Pymaginverse: A python package for global geomagnetic field modeling
Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in the outer core, and describing the global expression of magnetic field reversals. There exists a wide range of models, which differ in a pri...
Saved in:
| Published in | Applied computing and geosciences Vol. 25; p. 100222 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2590-1974 2590-1974 |
| DOI | 10.1016/j.acags.2025.100222 |
Cover
| Abstract | Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in the outer core, and describing the global expression of magnetic field reversals. There exists a wide range of models, which differ in a priori assumptions and methods for spatio-temporal interpolation. A frequently used modeling procedure is based on regularized least squares (RLS) spherical harmonic analysis, which has been used since the 1980s. The first version of this algorithm has been written in Fortran and inspired many different research groups to produce versions of the algorithm in other programming languages, either published open-access or only accessible within the institute. To open up the research field and allow for reproducibility of results between existing versions, we provide a user-friendly open-source Python version of this popular algorithm. We complement this method with an overview on background literature – concerning Maxwells equations, spherical harmonics, cubic B-Splines, and regularization – that forms the basis for RLS geomagnetic models. We included six spatial and two temporal damping methods from literature to further smooth the magnetic field in space and time. Computational resources are kept to a minimum by employing the banded structure of the normal equations involved and incorporating C-code (with Cython) for matrix formation, enabling a massive speed-up. This ensures that the algorithm can be executed on a simple laptop, and is as fast as its Fortran predecessor. Four tutorials with ample examples show how to employ the new lightweight and quick algorithm. With this properly documented open-source Python algorithm, we have the intention to encourage current and new users to employ and further develop the method.
•Pymaginverse computes time-dependent Gauss coefficients from geomagnetic datasets.•The algorithm uses regularized least squares spherical harmonics.•The algorithm accepts geomagnetic data in CSV (ASCII) and GEOMAGIA format.•This library is CPU optimized and is on par with its Fortran predecessor.•The library outputs data in pymagglobal, CSV, and legacy Fortran formats. |
|---|---|
| AbstractList | Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in the outer core, and describing the global expression of magnetic field reversals. There exists a wide range of models, which differ in a priori assumptions and methods for spatio-temporal interpolation. A frequently used modeling procedure is based on regularized least squares (RLS) spherical harmonic analysis, which has been used since the 1980s. The first version of this algorithm has been written in Fortran and inspired many different research groups to produce versions of the algorithm in other programming languages, either published open-access or only accessible within the institute. To open up the research field and allow for reproducibility of results between existing versions, we provide a user-friendly open-source Python version of this popular algorithm. We complement this method with an overview on background literature – concerning Maxwells equations, spherical harmonics, cubic B-Splines, and regularization – that forms the basis for RLS geomagnetic models. We included six spatial and two temporal damping methods from literature to further smooth the magnetic field in space and time. Computational resources are kept to a minimum by employing the banded structure of the normal equations involved and incorporating C-code (with Cython) for matrix formation, enabling a massive speed-up. This ensures that the algorithm can be executed on a simple laptop, and is as fast as its Fortran predecessor. Four tutorials with ample examples show how to employ the new lightweight and quick algorithm. With this properly documented open-source Python algorithm, we have the intention to encourage current and new users to employ and further develop the method.
•Pymaginverse computes time-dependent Gauss coefficients from geomagnetic datasets.•The algorithm uses regularized least squares spherical harmonics.•The algorithm accepts geomagnetic data in CSV (ASCII) and GEOMAGIA format.•This library is CPU optimized and is on par with its Fortran predecessor.•The library outputs data in pymagglobal, CSV, and legacy Fortran formats. Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in the outer core, and describing the global expression of magnetic field reversals. There exists a wide range of models, which differ in a priori assumptions and methods for spatio-temporal interpolation. A frequently used modeling procedure is based on regularized least squares (RLS) spherical harmonic analysis, which has been used since the 1980s. The first version of this algorithm has been written in Fortran and inspired many different research groups to produce versions of the algorithm in other programming languages, either published open-access or only accessible within the institute. To open up the research field and allow for reproducibility of results between existing versions, we provide a user-friendly open-source Python version of this popular algorithm. We complement this method with an overview on background literature – concerning Maxwells equations, spherical harmonics, cubic B-Splines, and regularization – that forms the basis for RLS geomagnetic models. We included six spatial and two temporal damping methods from literature to further smooth the magnetic field in space and time. Computational resources are kept to a minimum by employing the banded structure of the normal equations involved and incorporating C-code (with Cython) for matrix formation, enabling a massive speed-up. This ensures that the algorithm can be executed on a simple laptop, and is as fast as its Fortran predecessor. Four tutorials with ample examples show how to employ the new lightweight and quick algorithm. With this properly documented open-source Python algorithm, we have the intention to encourage current and new users to employ and further develop the method. |
| ArticleNumber | 100222 |
| Author | Schanner, Maximilian Out, Frenk de Groot, Lennart V. Korte, Monika van Grinsven, Liz |
| Author_xml | – sequence: 1 givenname: Frenk orcidid: 0000-0002-1304-9095 surname: Out fullname: Out, Frenk email: f.out@uu.nl organization: Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands – sequence: 2 givenname: Maximilian orcidid: 0000-0002-0497-9231 surname: Schanner fullname: Schanner, Maximilian organization: Institute of applied mathematics, Potsdam University, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany – sequence: 3 givenname: Liz orcidid: 0009-0000-6600-9583 surname: van Grinsven fullname: van Grinsven, Liz organization: Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands – sequence: 4 givenname: Monika orcidid: 0000-0003-2970-9075 surname: Korte fullname: Korte, Monika organization: Helmholtz Centre Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany – sequence: 5 givenname: Lennart V. orcidid: 0000-0002-1151-5662 surname: de Groot fullname: de Groot, Lennart V. organization: Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands |
| BookMark | eNqNkN1Kw0AQhRepYK19Am_yAqn7mzSCF6X-FQp60ftlspnEjWm2bGolb--2EfFKvJqZw5yPw7kko9a1SMg1ozNGWXJTz8BA1c045SoolHN-RsZcZTRmWSpHv_YLMu26moYfxZhK2Zjcv_ZbqGx7QN_hbbSIdv3-zbXRDsw7VBiVzkdV43JoogpdeG1xb01UWmyKaOsKbGxbXZHzEpoOp99zQjaPD5vlc7x-eVotF-vYiETuY8GQ54KZImVclglPcmRzo2gRZCaUkjQ9BksTJQxNMk6zEBSkZMBzyZSYkNWALRzUeuftFnyvHVh9EpyvNPiQrkEt56nA0mQFl7lMFA2ngDyHeSZoIOaBJQfWR7uD_hOa5gfIqD72qmt96lUfe9VDr8EmBpvxrus8lv903Q0uDOUcLHrdGYutwcJ6NPsQ3_7p_wLDepFO |
| Cites_doi | 10.1109/MCSE.2007.55 10.1016/j.pepi.2019.03.008 10.1111/j.1365-246X.1985.tb05119.x 10.1093/gji/ggaa336 10.1016/j.pepi.2021.106737 10.1029/92JB01591 10.1029/GL002i009p00409 10.1186/s40623-020-01252-9 10.1016/j.epsl.2006.10.025 10.1029/2008GC002297 10.1029/2023JB026593 10.1186/s40623-015-0232-0 10.1016/j.epsl.2016.08.015 10.1016/0031-9201(82)90003-6 10.1038/s41586-020-2649-2 10.1016/j.pepi.2013.08.007 10.1029/95JE03437 10.1098/rsta.2000.0569 10.1029/2018GC007966 10.1098/rsta.2000.0570 10.1016/j.epsl.2013.11.046 10.1016/0021-9991(88)90062-9 10.1109/MCSE.2010.118 10.1029/JB092iB11p11597 10.1093/gji/ggu120 10.1016/j.epsl.2011.10.031 10.1093/gji/ggv137 10.1190/1.1442303 10.1029/2021JB023166 10.1029/2018GC007529 10.1029/2022JB025286 10.1093/gji/ggy214 10.1186/s40623-015-0233-z 10.1016/j.pepi.2003.07.013 10.1111/j.1365-246X.1974.tb00622.x 10.1038/s41592-019-0686-2 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.acags.2025.100222 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2590-1974 |
| ExternalDocumentID | oai_doaj_org_article_4873efc9d24b46508733abba8930a44b 10.1016/j.acags.2025.100222 10_1016_j_acags_2025_100222 S2590197425000047 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACLIJ ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c364t-31e2b31cd7124f626be18c50de2b135540702517653c069209002a441a2b4153 |
| IEDL.DBID | UNPAY |
| ISSN | 2590-1974 |
| IngestDate | Fri Oct 03 12:45:45 EDT 2025 Tue Aug 19 23:39:11 EDT 2025 Tue Jul 01 04:53:32 EDT 2025 Sat Jun 21 16:54:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | RLS geomagnetic models Geomagia Open research Paleomagnetism |
| Language | English |
| License | This is an open access article under the CC BY-NC license. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-31e2b31cd7124f626be18c50de2b135540702517653c069209002a441a2b4153 |
| ORCID | 0000-0002-1304-9095 0009-0000-6600-9583 0000-0002-0497-9231 0000-0002-1151-5662 0000-0003-2970-9075 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.acags.2025.100222 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4873efc9d24b46508733abba8930a44b unpaywall_primary_10_1016_j_acags_2025_100222 crossref_primary_10_1016_j_acags_2025_100222 elsevier_sciencedirect_doi_10_1016_j_acags_2025_100222 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied computing and geosciences |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Panovska, Finlay, Donadini, Hirt (b39) 2012; 117 Panovska, Korte, Finlay, Constable (b40) 2015; 202 Bloxham, Jackson (b6) 1992; 97 Mahgoub, Korte, Panovska (b33) 2023 Behnel, Bradshaw, Citro, Dalcin, Seljebotn, Smith (b4) 2011; 13 Licht, Hulot, Gallet, Thébault (b28) 2013; 224 Pavón-Carrasco, Osete, Torta, De Santis (b41) 2014; 388 Mauerberger, Schanner, Korte, Holschneider (b34) 2020 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt, SciPy 1.0 Contributors (b45) 2020; 17 Hellio, Gillet (b18) 2018; 214 Bloxham (b5) 1987; 92 Lowrie (b30) 2011 Constable, Johnson, Lund (b9) 2000; 358 Finlay, Kloss, Olsen, Hammer, Tøffner-Clausen, Grayver, Kuvshinov (b14) 2020; 72 Holme, Bloxham (b19) 1996; 101 Schanner, Korte, Holschneider (b42) 2022; 127 Schanner, Mauerberger, Korte (b43) 2020 WesMcKinney (b46) 2010 Nilsson, Holme, Korte, Suttie, Hill (b35) 2014; 198 Korte, Genevey, Constable, Frank, Schnepp (b26) 2005; 6 Alken, Thébault, Beggan, Amit, Aubert, Baerenzung, Bondar, Brown, Califf, Chambodut (b1) 2021; 73 Lowes (b29) 1974; 36 Jackson, Jonkers, Walker (b21) 2000; 358 Constable, Parker, Constable (b12) 1987; 52 Nilsson, Suttie (b36) 2021; 317 Shure, Parker, Backus (b44) 1982; 28 Out, Schanner (b37) 2024 Kluyver, Ragan-Kelley, Pérez, Granger, Bussonnier, Frederic, Kelley, Hamrick, Grout, Corlay, Ivanov, Avila, Abdalla, Willing, development team (b22) 2016 Hunter (b20) 2007; 9 Constable, Korte, Panovska (b10) 2016; 453 Korte, Constable, Donadini, Holme (b24) 2011; 312 Gubbins (b15) 1975; 2 Gubbins, Bloxham (b16) 1985; 80 Brown, Donadini, Nilsson, Panovska, Frank, Korhonen, Schuberth, Korte, Constable (b8) 2015; 67 Korte, Donadini, Constable (b25) 2009; 10 Lünberger (b31) 1969 Wieczorek, Meschede (b47) 2018; 19 Constable, Parker (b11) 1988; 78 Arneitz, Egli, Leonhardt, Fabian (b2) 2019; 290 Backus, Parker, Constable (b3) 1996 Leonhardt, Fabian (b27) 2007; 253 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b17) 2020; 585 Korte, Constable (b23) 2003; 140 Mahgoub, Korte, Panovska (b32) 2023; 128 Brown, Donadini, Korte, Nilsson, Korhonen, Lodge, Lengyel, Constable (b7) 2015; 67 Panovska, Constable, Korte (b38) 2018; 19 De Boor (b13) 1978 Pavón-Carrasco (10.1016/j.acags.2025.100222_b41) 2014; 388 Alken (10.1016/j.acags.2025.100222_b1) 2021; 73 Nilsson (10.1016/j.acags.2025.100222_b35) 2014; 198 Constable (10.1016/j.acags.2025.100222_b9) 2000; 358 Constable (10.1016/j.acags.2025.100222_b11) 1988; 78 Shure (10.1016/j.acags.2025.100222_b44) 1982; 28 Virtanen (10.1016/j.acags.2025.100222_b45) 2020; 17 WesMcKinney (10.1016/j.acags.2025.100222_b46) 2010 Mahgoub (10.1016/j.acags.2025.100222_b33) 2023 Brown (10.1016/j.acags.2025.100222_b7) 2015; 67 Constable (10.1016/j.acags.2025.100222_b10) 2016; 453 Panovska (10.1016/j.acags.2025.100222_b38) 2018; 19 Finlay (10.1016/j.acags.2025.100222_b14) 2020; 72 Panovska (10.1016/j.acags.2025.100222_b39) 2012; 117 Schanner (10.1016/j.acags.2025.100222_b42) 2022; 127 Schanner (10.1016/j.acags.2025.100222_b43) 2020 Holme (10.1016/j.acags.2025.100222_b19) 1996; 101 Hunter (10.1016/j.acags.2025.100222_b20) 2007; 9 Mahgoub (10.1016/j.acags.2025.100222_b32) 2023; 128 Jackson (10.1016/j.acags.2025.100222_b21) 2000; 358 Arneitz (10.1016/j.acags.2025.100222_b2) 2019; 290 Lowrie (10.1016/j.acags.2025.100222_b30) 2011 Panovska (10.1016/j.acags.2025.100222_b40) 2015; 202 Lünberger (10.1016/j.acags.2025.100222_b31) 1969 Out (10.1016/j.acags.2025.100222_b37) 2024 Mauerberger (10.1016/j.acags.2025.100222_b34) 2020 De Boor (10.1016/j.acags.2025.100222_b13) 1978 Harris (10.1016/j.acags.2025.100222_b17) 2020; 585 Hellio (10.1016/j.acags.2025.100222_b18) 2018; 214 Bloxham (10.1016/j.acags.2025.100222_b6) 1992; 97 Behnel (10.1016/j.acags.2025.100222_b4) 2011; 13 Wieczorek (10.1016/j.acags.2025.100222_b47) 2018; 19 Constable (10.1016/j.acags.2025.100222_b12) 1987; 52 Gubbins (10.1016/j.acags.2025.100222_b15) 1975; 2 Leonhardt (10.1016/j.acags.2025.100222_b27) 2007; 253 Nilsson (10.1016/j.acags.2025.100222_b36) 2021; 317 Korte (10.1016/j.acags.2025.100222_b24) 2011; 312 Backus (10.1016/j.acags.2025.100222_b3) 1996 Kluyver (10.1016/j.acags.2025.100222_b22) 2016 Korte (10.1016/j.acags.2025.100222_b25) 2009; 10 Lowes (10.1016/j.acags.2025.100222_b29) 1974; 36 Gubbins (10.1016/j.acags.2025.100222_b16) 1985; 80 Korte (10.1016/j.acags.2025.100222_b23) 2003; 140 Bloxham (10.1016/j.acags.2025.100222_b5) 1987; 92 Brown (10.1016/j.acags.2025.100222_b8) 2015; 67 Korte (10.1016/j.acags.2025.100222_b26) 2005; 6 Licht (10.1016/j.acags.2025.100222_b28) 2013; 224 |
| References_xml | – volume: 67 start-page: 1 year: 2015 end-page: 19 ident: b8 article-title: GEOMAGIA50. v3: 2. A new paleomagnetic database for lake and marine sediments publication-title: Earth, Planets Space – volume: 52 start-page: 289 year: 1987 end-page: 300 ident: b12 article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data publication-title: Geophysics – volume: 388 start-page: 98 year: 2014 end-page: 109 ident: b41 article-title: A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data publication-title: Earth Planet. Sci. Lett. – year: 2020 ident: b34 article-title: Correlation based snapshot models of the archeomagnetic field publication-title: Geophys. J. Int. – volume: 2 start-page: 409 year: 1975 end-page: 412 ident: b15 article-title: Can the earth’s magnetic field be sustained by core oscillations? publication-title: Geophys. Res. Lett. – volume: 140 start-page: 73 year: 2003 end-page: 89 ident: b23 article-title: Continuous global geomagnetic field models for the past 3000 years publication-title: Phys. Earth Planet. Inter. – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b45 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods – year: 1978 ident: b13 article-title: A practical guide to splines – start-page: 87 year: 2016 end-page: 90 ident: b22 article-title: Jupyter notebooks - a publishing format for reproducible computational workflows publication-title: Positioning and Power in Academic Publishing: Players, Agents and Agendas – volume: 78 start-page: 493 year: 1988 end-page: 508 ident: b11 article-title: Smoothing, splines and smoothing splines; their application in geomagnetism publication-title: J. Comput. Phys. – volume: 36 start-page: 717 year: 1974 end-page: 730 ident: b29 article-title: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core publication-title: Geophys. J. Int. – year: 1969 ident: b31 article-title: Optimization by vector space methods – volume: 358 start-page: 991 year: 2000 end-page: 1008 ident: b9 article-title: Global geomagnetic field models for the past 3000 years: Transient or permanent flux lobes? publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 92 start-page: 11597 year: 1987 end-page: 11608 ident: b5 article-title: Simultaneous stochastic inversion for geomagnetic main field and secular variation: 1. A large-scale inverse problem publication-title: J. Geophys. Research: Solid Earth – volume: 127 year: 2022 ident: b42 article-title: ArchKalmag14k: a Kalman-filter based global geomagnetic model for the Holocene publication-title: J. Geophys. Research: Solid Earth – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: b17 article-title: Array programming with NumPy publication-title: Nature – volume: 214 start-page: 1585 year: 2018 end-page: 1607 ident: b18 article-title: Time-correlation-based regression of the geomagnetic field from archeological and sediment records publication-title: Geophys. J. Int. – volume: 317 year: 2021 ident: b36 article-title: Probabilistic approach to geomagnetic field modelling of data with age uncertainties and post-depositional magnetisations publication-title: Phys. Earth Planet. Inter. – volume: 13 start-page: 31 year: 2011 end-page: 39 ident: b4 article-title: Cython: The best of both worlds publication-title: Comput. Sci. Eng. – volume: 28 start-page: 215 year: 1982 end-page: 229 ident: b44 article-title: Harmonic splines for geomagnetic modelling publication-title: Phys. Earth Planet. Inter. – volume: 10 year: 2009 ident: b25 article-title: Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models publication-title: Geochem. Geophys. Geosyst. – volume: 117 year: 2012 ident: b39 article-title: Spline analysis of Holocene sediment magnetic records: Uncertainty estimates for field modeling publication-title: J. Geophys. Research: Solid Earth – volume: 358 start-page: 957 year: 2000 end-page: 990 ident: b21 article-title: Four centuries of geomagnetic secular variation from historical records publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – year: 1996 ident: b3 article-title: Foundations of geomagnetism – volume: 202 start-page: 402 year: 2015 end-page: 418 ident: b40 article-title: Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models publication-title: Geophys. J. Int. – year: 2024 ident: b37 article-title: Least squares spherical harmonic (paleo)geomagnetic field modeling with pymaginverse – volume: 290 start-page: 57 year: 2019 end-page: 75 ident: b2 article-title: A Bayesian iterative geomagnetic model with universal data input: Self-consistent spherical harmonic evolution for the geomagnetic field over the last 4000 years publication-title: Phys. Earth Planet. Inter. – volume: 80 start-page: 695 year: 1985 end-page: 713 ident: b16 article-title: Geomagnetic field analysis—III. Magnetic fields on the core—mantle boundary publication-title: Geophys. J. Int. – year: 2023 ident: b33 article-title: Global geomagnetic field evolution from 900 to 700 ka including the Matuyama-Brunhes reversal publication-title: J. Geophys. Research: Solid Earth – volume: 97 start-page: 19537 year: 1992 ident: b6 article-title: Time-dependent mapping of the magnetic field at the core-mantle boundary publication-title: J. Geophys. Res. – volume: 19 start-page: 2574 year: 2018 end-page: 2592 ident: b47 article-title: SHTools: Tools for working with spherical harmonics publication-title: Geochem. Geophys. Geosyst. – volume: 6 year: 2005 ident: b26 article-title: Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation publication-title: Geochem. Geophys. Geosyst. – volume: 453 start-page: 78 year: 2016 end-page: 86 ident: b10 article-title: Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years publication-title: Earth Planet. Sci. Lett. – year: 2020 ident: b43 article-title: pymagglobal - Python interface for global geomagnetic field models – volume: 72 start-page: 156 year: 2020 ident: b14 article-title: The CHAOS-7 geomagnetic field model and observed changes in the south atlantic anomaly publication-title: Earth, Planets Space – volume: 73 start-page: 1 year: 2021 end-page: 25 ident: b1 article-title: International geomagnetic reference field: The thirteenth generation publication-title: Earth, Planets Space – volume: 312 start-page: 497 year: 2011 end-page: 505 ident: b24 article-title: Reconstructing the Holocene geomagnetic field publication-title: Earth Planet. Sci. Lett. – volume: 198 start-page: 229 year: 2014 end-page: 248 ident: b35 article-title: Reconstructing Holocene geomagnetic field variation: New methods, models and implications publication-title: Geophys. J. Int. – volume: 67 start-page: 1 year: 2015 end-page: 31 ident: b7 article-title: GEOMAGIA50. v3: 1. General structure and modifications to the archeological and volcanic database publication-title: Earth, Planets Space – volume: 253 start-page: 172 year: 2007 end-page: 195 ident: b27 article-title: Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification publication-title: Earth Planet. Sci. Lett. – volume: 19 start-page: 4757 year: 2018 end-page: 4772 ident: b38 article-title: Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization publication-title: Geochem. Geophys. Geosyst. – volume: 101 start-page: 2177 year: 1996 end-page: 2200 ident: b19 article-title: The magnetic fields of Uranus and Neptune: Methods and models publication-title: J. Geophys. Research: Planets – year: 2011 ident: b30 article-title: A student’s guide to geophysical equations – volume: 128 year: 2023 ident: b32 article-title: Characteristics of the Matuyama-Brunhes magnetic field reversal based on a global data compilation publication-title: J. Geophys. Research: Solid Earth – start-page: 56 year: 2010 end-page: 61 ident: b46 article-title: Data structures for statistical computing in python publication-title: Proceedings of the 9th Python in Science Conference – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: b20 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. – volume: 224 start-page: 38 year: 2013 end-page: 67 ident: b28 article-title: Ensembles of low degree archeomagnetic field models for the past three millennia publication-title: Phys. Earth Planet. Inter. – year: 1978 ident: 10.1016/j.acags.2025.100222_b13 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 10.1016/j.acags.2025.100222_b20 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 290 start-page: 57 year: 2019 ident: 10.1016/j.acags.2025.100222_b2 article-title: A Bayesian iterative geomagnetic model with universal data input: Self-consistent spherical harmonic evolution for the geomagnetic field over the last 4000 years publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2019.03.008 – volume: 80 start-page: 695 issue: 3 year: 1985 ident: 10.1016/j.acags.2025.100222_b16 article-title: Geomagnetic field analysis—III. Magnetic fields on the core—mantle boundary publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1985.tb05119.x – year: 2020 ident: 10.1016/j.acags.2025.100222_b34 article-title: Correlation based snapshot models of the archeomagnetic field publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa336 – year: 2011 ident: 10.1016/j.acags.2025.100222_b30 – volume: 317 year: 2021 ident: 10.1016/j.acags.2025.100222_b36 article-title: Probabilistic approach to geomagnetic field modelling of data with age uncertainties and post-depositional magnetisations publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2021.106737 – volume: 97 start-page: 19537 issue: B13 year: 1992 ident: 10.1016/j.acags.2025.100222_b6 article-title: Time-dependent mapping of the magnetic field at the core-mantle boundary publication-title: J. Geophys. Res. doi: 10.1029/92JB01591 – volume: 2 start-page: 409 issue: 9 year: 1975 ident: 10.1016/j.acags.2025.100222_b15 article-title: Can the earth’s magnetic field be sustained by core oscillations? publication-title: Geophys. Res. Lett. doi: 10.1029/GL002i009p00409 – volume: 72 start-page: 156 issue: 1 year: 2020 ident: 10.1016/j.acags.2025.100222_b14 article-title: The CHAOS-7 geomagnetic field model and observed changes in the south atlantic anomaly publication-title: Earth, Planets Space doi: 10.1186/s40623-020-01252-9 – volume: 253 start-page: 172 issue: 1–2 year: 2007 ident: 10.1016/j.acags.2025.100222_b27 article-title: Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.10.025 – year: 1996 ident: 10.1016/j.acags.2025.100222_b3 – volume: 10 issue: 6 year: 2009 ident: 10.1016/j.acags.2025.100222_b25 article-title: Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2008GC002297 – start-page: 56 year: 2010 ident: 10.1016/j.acags.2025.100222_b46 article-title: Data structures for statistical computing in python – start-page: 87 year: 2016 ident: 10.1016/j.acags.2025.100222_b22 article-title: Jupyter notebooks - a publishing format for reproducible computational workflows – year: 2023 ident: 10.1016/j.acags.2025.100222_b33 article-title: Global geomagnetic field evolution from 900 to 700 ka including the Matuyama-Brunhes reversal publication-title: J. Geophys. Research: Solid Earth doi: 10.1029/2023JB026593 – volume: 67 start-page: 1 year: 2015 ident: 10.1016/j.acags.2025.100222_b7 article-title: GEOMAGIA50. v3: 1. General structure and modifications to the archeological and volcanic database publication-title: Earth, Planets Space doi: 10.1186/s40623-015-0232-0 – volume: 453 start-page: 78 year: 2016 ident: 10.1016/j.acags.2025.100222_b10 article-title: Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2016.08.015 – volume: 28 start-page: 215 issue: 3 year: 1982 ident: 10.1016/j.acags.2025.100222_b44 article-title: Harmonic splines for geomagnetic modelling publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(82)90003-6 – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 10.1016/j.acags.2025.100222_b17 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 224 start-page: 38 year: 2013 ident: 10.1016/j.acags.2025.100222_b28 article-title: Ensembles of low degree archeomagnetic field models for the past three millennia publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2013.08.007 – volume: 73 start-page: 1 year: 2021 ident: 10.1016/j.acags.2025.100222_b1 article-title: International geomagnetic reference field: The thirteenth generation publication-title: Earth, Planets Space – volume: 101 start-page: 2177 issue: E1 year: 1996 ident: 10.1016/j.acags.2025.100222_b19 article-title: The magnetic fields of Uranus and Neptune: Methods and models publication-title: J. Geophys. Research: Planets doi: 10.1029/95JE03437 – volume: 358 start-page: 957 issue: 1768 year: 2000 ident: 10.1016/j.acags.2025.100222_b21 article-title: Four centuries of geomagnetic secular variation from historical records publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2000.0569 – volume: 19 start-page: 4757 issue: 12 year: 2018 ident: 10.1016/j.acags.2025.100222_b38 article-title: Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2018GC007966 – volume: 358 start-page: 991 issue: 1768 year: 2000 ident: 10.1016/j.acags.2025.100222_b9 article-title: Global geomagnetic field models for the past 3000 years: Transient or permanent flux lobes? publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2000.0570 – volume: 388 start-page: 98 year: 2014 ident: 10.1016/j.acags.2025.100222_b41 article-title: A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.11.046 – volume: 78 start-page: 493 issue: 2 year: 1988 ident: 10.1016/j.acags.2025.100222_b11 article-title: Smoothing, splines and smoothing splines; their application in geomagnetism publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90062-9 – volume: 117 issue: B2 year: 2012 ident: 10.1016/j.acags.2025.100222_b39 article-title: Spline analysis of Holocene sediment magnetic records: Uncertainty estimates for field modeling publication-title: J. Geophys. Research: Solid Earth – volume: 13 start-page: 31 issue: 2 year: 2011 ident: 10.1016/j.acags.2025.100222_b4 article-title: Cython: The best of both worlds publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2010.118 – year: 2020 ident: 10.1016/j.acags.2025.100222_b43 – volume: 92 start-page: 11597 issue: B11 year: 1987 ident: 10.1016/j.acags.2025.100222_b5 article-title: Simultaneous stochastic inversion for geomagnetic main field and secular variation: 1. A large-scale inverse problem publication-title: J. Geophys. Research: Solid Earth doi: 10.1029/JB092iB11p11597 – volume: 198 start-page: 229 issue: 1 year: 2014 ident: 10.1016/j.acags.2025.100222_b35 article-title: Reconstructing Holocene geomagnetic field variation: New methods, models and implications publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu120 – year: 1969 ident: 10.1016/j.acags.2025.100222_b31 – volume: 312 start-page: 497 issue: 3 year: 2011 ident: 10.1016/j.acags.2025.100222_b24 article-title: Reconstructing the Holocene geomagnetic field publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2011.10.031 – year: 2024 ident: 10.1016/j.acags.2025.100222_b37 – volume: 6 issue: 2 year: 2005 ident: 10.1016/j.acags.2025.100222_b26 article-title: Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation publication-title: Geochem. Geophys. Geosyst. – volume: 202 start-page: 402 issue: 1 year: 2015 ident: 10.1016/j.acags.2025.100222_b40 article-title: Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv137 – volume: 52 start-page: 289 issue: 3 year: 1987 ident: 10.1016/j.acags.2025.100222_b12 article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data publication-title: Geophysics doi: 10.1190/1.1442303 – volume: 127 issue: 2 year: 2022 ident: 10.1016/j.acags.2025.100222_b42 article-title: ArchKalmag14k: a Kalman-filter based global geomagnetic model for the Holocene publication-title: J. Geophys. Research: Solid Earth doi: 10.1029/2021JB023166 – volume: 19 start-page: 2574 issue: 8 year: 2018 ident: 10.1016/j.acags.2025.100222_b47 article-title: SHTools: Tools for working with spherical harmonics publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2018GC007529 – volume: 128 issue: 2 year: 2023 ident: 10.1016/j.acags.2025.100222_b32 article-title: Characteristics of the Matuyama-Brunhes magnetic field reversal based on a global data compilation publication-title: J. Geophys. Research: Solid Earth doi: 10.1029/2022JB025286 – volume: 214 start-page: 1585 issue: 3 year: 2018 ident: 10.1016/j.acags.2025.100222_b18 article-title: Time-correlation-based regression of the geomagnetic field from archeological and sediment records publication-title: Geophys. J. Int. doi: 10.1093/gji/ggy214 – volume: 67 start-page: 1 year: 2015 ident: 10.1016/j.acags.2025.100222_b8 article-title: GEOMAGIA50. v3: 2. A new paleomagnetic database for lake and marine sediments publication-title: Earth, Planets Space doi: 10.1186/s40623-015-0233-z – volume: 140 start-page: 73 issue: 1–3 year: 2003 ident: 10.1016/j.acags.2025.100222_b23 article-title: Continuous global geomagnetic field models for the past 3000 years publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2003.07.013 – volume: 36 start-page: 717 issue: 3 year: 1974 ident: 10.1016/j.acags.2025.100222_b29 article-title: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1974.tb00622.x – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.acags.2025.100222_b45 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 |
| SSID | ssj0002511571 |
| Score | 2.2910671 |
| Snippet | Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 100222 |
| SubjectTerms | Geomagia Open research Paleomagnetism RLS geomagnetic models |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHoRn1hf7MGjwWQfSeOtPmoRFA8VeguzyW5Ra1qkRfLvnd1NSntRD16XZbP5ZjPftzD5hpBzSELDQPIAT08cCCF0ADI3QcwVMoYxEDmfgsenuP8iHoZyuNTqy9aEeXtgD9wlCmquTZ4WTChh5UTCOSgFyLMhCKFs9g076dJlyuZgK5xlEjU2Q66gC3IYWYNuJp3vKGMrVOQc-1cYaWNeTqH6gvF4iXF622Srloq067e4Q9Z0uUvW710r3mqP3D5XH7bFkK2r0Fe0S6eV9QGgeAl-xyRBUY1Sb_dBR3qCU0v7vyJ1JWvUNcBB1tong97d4KYf1D0RgpzHYoYpUzPFo7xIkJgN3kaUjjq5DAscjqx2wE_YupDFkudhnLIwxVdFnCJgCrmaH5BWOSn1IaE8BZBCQJJ0lDAmTYs81QxCg_jyWEObXDToZFPvfJE1JWFvmQMzs2BmHsw2ubYILqZa22o3gMHM6mBmvwWzTeIG_6xWAJ7ZcanXn58eLKL1l90e_cduj8mmXdLXcJ-Q1uxzrk9RoszUmTuN3wPl390 priority: 102 providerName: Directory of Open Access Journals |
| Title | Pymaginverse: A python package for global geomagnetic field modeling |
| URI | https://dx.doi.org/10.1016/j.acags.2025.100222 https://doi.org/10.1016/j.acags.2025.100222 https://doaj.org/article/4873efc9d24b46508733abba8930a44b |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2590-1974 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511571 issn: 2590-1974 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2590-1974 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511571 issn: 2590-1974 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2590-1974 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511571 issn: 2590-1974 databaseCode: AKRWK dateStart: 20191001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEU--xYpKDh5d2W4e2_VWn0Vo6aEFPS2TNBG1botukXrwtzvJbosVkXrZQ8gmw0x25ht28g0hxxCHNgLBAjw9MuCcmwCEtoFkCiOGtVDzPAWttmz2-O2duCt5tt1dmLn_974OCzQ8OF7tSHi60Aj97bIUCLwrZLnX7jTuXfs4kYQBrsqnvEK_vzkXezxF_1wIWh1nI5i8w2DwLcRcrxd3t988M6GrLHk-HefqVH_84G1cUPoNslZCTdoozsYmWTLZFlm58a18J9vksjN5cS2KXF2GOaMNOpo4HgGKSfQzOhmKaJYWdCH0wQxxaubuO1Jf8kZ9Ax2Mejuke33VvWgGZU-FQDPJc3S5JlKspvsxBnaL2YwytboWYR-Haw57oAtwLGZSMB3KJAoTlBoQM0GkMNazXVLJhpnZI5QlAIJziOO64tYmSV8nJoLQMgZMGqiSk6my01HBnJFOS8qeUq-X1OklLfRSJefOILOpjvbaD6A-0_IrSjG7YsbqpB9xxR22jHEzpQBBV4hCqiqRU3OmJYIokAEu9fj37sHM-ItIu__P-Qekkr-OzSECmFwd-cQfn63Pq6PyEH8BtSHrqw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SIp58ixWVHDy6Zbt5bNdbfdQiWHpQqKdlkiai1m3RFll_vZPstlgRqdeQTYZJMt8XdvINIScQhzYCwQLcPTLgnJsAhLaBZAoRw1poeJ2C267s3PObvuiXOtvuLczC_3ufhwUaHp2udiS8XGiE8bYqBRLvCqned3utB1c-TiRhgKPyma7Q718uYI-X6F-AoLVpNob8A4bDbxDT3ijebr97ZUKXWfJSn05UXX_-0G1c0vpNsl5STdoq9sYWWTHZNlm99qV88x1y2ctfXYkil5dhzmiLjnOnI0DxEv2CQYYim6WFXAh9NCPsmrn3jtSnvFFfQAdRb5fcta_uLjpBWVMh0EzyCYZcEynW0IMYgd3ibUaZRlOLcIDNDcc9MAQ4FTMpmA5lEoUJWg3ImSBSiPVsj1SyUWb2CWUJgOAc4ripuLVJMtCJiSC0jAGTBmrkdObsdFwoZ6SzlLLn1PsldX5JC7_UyLlbkHlXJ3vtG9CfaXmKUrxdMWN1Moi44o5bxjiZUoCkK0QjVY3I2XKmJYMomAEO9fT37MF88Zex9uCf_Q9JZfI2NUdIYCbquNy4X7o_6YU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pymaginverse%3A+A+python+package+for+global+geomagnetic+field+modeling&rft.jtitle=Applied+computing+and+geosciences&rft.au=Out%2C+Frenk&rft.au=Schanner%2C+Maximilian&rft.au=van+Grinsven%2C+Liz&rft.au=Korte%2C+Monika&rft.date=2025-02-01&rft.issn=2590-1974&rft.eissn=2590-1974&rft.volume=25&rft.spage=100222&rft_id=info:doi/10.1016%2Fj.acags.2025.100222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acags_2025_100222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1974&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1974&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1974&client=summon |