APPROXIMATING SMOOTH, MULTIVARIATE FUNCTIONS ON IRREGULAR DOMAINS

In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in $d$ dimensions, where $d$ can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product doma...

Full description

Saved in:
Bibliographic Details
Published inForum of Mathematics, Sigma Vol. 8
Main Authors ADCOCK, BEN, HUYBRECHS, DAAN
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 2020
Subjects
Online AccessGet full text
ISSN2050-5094
2050-5094
DOI10.1017/fms.2020.23

Cover

Abstract In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in $d$ dimensions, where $d$ can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of  $d$ , for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes.
AbstractList In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in $d$ dimensions, where $d$ can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of $d$, for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes.
In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in \(d\) dimensions, where \(d\) can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of \(d\), for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes.
In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in $d$ dimensions, where $d$ can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of  $d$ , for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes.
ArticleNumber e26
Author HUYBRECHS, DAAN
ADCOCK, BEN
Author_xml – sequence: 1
  givenname: BEN
  surname: ADCOCK
  fullname: ADCOCK, BEN
– sequence: 2
  givenname: DAAN
  surname: HUYBRECHS
  fullname: HUYBRECHS, DAAN
BookMark eNqFkF1L60AQhhdR8ON45R8IeKmts7O7bnIZalsX2kTSVLxbNslGUmJSNynivzdakcPhgFczDM88w7yn5LBpG0vIBYUxBSpvypdujIAwRnZAThAEjAQE_PCv_picd90GAChFKaQ8IWH48JDET2oZpiqae6tlHKf3195yvUjVY5ioMJ16s3U0SVUcrbw48lSSTOfrRZh4d_EyVNHqDzkqTd3Z8-96RtazaTq5Hy3iuZqEi1HObnk_wpLLEpEHWAhWIstBWgoZpxiYwAchb30GGRVS-JIWpqTc-AzLLDcCBiRjZ0TtvUVrNnrrqhfj3nVrKv01aN2zNq6v8tpqa42xjBqBvuTD9UD43GZsiKGQBaAdXNd7167Zmvc3U9c_Qgr6M009pKk_09TIBvxyj29d-7qzXa837c41w7caOXCBDIUYqKs9lbu265wtf3HSf-i86k1ftU3vTFX_d-cDKvqMUA
CitedBy_id crossref_primary_10_1007_s10444_024_10147_2
crossref_primary_10_1137_22M1472693
crossref_primary_10_1016_j_jco_2021_101553
crossref_primary_10_1038_s41598_022_26602_3
crossref_primary_10_1007_s10444_020_09820_z
crossref_primary_10_1007_s00365_022_09593_2
crossref_primary_10_1137_23M160178X
crossref_primary_10_1137_19M1279459
Cites_doi 10.1093/imanum/dry024
10.1007/s10208-013-9142-3
10.1007/s003650010020
10.1007/s10208-013-9158-8
10.1051/m2an/2014050
10.1007/978-0-8176-8224-8
10.1016/j.jcp.2011.04.023
10.1016/j.jcp.2014.05.036
10.1137/090774707
10.1006/jcph.2002.7023
10.1137/100817899
10.1016/j.jcp.2010.01.006
10.1615/Int.J.UncertaintyQuantification.2013006821
10.1016/j.matpur.2014.04.009
10.1093/imanum/draa023
10.1137/1.9780898719697
10.1007/s10208-017-9350-3
10.1016/j.jat.2014.10.010
10.1016/j.jcp.2011.01.002
10.1006/jcph.1996.0108
10.1016/j.jat.2013.09.008
10.1016/j.jcp.2015.06.042
10.1615/Int.J.UncertaintyQuantification.2012003925
10.1090/mcom/3272
10.1137/S0036144597321909
10.1137/100817504
10.1007/978-3-540-30726-6
10.1016/j.jcp.2007.08.029
10.1016/j.jcp.2009.11.020
10.1137/19M1279459
10.1007/s00211-013-0544-6
10.1137/17M1114697
10.1090/mcom/3192
10.1016/j.jcp.2013.04.004
10.1017/S0962492904000182
10.1007/s10208-011-9099-z
10.1137/S1064827501387826
10.1007/s10208-010-9072-2
10.1007/s00211-010-0287-6
10.1007/s00365-017-9370-x
10.5802/smai-jcm.24
10.1137/1.9781611973860
10.1016/j.jcp.2014.02.024
10.4208/cicp.020215.070515a
10.1137/1034115
10.1017/S0962492915000033
ContentType Journal Article
Copyright 2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1017/fms.2020.23
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2050-5094
ExternalDocumentID oai_doaj_org_article_eeaae31a528743649584eb3205d7d02e
10.1017/fms.2020.23
10_1017_fms_2020_23
GroupedDBID 09C
09E
0E1
0R~
5VS
8FE
8FG
AABES
AABWE
AACJH
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAYXX
ABBXD
ABDBF
ABGDZ
ABJCF
ABKKG
ABMWE
ABQTM
ABROB
ABVKB
ABXHF
ACAJB
ACBMC
ACDLN
ACGFS
ACIMK
ACIWK
ACUHS
ACUIJ
ACZBM
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADVJH
AEBAK
AEGXH
AEHGV
AENGE
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
AKMAY
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMVHM
AQJOH
ARABE
AUXHV
BBLKV
BCNDV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CITATION
CJCSC
DOHLZ
EBS
EJD
GROUPED_DOAJ
HCIFZ
HG-
HZ~
I.6
IKXGN
IOEEP
IPYYG
IS6
I~P
JHPGK
JQKCU
KCGVB
KFECR
KQ8
L6V
M-V
M48
M7S
M~E
NIKVX
O9-
OK1
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
PYCCK
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
ZYDXJ
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c364t-2f47f22492d53f23c07e10b4129a980576830b1575871daf14a832fbca5029ab3
IEDL.DBID BENPR
ISSN 2050-5094
IngestDate Fri Oct 03 12:51:37 EDT 2025
Sun Oct 26 04:08:25 EDT 2025
Fri Jul 25 11:59:39 EDT 2025
Wed Oct 01 02:07:43 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2f47f22492d53f23c07e10b4129a980576830b1575871daf14a832fbca5029ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/48C1B735B4CD3ADAA304A8AB5F101E02/S2050509420000237a.pdf/div-class-title-approximating-smooth-multivariate-functions-on-irregular-domains-div.pdf
PQID 2404523255
PQPubID 2035935
ParticipantIDs doaj_primary_oai_doaj_org_article_eeaae31a528743649584eb3205d7d02e
unpaywall_primary_10_1017_fms_2020_23
proquest_journals_2404523255
crossref_primary_10_1017_fms_2020_23
crossref_citationtrail_10_1017_fms_2020_23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Forum of Mathematics, Sigma
PublicationYear 2020
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S2050509420000237_c1
S2050509420000237_c40
S2050509420000237_c9
S2050509420000237_c43
S2050509420000237_c8
S2050509420000237_c42
S2050509420000237_c45
S2050509420000237_c7
S2050509420000237_c44
S2050509420000237_c6
S2050509420000237_c47
S2050509420000237_c46
S2050509420000237_c49
Adcock (S2050509420000237_c4) 2017
S2050509420000237_c3
Boyd (S2050509420000237_c12) 2005; 161
S2050509420000237_c48
S2050509420000237_c2
S2050509420000237_c30
S2050509420000237_c32
S2050509420000237_c31
S2050509420000237_c34
S2050509420000237_c33
S2050509420000237_c36
S2050509420000237_c35
S2050509420000237_c38
S2050509420000237_c39
S2050509420000237_c21
S2050509420000237_c20
S2050509420000237_c23
S2050509420000237_c22
S2050509420000237_c25
S2050509420000237_c24
S2050509420000237_c27
S2050509420000237_c26
S2050509420000237_c29
S2050509420000237_c28
S2050509420000237_c50
S2050509420000237_c52
S2050509420000237_c51
S2050509420000237_c10
S2050509420000237_c53
S2050509420000237_c11
S2050509420000237_c14
S2050509420000237_c13
Adcock (S2050509420000237_c5) 2020
S2050509420000237_c16
Pasquetti (S2050509420000237_c41) 1996; 125
S2050509420000237_c15
S2050509420000237_c18
S2050509420000237_c17
Migliorati (S2050509420000237_c37) 2014; 14
S2050509420000237_c19
References_xml – ident: S2050509420000237_c9
  doi: 10.1093/imanum/dry024
– ident: S2050509420000237_c22
  doi: 10.1007/s10208-013-9142-3
– ident: S2050509420000237_c29
  doi: 10.1007/s003650010020
– ident: S2050509420000237_c6
– volume: 161
  start-page: 591
  year: 2005
  ident: S2050509420000237_c12
  article-title: Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C∞
  publication-title: Appl. Math. Comput.
– ident: S2050509420000237_c8
  doi: 10.1007/s10208-013-9158-8
– ident: S2050509420000237_c18
  doi: 10.1051/m2an/2014050
– ident: S2050509420000237_c21
  doi: 10.1007/978-0-8176-8224-8
– ident: S2050509420000237_c11
  doi: 10.1016/j.jcp.2011.04.023
– ident: S2050509420000237_c10
  doi: 10.1016/j.jcp.2014.05.036
– ident: S2050509420000237_c43
  doi: 10.1137/090774707
– ident: S2050509420000237_c13
  doi: 10.1006/jcph.2002.7023
– ident: S2050509420000237_c44
  doi: 10.1137/100817899
– ident: S2050509420000237_c33
  doi: 10.1016/j.jcp.2010.01.006
– ident: S2050509420000237_c45
  doi: 10.1615/Int.J.UncertaintyQuantification.2013006821
– ident: S2050509420000237_c19
  doi: 10.1016/j.matpur.2014.04.009
– ident: S2050509420000237_c36
  doi: 10.1093/imanum/draa023
– ident: S2050509420000237_c32
  doi: 10.1137/1.9780898719697
– ident: S2050509420000237_c3
  doi: 10.1007/s10208-017-9350-3
– ident: S2050509420000237_c35
  doi: 10.1016/j.jat.2014.10.010
– ident: S2050509420000237_c27
  doi: 10.1016/j.jcp.2011.01.002
– volume: 125
  start-page: 464
  year: 1996
  ident: S2050509420000237_c41
  article-title: A spectral embedding method applied to the advection–diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0108
– ident: S2050509420000237_c28
  doi: 10.1016/j.jat.2013.09.008
– ident: S2050509420000237_c53
  doi: 10.1016/j.jcp.2015.06.042
– ident: S2050509420000237_c51
  doi: 10.1615/Int.J.UncertaintyQuantification.2012003925
– ident: S2050509420000237_c20
  doi: 10.1090/mcom/3272
– ident: S2050509420000237_c40
  doi: 10.1137/S0036144597321909
– ident: S2050509420000237_c49
  doi: 10.1137/100817504
– ident: S2050509420000237_c17
  doi: 10.1007/978-3-540-30726-6
– volume: 14
  start-page: 419
  year: 2014
  ident: S2050509420000237_c37
  article-title: Analysis of the discrete L2 projection on polynomial spaces with random evaluations
  publication-title: Found. Comput. Math.
– ident: S2050509420000237_c15
  doi: 10.1016/j.jcp.2007.08.029
– ident: S2050509420000237_c14
  doi: 10.1016/j.jcp.2009.11.020
– ident: S2050509420000237_c46
– year: 2020
  ident: S2050509420000237_c5
  article-title: Near-optimal sampling strategies for multivariate function approximation on general domains
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/19M1279459
– ident: S2050509420000237_c30
  doi: 10.1007/s00211-013-0544-6
– ident: S2050509420000237_c7
  doi: 10.1137/17M1114697
– ident: S2050509420000237_c38
  doi: 10.1090/mcom/3192
– ident: S2050509420000237_c52
  doi: 10.1016/j.jcp.2013.04.004
– ident: S2050509420000237_c16
  doi: 10.1017/S0962492904000182
– ident: S2050509420000237_c48
  doi: 10.1007/s10208-011-9099-z
– ident: S2050509420000237_c50
  doi: 10.1137/S1064827501387826
– ident: S2050509420000237_c24
  doi: 10.1007/s10208-010-9072-2
– ident: S2050509420000237_c1
– volume-title: Compressed Sensing and its Applications
  year: 2017
  ident: S2050509420000237_c4
– ident: S2050509420000237_c2
  doi: 10.1007/s00211-010-0287-6
– ident: S2050509420000237_c47
  doi: 10.1007/s00365-017-9370-x
– ident: S2050509420000237_c25
  doi: 10.5802/smai-jcm.24
– ident: S2050509420000237_c26
  doi: 10.1137/1.9781611973860
– ident: S2050509420000237_c42
  doi: 10.1016/j.jcp.2014.02.024
– ident: S2050509420000237_c39
  doi: 10.4208/cicp.020215.070515a
– ident: S2050509420000237_c31
  doi: 10.1137/1034115
– ident: S2050509420000237_c23
  doi: 10.1017/S0962492915000033
– ident: S2050509420000237_c34
SSID ssj0001127577
Score 2.2587464
Snippet In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in...
In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms 41A10
41A17
41A25
41A63
Approximation
Complexity
Dimensional analysis
Domains
Hypercubes
Mathematical analysis
Multivariate analysis
Polynomials
Regularization
Tensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEN6YXtSD8Rmr1XDQi7ERdheWHlH7wJRiEExvZBeWU61G2xj_vTNAmzYxevFKJjDMMMx8w_ANIRdZ5haSObJt4fdBbrs4BCA0FHJOljEhO6JsDQQjZ5Dwh7E9Xln1hTNhFT1wZbgbraXUzJI2ErMzB-p5lwMApKadi9ykGt--pttZAVNldwV5y4Wof8hDjujiBcm5KU4-r6Wgkql_rbzcnE_f5NennExWMk1vl-zUJaLhVartkQ093SfbwZJf9eOAeN7jYxSO_cCL_VHfeArCMB5cG0EyjP1nL_K9uGv0klE5IPJkhCPDj6JuPxl6kXEfBh4g9kOS9Lrx3aBdL0NoZ3DXszYtuCgo8vvlNisoy8Cilqk45GvZcU2EDcxUFlRfAIFyWVhcQrAWClcegIhiR6QxfZ3qY2JQm8lOrlzI7A7PTVPJHHCgUDZVXNo6a5KrhX3SrGYKx4UVk7QaCRMQAB8pGjOlrAn-Xgi_VQQZP4vdoqGXIshqXR4AX6e1r9O_fN0krYWb0jrU4AIcWeEZQKMmuVy67jddTv5Dl1OyhaerujEt0pi9z_UZ1CczdV4-it-WVtom
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwELWAPSwcEPslypdy2N3DarNKbCduDggFaGlWpEEhWfUW2YnDpSqlLQL-PTOpU8EKcY1GUTLj0byxx-8R8r0su7VkvrRdPB_kXheHAIQGIOeXJRMyEM3WQDz0Bzn_O_JGa6S9QmAcOH-ztUM9qXw2_vN493QCCX9sWIIgAsi7TXGo-ef0zkZFKTx5NfIa6-QDVK0AZR1iA_2b_RdkNhfCXNn77zWvilTD5f8KgH68n0zl04Mcj1_Uov4O2TYg0gqXUf9E1vTkM9mKVwys8y8kDK-u0mQUxWEWDS-s6zhJssFvK84vs-hfmEZh1rP6-bAZIbm2kqEVpWnvIr8MU-s8iUPo6b-SvN_Lzga2kUuwS-bzhU1rLmqKDICVx2rKSvC56ygOFV0GXQcbC-YoF_AZNEmVrF0uIZ1rhaIIYKLYN7IxuZ3oXWJRj8mgUl2o_T6vHEfJCjpFoTyquPR02SG_Wv8UpeESR0mLcbEcGhOQIvMCnVlQ1oEV0RpPlxQab5udoqNXJsh73Ty4nd0UJo0KraXUzJUe0vTDXweAn7Ri1PEqUTlUd8hBG6aiXUsFhJ9Dvw3NU4f8WIXuvW_Ze_81-2QTDZc7MQdkYzG714eATRbqqFlkz-HH244
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Jj9MwFLaGzgE4sI8oDCgHuCDcJrGz9Ohu06BJWrUNGk6RnQVVtGnVZVh-KX-FG--5acUghDhzi5KnLM7z8_fZz98j5FWa-oVkrqQWrg9yx8ckAC8HIOemKfNky9NTA2HkDmL-7sq5OiHfD3thMK3yqHGgV_J1fbRN1XGacrmix-tUX8OcbgjQTZxKb3K_Y7U95rR5p8tEVwig68IXbQf4qdUz7ebExtptQGpwjwoMWJ5srLKimc2uaYp4leqfRLWi95cZosbyI90sltBuVOf4XQOHBRhIcdzRrkGXJZ2t17p0_JpmywVQ-g2FG-KNb5FT1wGWUCOncTQSH7DWHTye4htU2wVRwbpYoHS4jXnZNwZIXUfgBvi9vStX8utnOZ__Mg7275Mfhxbcp798auy2qpF--01c8n9s4gfkXgXeDbHvbQ_JSV4-InfDo_Lt5jERYjQaD6-CUEyD6MKYhMPhdPDWCOPLafBejAMx7Rn9ONKpOxNjGBnBeNy7iC_F2OgOQxFEkyck7vemnQGtylTQlLl8S-2Ce4WNyouZwwqbpeDrlqk4ICnZ8k0kdMxUFuBiIKeZLCwuIYwWCotRgIliZ6RWLsv8KTFsh8lWpnzAXC7PTFPJDBi6pxxbcenkaZ28OfhGklYa7lhKZJ7sk_U8CE2bBB0psVkdeuLBeLWXLvmzWRud7GiCeuP6BHhGUoWvJM-lzJklHSyPAF_dAtyaKwY_OvMy087r5PzgokkVBOEBHPX6GZDWOnl9dNu_vcuzf7R7Tu7g0X4q7JzUtutd_gLA4Va9rPrZTwx8YfA
  priority: 102
  providerName: Unpaywall
Title APPROXIMATING SMOOTH, MULTIVARIATE FUNCTIONS ON IRREGULAR DOMAINS
URI https://www.proquest.com/docview/2404523255
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/48C1B735B4CD3ADAA304A8AB5F101E02/S2050509420000237a.pdf/div-class-title-approximating-smooth-multivariate-functions-on-irregular-domains-div.pdf
https://doaj.org/article/eeaae31a528743649584eb3205d7d02e
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge University Press Gold Open Access Journals
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: IKXGN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVAEN
  databaseName: Cambridge Wholly Gold Open Access Journals
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: IPYYG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.cambridge.org
  providerName: Cambridge University Press
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: ABDBF
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: AMVHM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 2050-5094
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0001127577
  issn: 2050-5094
  databaseCode: M48
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF616QE4IJ5qoEQ-wAVhYe-uvc4BIRfyMKrtyLVROFn7MpeQhDYV4t8z49iBSqgXH1YjP2Z3PN_Mzn5DyGuto0ayULo-7g_yIMIiAGEByIVaMyHHok0NpFk4r_iXZbA8Ill_FgbLKvt_YvujNhuNOfL34Hk4BE2AgD9uf7rYNQp3V_sWGrJrrWA-tBRjx-SEIjPWgJycT7JF8TfrgnzmQnQH9ZA7uvmBpN0UK6JvuaaWwf8W7Lx3s97K37_kavWPB5o-Ig876OjE-7l-TI7s-gl5kB54V6-fkjheLIp8maRxmWQz5zLN83L-zkmrizL5GhdJXE6caZW1hSOXTp45SVFMZtVFXDif8zSGSP4ZqaaT8tPc7ZokuJqFfOfShouGIu-fCVhDmQZN-57i4MflOPIwnGCe8gGVQWhkZONzCUbcKGyFACKKPSeD9WZtT4lDAybHRkXg8UNuPE9JA_GhUAFVXAZWD8nbXj-17hjEsZHFqt6XigkwjOsalVlTNoR10Atv98QZ_xc7R0UfRJDtuh3YXH2vO-OprZXSMl8GSM4PXz0G1GQVo15ghPGoHZKzfprqzgThAYcFMyRvDlN317u8uPs2L8l9FNznX87IYHd1Y18BItmpETmOprNRt9hGbVwP15RHMFZli_jbH1IR3Mg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb5swFLa69tDtUHW_tLTdxmG9TEMD20A4VBNtk4Y1QERgyo3aYHbJkrRJVfWf29-294jJVmnqrVf0MMZ-9vve8_P3CPlUlt1aMFeYNp4PcqeLSQCeAiDnliXzhO81oYEodgc5_z5xJlvkd3sXBtMq2z2x2aireYkx8q9geTg4TYCAvy2uTawahaerbQkNoUsrVCcNxZi-2HGp7u_AhVuehOcw38eU9nvZ2cDUVQbMkrl8ZdKaezVF4rzKYTVlJXTVtiQHQyj8roV4nFnSBlgDvkUlapsLWAW1xFoCICIZtPuM7HDGfXD-dk578Sj9G-VB_nTP0xcDkau6_oUk4RQzsB-YwqZiwAOYu3s7W4j7OzGd_mPx-vtkT0NVI1jr1kuypWavyItow_O6fE2CYDRKk0kYBVkYXxjjKEmywRcjyodZ-CNIwyDrGf08bhJVxkYSG2Ga9i7yYZAa50kUhPH4DcmfZLjeku3ZfKbeEYM6TPiV7ALCcHllWVJU4I960qGSC0eVHfK5HZ-i1IzlWDhjWqxT0zxYiMsCB7OgrAN61wov1kQd_xc7xYHeiCC7dvNgfvOz0Iu1UEoIxWzhYDEA-GsfUJqSjFpO5VUWVR1y1E5ToZc8fGCjoB1yvJm6x_py8HgzH8nuIIuGxTCMLw_Jc3xpHfs5Iturm1v1HtDQSn7QKmeQq6fW8j-ruRMy
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Jj9MwFLaGzgE4sI8oDCgHuCDcJrGz9Ohu06BJWrUNGk6RnQVVtGnVZVh-KX-FG--5acUghDhzi5KnLM7z8_fZz98j5FWa-oVkrqQWrg9yx8ckAC8HIOemKfNky9NTA2HkDmL-7sq5OiHfD3thMK3yqHGgV_J1fbRN1XGacrmix-tUX8OcbgjQTZxKb3K_Y7U95rR5p8tEVwig68IXbQf4qdUz7ebExtptQGpwjwoMWJ5srLKimc2uaYp4leqfRLWi95cZosbyI90sltBuVOf4XQOHBRhIcdzRrkGXJZ2t17p0_JpmywVQ-g2FG-KNb5FT1wGWUCOncTQSH7DWHTye4htU2wVRwbpYoHS4jXnZNwZIXUfgBvi9vStX8utnOZ__Mg7275Mfhxbcp798auy2qpF--01c8n9s4gfkXgXeDbHvbQ_JSV4-InfDo_Lt5jERYjQaD6-CUEyD6MKYhMPhdPDWCOPLafBejAMx7Rn9ONKpOxNjGBnBeNy7iC_F2OgOQxFEkyck7vemnQGtylTQlLl8S-2Ce4WNyouZwwqbpeDrlqk4ICnZ8k0kdMxUFuBiIKeZLCwuIYwWCotRgIliZ6RWLsv8KTFsh8lWpnzAXC7PTFPJDBi6pxxbcenkaZ28OfhGklYa7lhKZJ7sk_U8CE2bBB0psVkdeuLBeLWXLvmzWRud7GiCeuP6BHhGUoWvJM-lzJklHSyPAF_dAtyaKwY_OvMy087r5PzgokkVBOEBHPX6GZDWOnl9dNu_vcuzf7R7Tu7g0X4q7JzUtutd_gLA4Va9rPrZTwx8YfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APPROXIMATING+SMOOTH%2C+MULTIVARIATE+FUNCTIONS+ON+IRREGULAR+DOMAINS&rft.jtitle=Forum+of+mathematics.+Sigma&rft.au=Adcock%2C+Ben&rft.au=HUYBRECHS%2C+DAAN&rft.date=2020&rft.pub=Cambridge+University+Press&rft.eissn=2050-5094&rft.volume=8&rft_id=info:doi/10.1017%2Ffms.2020.23
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5094&client=summon