A Review and Evaluation of the State of Art in Image-Based Solar Energy Forecasting: The Methodology and Technology Used
The increasing penetration of solar energy into the grid has led to management difficulties that require high accuracy forecasting systems. New techniques and approaches are emerging worldwide every year to improve the accuracy of solar power forecasting models and reduce uncertainty in predictions....
Saved in:
Published in | Applied sciences Vol. 14; no. 13; p. 5605 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app14135605 |
Cover
Abstract | The increasing penetration of solar energy into the grid has led to management difficulties that require high accuracy forecasting systems. New techniques and approaches are emerging worldwide every year to improve the accuracy of solar power forecasting models and reduce uncertainty in predictions. This article aims to evaluate and compare various solar power forecasting methods based on their characteristics and performance using imagery. To achieve this goal, this article presents an updated analysis of diverse research, which is classified in terms of the technologies and methodologies applied. This analysis distinguishes studies that use ground-based sensor measurements, satellite data processing, or all-sky camera images, as well as statistical regression approaches, artificial intelligence, numerical models, image processing, or a combination of these technologies and methods. Key findings include the superior accuracy of hybrid models that integrate multiple data sources and methodologies, and the promising potential of all-sky camera systems for very short-term forecasting due to their ability to capture rapid changes in cloud cover. Additionally, the evaluation of different error metrics highlights the importance of selecting appropriate benchmarks, such as the smart persistence model, to enhance forecast reliability. This review underscores the need for continued innovation and integration of advanced technologies to meet the challenges of solar energy forecasting. |
---|---|
AbstractList | The increasing penetration of solar energy into the grid has led to management difficulties that require high accuracy forecasting systems. New techniques and approaches are emerging worldwide every year to improve the accuracy of solar power forecasting models and reduce uncertainty in predictions. This article aims to evaluate and compare various solar power forecasting methods based on their characteristics and performance using imagery. To achieve this goal, this article presents an updated analysis of diverse research, which is classified in terms of the technologies and methodologies applied. This analysis distinguishes studies that use ground-based sensor measurements, satellite data processing, or all-sky camera images, as well as statistical regression approaches, artificial intelligence, numerical models, image processing, or a combination of these technologies and methods. Key findings include the superior accuracy of hybrid models that integrate multiple data sources and methodologies, and the promising potential of all-sky camera systems for very short-term forecasting due to their ability to capture rapid changes in cloud cover. Additionally, the evaluation of different error metrics highlights the importance of selecting appropriate benchmarks, such as the smart persistence model, to enhance forecast reliability. This review underscores the need for continued innovation and integration of advanced technologies to meet the challenges of solar energy forecasting. |
Author | Travieso-González, Carlos M. Piñán-Roescher, Alejandro Celada-Bernal, Sergio Cabrera-Quintero, Fidel |
Author_xml | – sequence: 1 givenname: Carlos M. orcidid: 0000-0002-4621-2768 surname: Travieso-González fullname: Travieso-González, Carlos M. – sequence: 2 givenname: Fidel orcidid: 0000-0003-0948-0840 surname: Cabrera-Quintero fullname: Cabrera-Quintero, Fidel – sequence: 3 givenname: Alejandro orcidid: 0000-0002-0027-3266 surname: Piñán-Roescher fullname: Piñán-Roescher, Alejandro – sequence: 4 givenname: Sergio surname: Celada-Bernal fullname: Celada-Bernal, Sergio |
BookMark | eNptkU9vGyEQxVGVSE3TnPoFkHqsNoFlYdne3MhpLKWqlDhnNAuDvdYGXBbnz7cvjlspqspleMN7P42YD-QoxICEfOLsXIiOXcB2yxsupGLyHTmpWasq0fD26M39PTmbpg0rp-NCc3ZCnmf0Fh8HfKIQHJ0_wriDPMRAo6d5jfQuQ8a9mKVMh0AXD7DC6htM6OhdHCHRecC0eqFXMaGFKQ9h9ZUuS_IH5nV0cYzlcc9eol2Hg7wv6Y_k2MM44dmfekrur-bLy-vq5uf3xeXsprJCNbmqbc184xRqcBqY1w3yRjvHbd-BVFJh7zvsukZrpXRda9t76aQUnmvG-06cksWB6yJszDYND5BeTITBvDZiWhlIebAjGsZl4apeCGsb4KJHbLGrQUhmfc1ZYX0-sLYp_trhlM0m7lIo4xvB2o7VTNVtcfGDy6Y4TQm9sUN-_dScYBgNZ2a_L_NmXyXz5Z_M30n_5_4NP4aXJw |
CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110367 crossref_primary_10_3390_electricity5030029 crossref_primary_10_3390_en18061460 |
Cites_doi | 10.1016/j.atmosres.2017.06.010 10.1016/j.atmosres.2012.05.005 10.1016/j.apenergy.2023.120818 10.3390/en11081988 10.1016/j.solener.2018.10.073 10.1145/2343862.2343863 10.1016/j.energy.2016.11.061 10.1109/TIA.2020.3028558 10.1023/A:1021897212261 10.1016/j.renene.2018.08.044 10.1016/j.energy.2011.04.043 10.1016/j.solener.2018.05.039 10.3390/en16073215 10.1016/j.solener.2014.01.024 10.3390/app8010028 10.1109/TSTE.2016.2629974 10.1109/PESGM.2017.8274480 10.5194/acp-18-8807-2018 10.1127/metz/2019/0954 10.1016/j.energy.2019.115940 10.1016/j.solener.2015.10.041 10.1109/PVSC40753.2019.8980821 10.1016/j.solener.2019.06.041 10.1002/qj.3299 10.1109/TVCG.2011.130 10.1088/1757-899X/303/1/012016 10.1109/ISGTEurope.2019.8905430 10.1109/SOSE55472.2022.9812657 10.1109/IGARSS.2014.6947394 10.5194/acp-10-6129-2010 10.1007/978-3-319-59650-1_36 10.1175/JTECH-D-13-00209.1 10.5194/acp-16-3399-2016 10.1080/01431160600641822 10.1016/j.renene.2016.01.020 10.1109/TSTE.2014.2381224 10.1016/j.solener.2013.08.002 10.26599/BDMA.2022.9020003 10.1016/j.enconman.2015.08.037 10.1016/j.scitotenv.2020.136848 10.1016/j.solener.2013.02.018 10.1063/1.4949239 10.1016/j.solener.2019.02.004 10.1109/PVSC.2016.7749787 10.1016/j.renene.2018.02.006 10.1029/2002JD002122 10.3390/su9040482 10.1109/ICPES.2017.8387332 10.1016/j.renene.2016.06.018 10.1016/j.apenergy.2022.119063 10.1016/j.solener.2018.11.010 10.1109/ICPS54075.2022.9773880 10.1016/j.enconman.2013.11.043 10.1016/j.renene.2016.08.058 10.1016/j.solener.2019.04.070 10.1364/AO.52.001605 10.1016/j.enconman.2017.11.019 10.1016/j.solener.2009.05.016 10.1127/metz/2018/0904 10.1016/j.apenergy.2020.115875 10.1016/j.solener.2013.10.020 10.1016/j.egyai.2021.100060 10.1016/j.solener.2014.02.044 10.1016/j.solener.2011.02.014 10.1016/j.ijleo.2021.168515 10.1016/j.solener.2014.08.038 10.1016/j.solener.2017.02.007 10.1016/j.solener.2018.01.094 10.1109/TSTE.2016.2535466 10.1002/env.2267 10.1016/j.solener.2014.10.016 10.1175/JTECH1833.1 10.1109/PEDG.2018.8447751 10.1016/j.apenergy.2019.113541 10.1016/j.renene.2013.11.067 10.1109/TSTE.2018.2832634 10.1016/j.renene.2016.12.095 10.1016/j.rser.2010.09.049 10.1016/j.solener.2011.08.025 10.1016/j.solener.2014.11.013 10.3390/en17020329 10.1007/s10712-011-9163-x 10.3390/forecast2040026 10.1016/j.neucom.2015.02.022 10.1016/j.solener.2017.11.049 10.1029/2001JD000766 10.1016/j.solener.2022.11.031 10.1016/j.egyr.2021.08.167 10.1016/j.renene.2015.12.031 10.3390/rs6098165 10.1109/LGRS.2014.2356616 10.1016/j.solener.2017.07.045 10.1016/j.renene.2015.11.005 10.1109/TGRS.2017.2712809 10.1063/1.4984512 10.3390/rs13132455 10.1016/S0012-8252(03)00042-4 10.1016/j.apenergy.2015.08.011 10.1016/j.jss.2017.01.001 10.1016/j.renene.2020.10.091 10.1016/j.solener.2012.09.018 10.1109/TIE.2018.2856199 10.1063/1.5067196 10.1109/APPEEC.2017.8308987 10.1016/S0038-092X(02)00045-2 10.3390/data8040065 10.1175/JTECH-D-11-00009.1 10.1016/j.enconman.2020.113075 10.1016/j.solener.2016.04.003 10.1016/j.ijepes.2015.02.006 10.1109/ACCESS.2019.2951750 10.1029/2018GL077787 10.1016/j.enconman.2019.111799 10.1016/j.renene.2016.01.077 10.3390/sym11020240 10.1175/2009JAMC2090.1 10.1007/s00024-017-1578-y 10.1007/s11356-022-24240-w 10.1049/iet-rpg.2018.5779 10.1016/j.enconman.2016.05.025 10.1016/j.solener.2012.11.015 10.3390/en13215566 10.1016/j.solener.2012.10.012 10.1016/j.solener.2012.04.004 10.1016/j.renene.2019.05.069 10.1016/j.solener.2018.10.024 10.1109/ICME.2016.7552863 10.3390/buildings9100219 10.1175/JTECH-D-11-00002.1 10.5194/amt-14-2201-2021 10.5194/amt-3-557-2010 10.1016/j.solener.2014.10.036 10.1016/j.rser.2013.08.055 10.1175/JTECH1875.1 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 10.1016/j.rser.2017.01.114 10.1127/metz/2016/0676 10.1016/j.renene.2020.08.140 10.1016/j.energy.2015.10.054 10.1016/j.rser.2022.112364 10.3390/rs11091059 10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2 10.1016/j.solener.2015.05.037 10.1016/j.renene.2017.11.011 10.1016/j.apenergy.2022.119288 10.1016/j.solener.2014.02.021 10.1016/j.jclepro.2019.01.158 10.1175/JTECH-D-14-00053.1 10.1007/978-3-319-94120-2_12 10.1175/2010JTECHA1385.1 10.1109/SMC.2016.7844673 10.1109/TSMC.1979.4310076 10.1016/j.solener.2010.02.006 10.1016/j.solener.2018.01.007 10.1016/j.atmosres.2013.02.005 10.1029/2004JD004732 10.1109/MetroLivEnv54405.2022.9826940 10.1364/AO.48.004703 10.1109/FCCM.2009.16 10.1016/j.solener.2014.05.005 10.1109/PEDG.2010.5545754 10.1016/j.atmosres.2020.105026 10.1016/j.solener.2018.07.050 10.1016/j.solener.2018.10.080 10.1016/j.renene.2023.01.111 10.1016/j.renene.2018.11.056 10.1016/j.ijforecast.2018.02.003 10.1016/j.solener.2013.02.023 10.1016/j.enconman.2019.111853 10.1007/s10044-005-0007-5 10.1016/j.measurement.2014.11.037 10.1016/j.solener.2019.02.069 10.1016/j.solener.2020.03.083 10.1016/j.solener.2017.04.066 10.1016/j.renene.2016.12.023 10.1109/I2CT45611.2019.9033864 10.1016/j.solener.2021.11.064 10.1016/j.solener.2015.03.030 10.1016/S1361-8415(98)80022-4 10.3390/rs13091852 10.1016/j.rser.2018.12.055 10.1016/j.ijleo.2020.165207 10.1016/j.solener.2018.05.089 10.1002/pip.2968 10.1016/j.solener.2017.10.035 10.5194/amt-5-2881-2012 10.1016/j.solener.2017.09.068 10.1175/2010JTECHA1353.1 10.1016/j.rser.2019.01.009 10.1016/j.solener.2014.12.014 10.1016/j.rser.2022.112680 10.1016/j.apenergy.2021.116838 10.1016/j.renene.2014.10.035 10.1016/j.solener.2014.07.026 10.1016/j.renene.2019.09.011 10.1016/j.solener.2018.01.005 10.1016/j.solener.2020.01.008 10.5194/amt-15-407-2022 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app14135605 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_015d1c6b33cc4a13bee7e92a350cf210 10_3390_app14135605 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c364t-2c20f4d6e8ad8a0f84e148dd1cb9a5656ebf9e99488668228cbf5d553f1801b93 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:28:23 EDT 2025 Mon Jun 30 17:53:04 EDT 2025 Tue Jul 01 01:31:20 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-2c20f4d6e8ad8a0f84e148dd1cb9a5656ebf9e99488668228cbf5d553f1801b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0027-3266 0000-0002-4621-2768 0000-0003-0948-0840 |
OpenAccessLink | https://doaj.org/article/015d1c6b33cc4a13bee7e92a350cf210 |
PQID | 3079020627 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_015d1c6b33cc4a13bee7e92a350cf210 proquest_journals_3079020627 crossref_citationtrail_10_3390_app14135605 crossref_primary_10_3390_app14135605 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_137 Ghimire (ref_150) 2022; 316 ref_93 ref_136 Pereira (ref_164) 2019; 185 Xia (ref_192) 2015; 160 Benali (ref_155) 2018; 132 Yang (ref_92) 2014; 103 ref_99 Nonnenmacher (ref_36) 2014; 108 ref_98 Huang (ref_130) 2012; 87 Dong (ref_58) 2014; 79 Alessandrini (ref_25) 2015; 157 Qin (ref_142) 2022; 167 Lazzaroni (ref_24) 2015; 63 ref_125 Zhang (ref_9) 2015; 111 Zhen (ref_218) 2019; 197 Cros (ref_66) 2014; 9242 (ref_56) 2012; 86 Marzo (ref_45) 2023; 206 Bessa (ref_113) 2015; 72 Gesell (ref_73) 2016; 1734 David (ref_128) 2018; 34 Deo (ref_65) 2019; 104 Eseye (ref_165) 2018; 118 Neto (ref_186) 2010; 27 Wang (ref_171) 2018; 177 Ma (ref_15) 2021; 7 Gao (ref_143) 2022; 321 Kurzrock (ref_69) 2018; 27 Pierro (ref_61) 2017; 158 ref_151 ref_79 ref_77 Huang (ref_134) 2018; 66 Lima (ref_161) 2016; 87 ref_81 Seiz (ref_196) 2007; 28 Kong (ref_11) 2020; 280 Aguiar (ref_35) 2016; 97 Wei (ref_80) 2011; 18 ref_146 ref_84 Jang (ref_169) 2016; 7 Li (ref_187) 2011; 28 ref_216 ref_215 Chow (ref_108) 2011; 85 ref_219 Sobri (ref_127) 2018; 156 Hess (ref_178) 1998; 79 Chow (ref_94) 2015; 115 Kokhanovsky (ref_204) 2004; 64 ref_212 Marquez (ref_34) 2013; 92 Peng (ref_102) 2015; 118 Niccolai (ref_86) 2020; 2 Kelvin (ref_30) 2020; 173 Wang (ref_209) 2020; 220 Schmidt (ref_39) 2016; 16 Massidda (ref_52) 2017; 146 Zhang (ref_26) 2018; 10 Thirion (ref_213) 1998; 2 Sun (ref_149) 2019; 188 Doorga (ref_67) 2019; 104 Kratzke (ref_202) 2017; 126 Pedro (ref_154) 2018; 123 Ghimire (ref_23) 2019; 216 Cheng (ref_103) 2016; 91 Otsu (ref_194) 1979; 9 Long (ref_183) 2006; 23 Chu (ref_85) 2013; 98 ref_115 Kuhn (ref_90) 2017; Volume 1850 Yadav (ref_119) 2014; 33 Ghonima (ref_188) 2012; 5 Chu (ref_47) 2023; 249 ref_117 ref_116 Mejia (ref_156) 2018; 163 Boutahir (ref_32) 2022; 5 Jayadevan (ref_180) 2015; 32 Lipperheide (ref_10) 2015; 112 Alkhayat (ref_122) 2021; 4 ref_111 ref_112 Tapakis (ref_207) 2013; 95 Voyant (ref_153) 2017; 105 Muhammad (ref_135) 2018; 303 Miller (ref_170) 2018; 168 Marquez (ref_220) 2013; 91 Pereira (ref_182) 2006; 23 ref_104 ref_106 ref_109 Singh (ref_210) 2005; 8 Si (ref_33) 2021; 57 Kotthaus (ref_97) 2018; 144 Liu (ref_126) 2019; 187 Breitkreuz (ref_28) 2009; 48 Paletta (ref_48) 2023; 336 Kim (ref_176) 2017; 174 Nouri (ref_40) 2018; 2033 Ye (ref_193) 2017; 55 Lohmann (ref_205) 2018; 18 Monjoly (ref_132) 2017; 119 Zhen (ref_148) 2020; 56 Huang (ref_166) 2018; 176 Yang (ref_185) 2012; 29 Boyle (ref_2) 2021; 164 ref_13 Lago (ref_70) 2018; 173 ref_19 Srivastava (ref_64) 2018; 162 Ospina (ref_144) 2019; 13 Li (ref_217) 2022; 60 Taravat (ref_191) 2014; 12 Perez (ref_62) 2019; 177 Chaturvedi (ref_50) 2016; 145 Kuhn (ref_89) 2017; 26 Deo (ref_63) 2017; 72 Nouri (ref_100) 2019; 181 Yang (ref_168) 2016; 133 Rai (ref_140) 2021; 252 Liu (ref_29) 2015; 6 Kamadinata (ref_120) 2019; 134 ref_22 Sassen (ref_200) 2011; 33 ref_21 Kazantzidis (ref_184) 2012; 113 Lauret (ref_131) 2015; 112 Blanc (ref_101) 2017; 1850 Pereira (ref_71) 2015; 122 Chang (ref_206) 2002; 107 Moon (ref_54) 2020; 243 Iversen (ref_160) 2014; 25 Cachorro (ref_107) 2022; 15 Zamora (ref_55) 2003; 108 Wang (ref_121) 2019; 198 Cachorro (ref_72) 2021; 14 Sharma (ref_138) 2016; 90 Ineichen (ref_179) 2002; 73 Caldas (ref_38) 2019; 143 Amillo (ref_177) 2014; 6 Kahn (ref_201) 2008; 8 Verbois (ref_162) 2018; 162 (ref_14) 2021; 292 Reno (ref_87) 2016; 90 Benedetti (ref_158) 2017; 26 Fischer (ref_214) 2003; 18 Kosmopoulos (ref_18) 2015; 93 West (ref_91) 2014; 110 Batlles (ref_82) 2011; 36 Heinle (ref_181) 2010; 3 Liu (ref_199) 2004; 109 Liu (ref_208) 2011; 28 Bacher (ref_17) 2009; 83 Mustaqeem (ref_145) 2022; 52 Markovics (ref_74) 2022; 161 Persson (ref_5) 2017; 150 (ref_96) 2013; 127 Li (ref_114) 2014; 66 Marzouq (ref_46) 2023; 30 Blum (ref_41) 2022; 232 Cheng (ref_105) 2017; 104 ref_172 ref_175 ref_174 Zhang (ref_211) 2018; 45 ref_51 Pazikadin (ref_118) 2020; 715 Shakya (ref_139) 2017; 8 Yang (ref_110) 2014; 103 Russo (ref_76) 2014; 105 Ghimire (ref_141) 2019; 253 Hocaoglu (ref_124) 2017; 108 Mathiesen (ref_59) 2013; 92 Lonij (ref_20) 2013; 97 ref_60 Cornaro (ref_3) 2015; 111 Belmahdi (ref_133) 2020; 219 ref_163 Long (ref_197) 2017; 196 ref_167 (ref_152) 2020; 135 Pawar (ref_195) 2019; 183 Pedro (ref_8) 2012; 86 Chen (ref_203) 2000; 13 Rana (ref_75) 2016; 121 Bouzgou (ref_147) 2017; 158 Shamshirband (ref_123) 2019; 7 ref_31 Biberacher (ref_1) 2011; 15 (ref_159) 2017; 155 Feng (ref_12) 2020; 204 ref_37 Mellit (ref_16) 2010; 84 Batlles (ref_173) 2015; 105 Lopes (ref_157) 2018; 170 Huva (ref_57) 2020; 147 Zhang (ref_42) 2018; 176 ref_44 ref_189 Shields (ref_83) 2013; 52 Boland (ref_129) 2015; 75 Kuhn (ref_78) 2019; 28 Alfadda (ref_27) 2018; 170 ref_190 ref_49 Lahtinen (ref_68) 2020; 198 Nguyen (ref_95) 2014; 107 Quaas (ref_198) 2010; 10 Chu (ref_43) 2014; 31 Kosch (ref_88) 2009; 48 ref_4 Lopes (ref_53) 2021; 163 ref_7 ref_6 |
References_xml | – ident: ref_190 – volume: 196 start-page: 248 year: 2017 ident: ref_197 article-title: The thin border between cloud and aerosol: Sensitivity of several ground based observation techniques publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.06.010 – volume: 113 start-page: 80 year: 2012 ident: ref_184 article-title: Cloud detection and classification with the use of whole-sky ground-based images publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2012.05.005 – volume: 173 start-page: 1070 year: 2020 ident: ref_30 article-title: Developing automated methods to estimate spectrally resolved direct normal irradiance for solar energy applications publication-title: Renew. Energy – volume: 336 start-page: 120818 year: 2023 ident: ref_48 article-title: Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120818 – ident: ref_151 doi: 10.3390/en11081988 – volume: 177 start-page: 47 year: 2018 ident: ref_171 article-title: Surface solar radiation forecasts by advecting cloud physical properties derived from Meteosat Second Generation observations publication-title: Sol. Energy doi: 10.1016/j.solener.2018.10.073 – ident: ref_93 doi: 10.1145/2343862.2343863 – volume: 119 start-page: 288 year: 2017 ident: ref_132 article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach publication-title: Energy doi: 10.1016/j.energy.2016.11.061 – volume: 57 start-page: 5 year: 2021 ident: ref_33 article-title: Hybrid Solar Forecasting Method Using Satellite Visible Images and Modified Convolutional Neural Networks publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2020.3028558 – volume: 18 start-page: 81 year: 2003 ident: ref_214 article-title: Curvature Based Image Registration publication-title: J. Math. Imaging Vis. doi: 10.1023/A:1021897212261 – volume: 132 start-page: 871 year: 2018 ident: ref_155 article-title: Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components publication-title: Renew. Energy doi: 10.1016/j.renene.2018.08.044 – volume: 36 start-page: 4055 year: 2011 ident: ref_82 article-title: Cloud classification in a mediterranean location using radiation data and sky images publication-title: Energy doi: 10.1016/j.energy.2011.04.043 – volume: 170 start-page: 14 year: 2018 ident: ref_157 article-title: Short-term forecasts of GHI and DNI for solar energy systems operation: Assessment of the ECMWF integrated forecasting system in southern Portugal publication-title: Sol. Energy doi: 10.1016/j.solener.2018.05.039 – ident: ref_6 doi: 10.3390/en16073215 – volume: 103 start-page: 550 year: 2014 ident: ref_110 article-title: Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage publication-title: Sol. Energy doi: 10.1016/j.solener.2014.01.024 – ident: ref_125 doi: 10.3390/app8010028 – volume: 8 start-page: 895 year: 2017 ident: ref_139 article-title: Solar Irradiance Forecasting in Remote Microgrids Using Markov Switching Model publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2016.2629974 – ident: ref_13 doi: 10.1109/PESGM.2017.8274480 – volume: 18 start-page: 8807 year: 2018 ident: ref_205 article-title: The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol–climate model ECHAM6-HAM2 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-8807-2018 – ident: ref_4 – volume: 28 start-page: 255 year: 2019 ident: ref_78 article-title: Shadow-camera based solar nowcasting system for shortest-term forecasts publication-title: Meteorol. Z. doi: 10.1127/metz/2019/0954 – volume: 187 start-page: 115940 year: 2019 ident: ref_126 article-title: Random forest solar power forecast based on classification optimization publication-title: Energy doi: 10.1016/j.energy.2019.115940 – volume: 122 start-page: 1309 year: 2015 ident: ref_71 article-title: Use of satellite data to improve solar radiation forecasting with Bayesian Artificial Neural Networks publication-title: Sol. Energy doi: 10.1016/j.solener.2015.10.041 – ident: ref_37 doi: 10.1109/PVSC40753.2019.8980821 – volume: 188 start-page: 730 year: 2019 ident: ref_149 article-title: Short-term solar power forecast with deep learning: Exploring optimal input and output configuration publication-title: Sol. Energy doi: 10.1016/j.solener.2019.06.041 – ident: ref_212 – volume: 144 start-page: 1525 year: 2018 ident: ref_97 article-title: Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: A new method to track mixed layer height and classify clouds publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3299 – volume: 18 start-page: 1771 year: 2011 ident: ref_80 article-title: Fisheye Video Correction publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2011.130 – volume: 303 start-page: 012016 year: 2018 ident: ref_135 article-title: Forecasting of global solar radiation using anfis and armax techniques publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/303/1/012016 – ident: ref_112 doi: 10.1109/ISGTEurope.2019.8905430 – ident: ref_172 doi: 10.1109/SOSE55472.2022.9812657 – ident: ref_219 doi: 10.1109/IGARSS.2014.6947394 – volume: 10 start-page: 6129 year: 2010 ident: ref_198 article-title: Interpreting the cloud cover—Aerosol optical depth relationship found in satellite data using a general circulation model publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-6129-2010 – ident: ref_7 doi: 10.1007/978-3-319-59650-1_36 – volume: 31 start-page: 1995 year: 2014 ident: ref_43 article-title: A Smart Image-Based Cloud Detection System for Intrahour Solar Irradiance Forecasts publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-13-00209.1 – volume: 16 start-page: 3399 year: 2016 ident: ref_39 article-title: Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-3399-2016 – volume: 135 start-page: 110114 year: 2020 ident: ref_152 article-title: Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison publication-title: Renew. Sustain. Energy Rev. – volume: 28 start-page: 2001 year: 2007 ident: ref_196 article-title: Cloud mapping with ground-based photogrammetric cameras publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600641822 – volume: 90 start-page: 481 year: 2016 ident: ref_138 article-title: Short term solar irradiance forecasting using a mixed wavelet neural network publication-title: Renew. Energy doi: 10.1016/j.renene.2016.01.020 – volume: 6 start-page: 434 year: 2015 ident: ref_29 article-title: An Improved Photovoltaic Power Forecasting Model With the Assistance of Aerosol Index Data publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2014.2381224 – volume: 97 start-page: 58 year: 2013 ident: ref_20 article-title: Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors publication-title: Sol. Energy doi: 10.1016/j.solener.2013.08.002 – volume: 5 start-page: 309 year: 2022 ident: ref_32 article-title: Effect of Feature Selection on the Prediction of Direct Normal Irradiance publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2022.9020003 – volume: 105 start-page: 1205 year: 2015 ident: ref_173 article-title: Beam, diffuse and global solar irradiance estimation with satellite imagery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.08.037 – volume: 715 start-page: 136848 year: 2020 ident: ref_118 article-title: Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.136848 – volume: 92 start-page: 47 year: 2013 ident: ref_59 article-title: A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2013.02.018 – volume: 1734 start-page: 150007 year: 2016 ident: ref_73 article-title: Verification of sectoral cloud motion based direct normal irradiance nowcasting from satellite imagery publication-title: AIP Conf. Proc. doi: 10.1063/1.4949239 – volume: 181 start-page: 251 year: 2019 ident: ref_100 article-title: Determination of cloud transmittance for all sky imager based solar nowcasting publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.004 – ident: ref_167 doi: 10.1109/PVSC.2016.7749787 – volume: 123 start-page: 191 year: 2018 ident: ref_154 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew. Energy doi: 10.1016/j.renene.2018.02.006 – volume: 108 start-page: D2 year: 2003 ident: ref_55 article-title: Comparing MM5 radiative fluxes with observations gathered during the 1995 and 1999 Nashville southern oxidants studies publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2002JD002122 – ident: ref_99 doi: 10.3390/su9040482 – ident: ref_116 doi: 10.1109/ICPES.2017.8387332 – volume: 97 start-page: 599 year: 2016 ident: ref_35 article-title: Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2016.06.018 – ident: ref_109 – volume: 316 start-page: 119063 year: 2022 ident: ref_150 article-title: Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119063 – volume: 177 start-page: 703 year: 2019 ident: ref_62 article-title: Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context publication-title: Sol. Energy doi: 10.1016/j.solener.2018.11.010 – ident: ref_174 doi: 10.1109/ICPS54075.2022.9773880 – volume: 79 start-page: 66 year: 2014 ident: ref_58 article-title: Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.11.043 – volume: 108 start-page: 635 year: 2017 ident: ref_124 article-title: A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2016.08.058 – volume: 185 start-page: 387 year: 2019 ident: ref_164 article-title: Development of an ANN based corrective algorithm of the operational ECMWF global horizontal irradiation forecasts publication-title: Sol. Energy doi: 10.1016/j.solener.2019.04.070 – volume: 52 start-page: 1605 year: 2013 ident: ref_83 article-title: Day/night whole sky imagers for 24-h cloud and sky assessment: History and overview publication-title: Appl. Opt. doi: 10.1364/AO.52.001605 – volume: 156 start-page: 459 year: 2018 ident: ref_127 article-title: Solar photovoltaic generation forecasting methods: A review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.11.019 – volume: 83 start-page: 1772 year: 2009 ident: ref_17 article-title: Online short-term solar power forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2009.05.016 – volume: 27 start-page: 277 year: 2018 ident: ref_69 article-title: A Review of the Use of Geostationary Satellite Observations in Regional-Scale Models for Short-term Cloud Forecasting publication-title: Meteorol. Z. doi: 10.1127/metz/2018/0904 – volume: 280 start-page: 115875 year: 2020 ident: ref_11 article-title: Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115875 – volume: 98 start-page: 592 year: 2013 ident: ref_85 article-title: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning publication-title: Sol. Energy doi: 10.1016/j.solener.2013.10.020 – volume: 60 start-page: 4107117 year: 2022 ident: ref_217 article-title: Cloud Detection and Classification Algorithms for Himawari-8 Imager Measurements Based on Deep Learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 4 start-page: 100060 year: 2021 ident: ref_122 article-title: A Review and Taxonomy of Wind and Solar Energy Forecasting Methods Based on Deep Learning publication-title: Energy AI doi: 10.1016/j.egyai.2021.100060 – volume: 103 start-page: 502 year: 2014 ident: ref_92 article-title: Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego publication-title: Sol. Energy doi: 10.1016/j.solener.2014.02.044 – volume: 86 start-page: 2200 year: 2012 ident: ref_56 article-title: Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain) publication-title: Sol. Energy doi: 10.1016/j.solener.2011.02.014 – volume: 252 start-page: 168515 year: 2021 ident: ref_140 article-title: A robust auto encoder-gated recurrent unit (AE-GRU) based deep learning approach for short term solar power forecasting publication-title: Optik doi: 10.1016/j.ijleo.2021.168515 – volume: 110 start-page: 188 year: 2014 ident: ref_91 article-title: Short-term irradiance forecasting using skycams: Motivation and development publication-title: Sol. Energy doi: 10.1016/j.solener.2014.08.038 – volume: 146 start-page: 141 year: 2017 ident: ref_52 article-title: Use of Multilinear Adaptive Regression Splines and numerical weather prediction to forecast the power output of a PV plant in Borkum, Germany publication-title: Sol. Energy doi: 10.1016/j.solener.2017.02.007 – volume: 163 start-page: 610 year: 2018 ident: ref_156 article-title: Conditional summertime day-ahead solar irradiance forecast publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.094 – volume: 7 start-page: 1255 year: 2016 ident: ref_169 article-title: Solar Power Prediction Based on Satellite Images and Support Vector Machine publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2016.2535466 – ident: ref_216 – volume: 25 start-page: 152 year: 2014 ident: ref_160 article-title: Probabilistic forecasts of solar irradiance using stochastic differential equations publication-title: Environmetrics doi: 10.1002/env.2267 – volume: 111 start-page: 157 year: 2015 ident: ref_9 article-title: A suite of metrics for assessing the performance of solar power forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2014.10.016 – volume: 23 start-page: 437 year: 2006 ident: ref_182 article-title: A Simple Method for the Assessment of the Cloud Cover State in High-Latitude Regions by a Ground-Based Digital Camera publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH1833.1 – ident: ref_49 doi: 10.1109/PEDG.2018.8447751 – volume: 253 start-page: 113541 year: 2019 ident: ref_141 article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113541 – volume: 66 start-page: 78 year: 2014 ident: ref_114 article-title: An ARMAX model for forecasting the power output of a grid connected photovoltaic system publication-title: Renew. Energy doi: 10.1016/j.renene.2013.11.067 – volume: 10 start-page: 268 year: 2018 ident: ref_26 article-title: A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2832634 – volume: 105 start-page: 569 year: 2017 ident: ref_153 article-title: Machine learning methods for solar radiation forecasting: A review publication-title: Renew. Energy doi: 10.1016/j.renene.2016.12.095 – volume: 15 start-page: 1182 year: 2011 ident: ref_1 article-title: Methods and tools to evaluate the availability of renewable energy sources publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.09.049 – volume: 85 start-page: 2881 year: 2011 ident: ref_108 article-title: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed publication-title: Sol. Energy doi: 10.1016/j.solener.2011.08.025 – volume: 112 start-page: 232 year: 2015 ident: ref_10 article-title: Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant publication-title: Sol. Energy doi: 10.1016/j.solener.2014.11.013 – ident: ref_60 doi: 10.3390/en17020329 – ident: ref_215 – volume: 9242 start-page: 924202 year: 2014 ident: ref_66 article-title: Cloud pattern prediction from geostationary meteorological satellite images for solar energy forecasting publication-title: Soc. Photo Opt. Instrum. Eng. (SPIE) – ident: ref_21 – volume: 33 start-page: 677 year: 2011 ident: ref_200 article-title: The Clouds of the Middle Troposphere: Composition, Radiative Impact, and Global Distribution publication-title: Surv. Geophys. doi: 10.1007/s10712-011-9163-x – volume: 2 start-page: 488 year: 2020 ident: ref_86 article-title: Sun Position Identification in Sky Images for Nowcasting Application publication-title: Forecasting doi: 10.3390/forecast2040026 – volume: 160 start-page: 238 year: 2015 ident: ref_192 article-title: A hybrid method based on extreme learning machine and k-nearest neighbor for cloud classification of ground-based visible cloud image publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.022 – ident: ref_189 – volume: 168 start-page: 102 year: 2018 ident: ref_170 article-title: Short-term solar irradiance forecasting via satellite/model coupling publication-title: Sol. Energy doi: 10.1016/j.solener.2017.11.049 – volume: 107 start-page: AAC 7-1 year: 2002 ident: ref_206 article-title: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2001JD000766 – volume: 249 start-page: 495 year: 2023 ident: ref_47 article-title: Estimation of solar irradiance and solar power based on all-sky images publication-title: Sol. Energy doi: 10.1016/j.solener.2022.11.031 – volume: 7 start-page: 5495 year: 2021 ident: ref_15 article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.08.167 – volume: 90 start-page: 520 year: 2016 ident: ref_87 article-title: Identification of periods of clear sky irradiance in time series of GHI measurements publication-title: Renew. Energy doi: 10.1016/j.renene.2015.12.031 – volume: 6 start-page: 8165 year: 2014 ident: ref_177 article-title: A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation publication-title: Remote Sens. doi: 10.3390/rs6098165 – volume: 12 start-page: 666 year: 2014 ident: ref_191 article-title: Neural Networks and Support Vector Machine Algorithms for Automatic Cloud Classification of Whole-Sky Ground-Based Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2356616 – volume: 155 start-page: 1092 year: 2017 ident: ref_159 article-title: Short-term solar radiation forecasting by advecting and diffusing MSG cloud index publication-title: Sol. Energy doi: 10.1016/j.solener.2017.07.045 – volume: 87 start-page: 807 year: 2016 ident: ref_161 article-title: Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2015.11.005 – volume: 55 start-page: 5729 year: 2017 ident: ref_193 article-title: DeepCloud: Ground-Based Cloud Image Categorization Using Deep Convolutional Features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2712809 – volume: 1850 start-page: 140004 year: 2017 ident: ref_101 article-title: Short-term forecasting of high resolution local DNI maps with multiple fish-eye cameras in stereoscopic mode publication-title: AIP Conf. Proc. doi: 10.1063/1.4984512 – ident: ref_106 doi: 10.3390/rs13132455 – volume: 64 start-page: 189 year: 2004 ident: ref_204 article-title: Optical properties of terrestrial clouds publication-title: Earth Sci. Rev. doi: 10.1016/S0012-8252(03)00042-4 – volume: 157 start-page: 95 year: 2015 ident: ref_25 article-title: An analog ensemble for short-term probabilistic solar power forecast publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.011 – ident: ref_117 – volume: 126 start-page: 1 year: 2017 ident: ref_202 article-title: Understanding cloud-native applications after 10 years of cloud computing—A systematic mapping study publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2017.01.001 – volume: 164 start-page: 1230 year: 2021 ident: ref_2 article-title: Development of an irradiance-based weather derivative to hedge cloud risk for solar energy systems publication-title: Renew. Energy doi: 10.1016/j.renene.2020.10.091 – ident: ref_51 – volume: 91 start-page: 327 year: 2013 ident: ref_220 article-title: Intra-hour DNI forecasting based on cloud tracking image analysis publication-title: Sol. Energy doi: 10.1016/j.solener.2012.09.018 – volume: 66 start-page: 9918 year: 2018 ident: ref_134 article-title: Data-Driven Short-Term Solar Irradiance Forecasting Based on Information of Neighboring Sites publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2856199 – volume: 2033 start-page: 190011 year: 2018 ident: ref_40 article-title: Nowcasting of DNI maps for the solar field based on voxel carving and individual 3D cloud objects from all sky images publication-title: AIP Conf. Proc. doi: 10.1063/1.5067196 – ident: ref_136 doi: 10.1109/APPEEC.2017.8308987 – volume: 73 start-page: 151 year: 2002 ident: ref_179 article-title: A new airmass independent formulation for the Linke turbidity coefficient publication-title: Sol. Energy doi: 10.1016/S0038-092X(02)00045-2 – ident: ref_19 doi: 10.3390/data8040065 – volume: 28 start-page: 1286 year: 2011 ident: ref_187 article-title: A hybrid thresholding algorithm for Cloud Detection on Ground-Based Color Images publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-11-00009.1 – volume: 220 start-page: 113075 year: 2020 ident: ref_209 article-title: A minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113075 – volume: 133 start-page: 180 year: 2016 ident: ref_168 article-title: Preprocessing WRF initial conditions for coastal stratocumulus forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2016.04.003 – volume: 72 start-page: 16 year: 2015 ident: ref_113 article-title: Probabilistic solar power forecasting in smart grids using distributed information publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.02.006 – volume: Volume 1850 start-page: 1 year: 2017 ident: ref_90 article-title: Validation of spatially resolved all sky imager derived DNI nowcasts publication-title: Proceedings of the SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems – volume: 7 start-page: 164650 year: 2019 ident: ref_123 article-title: A Survey of Deep Learning Techniques: Application in Wind and Solar Energy Resources publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2951750 – volume: 45 start-page: 8665 year: 2018 ident: ref_211 article-title: CloudNet: Ground-Based Cloud Classification with Deep Convolutional Neural Network publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077787 – volume: 198 start-page: 111799 year: 2019 ident: ref_121 article-title: A review of deep learning for renewable energy forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111799 – volume: 91 start-page: 434 year: 2016 ident: ref_103 article-title: Hybrid solar irradiance now-casting by fusing Kalman filter and regressor publication-title: Renew. Energy doi: 10.1016/j.renene.2016.01.077 – ident: ref_115 doi: 10.3390/sym11020240 – volume: 48 start-page: 1766 year: 2009 ident: ref_28 article-title: Short-Range Direct and Diffuse Irradiance Forecasts for Solar Energy Applications Based on Aerosol Chemical Transport and Numerical Weather Modeling publication-title: J. Appl. Meteorol. Clim. doi: 10.1175/2009JAMC2090.1 – volume: 174 start-page: 2773 year: 2017 ident: ref_176 article-title: Toward Improved Solar Irradiance Forecasts: Comparison of the Global Horizontal Irradiances Derived from the COMS Satellite Imagery Over the Korean Peninsula publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-017-1578-y – volume: 30 start-page: 5407 year: 2023 ident: ref_46 article-title: A comprehensive review of solar irradiation estimation and forecasting using artificial neural networks: Data, models and trends publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-24240-w – volume: 13 start-page: 1087 year: 2019 ident: ref_144 article-title: Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2018.5779 – volume: 121 start-page: 380 year: 2016 ident: ref_75 article-title: Univariate and multivariate methods for very short-term solar photovoltaic power forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.05.025 – volume: 95 start-page: 392 year: 2013 ident: ref_207 article-title: Equipment and methodologies for cloud detection and classification: A review publication-title: Sol. Energy doi: 10.1016/j.solener.2012.11.015 – ident: ref_175 doi: 10.3390/en13215566 – volume: 87 start-page: 136 year: 2012 ident: ref_130 article-title: Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model publication-title: Sol. Energy doi: 10.1016/j.solener.2012.10.012 – volume: 86 start-page: 2017 year: 2012 ident: ref_8 article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs publication-title: Sol. Energy doi: 10.1016/j.solener.2012.04.004 – volume: 143 start-page: 1643 year: 2019 ident: ref_38 article-title: Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements publication-title: Renew. Energy doi: 10.1016/j.renene.2019.05.069 – volume: 176 start-page: 267 year: 2018 ident: ref_42 article-title: Deep photovoltaic nowcasting publication-title: Sol. Energy doi: 10.1016/j.solener.2018.10.024 – ident: ref_104 doi: 10.1109/ICME.2016.7552863 – ident: ref_79 doi: 10.3390/buildings9100219 – volume: 29 start-page: 527 year: 2012 ident: ref_185 article-title: An Automated Cirrus Cloud Detection Method for a Ground-Based Cloud Image publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-11-00002.1 – volume: 14 start-page: 2201 year: 2021 ident: ref_72 article-title: Relative sky radiance from multi-exposure all-sky camera images publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-2201-2021 – volume: 3 start-page: 557 year: 2010 ident: ref_181 article-title: Automatic cloud classification of whole sky images publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-3-557-2010 – volume: 111 start-page: 297 year: 2015 ident: ref_3 article-title: Master optimization process based on neural networks ensemble for 24-h solar irradiance forecast publication-title: Sol. Energy doi: 10.1016/j.solener.2014.10.036 – volume: 33 start-page: 772 year: 2014 ident: ref_119 article-title: Solar radiation prediction using Artificial Neural Network techniques: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.08.055 – volume: 23 start-page: 633 year: 2006 ident: ref_183 article-title: Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH1875.1 – volume: 79 start-page: 831 year: 1998 ident: ref_178 article-title: Optical Properties of Aerosols and Clouds: The Software Package OPAC publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 – volume: 72 start-page: 828 year: 2017 ident: ref_63 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.114 – ident: ref_44 – volume: 26 start-page: 1 year: 2017 ident: ref_158 article-title: Verification of ECMWF and ECMWF/MACC’s global and direct irradiance forecasts with respect to solar electricity production forecasts publication-title: Meteorol. Z. doi: 10.1127/metz/2016/0676 – ident: ref_163 – volume: 163 start-page: 755 year: 2021 ident: ref_53 article-title: Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants publication-title: Renew. Energy doi: 10.1016/j.renene.2020.08.140 – volume: 93 start-page: 1918 year: 2015 ident: ref_18 article-title: Solar energy prediction and verification using operational model forecasts and ground-based solar measurements publication-title: Energy doi: 10.1016/j.energy.2015.10.054 – volume: 161 start-page: 112364 year: 2022 ident: ref_74 article-title: Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112364 – ident: ref_98 doi: 10.3390/rs11091059 – volume: 13 start-page: 264 year: 2000 ident: ref_203 article-title: Radiative Effects of Cloud-Type Variations publication-title: J. Clim. doi: 10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2 – volume: 118 start-page: 496 year: 2015 ident: ref_102 article-title: 3D cloud detection and tracking system for solar forecast using multiple sky imagers publication-title: Sol. Energy doi: 10.1016/j.solener.2015.05.037 – volume: 145 start-page: 28 year: 2016 ident: ref_50 article-title: Solar Power Forecasting: A Review publication-title: Int. J. Comput. Appl. – volume: 52 start-page: 102275 year: 2022 ident: ref_145 article-title: A CNN-Assisted deep echo state network using multiple Time-Scale dynamic learning reservoirs for generating Short-Term solar energy forecasting publication-title: Sustain. Energy Technol. Assess. – volume: 118 start-page: 357 year: 2018 ident: ref_165 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew. Energy doi: 10.1016/j.renene.2017.11.011 – volume: 321 start-page: 119288 year: 2022 ident: ref_143 article-title: Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119288 – volume: 105 start-page: 264 year: 2014 ident: ref_76 article-title: Genetic programming for photovoltaic plant output forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2014.02.021 – volume: 216 start-page: 288 year: 2019 ident: ref_23 article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.158 – volume: 32 start-page: 209 year: 2015 ident: ref_180 article-title: A New Contrast-Enhancing Feature for Cloud Detection in Ground-Based Sky Images publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-14-00053.1 – ident: ref_111 doi: 10.1007/978-3-319-94120-2_12 – volume: 28 start-page: 410 year: 2011 ident: ref_208 article-title: Cloud Classification Based on Structure Features of Infrared Images publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2010JTECHA1385.1 – ident: ref_146 doi: 10.1109/SMC.2016.7844673 – volume: 9 start-page: 62 year: 1979 ident: ref_194 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – ident: ref_84 – volume: 84 start-page: 807 year: 2010 ident: ref_16 article-title: A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy publication-title: Sol. Energy doi: 10.1016/j.solener.2010.02.006 – volume: 162 start-page: 265 year: 2018 ident: ref_162 article-title: Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.007 – volume: 127 start-page: 64 year: 2013 ident: ref_96 article-title: Behavior of cloud base height from ceilometer measurements publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2013.02.005 – volume: 109 start-page: D15202 year: 2004 ident: ref_199 article-title: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2004JD004732 – ident: ref_31 doi: 10.1109/MetroLivEnv54405.2022.9826940 – volume: 48 start-page: 4703 year: 2009 ident: ref_88 article-title: Wide angle mirror system design for distortionless imaging of the sky publication-title: Appl. Opt. doi: 10.1364/AO.48.004703 – ident: ref_81 doi: 10.1109/FCCM.2009.16 – volume: 107 start-page: 495 year: 2014 ident: ref_95 article-title: Stereographic methods for cloud base height determination using two sky imagers publication-title: Sol. Energy doi: 10.1016/j.solener.2014.05.005 – ident: ref_22 doi: 10.1109/PEDG.2010.5545754 – volume: 243 start-page: 105026 year: 2020 ident: ref_54 article-title: Forecasting lightning around the Korean Peninsula by postprocessing ECMWF data using SVMs and undersampling publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2020.105026 – volume: 173 start-page: 566 year: 2018 ident: ref_70 article-title: Short-term forecasting of solar irradiance without local telemetry: A generalized model using satellite data publication-title: Sol. Energy doi: 10.1016/j.solener.2018.07.050 – volume: 176 start-page: 615 year: 2018 ident: ref_166 article-title: Assessing model performance of daily solar irradiance forecasts over Australia publication-title: Sol. Energy doi: 10.1016/j.solener.2018.10.080 – volume: 206 start-page: 251 year: 2023 ident: ref_45 article-title: Photovoltaic power electricity generation nowcasting combining sky camera images and learning supervised algorithms in the Southern Spain publication-title: Renew. Energy doi: 10.1016/j.renene.2023.01.111 – volume: 134 start-page: 837 year: 2019 ident: ref_120 article-title: Sky image-based solar irradiance prediction methodologies using artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2018.11.056 – volume: 34 start-page: 529 year: 2018 ident: ref_128 article-title: Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2018.02.003 – volume: 92 start-page: 176 year: 2013 ident: ref_34 article-title: Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs publication-title: Sol. Energy doi: 10.1016/j.solener.2013.02.023 – volume: 197 start-page: 111853 year: 2019 ident: ref_218 article-title: Image phase shift invariance based multi-transform-fusion method for cloud motion displacement calculation using sky images publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111853 – volume: 8 start-page: 258 year: 2005 ident: ref_210 article-title: Automated ground-based cloud recognition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-005-0007-5 – volume: 63 start-page: 346 year: 2015 ident: ref_24 article-title: Models for solar radiation prediction based on different measurement sites publication-title: Measurement doi: 10.1016/j.measurement.2014.11.037 – volume: 183 start-page: 50 year: 2019 ident: ref_195 article-title: Detecting clear sky images publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.069 – volume: 204 start-page: 71 year: 2020 ident: ref_12 article-title: SolarNet: A sky image-based deep convolutional neural network for intra-hour solar forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2020.03.083 – volume: 150 start-page: 423 year: 2017 ident: ref_5 article-title: Multi-site solar power forecasting using gradient boosted regression trees publication-title: Sol. Energy doi: 10.1016/j.solener.2017.04.066 – volume: 104 start-page: 281 year: 2017 ident: ref_105 article-title: Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting publication-title: Renew. Energy doi: 10.1016/j.renene.2016.12.023 – ident: ref_137 doi: 10.1109/I2CT45611.2019.9033864 – volume: 232 start-page: 232 year: 2022 ident: ref_41 article-title: Measurement of diffuse and plane of array irradiance by a combination of a pyranometer and an all-sky imager publication-title: Sol. Energy doi: 10.1016/j.solener.2021.11.064 – volume: 115 start-page: 645 year: 2015 ident: ref_94 article-title: Cloud motion and stability estimation for intra-hour solar forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2015.03.030 – volume: 2 start-page: 243 year: 1998 ident: ref_213 article-title: Image matching as a diffusion process: An analogy with Maxwell’s demons publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(98)80022-4 – ident: ref_77 doi: 10.3390/rs13091852 – volume: 104 start-page: 69 year: 2019 ident: ref_67 article-title: Forecasting mesoscale distribution of surface solar irradiation using a proposed hybrid approach combining satellite remote sensing and time series models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.12.055 – volume: 219 start-page: 165207 year: 2020 ident: ref_133 article-title: One month-ahead forecasting of mean daily global solar radiation using time series models publication-title: Optik doi: 10.1016/j.ijleo.2020.165207 – volume: 170 start-page: 924 year: 2018 ident: ref_27 article-title: Solar irradiance forecast using aerosols measurements: A data driven approach publication-title: Sol. Energy doi: 10.1016/j.solener.2018.05.089 – volume: 26 start-page: 608 year: 2017 ident: ref_89 article-title: Validation of an all-sky imager–based nowcasting system for industrial PV plants publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.2968 – volume: 158 start-page: 595 year: 2017 ident: ref_147 article-title: Minimum redundancy—Maximum relevance with extreme learning machines for global solar radiation forecasting: Toward an optimized dimensionality reduction for solar time series publication-title: Sol. Energy doi: 10.1016/j.solener.2017.10.035 – volume: 5 start-page: 2881 year: 2012 ident: ref_188 article-title: A method for cloud detection and opacity classification based on ground based sky imagery publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-5-2881-2012 – volume: 158 start-page: 1026 year: 2017 ident: ref_61 article-title: Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data publication-title: Sol. Energy doi: 10.1016/j.solener.2017.09.068 – volume: 27 start-page: 1504 year: 2010 ident: ref_186 article-title: The Use of Euclidean Geometric Distance on RGB Color Space for the Classification of Sky and Cloud Patterns publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2010JTECHA1353.1 – volume: 104 start-page: 235 year: 2019 ident: ref_65 article-title: Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.009 – volume: 112 start-page: 446 year: 2015 ident: ref_131 article-title: A benchmarking of machine learning techniques for solar radiation forecasting in an insular context publication-title: Sol. Energy doi: 10.1016/j.solener.2014.12.014 – volume: 8 start-page: 1231 year: 2008 ident: ref_201 article-title: Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount publication-title: Atmos. Meas. Tech. – volume: 167 start-page: 112680 year: 2022 ident: ref_142 article-title: Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112680 – volume: 292 start-page: 116838 year: 2021 ident: ref_14 article-title: Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116838 – volume: 75 start-page: 607 year: 2015 ident: ref_129 article-title: Spatial-temporal forecasting of solar radiation publication-title: Renew. Energy doi: 10.1016/j.renene.2014.10.035 – volume: 108 start-page: 447 year: 2014 ident: ref_36 article-title: Streamline-based method for intra-day solar forecasting through remote sensing publication-title: Sol. Energy doi: 10.1016/j.solener.2014.07.026 – volume: 147 start-page: 663 year: 2020 ident: ref_57 article-title: Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model publication-title: Renew. Energy doi: 10.1016/j.renene.2019.09.011 – volume: 56 start-page: 3385 year: 2020 ident: ref_148 article-title: Deep Learning Based Surface Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image publication-title: IEEE Trans. Ind. Appl. – volume: 162 start-page: 232 year: 2018 ident: ref_64 article-title: A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.005 – volume: 198 start-page: 68 year: 2020 ident: ref_68 article-title: Global horizontal irradiance forecast for Finland based on geostationary weather satellite data publication-title: Sol. Energy doi: 10.1016/j.solener.2020.01.008 – volume: 15 start-page: 407 year: 2022 ident: ref_107 article-title: Retrieval of aerosol properties using relative radiance measurements from an all-sky camera publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-407-2022 |
SSID | ssj0000913810 |
Score | 2.3085518 |
SecondaryResourceType | review_article |
Snippet | The increasing penetration of solar energy into the grid has led to management difficulties that require high accuracy forecasting systems. New techniques and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5605 |
SubjectTerms | all-sky camera Alternative energy sources Cameras Comparative analysis Electricity distribution Energy consumption Energy industry Energy resources Forecasting techniques Industrial plant emissions nowcasting Radiation regression method Renewable resources satellite Satellites Sensors Solar energy solar irradiance statistical method Time series Weather forecasting |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA5WX9qHUm1Lr1WZBx_aQujuJptNCiJeOdGCh9ge-Lbkpwh2z3pX8M93ks2elhYfdzcb2J3JzDeTzDeE7MlgbFXphjYiCMo5V9TUilPNRBM0r61tYr3z6VQcz_j3i_pijUyHWph4rHKwiclQu7mNOfIvqIsKoY2omoOb3zR2jYq7q0MLDZ1bK7j9RDH2jGygSZao9xvjyfTsfJV1iSyYsiz6Qj2G8X7cJy7RkKPjr_9yTYnB_x8DnbzO0SvyMsNFOOzlu0nWfLdFXjwiEdwim3l5LuBj5pD-9JrcHUKf9QfdOZisKL1hHgAhHySMGS9wZrjq4OQX2hU6Rpfm4EeMdmGSigIhtu60ehEPR38F1Ck4TS2nUzI-zf2Qm4cZvv2GzI4mP78d09xkgVom-JJWtioCd8JL7aQuguQeIyTnSmuUjmjPm6C8UrjQhUA0Ia0JtatrFkp0bkaxt2S9m3f-HQGFsZHHkIbxoLj3hREI5mKtapC28TKMyOfh_7Y2M5DHRhjXLUYiURjtI2GMyN5q8E1PvPH_YeMoqNWQyJadbsxvL9u8-FqEPPg9wjBmLdclM943XlWa1YUNGPOOyPYg5jYv4UX7oHDvn378gTyvEOn0Z3i3yfry9o_fQaSyNLtZ_e4BApbntA priority: 102 providerName: ProQuest |
Title | A Review and Evaluation of the State of Art in Image-Based Solar Energy Forecasting: The Methodology and Technology Used |
URI | https://www.proquest.com/docview/3079020627 https://doaj.org/article/015d1c6b33cc4a13bee7e92a350cf210 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED5BeRkPEyub1tFV99AHQIqWxI4T87ailILUCgGV-hbZji1NgnRai8TP5-xkXRBIe-ExkeNEd-e77xzfdwDTwmmTpiqPcuFExDmXkc4kjxQTuVM8Myb39c7LlVis-adNtum1-vJnwlp64FZwVxSu6sQIzZgxXCVMW5tbmSqWxcalbXFVLONeMhV8sEw8dVVbkMcor_f_gxNy2BTgsz9CUGDq_8sRh-gyfwHHHSzE6_ZzTuCJbYbwvEcWOISTbhnu8HXHFf3mJfy6xnZ3H1VTY3mg7satQ4J2GLCkv6CZ8abBjz_If0QzCl01fvVZLZah-A99i06jdv4Q9Dsk28FlaC0dNt3D3A978Limp09hPS-_vV9EXTOFyDDB91Fq0tjxWthC1YWKXcEtZUI1yVZL5VGd1U5aKWlBC0GooTDaZXWWMZdQENOSncGg2Tb2HFBSDmQpdWHcSW5trAWBNl-T6gqT28KN4O29fCvTMY37hhffK8o4vDKqnjJGMD0Mvm0JNv49bOYVdRjiWbHDDbKVqrOV6jFbGcH4Xs1Vt1R3FTk5SZhZpPnF_3jHKzhKCfe0J3rHMNjf_bSXhFv2egJPi_mHCTyblavPXybBYH8D79HsZw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELWqcgAOiBYQCwV8KBIgWSS249hICLWwyy7t9kJX6i3Yjl1VgmzpLgJ-im9kxkm2RVS99ZjEiRTPeOa9sWeGkG0dnefclqxUUTEppWGuMJJZocpoZeF9ifnO0wM1nslPR8XRGvnT58LgscreJiZDXc89xshfgy4agDaKl-9OvzPsGoW7q30LjVYt9sLvn0DZFm8nH0C-zzkfDQ_fj1nXVYB5oeSScc-zKGsVtK21zaKWAShBXefeGYvwJrhogjGg2UqB-9TexaIuChFzsOYOiy-Byb8hgdvhKtKjj6uYDtbY1HnWpgEKYTLchc7BTQCsKP5xfKk_wH_mP_m00V1ypwOjdKfVng2yFppNcvtCicJNstEt_gV90VWofnmP_Nqh7Z4CtU1Nh6uC4XQeKQBKmhAsXsCX6UlDJ9_AarFdcJg1_Yxcmg5TyiHFxqDeLvDo9RsKGkunqaF1CvWnb59H_ukM3r5PZtcy2Q_IejNvwkNCDTCvAIRJyGhkCJlTABUxEzZqXwYdB-RVP7-V7-qbY5uNrxXwHBRGdUEYA7K9GnzalvW4fNguCmo1BGtxpxvzs-OqW9oVACr4H-WE8F7aXLgQymC4FUXmIzDqAdnqxVx1BmJRnavzo6sfPyM3x4fT_Wp_crD3mNzigKna08JbZH159iM8AUy0dE-TIlLy5bo1_y8AiB4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RaxQxEA6lguiD2Kp4WnUeKqgQ3N1ks4kg0to7e9YWQQ_6tibZRATdq70T9a_565zJ7l4rim993N3swma-zHyTycwwtq2j80VhK16pqLiU0nBXGsmtUFW0svS-onznwyO1P5Ovj8vjNfZryIWhY5WDTkyKupl72iN_ilg0SG0UuuqxPxbxdm_y4uQrpw5SFGkd2ml0EDkIP7-j-7Z4Pt1DWT8sisn4_ct93ncY4F4oueSFL7IoGxW0bbTNopYB3YOmyb0zlqhOcNEEYxDlSqEp1d7FsilLEXPU7I4KMaH6v1SJytDq0pNXq_0dqrep86xLCRTCZBSRztFkIMUo_zCCqVfAX6Yg2bfJdXatJ6aw0yFpg62FdpNdPVeucJNt9IpgAY_6atWPb7AfO9DFF8C2DYxXxcNhHgHJJSQ2Sxf4ZfjUwvQLajC-i8azgXfkV8M4pR8CNQn1dkHHsJ8BohcOU3PrtO2fvn0WBYAZvn2TzS5ksm-x9XbehtsMDHphAZ0nIaORIWROIW2krNiofRV0HLEnw_zWvq91Ti03Ptfo85Aw6nPCGLHt1eCTrsTHv4ftkqBWQ6gud7oxP_1Y98u8RnKF_6OcEN5LmwsXQhVMYUWZ-Yje9YhtDWKue2WxqM-gfef_jx-wy4j5-s306OAuu1IgveoODm-x9eXpt3AP6dHS3U84BPbhooH_GyzcIlY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+and+Evaluation+of+the+State+of+Art+in+Image-Based+Solar+Energy+Forecasting%3A+The+Methodology+and+Technology+Used&rft.jtitle=Applied+sciences&rft.au=Carlos+M.+Travieso-Gonz%C3%A1lez&rft.au=Fidel+Cabrera-Quintero&rft.au=Alejandro+Pi%C3%B1%C3%A1n-Roescher&rft.au=Sergio+Celada-Bernal&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=13&rft.spage=5605&rft_id=info:doi/10.3390%2Fapp14135605&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_015d1c6b33cc4a13bee7e92a350cf210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |