volume: 85 start-page: 1333 year: 2012 ident: ref_22 article-title: An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2012.01.025 – volume: 1 start-page: 76 year: 1992 ident: ref_12 article-title: On the problem of local minima in backpropagation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.107014 – ident: ref_40 doi: 10.1007/s00779-020-01492-2 – ident: ref_15 – volume: 10 start-page: 1543 year: 2019 ident: ref_6 article-title: Metaheuristic-based extreme learning machines: A review of design formulations and applications publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-0833-6 – ident: ref_19 doi: 10.1007/11759966_95 – volume: 27 start-page: 679 year: 1999 ident: ref_13 article-title: Comparing backpropagation with a genetic algorithm for neural network training publication-title: Omega doi: 10.1016/S0305-0483(99)00027-4 – volume: 114 start-page: 589 year: 1999 ident: ref_14 article-title: Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(98)00114-3 – volume: 2017 start-page: 4670187 year: 2017 ident: ref_29 article-title: A multiple hidden layers extreme learning machine method and its application publication-title: Math. Probl. Eng. doi: 10.1155/2017/4670187 – volume: 7 start-page: 237 year: 2020 ident: ref_41 article-title: Brain Tumor And Intracranial Haemorrhage Feature Extraction And Classification Using Conventional and Deep Learning Methods publication-title: Eur. J. Mol. Clin. Med. – volume: 41 start-page: 5804 year: 2014 ident: ref_26 article-title: Hybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.039 – volume: 119 start-page: 185 year: 2019 ident: ref_27 article-title: A novel image categorization strategy based on salp swarm algorithm to enhance efficiency of MRI images publication-title: Comput. Model. Eng. Sci. – volume: 10 start-page: 478 year: 2018 ident: ref_17 article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm publication-title: Cogn. Comput. doi: 10.1007/s12559-017-9542-9 – volume: 15 start-page: 135 year: 2017 ident: ref_23 article-title: An Efficient Optimization Method for Extreme Learning Machine Using Artificial Bee Colony publication-title: J. Digit. Inf. Manag. |
| SSID | ssj0000913849 |
| Score | 2.3256214 |
| Snippet | Computer-aided diagnosis permits biopsy specimen analysis by creating quantitative images of brain diseases which enable the pathologists to examine the data... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2095 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Back propagation Back propagation networks Brain Classification Computer simulation Datasets Discrete Wavelet Transform Extreme Learning Machine Feature extraction Food science Hemorrhage hybridized ML classifiers Image classification Machine learning Magnetic resonance imaging Medical imaging MRI classification Neural networks Optimization techniques Principal components analysis Radial basis function Salp Swarm Algorithm Simulation Support vector machines Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF_UgPrFaZQ_1IoQmu5s0e6ylpRarYC30FvYVPNS02Bbx1h-if66_xNkkDRFELx4TNjCPZOYbMvMNQnUhoKySxHN8L1YOU17oCOUFjvIVa8pANlXWIHsf9EasP_bHpVVfticsowfODNfgxNWuL5W0E5zCE4LpkEqo6Wj2C8pGXzfkpWIqjcHcoyHj2UAehbq-AfjvGUoT4tpNEqUUlDL1f4OX28tkJt7fxGRSyjTdfbSXQ0TcykQ7QFsmOUS7g4JfdX6E-g8JhkucrrS0zT6pffE0xoNHfPsCMWKO02YAvF59dO4GznDYWq8-cXsK0FLj3rud08J2D9rkGI26nad2z8m3IjgKVF44FNTVVqXYDwxh0jIAWhtLXwMUUUQYEVvGGiMZpSbW2g0kJUYzIprcFZKeoEoyTcwpwpqzGFKXAZDCmQ6Y0JSAf-ARj3lKsCq63hgqUjlluN1cMYmgdLAiRCWrVlG9ODzLmDJ-PnZjLV4csfTW6Q1wepQ7PfrL6VVU2_gryr-5eQTBB-AsD12Q-6rw4W-ynP2HLOdoh9g-l7TvrIYqi9eluQCgspCX6Tv5BWAy4_A priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELYgPQCH8i9S2sqHckFys2t7vfEJhapVWjUFUSKV0-K_pRVhEzUJqJz6IPByfRJmdp2oRQghcdzVeDW7M7a_Wc98Q8iWMRBWWZ6yLC0dky7tMuNSxVzmZG6VzV2TIHuk-kN5cJKdxD6n05hWCaH4Wb1IY50myyEq7-hOmkOcrrPOxJevvsZfSYAlwCdzIfRtsqIyAOMtsjI8etv7gC3lFoObqjyBjwEQeArxCT7oxj5U0_XfwJh35tXEXHwzo9G17WbvPvm4ULTJMvm8PZ_Zbff9Nw7H_3iTB2Q1QlHaa3znIbkVqkfk3mDJ4zp9TA7eVBQuad06E5OKajvScUkH7-j-F1iLprROOqBXlz92Dwfs-Lh3dfmT7owBwnrav8B6MIr91kZPyHBv9_1On8XuC8wJJWdM8KTr8auVmQpcWmQaRFvazAPkcdwEUyIzTrBSiFB6nygrePCSm1wnxoqnpFWNq_CMUK9lCVtkADCkpVfSeMHBD2BIKlNnZJu8XNiicJGaHDtkjAoIUVCF4prh2mRrKTxpGDn-LPYajboUQRrt-sb4_FMRZ2WheeKTzDqL5cEmNUb6rrBK4-Esnm-2yfrCJYo4t6cFLHIAm3U3Ab1fLN3kb7qs_aPcc3KXY8pMncK2Tlqz83nYAMwzs5vRr38BE5z6yA priority: 102 providerName: Unpaywall |
| Title | On the Classification of MR Images Using “ELM-SSA” Coated Hybrid Model |
| URI | https://www.proquest.com/docview/2571399804 https://www.mdpi.com/2227-7390/9/17/2095/pdf?version=1630317339 https://doaj.org/article/920d05bcb3944a1aa4d83b6903640783 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BOLQ9oNKHSEsjH-ilksWu7d3sHqoqoKQpalIEjURPK7-2PaS7KQlC3Pgh5c_xS_B4H00lxNEr78o7M7Zn7JnvA9iX0oVVioU0CnNNhQ4TKnUYUx1p0Vex6usqQXYaj2fi-Dw634BpUwuDaZXNmugXalNqPCM_cKblnJU0CcSnxR-KrFF4u9pQaMiaWsF89BBjm7DFEBmrA1uHw-nJaXvqgiiYiUirQj3u4v0D5xf-ciELC5BhYm1r8gj-_7mdTy6Lhby-kvP52g40eg7btetIBpWud2DDFi_g2aTFXV2-hONvBXFN4qkuMQnIy52UOZmcki-_3dqxJD5JgNzd_B1-ndCzs8HdzS05Kp3Lacj4Guu3CPKjzV_BbDT8fjSmNVsC1TwWK8pZkBj8pTyKLRMKkQFR9ioyzkXRTFqZI5KNVYJzmxsTxIozawST_TSQir-GTlEWdheISUXu5GedvFNhYiENZ05v7pVQhFqKLnxoBJXpGkocGS3mmQspcAjZmlS7sN92XlQIGg93O0SJt10Q9to_KC9-ZvUsylIWmCBSWmE5rwylFCbhygX4vLqP7MJeo6-snovL7J_ldOF9q8PHxvLm8c-8hacMM1t8ptkedFYXl_adc01Wqgebyehzr7a6ng_wXWs2PRn8uAcWwuao |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5RONAeqv6KtBT2AJdKFvbu2rEPqAIalECSVvxI3Nz9MxxSOyVBKDcepH2VPgxP0hnHdlOp4sbR1nq9mpndndmd-T6ALaUwrNI88MIgM540QewpE0SeCY1s60i3zTxBdhh1z-XRRXixBL_rWhhKq6zXxHKhtoWhM_IdNC10VpLYl5_GPzxijaLb1ZpCQ1XUCna3hBirCjuO3ewWQ7jJbu8z6nub88PO2UHXq1gGPCMiOfUE92MrMPTPwshxqQlRj8asQ4tbu-HKqYwQYJyWQrjMWj_SgjsruWonvtIC-30CK1LIBIO_lf3O8OtJc8pDqJuxTOaFgfSTHfRDrzBE4j4xWixshSVjwD9u7upNPlazWzUaLex4hy_geeWqsr25bb2EJZe_gmeDBud18hqOvuQMH1lJrUlJR6WeWZGxwQnrfce1asLKpAR2f_ez0x94p6d793e_2EGBLq5l3RnVizHiYxu9gfNHkdtbWM6L3K0Bs4nMcAt1qN9E2kgqKzjaCX4SyMAo2YKPtaBSU0GXE4PGKMUQhoaQLki1BVtN4_EcseP_zfZJ4k0TgtkuXxTXl2k1a9OE-9YPtdFUPqwCpaSNhY4Suryl-88WrNf6Squ5P0n_WmoLthsdPjSWdw93swmr3bNBP-33hsfv4SmnrJoyy20dlqfXN-4DukVTvVHZHoNvj23ufwC4oR_C |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkF7QDzVLQV8aC9I0Sa2k00OCPW17LbdgiiVegt-BQ5LsnS3qvbWHwJ_pD-nv4SZvFgk1FuPiRzHmvlsz9gz8wFsKoVuleaBFwaZ8aQJYk-ZIPJMaGRPR7pnqgDZ42hwKg_OwrMluG5yYSisslkTy4XaFobOyLsILTRWktiX3awOi_i0138_-ekRgxTdtDZ0GhVEDt38Et236bvhHup6i_P-_pfdgVczDHhGRHLmCe7HVqDbn4WR41JTNT0arw4tbuuGK6cyqv7itBTCZdb6kRbcWclVL_GVFtjvPbjfoyrulKXe_9Ce71C9zVgmVUog_aKLFuh3dI64T1wWC5tgyRXwj4H78CKfqPmlGo8X9rr-Y3hUG6lsu0LVE1hy-VNYHbUVXqfP4OBjzvCRlaSaFG5UapgVGRt9ZsMfuEpNWRmOwG6ufu0fjbyTk-2bq99st0Dj1rLBnDLFGDGxjZ_D6Z1I7QUs50Xu1oDZRGa4eTrUbCJtJJUVHBGCnwQyMEp24G0jqNTURcuJO2OcovNCQ0gXpNqBzbbxpKrV8f9mOyTxtgkV2C5fFOff0nq-pgn3rR9qoylxWAVKSRsLHSV0bUs3nx3YaPSV1rN-mv7FaAe2Wh3eNpb127t5Aw8Q5OnR8PjwJaxwCqcpw9s2YHl2fuFeoT00069L4DH4etdI_wPZuB1c |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELYgPQCH8i9S2sqHckFys2t7vfEJhapVWjUFUSKV0-K_pRVhEzUJqJz6IPByfRJmdp2oRQghcdzVeDW7M7a_Wc98Q8iWMRBWWZ6yLC0dky7tMuNSxVzmZG6VzV2TIHuk-kN5cJKdxD6n05hWCaH4Wb1IY50myyEq7-hOmkOcrrPOxJevvsZfSYAlwCdzIfRtsqIyAOMtsjI8etv7gC3lFoObqjyBjwEQeArxCT7oxj5U0_XfwJh35tXEXHwzo9G17WbvPvm4ULTJMvm8PZ_Zbff9Nw7H_3iTB2Q1QlHaa3znIbkVqkfk3mDJ4zp9TA7eVBQuad06E5OKajvScUkH7-j-F1iLprROOqBXlz92Dwfs-Lh3dfmT7owBwnrav8B6MIr91kZPyHBv9_1On8XuC8wJJWdM8KTr8auVmQpcWmQaRFvazAPkcdwEUyIzTrBSiFB6nygrePCSm1wnxoqnpFWNq_CMUK9lCVtkADCkpVfSeMHBD2BIKlNnZJu8XNiicJGaHDtkjAoIUVCF4prh2mRrKTxpGDn-LPYajboUQRrt-sb4_FMRZ2WheeKTzDqL5cEmNUb6rrBK4-Esnm-2yfrCJYo4t6cFLHIAm3U3Ab1fLN3kb7qs_aPcc3KXY8pMncK2Tlqz83nYAMwzs5vRr38BE5z6yA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Classification+of+MR+Images+Using+%E2%80%9CELM-SSA%E2%80%9D+Coated+Hybrid+Model&rft.jtitle=Mathematics+%28Basel%29&rft.au=Pradhan%2C+Ashwini&rft.au=Mishra%2C+Debahuti&rft.au=Das%2C+Kaberi&rft.au=Panda%2C+Ganapati&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=9&rft.issue=17&rft.spage=2095&rft_id=info:doi/10.3390%2Fmath9172095&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |