APPROXIMATING SMOOTH, MULTIVARIATE FUNCTIONS ON IRREGULAR DOMAINS
In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in $d$ dimensions, where $d$ can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product doma...
        Saved in:
      
    
          | Published in | Forum of Mathematics, Sigma Vol. 8 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cambridge
          Cambridge University Press
    
        2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2050-5094 2050-5094  | 
| DOI | 10.1017/fms.2020.23 | 
Cover
| Abstract | In this paper, we introduce a method known as
polynomial frame approximation
for approximating smooth, multivariate functions defined on irregular domains in
$d$
dimensions, where
$d$
can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding
Nikolskii inequality
for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of 
$d$
, for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes. | 
    
|---|---|
| AbstractList | In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in $d$ dimensions, where $d$ can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of $d$, for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes. In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in \(d\) dimensions, where \(d\) can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of \(d\), for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes. In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in $d$ dimensions, where $d$ can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of $d$ , for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes.  | 
    
| ArticleNumber | e26 | 
    
| Author | HUYBRECHS, DAAN ADCOCK, BEN  | 
    
| Author_xml | – sequence: 1 givenname: BEN surname: ADCOCK fullname: ADCOCK, BEN – sequence: 2 givenname: DAAN surname: HUYBRECHS fullname: HUYBRECHS, DAAN  | 
    
| BookMark | eNqFkF1L60AQhhdR8ON45R8IeKmts7O7bnIZalsX2kTSVLxbNslGUmJSNynivzdakcPhgFczDM88w7yn5LBpG0vIBYUxBSpvypdujIAwRnZAThAEjAQE_PCv_picd90GAChFKaQ8IWH48JDET2oZpiqae6tlHKf3195yvUjVY5ioMJ16s3U0SVUcrbw48lSSTOfrRZh4d_EyVNHqDzkqTd3Z8-96RtazaTq5Hy3iuZqEi1HObnk_wpLLEpEHWAhWIstBWgoZpxiYwAchb30GGRVS-JIWpqTc-AzLLDcCBiRjZ0TtvUVrNnrrqhfj3nVrKv01aN2zNq6v8tpqa42xjBqBvuTD9UD43GZsiKGQBaAdXNd7167Zmvc3U9c_Qgr6M009pKk_09TIBvxyj29d-7qzXa837c41w7caOXCBDIUYqKs9lbu265wtf3HSf-i86k1ftU3vTFX_d-cDKvqMUA | 
    
| CitedBy_id | crossref_primary_10_1007_s10444_024_10147_2 crossref_primary_10_1137_22M1472693 crossref_primary_10_1016_j_jco_2021_101553 crossref_primary_10_1038_s41598_022_26602_3 crossref_primary_10_1007_s10444_020_09820_z crossref_primary_10_1007_s00365_022_09593_2 crossref_primary_10_1137_23M160178X crossref_primary_10_1137_19M1279459  | 
    
| Cites_doi | 10.1093/imanum/dry024 10.1007/s10208-013-9142-3 10.1007/s003650010020 10.1007/s10208-013-9158-8 10.1051/m2an/2014050 10.1007/978-0-8176-8224-8 10.1016/j.jcp.2011.04.023 10.1016/j.jcp.2014.05.036 10.1137/090774707 10.1006/jcph.2002.7023 10.1137/100817899 10.1016/j.jcp.2010.01.006 10.1615/Int.J.UncertaintyQuantification.2013006821 10.1016/j.matpur.2014.04.009 10.1093/imanum/draa023 10.1137/1.9780898719697 10.1007/s10208-017-9350-3 10.1016/j.jat.2014.10.010 10.1016/j.jcp.2011.01.002 10.1006/jcph.1996.0108 10.1016/j.jat.2013.09.008 10.1016/j.jcp.2015.06.042 10.1615/Int.J.UncertaintyQuantification.2012003925 10.1090/mcom/3272 10.1137/S0036144597321909 10.1137/100817504 10.1007/978-3-540-30726-6 10.1016/j.jcp.2007.08.029 10.1016/j.jcp.2009.11.020 10.1137/19M1279459 10.1007/s00211-013-0544-6 10.1137/17M1114697 10.1090/mcom/3192 10.1016/j.jcp.2013.04.004 10.1017/S0962492904000182 10.1007/s10208-011-9099-z 10.1137/S1064827501387826 10.1007/s10208-010-9072-2 10.1007/s00211-010-0287-6 10.1007/s00365-017-9370-x 10.5802/smai-jcm.24 10.1137/1.9781611973860 10.1016/j.jcp.2014.02.024 10.4208/cicp.020215.070515a 10.1137/1034115 10.1017/S0962492915000033  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.1017/fms.2020.23 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Engineering Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2050-5094 | 
    
| ExternalDocumentID | oai_doaj_org_article_eeaae31a528743649584eb3205d7d02e 10.1017/fms.2020.23 10_1017_fms_2020_23  | 
    
| GroupedDBID | 09C 09E 0E1 0R~ 5VS 8FE 8FG AABES AABWE AACJH AAGFV AAKTX AANRG AARAB AASVR AAYXX ABBXD ABDBF ABGDZ ABJCF ABKKG ABMWE ABQTM ABROB ABVKB ABXHF ACAJB ACBMC ACDLN ACGFS ACIMK ACIWK ACUHS ACUIJ ACZBM ACZUX ACZWT ADBBV ADCGK ADDNB ADFEC ADKIL ADOVH ADVJH AEBAK AEGXH AEHGV AENGE AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKMAY ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMVHM AQJOH ARABE AUXHV BBLKV BCNDV BENPR BGHMG BGLVJ BLZWO BMAJL C0O CBIIA CCPQU CCQAD CFAFE CHEAL CITATION CJCSC DOHLZ EBS EJD GROUPED_DOAJ HCIFZ HG- HZ~ I.6 IKXGN IOEEP IPYYG IS6 I~P JHPGK JQKCU KCGVB KFECR KQ8 L6V M-V M48 M7S M~E NIKVX O9- OK1 PHGZM PHGZT PQGLB PTHSS PUEGO PYCCK RAMDC RCA ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ ZYDXJ DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c364t-2f47f22492d53f23c07e10b4129a980576830b1575871daf14a832fbca5029ab3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2050-5094 | 
    
| IngestDate | Fri Oct 03 12:51:37 EDT 2025 Sun Oct 26 04:08:25 EDT 2025 Fri Jul 25 11:59:39 EDT 2025 Wed Oct 01 02:07:43 EDT 2025 Thu Apr 24 22:58:20 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c364t-2f47f22492d53f23c07e10b4129a980576830b1575871daf14a832fbca5029ab3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/48C1B735B4CD3ADAA304A8AB5F101E02/S2050509420000237a.pdf/div-class-title-approximating-smooth-multivariate-functions-on-irregular-domains-div.pdf | 
    
| PQID | 2404523255 | 
    
| PQPubID | 2035935 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_eeaae31a528743649584eb3205d7d02e unpaywall_primary_10_1017_fms_2020_23 proquest_journals_2404523255 crossref_primary_10_1017_fms_2020_23 crossref_citationtrail_10_1017_fms_2020_23  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-00-00 | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – year: 2020 text: 2020-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cambridge | 
    
| PublicationPlace_xml | – name: Cambridge | 
    
| PublicationTitle | Forum of Mathematics, Sigma | 
    
| PublicationYear | 2020 | 
    
| Publisher | Cambridge University Press | 
    
| Publisher_xml | – name: Cambridge University Press | 
    
| References | S2050509420000237_c1 S2050509420000237_c40 S2050509420000237_c9 S2050509420000237_c43 S2050509420000237_c8 S2050509420000237_c42 S2050509420000237_c45 S2050509420000237_c7 S2050509420000237_c44 S2050509420000237_c6 S2050509420000237_c47 S2050509420000237_c46 S2050509420000237_c49 Adcock (S2050509420000237_c4) 2017 S2050509420000237_c3 Boyd (S2050509420000237_c12) 2005; 161 S2050509420000237_c48 S2050509420000237_c2 S2050509420000237_c30 S2050509420000237_c32 S2050509420000237_c31 S2050509420000237_c34 S2050509420000237_c33 S2050509420000237_c36 S2050509420000237_c35 S2050509420000237_c38 S2050509420000237_c39 S2050509420000237_c21 S2050509420000237_c20 S2050509420000237_c23 S2050509420000237_c22 S2050509420000237_c25 S2050509420000237_c24 S2050509420000237_c27 S2050509420000237_c26 S2050509420000237_c29 S2050509420000237_c28 S2050509420000237_c50 S2050509420000237_c52 S2050509420000237_c51 S2050509420000237_c10 S2050509420000237_c53 S2050509420000237_c11 S2050509420000237_c14 S2050509420000237_c13 Adcock (S2050509420000237_c5) 2020 S2050509420000237_c16 Pasquetti (S2050509420000237_c41) 1996; 125 S2050509420000237_c15 S2050509420000237_c18 S2050509420000237_c17 Migliorati (S2050509420000237_c37) 2014; 14 S2050509420000237_c19  | 
    
| References_xml | – ident: S2050509420000237_c9 doi: 10.1093/imanum/dry024 – ident: S2050509420000237_c22 doi: 10.1007/s10208-013-9142-3 – ident: S2050509420000237_c29 doi: 10.1007/s003650010020 – ident: S2050509420000237_c6 – volume: 161 start-page: 591 year: 2005 ident: S2050509420000237_c12 article-title: Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C∞ publication-title: Appl. Math. Comput. – ident: S2050509420000237_c8 doi: 10.1007/s10208-013-9158-8 – ident: S2050509420000237_c18 doi: 10.1051/m2an/2014050 – ident: S2050509420000237_c21 doi: 10.1007/978-0-8176-8224-8 – ident: S2050509420000237_c11 doi: 10.1016/j.jcp.2011.04.023 – ident: S2050509420000237_c10 doi: 10.1016/j.jcp.2014.05.036 – ident: S2050509420000237_c43 doi: 10.1137/090774707 – ident: S2050509420000237_c13 doi: 10.1006/jcph.2002.7023 – ident: S2050509420000237_c44 doi: 10.1137/100817899 – ident: S2050509420000237_c33 doi: 10.1016/j.jcp.2010.01.006 – ident: S2050509420000237_c45 doi: 10.1615/Int.J.UncertaintyQuantification.2013006821 – ident: S2050509420000237_c19 doi: 10.1016/j.matpur.2014.04.009 – ident: S2050509420000237_c36 doi: 10.1093/imanum/draa023 – ident: S2050509420000237_c32 doi: 10.1137/1.9780898719697 – ident: S2050509420000237_c3 doi: 10.1007/s10208-017-9350-3 – ident: S2050509420000237_c35 doi: 10.1016/j.jat.2014.10.010 – ident: S2050509420000237_c27 doi: 10.1016/j.jcp.2011.01.002 – volume: 125 start-page: 464 year: 1996 ident: S2050509420000237_c41 article-title: A spectral embedding method applied to the advection–diffusion equation publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0108 – ident: S2050509420000237_c28 doi: 10.1016/j.jat.2013.09.008 – ident: S2050509420000237_c53 doi: 10.1016/j.jcp.2015.06.042 – ident: S2050509420000237_c51 doi: 10.1615/Int.J.UncertaintyQuantification.2012003925 – ident: S2050509420000237_c20 doi: 10.1090/mcom/3272 – ident: S2050509420000237_c40 doi: 10.1137/S0036144597321909 – ident: S2050509420000237_c49 doi: 10.1137/100817504 – ident: S2050509420000237_c17 doi: 10.1007/978-3-540-30726-6 – volume: 14 start-page: 419 year: 2014 ident: S2050509420000237_c37 article-title: Analysis of the discrete L2 projection on polynomial spaces with random evaluations publication-title: Found. Comput. Math. – ident: S2050509420000237_c15 doi: 10.1016/j.jcp.2007.08.029 – ident: S2050509420000237_c14 doi: 10.1016/j.jcp.2009.11.020 – ident: S2050509420000237_c46 – year: 2020 ident: S2050509420000237_c5 article-title: Near-optimal sampling strategies for multivariate function approximation on general domains publication-title: SIAM J. Math. Data Sci. doi: 10.1137/19M1279459 – ident: S2050509420000237_c30 doi: 10.1007/s00211-013-0544-6 – ident: S2050509420000237_c7 doi: 10.1137/17M1114697 – ident: S2050509420000237_c38 doi: 10.1090/mcom/3192 – ident: S2050509420000237_c52 doi: 10.1016/j.jcp.2013.04.004 – ident: S2050509420000237_c16 doi: 10.1017/S0962492904000182 – ident: S2050509420000237_c48 doi: 10.1007/s10208-011-9099-z – ident: S2050509420000237_c50 doi: 10.1137/S1064827501387826 – ident: S2050509420000237_c24 doi: 10.1007/s10208-010-9072-2 – ident: S2050509420000237_c1 – volume-title: Compressed Sensing and its Applications year: 2017 ident: S2050509420000237_c4 – ident: S2050509420000237_c2 doi: 10.1007/s00211-010-0287-6 – ident: S2050509420000237_c47 doi: 10.1007/s00365-017-9370-x – ident: S2050509420000237_c25 doi: 10.5802/smai-jcm.24 – ident: S2050509420000237_c26 doi: 10.1137/1.9781611973860 – ident: S2050509420000237_c42 doi: 10.1016/j.jcp.2014.02.024 – ident: S2050509420000237_c39 doi: 10.4208/cicp.020215.070515a – ident: S2050509420000237_c31 doi: 10.1137/1034115 – ident: S2050509420000237_c23 doi: 10.1017/S0962492915000033 – ident: S2050509420000237_c34  | 
    
| SSID | ssj0001127577 | 
    
| Score | 2.2587464 | 
    
| Snippet | In this paper, we introduce a method known as
polynomial frame approximation
for approximating smooth, multivariate functions defined on irregular domains in... In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in...  | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| SubjectTerms | 41A10 41A17 41A25 41A63 Approximation Complexity Dimensional analysis Domains Hypercubes Mathematical analysis Multivariate analysis Polynomials Regularization Tensors  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEN6YXtSD8Rmr1XDQi7ERdheWHlH7wJRiEExvZBeWU61G2xj_vTNAmzYxevFKJjDMMMx8w_ANIRdZ5haSObJt4fdBbrs4BCA0FHJOljEhO6JsDQQjZ5Dwh7E9Xln1hTNhFT1wZbgbraXUzJI2ErMzB-p5lwMApKadi9ykGt--pttZAVNldwV5y4Wof8hDjujiBcm5KU4-r6Wgkql_rbzcnE_f5NennExWMk1vl-zUJaLhVartkQ093SfbwZJf9eOAeN7jYxSO_cCL_VHfeArCMB5cG0EyjP1nL_K9uGv0klE5IPJkhCPDj6JuPxl6kXEfBh4g9kOS9Lrx3aBdL0NoZ3DXszYtuCgo8vvlNisoy8Cilqk45GvZcU2EDcxUFlRfAIFyWVhcQrAWClcegIhiR6QxfZ3qY2JQm8lOrlzI7A7PTVPJHHCgUDZVXNo6a5KrhX3SrGYKx4UVk7QaCRMQAB8pGjOlrAn-Xgi_VQQZP4vdoqGXIshqXR4AX6e1r9O_fN0krYWb0jrU4AIcWeEZQKMmuVy67jddTv5Dl1OyhaerujEt0pi9z_UZ1CczdV4-it-WVtom priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwELWAPSwcEPslypdy2N3DarNKbCduDggFaGlWpEEhWfUW2YnDpSqlLQL-PTOpU8EKcY1GUTLj0byxx-8R8r0su7VkvrRdPB_kXheHAIQGIOeXJRMyEM3WQDz0Bzn_O_JGa6S9QmAcOH-ztUM9qXw2_vN493QCCX9sWIIgAsi7TXGo-ef0zkZFKTx5NfIa6-QDVK0AZR1iA_2b_RdkNhfCXNn77zWvilTD5f8KgH68n0zl04Mcj1_Uov4O2TYg0gqXUf9E1vTkM9mKVwys8y8kDK-u0mQUxWEWDS-s6zhJssFvK84vs-hfmEZh1rP6-bAZIbm2kqEVpWnvIr8MU-s8iUPo6b-SvN_Lzga2kUuwS-bzhU1rLmqKDICVx2rKSvC56ygOFV0GXQcbC-YoF_AZNEmVrF0uIZ1rhaIIYKLYN7IxuZ3oXWJRj8mgUl2o_T6vHEfJCjpFoTyquPR02SG_Wv8UpeESR0mLcbEcGhOQIvMCnVlQ1oEV0RpPlxQab5udoqNXJsh73Ty4nd0UJo0KraXUzJUe0vTDXweAn7Ri1PEqUTlUd8hBG6aiXUsFhJ9Dvw3NU4f8WIXuvW_Ze_81-2QTDZc7MQdkYzG714eATRbqqFlkz-HH244 priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Jj9MwFLaGzgE4sI8oDCgHuCDcJrGz9Ohu06BJWrUNGk6RnQVVtGnVZVh-KX-FG--5acUghDhzi5KnLM7z8_fZz98j5FWa-oVkrqQWrg9yx8ckAC8HIOemKfNky9NTA2HkDmL-7sq5OiHfD3thMK3yqHGgV_J1fbRN1XGacrmix-tUX8OcbgjQTZxKb3K_Y7U95rR5p8tEVwig68IXbQf4qdUz7ebExtptQGpwjwoMWJ5srLKimc2uaYp4leqfRLWi95cZosbyI90sltBuVOf4XQOHBRhIcdzRrkGXJZ2t17p0_JpmywVQ-g2FG-KNb5FT1wGWUCOncTQSH7DWHTye4htU2wVRwbpYoHS4jXnZNwZIXUfgBvi9vStX8utnOZ__Mg7275Mfhxbcp798auy2qpF--01c8n9s4gfkXgXeDbHvbQ_JSV4-InfDo_Lt5jERYjQaD6-CUEyD6MKYhMPhdPDWCOPLafBejAMx7Rn9ONKpOxNjGBnBeNy7iC_F2OgOQxFEkyck7vemnQGtylTQlLl8S-2Ce4WNyouZwwqbpeDrlqk4ICnZ8k0kdMxUFuBiIKeZLCwuIYwWCotRgIliZ6RWLsv8KTFsh8lWpnzAXC7PTFPJDBi6pxxbcenkaZ28OfhGklYa7lhKZJ7sk_U8CE2bBB0psVkdeuLBeLWXLvmzWRud7GiCeuP6BHhGUoWvJM-lzJklHSyPAF_dAtyaKwY_OvMy087r5PzgokkVBOEBHPX6GZDWOnl9dNu_vcuzf7R7Tu7g0X4q7JzUtutd_gLA4Va9rPrZTwx8YfA priority: 102 providerName: Unpaywall  | 
    
| Title | APPROXIMATING SMOOTH, MULTIVARIATE FUNCTIONS ON IRREGULAR DOMAINS | 
    
| URI | https://www.proquest.com/docview/2404523255 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/48C1B735B4CD3ADAA304A8AB5F101E02/S2050509420000237a.pdf/div-class-title-approximating-smooth-multivariate-functions-on-irregular-domains-div.pdf https://doaj.org/article/eeaae31a528743649584eb3205d7d02e  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAEN databaseName: Cambridge University Press Gold Open Access Journals customDbUrl: eissn: 2050-5094 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: IKXGN dateStart: 20130101 isFulltext: true titleUrlDefault: http://journals.cambridge.org/action/login providerName: Cambridge University Press – providerCode: PRVAEN databaseName: Cambridge Wholly Gold Open Access Journals customDbUrl: eissn: 2050-5094 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: IPYYG dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.cambridge.org providerName: Cambridge University Press – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-5094 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-5094 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2050-5094 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: ABDBF dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2050-5094 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: AMVHM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-5094 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2050-5094 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2050-5094 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 2050-5094 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0001127577 issn: 2050-5094 databaseCode: M48 dateStart: 20190101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF616QE4IJ5qoEQ-wAVhYe-uvc4BIRfyMKrtyLVROFn7MpeQhDYV4t8z49iBSqgXH1YjP2Z3PN_Mzn5DyGuto0ayULo-7g_yIMIiAGEByIVaMyHHok0NpFk4r_iXZbA8Ill_FgbLKvt_YvujNhuNOfL34Hk4BE2AgD9uf7rYNQp3V_sWGrJrrWA-tBRjx-SEIjPWgJycT7JF8TfrgnzmQnQH9ZA7uvmBpN0UK6JvuaaWwf8W7Lx3s97K37_kavWPB5o-Ig876OjE-7l-TI7s-gl5kB54V6-fkjheLIp8maRxmWQz5zLN83L-zkmrizL5GhdJXE6caZW1hSOXTp45SVFMZtVFXDif8zSGSP4ZqaaT8tPc7ZokuJqFfOfShouGIu-fCVhDmQZN-57i4MflOPIwnGCe8gGVQWhkZONzCUbcKGyFACKKPSeD9WZtT4lDAybHRkXg8UNuPE9JA_GhUAFVXAZWD8nbXj-17hjEsZHFqt6XigkwjOsalVlTNoR10Atv98QZ_xc7R0UfRJDtuh3YXH2vO-OprZXSMl8GSM4PXz0G1GQVo15ghPGoHZKzfprqzgThAYcFMyRvDlN317u8uPs2L8l9FNznX87IYHd1Y18BItmpETmOprNRt9hGbVwP15RHMFZli_jbH1IR3Mg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb5swFLa69tDtUHW_tLTdxmG9TEMD20A4VBNtk4Y1QERgyo3aYHbJkrRJVfWf29-294jJVmnqrVf0MMZ-9vve8_P3CPlUlt1aMFeYNp4PcqeLSQCeAiDnliXzhO81oYEodgc5_z5xJlvkd3sXBtMq2z2x2aireYkx8q9geTg4TYCAvy2uTawahaerbQkNoUsrVCcNxZi-2HGp7u_AhVuehOcw38eU9nvZ2cDUVQbMkrl8ZdKaezVF4rzKYTVlJXTVtiQHQyj8roV4nFnSBlgDvkUlapsLWAW1xFoCICIZtPuM7HDGfXD-dk578Sj9G-VB_nTP0xcDkau6_oUk4RQzsB-YwqZiwAOYu3s7W4j7OzGd_mPx-vtkT0NVI1jr1kuypWavyItow_O6fE2CYDRKk0kYBVkYXxjjKEmywRcjyodZ-CNIwyDrGf08bhJVxkYSG2Ga9i7yYZAa50kUhPH4DcmfZLjeku3ZfKbeEYM6TPiV7ALCcHllWVJU4I960qGSC0eVHfK5HZ-i1IzlWDhjWqxT0zxYiMsCB7OgrAN61wov1kQd_xc7xYHeiCC7dvNgfvOz0Iu1UEoIxWzhYDEA-GsfUJqSjFpO5VUWVR1y1E5ToZc8fGCjoB1yvJm6x_py8HgzH8nuIIuGxTCMLw_Jc3xpHfs5Iturm1v1HtDQSn7QKmeQq6fW8j-ruRMy | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Jj9MwFLaGzgE4sI8oDCgHuCDcJrGz9Ohu06BJWrUNGk6RnQVVtGnVZVh-KX-FG--5acUghDhzi5KnLM7z8_fZz98j5FWa-oVkrqQWrg9yx8ckAC8HIOemKfNky9NTA2HkDmL-7sq5OiHfD3thMK3yqHGgV_J1fbRN1XGacrmix-tUX8OcbgjQTZxKb3K_Y7U95rR5p8tEVwig68IXbQf4qdUz7ebExtptQGpwjwoMWJ5srLKimc2uaYp4leqfRLWi95cZosbyI90sltBuVOf4XQOHBRhIcdzRrkGXJZ2t17p0_JpmywVQ-g2FG-KNb5FT1wGWUCOncTQSH7DWHTye4htU2wVRwbpYoHS4jXnZNwZIXUfgBvi9vStX8utnOZ__Mg7275Mfhxbcp798auy2qpF--01c8n9s4gfkXgXeDbHvbQ_JSV4-InfDo_Lt5jERYjQaD6-CUEyD6MKYhMPhdPDWCOPLafBejAMx7Rn9ONKpOxNjGBnBeNy7iC_F2OgOQxFEkyck7vemnQGtylTQlLl8S-2Ce4WNyouZwwqbpeDrlqk4ICnZ8k0kdMxUFuBiIKeZLCwuIYwWCotRgIliZ6RWLsv8KTFsh8lWpnzAXC7PTFPJDBi6pxxbcenkaZ28OfhGklYa7lhKZJ7sk_U8CE2bBB0psVkdeuLBeLWXLvmzWRud7GiCeuP6BHhGUoWvJM-lzJklHSyPAF_dAtyaKwY_OvMy087r5PzgokkVBOEBHPX6GZDWOnl9dNu_vcuzf7R7Tu7g0X4q7JzUtutd_gLA4Va9rPrZTwx8YfA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APPROXIMATING+SMOOTH%2C+MULTIVARIATE+FUNCTIONS+ON+IRREGULAR+DOMAINS&rft.jtitle=Forum+of+mathematics.+Sigma&rft.au=Adcock%2C+Ben&rft.au=HUYBRECHS%2C+DAAN&rft.date=2020&rft.pub=Cambridge+University+Press&rft.eissn=2050-5094&rft.volume=8&rft_id=info:doi/10.1017%2Ffms.2020.23 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5094&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5094&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5094&client=summon |