Pymaginverse: A python package for global geomagnetic field modeling

Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in the outer core, and describing the global expression of magnetic field reversals. There exists a wide range of models, which differ in a pri...

Full description

Saved in:
Bibliographic Details
Published inApplied computing and geosciences Vol. 25; p. 100222
Main Authors Out, Frenk, Schanner, Maximilian, van Grinsven, Liz, Korte, Monika, de Groot, Lennart V.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2590-1974
2590-1974
DOI10.1016/j.acags.2025.100222

Cover

Abstract Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in the outer core, and describing the global expression of magnetic field reversals. There exists a wide range of models, which differ in a priori assumptions and methods for spatio-temporal interpolation. A frequently used modeling procedure is based on regularized least squares (RLS) spherical harmonic analysis, which has been used since the 1980s. The first version of this algorithm has been written in Fortran and inspired many different research groups to produce versions of the algorithm in other programming languages, either published open-access or only accessible within the institute. To open up the research field and allow for reproducibility of results between existing versions, we provide a user-friendly open-source Python version of this popular algorithm. We complement this method with an overview on background literature – concerning Maxwells equations, spherical harmonics, cubic B-Splines, and regularization – that forms the basis for RLS geomagnetic models. We included six spatial and two temporal damping methods from literature to further smooth the magnetic field in space and time. Computational resources are kept to a minimum by employing the banded structure of the normal equations involved and incorporating C-code (with Cython) for matrix formation, enabling a massive speed-up. This ensures that the algorithm can be executed on a simple laptop, and is as fast as its Fortran predecessor. Four tutorials with ample examples show how to employ the new lightweight and quick algorithm. With this properly documented open-source Python algorithm, we have the intention to encourage current and new users to employ and further develop the method. •Pymaginverse computes time-dependent Gauss coefficients from geomagnetic datasets.•The algorithm uses regularized least squares spherical harmonics.•The algorithm accepts geomagnetic data in CSV (ASCII) and GEOMAGIA format.•This library is CPU optimized and is on par with its Fortran predecessor.•The library outputs data in pymagglobal, CSV, and legacy Fortran formats.
AbstractList Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in the outer core, and describing the global expression of magnetic field reversals. There exists a wide range of models, which differ in a priori assumptions and methods for spatio-temporal interpolation. A frequently used modeling procedure is based on regularized least squares (RLS) spherical harmonic analysis, which has been used since the 1980s. The first version of this algorithm has been written in Fortran and inspired many different research groups to produce versions of the algorithm in other programming languages, either published open-access or only accessible within the institute. To open up the research field and allow for reproducibility of results between existing versions, we provide a user-friendly open-source Python version of this popular algorithm. We complement this method with an overview on background literature – concerning Maxwells equations, spherical harmonics, cubic B-Splines, and regularization – that forms the basis for RLS geomagnetic models. We included six spatial and two temporal damping methods from literature to further smooth the magnetic field in space and time. Computational resources are kept to a minimum by employing the banded structure of the normal equations involved and incorporating C-code (with Cython) for matrix formation, enabling a massive speed-up. This ensures that the algorithm can be executed on a simple laptop, and is as fast as its Fortran predecessor. Four tutorials with ample examples show how to employ the new lightweight and quick algorithm. With this properly documented open-source Python algorithm, we have the intention to encourage current and new users to employ and further develop the method. •Pymaginverse computes time-dependent Gauss coefficients from geomagnetic datasets.•The algorithm uses regularized least squares spherical harmonics.•The algorithm accepts geomagnetic data in CSV (ASCII) and GEOMAGIA format.•This library is CPU optimized and is on par with its Fortran predecessor.•The library outputs data in pymagglobal, CSV, and legacy Fortran formats.
Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in the outer core, and describing the global expression of magnetic field reversals. There exists a wide range of models, which differ in a priori assumptions and methods for spatio-temporal interpolation. A frequently used modeling procedure is based on regularized least squares (RLS) spherical harmonic analysis, which has been used since the 1980s. The first version of this algorithm has been written in Fortran and inspired many different research groups to produce versions of the algorithm in other programming languages, either published open-access or only accessible within the institute. To open up the research field and allow for reproducibility of results between existing versions, we provide a user-friendly open-source Python version of this popular algorithm. We complement this method with an overview on background literature – concerning Maxwells equations, spherical harmonics, cubic B-Splines, and regularization – that forms the basis for RLS geomagnetic models. We included six spatial and two temporal damping methods from literature to further smooth the magnetic field in space and time. Computational resources are kept to a minimum by employing the banded structure of the normal equations involved and incorporating C-code (with Cython) for matrix formation, enabling a massive speed-up. This ensures that the algorithm can be executed on a simple laptop, and is as fast as its Fortran predecessor. Four tutorials with ample examples show how to employ the new lightweight and quick algorithm. With this properly documented open-source Python algorithm, we have the intention to encourage current and new users to employ and further develop the method.
ArticleNumber 100222
Author Schanner, Maximilian
Out, Frenk
de Groot, Lennart V.
Korte, Monika
van Grinsven, Liz
Author_xml – sequence: 1
  givenname: Frenk
  orcidid: 0000-0002-1304-9095
  surname: Out
  fullname: Out, Frenk
  email: f.out@uu.nl
  organization: Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands
– sequence: 2
  givenname: Maximilian
  orcidid: 0000-0002-0497-9231
  surname: Schanner
  fullname: Schanner, Maximilian
  organization: Institute of applied mathematics, Potsdam University, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
– sequence: 3
  givenname: Liz
  orcidid: 0009-0000-6600-9583
  surname: van Grinsven
  fullname: van Grinsven, Liz
  organization: Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands
– sequence: 4
  givenname: Monika
  orcidid: 0000-0003-2970-9075
  surname: Korte
  fullname: Korte, Monika
  organization: Helmholtz Centre Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany
– sequence: 5
  givenname: Lennart V.
  orcidid: 0000-0002-1151-5662
  surname: de Groot
  fullname: de Groot, Lennart V.
  organization: Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands
BookMark eNqNkN1Kw0AQhRepYK19Am_yAqn7mzSCF6X-FQp60ftlspnEjWm2bGolb--2EfFKvJqZw5yPw7kko9a1SMg1ozNGWXJTz8BA1c045SoolHN-RsZcZTRmWSpHv_YLMu26moYfxZhK2Zjcv_ZbqGx7QN_hbbSIdv3-zbXRDsw7VBiVzkdV43JoogpdeG1xb01UWmyKaOsKbGxbXZHzEpoOp99zQjaPD5vlc7x-eVotF-vYiETuY8GQ54KZImVclglPcmRzo2gRZCaUkjQ9BksTJQxNMk6zEBSkZMBzyZSYkNWALRzUeuftFnyvHVh9EpyvNPiQrkEt56nA0mQFl7lMFA2ngDyHeSZoIOaBJQfWR7uD_hOa5gfIqD72qmt96lUfe9VDr8EmBpvxrus8lv903Q0uDOUcLHrdGYutwcJ6NPsQ3_7p_wLDepFO
Cites_doi 10.1109/MCSE.2007.55
10.1016/j.pepi.2019.03.008
10.1111/j.1365-246X.1985.tb05119.x
10.1093/gji/ggaa336
10.1016/j.pepi.2021.106737
10.1029/92JB01591
10.1029/GL002i009p00409
10.1186/s40623-020-01252-9
10.1016/j.epsl.2006.10.025
10.1029/2008GC002297
10.1029/2023JB026593
10.1186/s40623-015-0232-0
10.1016/j.epsl.2016.08.015
10.1016/0031-9201(82)90003-6
10.1038/s41586-020-2649-2
10.1016/j.pepi.2013.08.007
10.1029/95JE03437
10.1098/rsta.2000.0569
10.1029/2018GC007966
10.1098/rsta.2000.0570
10.1016/j.epsl.2013.11.046
10.1016/0021-9991(88)90062-9
10.1109/MCSE.2010.118
10.1029/JB092iB11p11597
10.1093/gji/ggu120
10.1016/j.epsl.2011.10.031
10.1093/gji/ggv137
10.1190/1.1442303
10.1029/2021JB023166
10.1029/2018GC007529
10.1029/2022JB025286
10.1093/gji/ggy214
10.1186/s40623-015-0233-z
10.1016/j.pepi.2003.07.013
10.1111/j.1365-246X.1974.tb00622.x
10.1038/s41592-019-0686-2
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.acags.2025.100222
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2590-1974
ExternalDocumentID oai_doaj_org_article_4873efc9d24b46508733abba8930a44b
10.1016/j.acags.2025.100222
10_1016_j_acags_2025_100222
S2590197425000047
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACLIJ
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c364t-31e2b31cd7124f626be18c50de2b135540702517653c069209002a441a2b4153
IEDL.DBID UNPAY
ISSN 2590-1974
IngestDate Fri Oct 03 12:45:45 EDT 2025
Tue Aug 19 23:39:11 EDT 2025
Tue Jul 01 04:53:32 EDT 2025
Sat Jun 21 16:54:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RLS geomagnetic models
Geomagia
Open research
Paleomagnetism
Language English
License This is an open access article under the CC BY-NC license.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-31e2b31cd7124f626be18c50de2b135540702517653c069209002a441a2b4153
ORCID 0000-0002-1304-9095
0009-0000-6600-9583
0000-0002-0497-9231
0000-0002-1151-5662
0000-0003-2970-9075
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.acags.2025.100222
ParticipantIDs doaj_primary_oai_doaj_org_article_4873efc9d24b46508733abba8930a44b
unpaywall_primary_10_1016_j_acags_2025_100222
crossref_primary_10_1016_j_acags_2025_100222
elsevier_sciencedirect_doi_10_1016_j_acags_2025_100222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Applied computing and geosciences
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Panovska, Finlay, Donadini, Hirt (b39) 2012; 117
Panovska, Korte, Finlay, Constable (b40) 2015; 202
Bloxham, Jackson (b6) 1992; 97
Mahgoub, Korte, Panovska (b33) 2023
Behnel, Bradshaw, Citro, Dalcin, Seljebotn, Smith (b4) 2011; 13
Licht, Hulot, Gallet, Thébault (b28) 2013; 224
Pavón-Carrasco, Osete, Torta, De Santis (b41) 2014; 388
Mauerberger, Schanner, Korte, Holschneider (b34) 2020
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt, SciPy 1.0 Contributors (b45) 2020; 17
Hellio, Gillet (b18) 2018; 214
Bloxham (b5) 1987; 92
Lowrie (b30) 2011
Constable, Johnson, Lund (b9) 2000; 358
Finlay, Kloss, Olsen, Hammer, Tøffner-Clausen, Grayver, Kuvshinov (b14) 2020; 72
Holme, Bloxham (b19) 1996; 101
Schanner, Korte, Holschneider (b42) 2022; 127
Schanner, Mauerberger, Korte (b43) 2020
WesMcKinney (b46) 2010
Nilsson, Holme, Korte, Suttie, Hill (b35) 2014; 198
Korte, Genevey, Constable, Frank, Schnepp (b26) 2005; 6
Alken, Thébault, Beggan, Amit, Aubert, Baerenzung, Bondar, Brown, Califf, Chambodut (b1) 2021; 73
Lowes (b29) 1974; 36
Jackson, Jonkers, Walker (b21) 2000; 358
Constable, Parker, Constable (b12) 1987; 52
Nilsson, Suttie (b36) 2021; 317
Shure, Parker, Backus (b44) 1982; 28
Out, Schanner (b37) 2024
Kluyver, Ragan-Kelley, Pérez, Granger, Bussonnier, Frederic, Kelley, Hamrick, Grout, Corlay, Ivanov, Avila, Abdalla, Willing, development team (b22) 2016
Hunter (b20) 2007; 9
Constable, Korte, Panovska (b10) 2016; 453
Korte, Constable, Donadini, Holme (b24) 2011; 312
Gubbins (b15) 1975; 2
Gubbins, Bloxham (b16) 1985; 80
Brown, Donadini, Nilsson, Panovska, Frank, Korhonen, Schuberth, Korte, Constable (b8) 2015; 67
Korte, Donadini, Constable (b25) 2009; 10
Lünberger (b31) 1969
Wieczorek, Meschede (b47) 2018; 19
Constable, Parker (b11) 1988; 78
Arneitz, Egli, Leonhardt, Fabian (b2) 2019; 290
Backus, Parker, Constable (b3) 1996
Leonhardt, Fabian (b27) 2007; 253
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b17) 2020; 585
Korte, Constable (b23) 2003; 140
Mahgoub, Korte, Panovska (b32) 2023; 128
Brown, Donadini, Korte, Nilsson, Korhonen, Lodge, Lengyel, Constable (b7) 2015; 67
Panovska, Constable, Korte (b38) 2018; 19
De Boor (b13) 1978
Pavón-Carrasco (10.1016/j.acags.2025.100222_b41) 2014; 388
Alken (10.1016/j.acags.2025.100222_b1) 2021; 73
Nilsson (10.1016/j.acags.2025.100222_b35) 2014; 198
Constable (10.1016/j.acags.2025.100222_b9) 2000; 358
Constable (10.1016/j.acags.2025.100222_b11) 1988; 78
Shure (10.1016/j.acags.2025.100222_b44) 1982; 28
Virtanen (10.1016/j.acags.2025.100222_b45) 2020; 17
WesMcKinney (10.1016/j.acags.2025.100222_b46) 2010
Mahgoub (10.1016/j.acags.2025.100222_b33) 2023
Brown (10.1016/j.acags.2025.100222_b7) 2015; 67
Constable (10.1016/j.acags.2025.100222_b10) 2016; 453
Panovska (10.1016/j.acags.2025.100222_b38) 2018; 19
Finlay (10.1016/j.acags.2025.100222_b14) 2020; 72
Panovska (10.1016/j.acags.2025.100222_b39) 2012; 117
Schanner (10.1016/j.acags.2025.100222_b42) 2022; 127
Schanner (10.1016/j.acags.2025.100222_b43) 2020
Holme (10.1016/j.acags.2025.100222_b19) 1996; 101
Hunter (10.1016/j.acags.2025.100222_b20) 2007; 9
Mahgoub (10.1016/j.acags.2025.100222_b32) 2023; 128
Jackson (10.1016/j.acags.2025.100222_b21) 2000; 358
Arneitz (10.1016/j.acags.2025.100222_b2) 2019; 290
Lowrie (10.1016/j.acags.2025.100222_b30) 2011
Panovska (10.1016/j.acags.2025.100222_b40) 2015; 202
Lünberger (10.1016/j.acags.2025.100222_b31) 1969
Out (10.1016/j.acags.2025.100222_b37) 2024
Mauerberger (10.1016/j.acags.2025.100222_b34) 2020
De Boor (10.1016/j.acags.2025.100222_b13) 1978
Harris (10.1016/j.acags.2025.100222_b17) 2020; 585
Hellio (10.1016/j.acags.2025.100222_b18) 2018; 214
Bloxham (10.1016/j.acags.2025.100222_b6) 1992; 97
Behnel (10.1016/j.acags.2025.100222_b4) 2011; 13
Wieczorek (10.1016/j.acags.2025.100222_b47) 2018; 19
Constable (10.1016/j.acags.2025.100222_b12) 1987; 52
Gubbins (10.1016/j.acags.2025.100222_b15) 1975; 2
Leonhardt (10.1016/j.acags.2025.100222_b27) 2007; 253
Nilsson (10.1016/j.acags.2025.100222_b36) 2021; 317
Korte (10.1016/j.acags.2025.100222_b24) 2011; 312
Backus (10.1016/j.acags.2025.100222_b3) 1996
Kluyver (10.1016/j.acags.2025.100222_b22) 2016
Korte (10.1016/j.acags.2025.100222_b25) 2009; 10
Lowes (10.1016/j.acags.2025.100222_b29) 1974; 36
Gubbins (10.1016/j.acags.2025.100222_b16) 1985; 80
Korte (10.1016/j.acags.2025.100222_b23) 2003; 140
Bloxham (10.1016/j.acags.2025.100222_b5) 1987; 92
Brown (10.1016/j.acags.2025.100222_b8) 2015; 67
Korte (10.1016/j.acags.2025.100222_b26) 2005; 6
Licht (10.1016/j.acags.2025.100222_b28) 2013; 224
References_xml – volume: 67
  start-page: 1
  year: 2015
  end-page: 19
  ident: b8
  article-title: GEOMAGIA50. v3: 2. A new paleomagnetic database for lake and marine sediments
  publication-title: Earth, Planets Space
– volume: 52
  start-page: 289
  year: 1987
  end-page: 300
  ident: b12
  article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data
  publication-title: Geophysics
– volume: 388
  start-page: 98
  year: 2014
  end-page: 109
  ident: b41
  article-title: A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data
  publication-title: Earth Planet. Sci. Lett.
– year: 2020
  ident: b34
  article-title: Correlation based snapshot models of the archeomagnetic field
  publication-title: Geophys. J. Int.
– volume: 2
  start-page: 409
  year: 1975
  end-page: 412
  ident: b15
  article-title: Can the earth’s magnetic field be sustained by core oscillations?
  publication-title: Geophys. Res. Lett.
– volume: 140
  start-page: 73
  year: 2003
  end-page: 89
  ident: b23
  article-title: Continuous global geomagnetic field models for the past 3000 years
  publication-title: Phys. Earth Planet. Inter.
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b45
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
– year: 1978
  ident: b13
  article-title: A practical guide to splines
– start-page: 87
  year: 2016
  end-page: 90
  ident: b22
  article-title: Jupyter notebooks - a publishing format for reproducible computational workflows
  publication-title: Positioning and Power in Academic Publishing: Players, Agents and Agendas
– volume: 78
  start-page: 493
  year: 1988
  end-page: 508
  ident: b11
  article-title: Smoothing, splines and smoothing splines; their application in geomagnetism
  publication-title: J. Comput. Phys.
– volume: 36
  start-page: 717
  year: 1974
  end-page: 730
  ident: b29
  article-title: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core
  publication-title: Geophys. J. Int.
– year: 1969
  ident: b31
  article-title: Optimization by vector space methods
– volume: 358
  start-page: 991
  year: 2000
  end-page: 1008
  ident: b9
  article-title: Global geomagnetic field models for the past 3000 years: Transient or permanent flux lobes?
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 92
  start-page: 11597
  year: 1987
  end-page: 11608
  ident: b5
  article-title: Simultaneous stochastic inversion for geomagnetic main field and secular variation: 1. A large-scale inverse problem
  publication-title: J. Geophys. Research: Solid Earth
– volume: 127
  year: 2022
  ident: b42
  article-title: ArchKalmag14k: a Kalman-filter based global geomagnetic model for the Holocene
  publication-title: J. Geophys. Research: Solid Earth
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: b17
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 214
  start-page: 1585
  year: 2018
  end-page: 1607
  ident: b18
  article-title: Time-correlation-based regression of the geomagnetic field from archeological and sediment records
  publication-title: Geophys. J. Int.
– volume: 317
  year: 2021
  ident: b36
  article-title: Probabilistic approach to geomagnetic field modelling of data with age uncertainties and post-depositional magnetisations
  publication-title: Phys. Earth Planet. Inter.
– volume: 13
  start-page: 31
  year: 2011
  end-page: 39
  ident: b4
  article-title: Cython: The best of both worlds
  publication-title: Comput. Sci. Eng.
– volume: 28
  start-page: 215
  year: 1982
  end-page: 229
  ident: b44
  article-title: Harmonic splines for geomagnetic modelling
  publication-title: Phys. Earth Planet. Inter.
– volume: 10
  year: 2009
  ident: b25
  article-title: Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models
  publication-title: Geochem. Geophys. Geosyst.
– volume: 117
  year: 2012
  ident: b39
  article-title: Spline analysis of Holocene sediment magnetic records: Uncertainty estimates for field modeling
  publication-title: J. Geophys. Research: Solid Earth
– volume: 358
  start-page: 957
  year: 2000
  end-page: 990
  ident: b21
  article-title: Four centuries of geomagnetic secular variation from historical records
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– year: 1996
  ident: b3
  article-title: Foundations of geomagnetism
– volume: 202
  start-page: 402
  year: 2015
  end-page: 418
  ident: b40
  article-title: Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models
  publication-title: Geophys. J. Int.
– year: 2024
  ident: b37
  article-title: Least squares spherical harmonic (paleo)geomagnetic field modeling with pymaginverse
– volume: 290
  start-page: 57
  year: 2019
  end-page: 75
  ident: b2
  article-title: A Bayesian iterative geomagnetic model with universal data input: Self-consistent spherical harmonic evolution for the geomagnetic field over the last 4000 years
  publication-title: Phys. Earth Planet. Inter.
– volume: 80
  start-page: 695
  year: 1985
  end-page: 713
  ident: b16
  article-title: Geomagnetic field analysis—III. Magnetic fields on the core—mantle boundary
  publication-title: Geophys. J. Int.
– year: 2023
  ident: b33
  article-title: Global geomagnetic field evolution from 900 to 700 ka including the Matuyama-Brunhes reversal
  publication-title: J. Geophys. Research: Solid Earth
– volume: 97
  start-page: 19537
  year: 1992
  ident: b6
  article-title: Time-dependent mapping of the magnetic field at the core-mantle boundary
  publication-title: J. Geophys. Res.
– volume: 19
  start-page: 2574
  year: 2018
  end-page: 2592
  ident: b47
  article-title: SHTools: Tools for working with spherical harmonics
  publication-title: Geochem. Geophys. Geosyst.
– volume: 6
  year: 2005
  ident: b26
  article-title: Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation
  publication-title: Geochem. Geophys. Geosyst.
– volume: 453
  start-page: 78
  year: 2016
  end-page: 86
  ident: b10
  article-title: Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years
  publication-title: Earth Planet. Sci. Lett.
– year: 2020
  ident: b43
  article-title: pymagglobal - Python interface for global geomagnetic field models
– volume: 72
  start-page: 156
  year: 2020
  ident: b14
  article-title: The CHAOS-7 geomagnetic field model and observed changes in the south atlantic anomaly
  publication-title: Earth, Planets Space
– volume: 73
  start-page: 1
  year: 2021
  end-page: 25
  ident: b1
  article-title: International geomagnetic reference field: The thirteenth generation
  publication-title: Earth, Planets Space
– volume: 312
  start-page: 497
  year: 2011
  end-page: 505
  ident: b24
  article-title: Reconstructing the Holocene geomagnetic field
  publication-title: Earth Planet. Sci. Lett.
– volume: 198
  start-page: 229
  year: 2014
  end-page: 248
  ident: b35
  article-title: Reconstructing Holocene geomagnetic field variation: New methods, models and implications
  publication-title: Geophys. J. Int.
– volume: 67
  start-page: 1
  year: 2015
  end-page: 31
  ident: b7
  article-title: GEOMAGIA50. v3: 1. General structure and modifications to the archeological and volcanic database
  publication-title: Earth, Planets Space
– volume: 253
  start-page: 172
  year: 2007
  end-page: 195
  ident: b27
  article-title: Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification
  publication-title: Earth Planet. Sci. Lett.
– volume: 19
  start-page: 4757
  year: 2018
  end-page: 4772
  ident: b38
  article-title: Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization
  publication-title: Geochem. Geophys. Geosyst.
– volume: 101
  start-page: 2177
  year: 1996
  end-page: 2200
  ident: b19
  article-title: The magnetic fields of Uranus and Neptune: Methods and models
  publication-title: J. Geophys. Research: Planets
– year: 2011
  ident: b30
  article-title: A student’s guide to geophysical equations
– volume: 128
  year: 2023
  ident: b32
  article-title: Characteristics of the Matuyama-Brunhes magnetic field reversal based on a global data compilation
  publication-title: J. Geophys. Research: Solid Earth
– start-page: 56
  year: 2010
  end-page: 61
  ident: b46
  article-title: Data structures for statistical computing in python
  publication-title: Proceedings of the 9th Python in Science Conference
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: b20
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
– volume: 224
  start-page: 38
  year: 2013
  end-page: 67
  ident: b28
  article-title: Ensembles of low degree archeomagnetic field models for the past three millennia
  publication-title: Phys. Earth Planet. Inter.
– year: 1978
  ident: 10.1016/j.acags.2025.100222_b13
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 10.1016/j.acags.2025.100222_b20
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 290
  start-page: 57
  year: 2019
  ident: 10.1016/j.acags.2025.100222_b2
  article-title: A Bayesian iterative geomagnetic model with universal data input: Self-consistent spherical harmonic evolution for the geomagnetic field over the last 4000 years
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2019.03.008
– volume: 80
  start-page: 695
  issue: 3
  year: 1985
  ident: 10.1016/j.acags.2025.100222_b16
  article-title: Geomagnetic field analysis—III. Magnetic fields on the core—mantle boundary
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1985.tb05119.x
– year: 2020
  ident: 10.1016/j.acags.2025.100222_b34
  article-title: Correlation based snapshot models of the archeomagnetic field
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa336
– year: 2011
  ident: 10.1016/j.acags.2025.100222_b30
– volume: 317
  year: 2021
  ident: 10.1016/j.acags.2025.100222_b36
  article-title: Probabilistic approach to geomagnetic field modelling of data with age uncertainties and post-depositional magnetisations
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2021.106737
– volume: 97
  start-page: 19537
  issue: B13
  year: 1992
  ident: 10.1016/j.acags.2025.100222_b6
  article-title: Time-dependent mapping of the magnetic field at the core-mantle boundary
  publication-title: J. Geophys. Res.
  doi: 10.1029/92JB01591
– volume: 2
  start-page: 409
  issue: 9
  year: 1975
  ident: 10.1016/j.acags.2025.100222_b15
  article-title: Can the earth’s magnetic field be sustained by core oscillations?
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL002i009p00409
– volume: 72
  start-page: 156
  issue: 1
  year: 2020
  ident: 10.1016/j.acags.2025.100222_b14
  article-title: The CHAOS-7 geomagnetic field model and observed changes in the south atlantic anomaly
  publication-title: Earth, Planets Space
  doi: 10.1186/s40623-020-01252-9
– volume: 253
  start-page: 172
  issue: 1–2
  year: 2007
  ident: 10.1016/j.acags.2025.100222_b27
  article-title: Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2006.10.025
– year: 1996
  ident: 10.1016/j.acags.2025.100222_b3
– volume: 10
  issue: 6
  year: 2009
  ident: 10.1016/j.acags.2025.100222_b25
  article-title: Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2008GC002297
– start-page: 56
  year: 2010
  ident: 10.1016/j.acags.2025.100222_b46
  article-title: Data structures for statistical computing in python
– start-page: 87
  year: 2016
  ident: 10.1016/j.acags.2025.100222_b22
  article-title: Jupyter notebooks - a publishing format for reproducible computational workflows
– year: 2023
  ident: 10.1016/j.acags.2025.100222_b33
  article-title: Global geomagnetic field evolution from 900 to 700 ka including the Matuyama-Brunhes reversal
  publication-title: J. Geophys. Research: Solid Earth
  doi: 10.1029/2023JB026593
– volume: 67
  start-page: 1
  year: 2015
  ident: 10.1016/j.acags.2025.100222_b7
  article-title: GEOMAGIA50. v3: 1. General structure and modifications to the archeological and volcanic database
  publication-title: Earth, Planets Space
  doi: 10.1186/s40623-015-0232-0
– volume: 453
  start-page: 78
  year: 2016
  ident: 10.1016/j.acags.2025.100222_b10
  article-title: Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2016.08.015
– volume: 28
  start-page: 215
  issue: 3
  year: 1982
  ident: 10.1016/j.acags.2025.100222_b44
  article-title: Harmonic splines for geomagnetic modelling
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(82)90003-6
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.acags.2025.100222_b17
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 224
  start-page: 38
  year: 2013
  ident: 10.1016/j.acags.2025.100222_b28
  article-title: Ensembles of low degree archeomagnetic field models for the past three millennia
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2013.08.007
– volume: 73
  start-page: 1
  year: 2021
  ident: 10.1016/j.acags.2025.100222_b1
  article-title: International geomagnetic reference field: The thirteenth generation
  publication-title: Earth, Planets Space
– volume: 101
  start-page: 2177
  issue: E1
  year: 1996
  ident: 10.1016/j.acags.2025.100222_b19
  article-title: The magnetic fields of Uranus and Neptune: Methods and models
  publication-title: J. Geophys. Research: Planets
  doi: 10.1029/95JE03437
– volume: 358
  start-page: 957
  issue: 1768
  year: 2000
  ident: 10.1016/j.acags.2025.100222_b21
  article-title: Four centuries of geomagnetic secular variation from historical records
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2000.0569
– volume: 19
  start-page: 4757
  issue: 12
  year: 2018
  ident: 10.1016/j.acags.2025.100222_b38
  article-title: Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2018GC007966
– volume: 358
  start-page: 991
  issue: 1768
  year: 2000
  ident: 10.1016/j.acags.2025.100222_b9
  article-title: Global geomagnetic field models for the past 3000 years: Transient or permanent flux lobes?
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2000.0570
– volume: 388
  start-page: 98
  year: 2014
  ident: 10.1016/j.acags.2025.100222_b41
  article-title: A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.11.046
– volume: 78
  start-page: 493
  issue: 2
  year: 1988
  ident: 10.1016/j.acags.2025.100222_b11
  article-title: Smoothing, splines and smoothing splines; their application in geomagnetism
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90062-9
– volume: 117
  issue: B2
  year: 2012
  ident: 10.1016/j.acags.2025.100222_b39
  article-title: Spline analysis of Holocene sediment magnetic records: Uncertainty estimates for field modeling
  publication-title: J. Geophys. Research: Solid Earth
– volume: 13
  start-page: 31
  issue: 2
  year: 2011
  ident: 10.1016/j.acags.2025.100222_b4
  article-title: Cython: The best of both worlds
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2010.118
– year: 2020
  ident: 10.1016/j.acags.2025.100222_b43
– volume: 92
  start-page: 11597
  issue: B11
  year: 1987
  ident: 10.1016/j.acags.2025.100222_b5
  article-title: Simultaneous stochastic inversion for geomagnetic main field and secular variation: 1. A large-scale inverse problem
  publication-title: J. Geophys. Research: Solid Earth
  doi: 10.1029/JB092iB11p11597
– volume: 198
  start-page: 229
  issue: 1
  year: 2014
  ident: 10.1016/j.acags.2025.100222_b35
  article-title: Reconstructing Holocene geomagnetic field variation: New methods, models and implications
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu120
– year: 1969
  ident: 10.1016/j.acags.2025.100222_b31
– volume: 312
  start-page: 497
  issue: 3
  year: 2011
  ident: 10.1016/j.acags.2025.100222_b24
  article-title: Reconstructing the Holocene geomagnetic field
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2011.10.031
– year: 2024
  ident: 10.1016/j.acags.2025.100222_b37
– volume: 6
  issue: 2
  year: 2005
  ident: 10.1016/j.acags.2025.100222_b26
  article-title: Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation
  publication-title: Geochem. Geophys. Geosyst.
– volume: 202
  start-page: 402
  issue: 1
  year: 2015
  ident: 10.1016/j.acags.2025.100222_b40
  article-title: Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv137
– volume: 52
  start-page: 289
  issue: 3
  year: 1987
  ident: 10.1016/j.acags.2025.100222_b12
  article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data
  publication-title: Geophysics
  doi: 10.1190/1.1442303
– volume: 127
  issue: 2
  year: 2022
  ident: 10.1016/j.acags.2025.100222_b42
  article-title: ArchKalmag14k: a Kalman-filter based global geomagnetic model for the Holocene
  publication-title: J. Geophys. Research: Solid Earth
  doi: 10.1029/2021JB023166
– volume: 19
  start-page: 2574
  issue: 8
  year: 2018
  ident: 10.1016/j.acags.2025.100222_b47
  article-title: SHTools: Tools for working with spherical harmonics
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2018GC007529
– volume: 128
  issue: 2
  year: 2023
  ident: 10.1016/j.acags.2025.100222_b32
  article-title: Characteristics of the Matuyama-Brunhes magnetic field reversal based on a global data compilation
  publication-title: J. Geophys. Research: Solid Earth
  doi: 10.1029/2022JB025286
– volume: 214
  start-page: 1585
  issue: 3
  year: 2018
  ident: 10.1016/j.acags.2025.100222_b18
  article-title: Time-correlation-based regression of the geomagnetic field from archeological and sediment records
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggy214
– volume: 67
  start-page: 1
  year: 2015
  ident: 10.1016/j.acags.2025.100222_b8
  article-title: GEOMAGIA50. v3: 2. A new paleomagnetic database for lake and marine sediments
  publication-title: Earth, Planets Space
  doi: 10.1186/s40623-015-0233-z
– volume: 140
  start-page: 73
  issue: 1–3
  year: 2003
  ident: 10.1016/j.acags.2025.100222_b23
  article-title: Continuous global geomagnetic field models for the past 3000 years
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2003.07.013
– volume: 36
  start-page: 717
  issue: 3
  year: 1974
  ident: 10.1016/j.acags.2025.100222_b29
  article-title: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1974.tb00622.x
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.acags.2025.100222_b45
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
SSID ssj0002511571
Score 2.2910671
Snippet Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic poles, understanding the complex processes happening in...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 100222
SubjectTerms Geomagia
Open research
Paleomagnetism
RLS geomagnetic models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHoRn1hf7MGjwWQfSeOtPmoRFA8VeguzyW5Ra1qkRfLvnd1NSntRD16XZbP5ZjPftzD5hpBzSELDQPIAT08cCCF0ADI3QcwVMoYxEDmfgsenuP8iHoZyuNTqy9aEeXtgD9wlCmquTZ4WTChh5UTCOSgFyLMhCKFs9g076dJlyuZgK5xlEjU2Q66gC3IYWYNuJp3vKGMrVOQc-1cYaWNeTqH6gvF4iXF622Srloq067e4Q9Z0uUvW710r3mqP3D5XH7bFkK2r0Fe0S6eV9QGgeAl-xyRBUY1Sb_dBR3qCU0v7vyJ1JWvUNcBB1tong97d4KYf1D0RgpzHYoYpUzPFo7xIkJgN3kaUjjq5DAscjqx2wE_YupDFkudhnLIwxVdFnCJgCrmaH5BWOSn1IaE8BZBCQJJ0lDAmTYs81QxCg_jyWEObXDToZFPvfJE1JWFvmQMzs2BmHsw2ubYILqZa22o3gMHM6mBmvwWzTeIG_6xWAJ7ZcanXn58eLKL1l90e_cduj8mmXdLXcJ-Q1uxzrk9RoszUmTuN3wPl390
  priority: 102
  providerName: Directory of Open Access Journals
Title Pymaginverse: A python package for global geomagnetic field modeling
URI https://dx.doi.org/10.1016/j.acags.2025.100222
https://doi.org/10.1016/j.acags.2025.100222
https://doaj.org/article/4873efc9d24b46508733abba8930a44b
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1974
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511571
  issn: 2590-1974
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1974
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511571
  issn: 2590-1974
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2590-1974
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511571
  issn: 2590-1974
  databaseCode: AKRWK
  dateStart: 20191001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEU--xYpKDh5d2W4e2_VWn0Vo6aEFPS2TNBG1botukXrwtzvJbosVkXrZQ8gmw0x25ht28g0hxxCHNgLBAjw9MuCcmwCEtoFkCiOGtVDzPAWttmz2-O2duCt5tt1dmLn_974OCzQ8OF7tSHi60Aj97bIUCLwrZLnX7jTuXfs4kYQBrsqnvEK_vzkXezxF_1wIWh1nI5i8w2DwLcRcrxd3t988M6GrLHk-HefqVH_84G1cUPoNslZCTdoozsYmWTLZFlm58a18J9vksjN5cS2KXF2GOaMNOpo4HgGKSfQzOhmKaJYWdCH0wQxxaubuO1Jf8kZ9Ax2Mejuke33VvWgGZU-FQDPJc3S5JlKspvsxBnaL2YwytboWYR-Haw57oAtwLGZSMB3KJAoTlBoQM0GkMNazXVLJhpnZI5QlAIJziOO64tYmSV8nJoLQMgZMGqiSk6my01HBnJFOS8qeUq-X1OklLfRSJefOILOpjvbaD6A-0_IrSjG7YsbqpB9xxR22jHEzpQBBV4hCqiqRU3OmJYIokAEu9fj37sHM-ItIu__P-Qekkr-OzSECmFwd-cQfn63Pq6PyEH8BtSHrqw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SIp58ixWVHDy6Zbt5bNdbfdQiWHpQqKdlkiai1m3RFll_vZPstlgRqdeQTYZJMt8XdvINIScQhzYCwQLcPTLgnJsAhLaBZAoRw1poeJ2C267s3PObvuiXOtvuLczC_3ufhwUaHp2udiS8XGiE8bYqBRLvCqned3utB1c-TiRhgKPyma7Q718uYI-X6F-AoLVpNob8A4bDbxDT3ijebr97ZUKXWfJSn05UXX_-0G1c0vpNsl5STdoq9sYWWTHZNlm99qV88x1y2ctfXYkil5dhzmiLjnOnI0DxEv2CQYYim6WFXAh9NCPsmrn3jtSnvFFfQAdRb5fcta_uLjpBWVMh0EzyCYZcEynW0IMYgd3ibUaZRlOLcIDNDcc9MAQ4FTMpmA5lEoUJWg3ImSBSiPVsj1SyUWb2CWUJgOAc4ripuLVJMtCJiSC0jAGTBmrkdObsdFwoZ6SzlLLn1PsldX5JC7_UyLlbkHlXJ3vtG9CfaXmKUrxdMWN1Moi44o5bxjiZUoCkK0QjVY3I2XKmJYMomAEO9fT37MF88Zex9uCf_Q9JZfI2NUdIYCbquNy4X7o_6YU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pymaginverse%3A+A+python+package+for+global+geomagnetic+field+modeling&rft.jtitle=Applied+computing+and+geosciences&rft.au=Out%2C+Frenk&rft.au=Schanner%2C+Maximilian&rft.au=van+Grinsven%2C+Liz&rft.au=Korte%2C+Monika&rft.date=2025-02-01&rft.issn=2590-1974&rft.eissn=2590-1974&rft.volume=25&rft.spage=100222&rft_id=info:doi/10.1016%2Fj.acags.2025.100222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acags_2025_100222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1974&client=summon