A Review and Evaluation of the State of Art in Image-Based Solar Energy Forecasting: The Methodology and Technology Used

The increasing penetration of solar energy into the grid has led to management difficulties that require high accuracy forecasting systems. New techniques and approaches are emerging worldwide every year to improve the accuracy of solar power forecasting models and reduce uncertainty in predictions....

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 13; p. 5605
Main Authors Travieso-González, Carlos M., Cabrera-Quintero, Fidel, Piñán-Roescher, Alejandro, Celada-Bernal, Sergio
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14135605

Cover

Abstract The increasing penetration of solar energy into the grid has led to management difficulties that require high accuracy forecasting systems. New techniques and approaches are emerging worldwide every year to improve the accuracy of solar power forecasting models and reduce uncertainty in predictions. This article aims to evaluate and compare various solar power forecasting methods based on their characteristics and performance using imagery. To achieve this goal, this article presents an updated analysis of diverse research, which is classified in terms of the technologies and methodologies applied. This analysis distinguishes studies that use ground-based sensor measurements, satellite data processing, or all-sky camera images, as well as statistical regression approaches, artificial intelligence, numerical models, image processing, or a combination of these technologies and methods. Key findings include the superior accuracy of hybrid models that integrate multiple data sources and methodologies, and the promising potential of all-sky camera systems for very short-term forecasting due to their ability to capture rapid changes in cloud cover. Additionally, the evaluation of different error metrics highlights the importance of selecting appropriate benchmarks, such as the smart persistence model, to enhance forecast reliability. This review underscores the need for continued innovation and integration of advanced technologies to meet the challenges of solar energy forecasting.
AbstractList The increasing penetration of solar energy into the grid has led to management difficulties that require high accuracy forecasting systems. New techniques and approaches are emerging worldwide every year to improve the accuracy of solar power forecasting models and reduce uncertainty in predictions. This article aims to evaluate and compare various solar power forecasting methods based on their characteristics and performance using imagery. To achieve this goal, this article presents an updated analysis of diverse research, which is classified in terms of the technologies and methodologies applied. This analysis distinguishes studies that use ground-based sensor measurements, satellite data processing, or all-sky camera images, as well as statistical regression approaches, artificial intelligence, numerical models, image processing, or a combination of these technologies and methods. Key findings include the superior accuracy of hybrid models that integrate multiple data sources and methodologies, and the promising potential of all-sky camera systems for very short-term forecasting due to their ability to capture rapid changes in cloud cover. Additionally, the evaluation of different error metrics highlights the importance of selecting appropriate benchmarks, such as the smart persistence model, to enhance forecast reliability. This review underscores the need for continued innovation and integration of advanced technologies to meet the challenges of solar energy forecasting.
Author Travieso-González, Carlos M.
Piñán-Roescher, Alejandro
Celada-Bernal, Sergio
Cabrera-Quintero, Fidel
Author_xml – sequence: 1
  givenname: Carlos M.
  orcidid: 0000-0002-4621-2768
  surname: Travieso-González
  fullname: Travieso-González, Carlos M.
– sequence: 2
  givenname: Fidel
  orcidid: 0000-0003-0948-0840
  surname: Cabrera-Quintero
  fullname: Cabrera-Quintero, Fidel
– sequence: 3
  givenname: Alejandro
  orcidid: 0000-0002-0027-3266
  surname: Piñán-Roescher
  fullname: Piñán-Roescher, Alejandro
– sequence: 4
  givenname: Sergio
  surname: Celada-Bernal
  fullname: Celada-Bernal, Sergio
BookMark eNptkU9vGyEQxVGVSE3TnPoFkHqsNoFlYdne3MhpLKWqlDhnNAuDvdYGXBbnz7cvjlspqspleMN7P42YD-QoxICEfOLsXIiOXcB2yxsupGLyHTmpWasq0fD26M39PTmbpg0rp-NCc3ZCnmf0Fh8HfKIQHJ0_wriDPMRAo6d5jfQuQ8a9mKVMh0AXD7DC6htM6OhdHCHRecC0eqFXMaGFKQ9h9ZUuS_IH5nV0cYzlcc9eol2Hg7wv6Y_k2MM44dmfekrur-bLy-vq5uf3xeXsprJCNbmqbc184xRqcBqY1w3yRjvHbd-BVFJh7zvsukZrpXRda9t76aQUnmvG-06cksWB6yJszDYND5BeTITBvDZiWhlIebAjGsZl4apeCGsb4KJHbLGrQUhmfc1ZYX0-sLYp_trhlM0m7lIo4xvB2o7VTNVtcfGDy6Y4TQm9sUN-_dScYBgNZ2a_L_NmXyXz5Z_M30n_5_4NP4aXJw
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110367
crossref_primary_10_3390_electricity5030029
crossref_primary_10_3390_en18061460
Cites_doi 10.1016/j.atmosres.2017.06.010
10.1016/j.atmosres.2012.05.005
10.1016/j.apenergy.2023.120818
10.3390/en11081988
10.1016/j.solener.2018.10.073
10.1145/2343862.2343863
10.1016/j.energy.2016.11.061
10.1109/TIA.2020.3028558
10.1023/A:1021897212261
10.1016/j.renene.2018.08.044
10.1016/j.energy.2011.04.043
10.1016/j.solener.2018.05.039
10.3390/en16073215
10.1016/j.solener.2014.01.024
10.3390/app8010028
10.1109/TSTE.2016.2629974
10.1109/PESGM.2017.8274480
10.5194/acp-18-8807-2018
10.1127/metz/2019/0954
10.1016/j.energy.2019.115940
10.1016/j.solener.2015.10.041
10.1109/PVSC40753.2019.8980821
10.1016/j.solener.2019.06.041
10.1002/qj.3299
10.1109/TVCG.2011.130
10.1088/1757-899X/303/1/012016
10.1109/ISGTEurope.2019.8905430
10.1109/SOSE55472.2022.9812657
10.1109/IGARSS.2014.6947394
10.5194/acp-10-6129-2010
10.1007/978-3-319-59650-1_36
10.1175/JTECH-D-13-00209.1
10.5194/acp-16-3399-2016
10.1080/01431160600641822
10.1016/j.renene.2016.01.020
10.1109/TSTE.2014.2381224
10.1016/j.solener.2013.08.002
10.26599/BDMA.2022.9020003
10.1016/j.enconman.2015.08.037
10.1016/j.scitotenv.2020.136848
10.1016/j.solener.2013.02.018
10.1063/1.4949239
10.1016/j.solener.2019.02.004
10.1109/PVSC.2016.7749787
10.1016/j.renene.2018.02.006
10.1029/2002JD002122
10.3390/su9040482
10.1109/ICPES.2017.8387332
10.1016/j.renene.2016.06.018
10.1016/j.apenergy.2022.119063
10.1016/j.solener.2018.11.010
10.1109/ICPS54075.2022.9773880
10.1016/j.enconman.2013.11.043
10.1016/j.renene.2016.08.058
10.1016/j.solener.2019.04.070
10.1364/AO.52.001605
10.1016/j.enconman.2017.11.019
10.1016/j.solener.2009.05.016
10.1127/metz/2018/0904
10.1016/j.apenergy.2020.115875
10.1016/j.solener.2013.10.020
10.1016/j.egyai.2021.100060
10.1016/j.solener.2014.02.044
10.1016/j.solener.2011.02.014
10.1016/j.ijleo.2021.168515
10.1016/j.solener.2014.08.038
10.1016/j.solener.2017.02.007
10.1016/j.solener.2018.01.094
10.1109/TSTE.2016.2535466
10.1002/env.2267
10.1016/j.solener.2014.10.016
10.1175/JTECH1833.1
10.1109/PEDG.2018.8447751
10.1016/j.apenergy.2019.113541
10.1016/j.renene.2013.11.067
10.1109/TSTE.2018.2832634
10.1016/j.renene.2016.12.095
10.1016/j.rser.2010.09.049
10.1016/j.solener.2011.08.025
10.1016/j.solener.2014.11.013
10.3390/en17020329
10.1007/s10712-011-9163-x
10.3390/forecast2040026
10.1016/j.neucom.2015.02.022
10.1016/j.solener.2017.11.049
10.1029/2001JD000766
10.1016/j.solener.2022.11.031
10.1016/j.egyr.2021.08.167
10.1016/j.renene.2015.12.031
10.3390/rs6098165
10.1109/LGRS.2014.2356616
10.1016/j.solener.2017.07.045
10.1016/j.renene.2015.11.005
10.1109/TGRS.2017.2712809
10.1063/1.4984512
10.3390/rs13132455
10.1016/S0012-8252(03)00042-4
10.1016/j.apenergy.2015.08.011
10.1016/j.jss.2017.01.001
10.1016/j.renene.2020.10.091
10.1016/j.solener.2012.09.018
10.1109/TIE.2018.2856199
10.1063/1.5067196
10.1109/APPEEC.2017.8308987
10.1016/S0038-092X(02)00045-2
10.3390/data8040065
10.1175/JTECH-D-11-00009.1
10.1016/j.enconman.2020.113075
10.1016/j.solener.2016.04.003
10.1016/j.ijepes.2015.02.006
10.1109/ACCESS.2019.2951750
10.1029/2018GL077787
10.1016/j.enconman.2019.111799
10.1016/j.renene.2016.01.077
10.3390/sym11020240
10.1175/2009JAMC2090.1
10.1007/s00024-017-1578-y
10.1007/s11356-022-24240-w
10.1049/iet-rpg.2018.5779
10.1016/j.enconman.2016.05.025
10.1016/j.solener.2012.11.015
10.3390/en13215566
10.1016/j.solener.2012.10.012
10.1016/j.solener.2012.04.004
10.1016/j.renene.2019.05.069
10.1016/j.solener.2018.10.024
10.1109/ICME.2016.7552863
10.3390/buildings9100219
10.1175/JTECH-D-11-00002.1
10.5194/amt-14-2201-2021
10.5194/amt-3-557-2010
10.1016/j.solener.2014.10.036
10.1016/j.rser.2013.08.055
10.1175/JTECH1875.1
10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
10.1016/j.rser.2017.01.114
10.1127/metz/2016/0676
10.1016/j.renene.2020.08.140
10.1016/j.energy.2015.10.054
10.1016/j.rser.2022.112364
10.3390/rs11091059
10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2
10.1016/j.solener.2015.05.037
10.1016/j.renene.2017.11.011
10.1016/j.apenergy.2022.119288
10.1016/j.solener.2014.02.021
10.1016/j.jclepro.2019.01.158
10.1175/JTECH-D-14-00053.1
10.1007/978-3-319-94120-2_12
10.1175/2010JTECHA1385.1
10.1109/SMC.2016.7844673
10.1109/TSMC.1979.4310076
10.1016/j.solener.2010.02.006
10.1016/j.solener.2018.01.007
10.1016/j.atmosres.2013.02.005
10.1029/2004JD004732
10.1109/MetroLivEnv54405.2022.9826940
10.1364/AO.48.004703
10.1109/FCCM.2009.16
10.1016/j.solener.2014.05.005
10.1109/PEDG.2010.5545754
10.1016/j.atmosres.2020.105026
10.1016/j.solener.2018.07.050
10.1016/j.solener.2018.10.080
10.1016/j.renene.2023.01.111
10.1016/j.renene.2018.11.056
10.1016/j.ijforecast.2018.02.003
10.1016/j.solener.2013.02.023
10.1016/j.enconman.2019.111853
10.1007/s10044-005-0007-5
10.1016/j.measurement.2014.11.037
10.1016/j.solener.2019.02.069
10.1016/j.solener.2020.03.083
10.1016/j.solener.2017.04.066
10.1016/j.renene.2016.12.023
10.1109/I2CT45611.2019.9033864
10.1016/j.solener.2021.11.064
10.1016/j.solener.2015.03.030
10.1016/S1361-8415(98)80022-4
10.3390/rs13091852
10.1016/j.rser.2018.12.055
10.1016/j.ijleo.2020.165207
10.1016/j.solener.2018.05.089
10.1002/pip.2968
10.1016/j.solener.2017.10.035
10.5194/amt-5-2881-2012
10.1016/j.solener.2017.09.068
10.1175/2010JTECHA1353.1
10.1016/j.rser.2019.01.009
10.1016/j.solener.2014.12.014
10.1016/j.rser.2022.112680
10.1016/j.apenergy.2021.116838
10.1016/j.renene.2014.10.035
10.1016/j.solener.2014.07.026
10.1016/j.renene.2019.09.011
10.1016/j.solener.2018.01.005
10.1016/j.solener.2020.01.008
10.5194/amt-15-407-2022
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app14135605
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_015d1c6b33cc4a13bee7e92a350cf210
10_3390_app14135605
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c364t-2c20f4d6e8ad8a0f84e148dd1cb9a5656ebf9e99488668228cbf5d553f1801b93
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:28:23 EDT 2025
Mon Jun 30 17:53:04 EDT 2025
Tue Jul 01 01:31:20 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2c20f4d6e8ad8a0f84e148dd1cb9a5656ebf9e99488668228cbf5d553f1801b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0027-3266
0000-0002-4621-2768
0000-0003-0948-0840
OpenAccessLink https://doaj.org/article/015d1c6b33cc4a13bee7e92a350cf210
PQID 3079020627
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_015d1c6b33cc4a13bee7e92a350cf210
proquest_journals_3079020627
crossref_citationtrail_10_3390_app14135605
crossref_primary_10_3390_app14135605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_137
Ghimire (ref_150) 2022; 316
ref_93
ref_136
Pereira (ref_164) 2019; 185
Xia (ref_192) 2015; 160
Benali (ref_155) 2018; 132
Yang (ref_92) 2014; 103
ref_99
Nonnenmacher (ref_36) 2014; 108
ref_98
Huang (ref_130) 2012; 87
Dong (ref_58) 2014; 79
Alessandrini (ref_25) 2015; 157
Qin (ref_142) 2022; 167
Lazzaroni (ref_24) 2015; 63
ref_125
Zhang (ref_9) 2015; 111
Zhen (ref_218) 2019; 197
Cros (ref_66) 2014; 9242
(ref_56) 2012; 86
Marzo (ref_45) 2023; 206
Bessa (ref_113) 2015; 72
Gesell (ref_73) 2016; 1734
David (ref_128) 2018; 34
Deo (ref_65) 2019; 104
Eseye (ref_165) 2018; 118
Neto (ref_186) 2010; 27
Wang (ref_171) 2018; 177
Ma (ref_15) 2021; 7
Gao (ref_143) 2022; 321
Kurzrock (ref_69) 2018; 27
Pierro (ref_61) 2017; 158
ref_151
ref_79
ref_77
Huang (ref_134) 2018; 66
Lima (ref_161) 2016; 87
ref_81
Seiz (ref_196) 2007; 28
Kong (ref_11) 2020; 280
Aguiar (ref_35) 2016; 97
Wei (ref_80) 2011; 18
ref_146
ref_84
Jang (ref_169) 2016; 7
Li (ref_187) 2011; 28
ref_216
ref_215
Chow (ref_108) 2011; 85
ref_219
Sobri (ref_127) 2018; 156
Hess (ref_178) 1998; 79
Chow (ref_94) 2015; 115
Kokhanovsky (ref_204) 2004; 64
ref_212
Marquez (ref_34) 2013; 92
Peng (ref_102) 2015; 118
Niccolai (ref_86) 2020; 2
Kelvin (ref_30) 2020; 173
Wang (ref_209) 2020; 220
Schmidt (ref_39) 2016; 16
Massidda (ref_52) 2017; 146
Zhang (ref_26) 2018; 10
Thirion (ref_213) 1998; 2
Sun (ref_149) 2019; 188
Doorga (ref_67) 2019; 104
Kratzke (ref_202) 2017; 126
Pedro (ref_154) 2018; 123
Ghimire (ref_23) 2019; 216
Cheng (ref_103) 2016; 91
Otsu (ref_194) 1979; 9
Long (ref_183) 2006; 23
Chu (ref_85) 2013; 98
ref_115
Kuhn (ref_90) 2017; Volume 1850
Yadav (ref_119) 2014; 33
Ghonima (ref_188) 2012; 5
Chu (ref_47) 2023; 249
ref_117
ref_116
Mejia (ref_156) 2018; 163
Boutahir (ref_32) 2022; 5
Jayadevan (ref_180) 2015; 32
Lipperheide (ref_10) 2015; 112
Alkhayat (ref_122) 2021; 4
ref_111
ref_112
Tapakis (ref_207) 2013; 95
Voyant (ref_153) 2017; 105
Muhammad (ref_135) 2018; 303
Miller (ref_170) 2018; 168
Marquez (ref_220) 2013; 91
Pereira (ref_182) 2006; 23
ref_104
ref_106
ref_109
Singh (ref_210) 2005; 8
Si (ref_33) 2021; 57
Kotthaus (ref_97) 2018; 144
Liu (ref_126) 2019; 187
Breitkreuz (ref_28) 2009; 48
Paletta (ref_48) 2023; 336
Kim (ref_176) 2017; 174
Nouri (ref_40) 2018; 2033
Ye (ref_193) 2017; 55
Lohmann (ref_205) 2018; 18
Monjoly (ref_132) 2017; 119
Zhen (ref_148) 2020; 56
Huang (ref_166) 2018; 176
Yang (ref_185) 2012; 29
Boyle (ref_2) 2021; 164
ref_13
Lago (ref_70) 2018; 173
ref_19
Srivastava (ref_64) 2018; 162
Ospina (ref_144) 2019; 13
Li (ref_217) 2022; 60
Taravat (ref_191) 2014; 12
Perez (ref_62) 2019; 177
Chaturvedi (ref_50) 2016; 145
Kuhn (ref_89) 2017; 26
Deo (ref_63) 2017; 72
Nouri (ref_100) 2019; 181
Yang (ref_168) 2016; 133
Rai (ref_140) 2021; 252
Liu (ref_29) 2015; 6
Kamadinata (ref_120) 2019; 134
ref_22
Sassen (ref_200) 2011; 33
ref_21
Kazantzidis (ref_184) 2012; 113
Lauret (ref_131) 2015; 112
Blanc (ref_101) 2017; 1850
Pereira (ref_71) 2015; 122
Chang (ref_206) 2002; 107
Moon (ref_54) 2020; 243
Iversen (ref_160) 2014; 25
Cachorro (ref_107) 2022; 15
Zamora (ref_55) 2003; 108
Wang (ref_121) 2019; 198
Cachorro (ref_72) 2021; 14
Sharma (ref_138) 2016; 90
Ineichen (ref_179) 2002; 73
Caldas (ref_38) 2019; 143
Amillo (ref_177) 2014; 6
Kahn (ref_201) 2008; 8
Verbois (ref_162) 2018; 162
(ref_14) 2021; 292
Reno (ref_87) 2016; 90
Benedetti (ref_158) 2017; 26
Fischer (ref_214) 2003; 18
Kosmopoulos (ref_18) 2015; 93
West (ref_91) 2014; 110
Batlles (ref_82) 2011; 36
Heinle (ref_181) 2010; 3
Liu (ref_199) 2004; 109
Liu (ref_208) 2011; 28
Bacher (ref_17) 2009; 83
Mustaqeem (ref_145) 2022; 52
Markovics (ref_74) 2022; 161
Persson (ref_5) 2017; 150
(ref_96) 2013; 127
Li (ref_114) 2014; 66
Marzouq (ref_46) 2023; 30
Blum (ref_41) 2022; 232
Cheng (ref_105) 2017; 104
ref_172
ref_175
ref_174
Zhang (ref_211) 2018; 45
ref_51
Pazikadin (ref_118) 2020; 715
Shakya (ref_139) 2017; 8
Yang (ref_110) 2014; 103
Russo (ref_76) 2014; 105
Ghimire (ref_141) 2019; 253
Hocaoglu (ref_124) 2017; 108
Mathiesen (ref_59) 2013; 92
Lonij (ref_20) 2013; 97
ref_60
Cornaro (ref_3) 2015; 111
Belmahdi (ref_133) 2020; 219
ref_163
Long (ref_197) 2017; 196
ref_167
(ref_152) 2020; 135
Pawar (ref_195) 2019; 183
Pedro (ref_8) 2012; 86
Chen (ref_203) 2000; 13
Rana (ref_75) 2016; 121
Bouzgou (ref_147) 2017; 158
Shamshirband (ref_123) 2019; 7
ref_31
Biberacher (ref_1) 2011; 15
(ref_159) 2017; 155
Feng (ref_12) 2020; 204
ref_37
Mellit (ref_16) 2010; 84
Batlles (ref_173) 2015; 105
Lopes (ref_157) 2018; 170
Huva (ref_57) 2020; 147
Zhang (ref_42) 2018; 176
ref_44
ref_189
Shields (ref_83) 2013; 52
Boland (ref_129) 2015; 75
Kuhn (ref_78) 2019; 28
Alfadda (ref_27) 2018; 170
ref_190
ref_49
Lahtinen (ref_68) 2020; 198
Nguyen (ref_95) 2014; 107
Quaas (ref_198) 2010; 10
Chu (ref_43) 2014; 31
Kosch (ref_88) 2009; 48
ref_4
Lopes (ref_53) 2021; 163
ref_7
ref_6
References_xml – ident: ref_190
– volume: 196
  start-page: 248
  year: 2017
  ident: ref_197
  article-title: The thin border between cloud and aerosol: Sensitivity of several ground based observation techniques
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.06.010
– volume: 113
  start-page: 80
  year: 2012
  ident: ref_184
  article-title: Cloud detection and classification with the use of whole-sky ground-based images
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2012.05.005
– volume: 173
  start-page: 1070
  year: 2020
  ident: ref_30
  article-title: Developing automated methods to estimate spectrally resolved direct normal irradiance for solar energy applications
  publication-title: Renew. Energy
– volume: 336
  start-page: 120818
  year: 2023
  ident: ref_48
  article-title: Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120818
– ident: ref_151
  doi: 10.3390/en11081988
– volume: 177
  start-page: 47
  year: 2018
  ident: ref_171
  article-title: Surface solar radiation forecasts by advecting cloud physical properties derived from Meteosat Second Generation observations
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.10.073
– ident: ref_93
  doi: 10.1145/2343862.2343863
– volume: 119
  start-page: 288
  year: 2017
  ident: ref_132
  article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.061
– volume: 57
  start-page: 5
  year: 2021
  ident: ref_33
  article-title: Hybrid Solar Forecasting Method Using Satellite Visible Images and Modified Convolutional Neural Networks
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2020.3028558
– volume: 18
  start-page: 81
  year: 2003
  ident: ref_214
  article-title: Curvature Based Image Registration
  publication-title: J. Math. Imaging Vis.
  doi: 10.1023/A:1021897212261
– volume: 132
  start-page: 871
  year: 2018
  ident: ref_155
  article-title: Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.08.044
– volume: 36
  start-page: 4055
  year: 2011
  ident: ref_82
  article-title: Cloud classification in a mediterranean location using radiation data and sky images
  publication-title: Energy
  doi: 10.1016/j.energy.2011.04.043
– volume: 170
  start-page: 14
  year: 2018
  ident: ref_157
  article-title: Short-term forecasts of GHI and DNI for solar energy systems operation: Assessment of the ECMWF integrated forecasting system in southern Portugal
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.05.039
– ident: ref_6
  doi: 10.3390/en16073215
– volume: 103
  start-page: 550
  year: 2014
  ident: ref_110
  article-title: Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.01.024
– ident: ref_125
  doi: 10.3390/app8010028
– volume: 8
  start-page: 895
  year: 2017
  ident: ref_139
  article-title: Solar Irradiance Forecasting in Remote Microgrids Using Markov Switching Model
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2016.2629974
– ident: ref_13
  doi: 10.1109/PESGM.2017.8274480
– volume: 18
  start-page: 8807
  year: 2018
  ident: ref_205
  article-title: The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol–climate model ECHAM6-HAM2
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-8807-2018
– ident: ref_4
– volume: 28
  start-page: 255
  year: 2019
  ident: ref_78
  article-title: Shadow-camera based solar nowcasting system for shortest-term forecasts
  publication-title: Meteorol. Z.
  doi: 10.1127/metz/2019/0954
– volume: 187
  start-page: 115940
  year: 2019
  ident: ref_126
  article-title: Random forest solar power forecast based on classification optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115940
– volume: 122
  start-page: 1309
  year: 2015
  ident: ref_71
  article-title: Use of satellite data to improve solar radiation forecasting with Bayesian Artificial Neural Networks
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.10.041
– ident: ref_37
  doi: 10.1109/PVSC40753.2019.8980821
– volume: 188
  start-page: 730
  year: 2019
  ident: ref_149
  article-title: Short-term solar power forecast with deep learning: Exploring optimal input and output configuration
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.06.041
– ident: ref_212
– volume: 144
  start-page: 1525
  year: 2018
  ident: ref_97
  article-title: Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: A new method to track mixed layer height and classify clouds
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3299
– volume: 18
  start-page: 1771
  year: 2011
  ident: ref_80
  article-title: Fisheye Video Correction
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2011.130
– volume: 303
  start-page: 012016
  year: 2018
  ident: ref_135
  article-title: Forecasting of global solar radiation using anfis and armax techniques
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/303/1/012016
– ident: ref_112
  doi: 10.1109/ISGTEurope.2019.8905430
– ident: ref_172
  doi: 10.1109/SOSE55472.2022.9812657
– ident: ref_219
  doi: 10.1109/IGARSS.2014.6947394
– volume: 10
  start-page: 6129
  year: 2010
  ident: ref_198
  article-title: Interpreting the cloud cover—Aerosol optical depth relationship found in satellite data using a general circulation model
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-6129-2010
– ident: ref_7
  doi: 10.1007/978-3-319-59650-1_36
– volume: 31
  start-page: 1995
  year: 2014
  ident: ref_43
  article-title: A Smart Image-Based Cloud Detection System for Intrahour Solar Irradiance Forecasts
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-13-00209.1
– volume: 16
  start-page: 3399
  year: 2016
  ident: ref_39
  article-title: Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-3399-2016
– volume: 135
  start-page: 110114
  year: 2020
  ident: ref_152
  article-title: Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison
  publication-title: Renew. Sustain. Energy Rev.
– volume: 28
  start-page: 2001
  year: 2007
  ident: ref_196
  article-title: Cloud mapping with ground-based photogrammetric cameras
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600641822
– volume: 90
  start-page: 481
  year: 2016
  ident: ref_138
  article-title: Short term solar irradiance forecasting using a mixed wavelet neural network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.01.020
– volume: 6
  start-page: 434
  year: 2015
  ident: ref_29
  article-title: An Improved Photovoltaic Power Forecasting Model With the Assistance of Aerosol Index Data
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2381224
– volume: 97
  start-page: 58
  year: 2013
  ident: ref_20
  article-title: Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.08.002
– volume: 5
  start-page: 309
  year: 2022
  ident: ref_32
  article-title: Effect of Feature Selection on the Prediction of Direct Normal Irradiance
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2022.9020003
– volume: 105
  start-page: 1205
  year: 2015
  ident: ref_173
  article-title: Beam, diffuse and global solar irradiance estimation with satellite imagery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.08.037
– volume: 715
  start-page: 136848
  year: 2020
  ident: ref_118
  article-title: Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.136848
– volume: 92
  start-page: 47
  year: 2013
  ident: ref_59
  article-title: A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.02.018
– volume: 1734
  start-page: 150007
  year: 2016
  ident: ref_73
  article-title: Verification of sectoral cloud motion based direct normal irradiance nowcasting from satellite imagery
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4949239
– volume: 181
  start-page: 251
  year: 2019
  ident: ref_100
  article-title: Determination of cloud transmittance for all sky imager based solar nowcasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.02.004
– ident: ref_167
  doi: 10.1109/PVSC.2016.7749787
– volume: 123
  start-page: 191
  year: 2018
  ident: ref_154
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.006
– volume: 108
  start-page: D2
  year: 2003
  ident: ref_55
  article-title: Comparing MM5 radiative fluxes with observations gathered during the 1995 and 1999 Nashville southern oxidants studies
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2002JD002122
– ident: ref_99
  doi: 10.3390/su9040482
– ident: ref_116
  doi: 10.1109/ICPES.2017.8387332
– volume: 97
  start-page: 599
  year: 2016
  ident: ref_35
  article-title: Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.06.018
– ident: ref_109
– volume: 316
  start-page: 119063
  year: 2022
  ident: ref_150
  article-title: Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119063
– volume: 177
  start-page: 703
  year: 2019
  ident: ref_62
  article-title: Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.11.010
– ident: ref_174
  doi: 10.1109/ICPS54075.2022.9773880
– volume: 79
  start-page: 66
  year: 2014
  ident: ref_58
  article-title: Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.11.043
– volume: 108
  start-page: 635
  year: 2017
  ident: ref_124
  article-title: A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.08.058
– volume: 185
  start-page: 387
  year: 2019
  ident: ref_164
  article-title: Development of an ANN based corrective algorithm of the operational ECMWF global horizontal irradiation forecasts
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.04.070
– volume: 52
  start-page: 1605
  year: 2013
  ident: ref_83
  article-title: Day/night whole sky imagers for 24-h cloud and sky assessment: History and overview
  publication-title: Appl. Opt.
  doi: 10.1364/AO.52.001605
– volume: 156
  start-page: 459
  year: 2018
  ident: ref_127
  article-title: Solar photovoltaic generation forecasting methods: A review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.11.019
– volume: 83
  start-page: 1772
  year: 2009
  ident: ref_17
  article-title: Online short-term solar power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2009.05.016
– volume: 27
  start-page: 277
  year: 2018
  ident: ref_69
  article-title: A Review of the Use of Geostationary Satellite Observations in Regional-Scale Models for Short-term Cloud Forecasting
  publication-title: Meteorol. Z.
  doi: 10.1127/metz/2018/0904
– volume: 280
  start-page: 115875
  year: 2020
  ident: ref_11
  article-title: Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115875
– volume: 98
  start-page: 592
  year: 2013
  ident: ref_85
  article-title: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.10.020
– volume: 60
  start-page: 4107117
  year: 2022
  ident: ref_217
  article-title: Cloud Detection and Classification Algorithms for Himawari-8 Imager Measurements Based on Deep Learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 4
  start-page: 100060
  year: 2021
  ident: ref_122
  article-title: A Review and Taxonomy of Wind and Solar Energy Forecasting Methods Based on Deep Learning
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100060
– volume: 103
  start-page: 502
  year: 2014
  ident: ref_92
  article-title: Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.02.044
– volume: 86
  start-page: 2200
  year: 2012
  ident: ref_56
  article-title: Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain)
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.02.014
– volume: 252
  start-page: 168515
  year: 2021
  ident: ref_140
  article-title: A robust auto encoder-gated recurrent unit (AE-GRU) based deep learning approach for short term solar power forecasting
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168515
– volume: 110
  start-page: 188
  year: 2014
  ident: ref_91
  article-title: Short-term irradiance forecasting using skycams: Motivation and development
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.08.038
– volume: 146
  start-page: 141
  year: 2017
  ident: ref_52
  article-title: Use of Multilinear Adaptive Regression Splines and numerical weather prediction to forecast the power output of a PV plant in Borkum, Germany
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.02.007
– volume: 163
  start-page: 610
  year: 2018
  ident: ref_156
  article-title: Conditional summertime day-ahead solar irradiance forecast
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.094
– volume: 7
  start-page: 1255
  year: 2016
  ident: ref_169
  article-title: Solar Power Prediction Based on Satellite Images and Support Vector Machine
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2016.2535466
– ident: ref_216
– volume: 25
  start-page: 152
  year: 2014
  ident: ref_160
  article-title: Probabilistic forecasts of solar irradiance using stochastic differential equations
  publication-title: Environmetrics
  doi: 10.1002/env.2267
– volume: 111
  start-page: 157
  year: 2015
  ident: ref_9
  article-title: A suite of metrics for assessing the performance of solar power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.10.016
– volume: 23
  start-page: 437
  year: 2006
  ident: ref_182
  article-title: A Simple Method for the Assessment of the Cloud Cover State in High-Latitude Regions by a Ground-Based Digital Camera
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH1833.1
– ident: ref_49
  doi: 10.1109/PEDG.2018.8447751
– volume: 253
  start-page: 113541
  year: 2019
  ident: ref_141
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113541
– volume: 66
  start-page: 78
  year: 2014
  ident: ref_114
  article-title: An ARMAX model for forecasting the power output of a grid connected photovoltaic system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.11.067
– volume: 10
  start-page: 268
  year: 2018
  ident: ref_26
  article-title: A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2832634
– volume: 105
  start-page: 569
  year: 2017
  ident: ref_153
  article-title: Machine learning methods for solar radiation forecasting: A review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.095
– volume: 15
  start-page: 1182
  year: 2011
  ident: ref_1
  article-title: Methods and tools to evaluate the availability of renewable energy sources
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.09.049
– volume: 85
  start-page: 2881
  year: 2011
  ident: ref_108
  article-title: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.08.025
– volume: 112
  start-page: 232
  year: 2015
  ident: ref_10
  article-title: Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.11.013
– ident: ref_60
  doi: 10.3390/en17020329
– ident: ref_215
– volume: 9242
  start-page: 924202
  year: 2014
  ident: ref_66
  article-title: Cloud pattern prediction from geostationary meteorological satellite images for solar energy forecasting
  publication-title: Soc. Photo Opt. Instrum. Eng. (SPIE)
– ident: ref_21
– volume: 33
  start-page: 677
  year: 2011
  ident: ref_200
  article-title: The Clouds of the Middle Troposphere: Composition, Radiative Impact, and Global Distribution
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-011-9163-x
– volume: 2
  start-page: 488
  year: 2020
  ident: ref_86
  article-title: Sun Position Identification in Sky Images for Nowcasting Application
  publication-title: Forecasting
  doi: 10.3390/forecast2040026
– volume: 160
  start-page: 238
  year: 2015
  ident: ref_192
  article-title: A hybrid method based on extreme learning machine and k-nearest neighbor for cloud classification of ground-based visible cloud image
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.022
– ident: ref_189
– volume: 168
  start-page: 102
  year: 2018
  ident: ref_170
  article-title: Short-term solar irradiance forecasting via satellite/model coupling
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.11.049
– volume: 107
  start-page: AAC 7-1
  year: 2002
  ident: ref_206
  article-title: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2001JD000766
– volume: 249
  start-page: 495
  year: 2023
  ident: ref_47
  article-title: Estimation of solar irradiance and solar power based on all-sky images
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.11.031
– volume: 7
  start-page: 5495
  year: 2021
  ident: ref_15
  article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.08.167
– volume: 90
  start-page: 520
  year: 2016
  ident: ref_87
  article-title: Identification of periods of clear sky irradiance in time series of GHI measurements
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.12.031
– volume: 6
  start-page: 8165
  year: 2014
  ident: ref_177
  article-title: A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation
  publication-title: Remote Sens.
  doi: 10.3390/rs6098165
– volume: 12
  start-page: 666
  year: 2014
  ident: ref_191
  article-title: Neural Networks and Support Vector Machine Algorithms for Automatic Cloud Classification of Whole-Sky Ground-Based Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2356616
– volume: 155
  start-page: 1092
  year: 2017
  ident: ref_159
  article-title: Short-term solar radiation forecasting by advecting and diffusing MSG cloud index
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.07.045
– volume: 87
  start-page: 807
  year: 2016
  ident: ref_161
  article-title: Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.11.005
– volume: 55
  start-page: 5729
  year: 2017
  ident: ref_193
  article-title: DeepCloud: Ground-Based Cloud Image Categorization Using Deep Convolutional Features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2712809
– volume: 1850
  start-page: 140004
  year: 2017
  ident: ref_101
  article-title: Short-term forecasting of high resolution local DNI maps with multiple fish-eye cameras in stereoscopic mode
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4984512
– ident: ref_106
  doi: 10.3390/rs13132455
– volume: 64
  start-page: 189
  year: 2004
  ident: ref_204
  article-title: Optical properties of terrestrial clouds
  publication-title: Earth Sci. Rev.
  doi: 10.1016/S0012-8252(03)00042-4
– volume: 157
  start-page: 95
  year: 2015
  ident: ref_25
  article-title: An analog ensemble for short-term probabilistic solar power forecast
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.011
– ident: ref_117
– volume: 126
  start-page: 1
  year: 2017
  ident: ref_202
  article-title: Understanding cloud-native applications after 10 years of cloud computing—A systematic mapping study
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2017.01.001
– volume: 164
  start-page: 1230
  year: 2021
  ident: ref_2
  article-title: Development of an irradiance-based weather derivative to hedge cloud risk for solar energy systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.10.091
– ident: ref_51
– volume: 91
  start-page: 327
  year: 2013
  ident: ref_220
  article-title: Intra-hour DNI forecasting based on cloud tracking image analysis
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.09.018
– volume: 66
  start-page: 9918
  year: 2018
  ident: ref_134
  article-title: Data-Driven Short-Term Solar Irradiance Forecasting Based on Information of Neighboring Sites
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2856199
– volume: 2033
  start-page: 190011
  year: 2018
  ident: ref_40
  article-title: Nowcasting of DNI maps for the solar field based on voxel carving and individual 3D cloud objects from all sky images
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5067196
– ident: ref_136
  doi: 10.1109/APPEEC.2017.8308987
– volume: 73
  start-page: 151
  year: 2002
  ident: ref_179
  article-title: A new airmass independent formulation for the Linke turbidity coefficient
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(02)00045-2
– ident: ref_19
  doi: 10.3390/data8040065
– volume: 28
  start-page: 1286
  year: 2011
  ident: ref_187
  article-title: A hybrid thresholding algorithm for Cloud Detection on Ground-Based Color Images
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-11-00009.1
– volume: 220
  start-page: 113075
  year: 2020
  ident: ref_209
  article-title: A minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113075
– volume: 133
  start-page: 180
  year: 2016
  ident: ref_168
  article-title: Preprocessing WRF initial conditions for coastal stratocumulus forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.04.003
– volume: 72
  start-page: 16
  year: 2015
  ident: ref_113
  article-title: Probabilistic solar power forecasting in smart grids using distributed information
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.02.006
– volume: Volume 1850
  start-page: 1
  year: 2017
  ident: ref_90
  article-title: Validation of spatially resolved all sky imager derived DNI nowcasts
  publication-title: Proceedings of the SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems
– volume: 7
  start-page: 164650
  year: 2019
  ident: ref_123
  article-title: A Survey of Deep Learning Techniques: Application in Wind and Solar Energy Resources
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2951750
– volume: 45
  start-page: 8665
  year: 2018
  ident: ref_211
  article-title: CloudNet: Ground-Based Cloud Classification with Deep Convolutional Neural Network
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL077787
– volume: 198
  start-page: 111799
  year: 2019
  ident: ref_121
  article-title: A review of deep learning for renewable energy forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111799
– volume: 91
  start-page: 434
  year: 2016
  ident: ref_103
  article-title: Hybrid solar irradiance now-casting by fusing Kalman filter and regressor
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.01.077
– ident: ref_115
  doi: 10.3390/sym11020240
– volume: 48
  start-page: 1766
  year: 2009
  ident: ref_28
  article-title: Short-Range Direct and Diffuse Irradiance Forecasts for Solar Energy Applications Based on Aerosol Chemical Transport and Numerical Weather Modeling
  publication-title: J. Appl. Meteorol. Clim.
  doi: 10.1175/2009JAMC2090.1
– volume: 174
  start-page: 2773
  year: 2017
  ident: ref_176
  article-title: Toward Improved Solar Irradiance Forecasts: Comparison of the Global Horizontal Irradiances Derived from the COMS Satellite Imagery Over the Korean Peninsula
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-017-1578-y
– volume: 30
  start-page: 5407
  year: 2023
  ident: ref_46
  article-title: A comprehensive review of solar irradiation estimation and forecasting using artificial neural networks: Data, models and trends
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-24240-w
– volume: 13
  start-page: 1087
  year: 2019
  ident: ref_144
  article-title: Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2018.5779
– volume: 121
  start-page: 380
  year: 2016
  ident: ref_75
  article-title: Univariate and multivariate methods for very short-term solar photovoltaic power forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.05.025
– volume: 95
  start-page: 392
  year: 2013
  ident: ref_207
  article-title: Equipment and methodologies for cloud detection and classification: A review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.11.015
– ident: ref_175
  doi: 10.3390/en13215566
– volume: 87
  start-page: 136
  year: 2012
  ident: ref_130
  article-title: Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.10.012
– volume: 86
  start-page: 2017
  year: 2012
  ident: ref_8
  article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.04.004
– volume: 143
  start-page: 1643
  year: 2019
  ident: ref_38
  article-title: Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.05.069
– volume: 176
  start-page: 267
  year: 2018
  ident: ref_42
  article-title: Deep photovoltaic nowcasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.10.024
– ident: ref_104
  doi: 10.1109/ICME.2016.7552863
– ident: ref_79
  doi: 10.3390/buildings9100219
– volume: 29
  start-page: 527
  year: 2012
  ident: ref_185
  article-title: An Automated Cirrus Cloud Detection Method for a Ground-Based Cloud Image
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-11-00002.1
– volume: 14
  start-page: 2201
  year: 2021
  ident: ref_72
  article-title: Relative sky radiance from multi-exposure all-sky camera images
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-2201-2021
– volume: 3
  start-page: 557
  year: 2010
  ident: ref_181
  article-title: Automatic cloud classification of whole sky images
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-3-557-2010
– volume: 111
  start-page: 297
  year: 2015
  ident: ref_3
  article-title: Master optimization process based on neural networks ensemble for 24-h solar irradiance forecast
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.10.036
– volume: 33
  start-page: 772
  year: 2014
  ident: ref_119
  article-title: Solar radiation prediction using Artificial Neural Network techniques: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.08.055
– volume: 23
  start-page: 633
  year: 2006
  ident: ref_183
  article-title: Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH1875.1
– volume: 79
  start-page: 831
  year: 1998
  ident: ref_178
  article-title: Optical Properties of Aerosols and Clouds: The Software Package OPAC
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
– volume: 72
  start-page: 828
  year: 2017
  ident: ref_63
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.01.114
– ident: ref_44
– volume: 26
  start-page: 1
  year: 2017
  ident: ref_158
  article-title: Verification of ECMWF and ECMWF/MACC’s global and direct irradiance forecasts with respect to solar electricity production forecasts
  publication-title: Meteorol. Z.
  doi: 10.1127/metz/2016/0676
– ident: ref_163
– volume: 163
  start-page: 755
  year: 2021
  ident: ref_53
  article-title: Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.08.140
– volume: 93
  start-page: 1918
  year: 2015
  ident: ref_18
  article-title: Solar energy prediction and verification using operational model forecasts and ground-based solar measurements
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.054
– volume: 161
  start-page: 112364
  year: 2022
  ident: ref_74
  article-title: Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112364
– ident: ref_98
  doi: 10.3390/rs11091059
– volume: 13
  start-page: 264
  year: 2000
  ident: ref_203
  article-title: Radiative Effects of Cloud-Type Variations
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2
– volume: 118
  start-page: 496
  year: 2015
  ident: ref_102
  article-title: 3D cloud detection and tracking system for solar forecast using multiple sky imagers
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.05.037
– volume: 145
  start-page: 28
  year: 2016
  ident: ref_50
  article-title: Solar Power Forecasting: A Review
  publication-title: Int. J. Comput. Appl.
– volume: 52
  start-page: 102275
  year: 2022
  ident: ref_145
  article-title: A CNN-Assisted deep echo state network using multiple Time-Scale dynamic learning reservoirs for generating Short-Term solar energy forecasting
  publication-title: Sustain. Energy Technol. Assess.
– volume: 118
  start-page: 357
  year: 2018
  ident: ref_165
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.11.011
– volume: 321
  start-page: 119288
  year: 2022
  ident: ref_143
  article-title: Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119288
– volume: 105
  start-page: 264
  year: 2014
  ident: ref_76
  article-title: Genetic programming for photovoltaic plant output forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.02.021
– volume: 216
  start-page: 288
  year: 2019
  ident: ref_23
  article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.158
– volume: 32
  start-page: 209
  year: 2015
  ident: ref_180
  article-title: A New Contrast-Enhancing Feature for Cloud Detection in Ground-Based Sky Images
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-14-00053.1
– ident: ref_111
  doi: 10.1007/978-3-319-94120-2_12
– volume: 28
  start-page: 410
  year: 2011
  ident: ref_208
  article-title: Cloud Classification Based on Structure Features of Infrared Images
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2010JTECHA1385.1
– ident: ref_146
  doi: 10.1109/SMC.2016.7844673
– volume: 9
  start-page: 62
  year: 1979
  ident: ref_194
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– ident: ref_84
– volume: 84
  start-page: 807
  year: 2010
  ident: ref_16
  article-title: A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.02.006
– volume: 162
  start-page: 265
  year: 2018
  ident: ref_162
  article-title: Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.007
– volume: 127
  start-page: 64
  year: 2013
  ident: ref_96
  article-title: Behavior of cloud base height from ceilometer measurements
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2013.02.005
– volume: 109
  start-page: D15202
  year: 2004
  ident: ref_199
  article-title: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2004JD004732
– ident: ref_31
  doi: 10.1109/MetroLivEnv54405.2022.9826940
– volume: 48
  start-page: 4703
  year: 2009
  ident: ref_88
  article-title: Wide angle mirror system design for distortionless imaging of the sky
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.004703
– ident: ref_81
  doi: 10.1109/FCCM.2009.16
– volume: 107
  start-page: 495
  year: 2014
  ident: ref_95
  article-title: Stereographic methods for cloud base height determination using two sky imagers
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.05.005
– ident: ref_22
  doi: 10.1109/PEDG.2010.5545754
– volume: 243
  start-page: 105026
  year: 2020
  ident: ref_54
  article-title: Forecasting lightning around the Korean Peninsula by postprocessing ECMWF data using SVMs and undersampling
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2020.105026
– volume: 173
  start-page: 566
  year: 2018
  ident: ref_70
  article-title: Short-term forecasting of solar irradiance without local telemetry: A generalized model using satellite data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.07.050
– volume: 176
  start-page: 615
  year: 2018
  ident: ref_166
  article-title: Assessing model performance of daily solar irradiance forecasts over Australia
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.10.080
– volume: 206
  start-page: 251
  year: 2023
  ident: ref_45
  article-title: Photovoltaic power electricity generation nowcasting combining sky camera images and learning supervised algorithms in the Southern Spain
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.01.111
– volume: 134
  start-page: 837
  year: 2019
  ident: ref_120
  article-title: Sky image-based solar irradiance prediction methodologies using artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.11.056
– volume: 34
  start-page: 529
  year: 2018
  ident: ref_128
  article-title: Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2018.02.003
– volume: 92
  start-page: 176
  year: 2013
  ident: ref_34
  article-title: Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.02.023
– volume: 197
  start-page: 111853
  year: 2019
  ident: ref_218
  article-title: Image phase shift invariance based multi-transform-fusion method for cloud motion displacement calculation using sky images
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111853
– volume: 8
  start-page: 258
  year: 2005
  ident: ref_210
  article-title: Automated ground-based cloud recognition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-005-0007-5
– volume: 63
  start-page: 346
  year: 2015
  ident: ref_24
  article-title: Models for solar radiation prediction based on different measurement sites
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.11.037
– volume: 183
  start-page: 50
  year: 2019
  ident: ref_195
  article-title: Detecting clear sky images
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.02.069
– volume: 204
  start-page: 71
  year: 2020
  ident: ref_12
  article-title: SolarNet: A sky image-based deep convolutional neural network for intra-hour solar forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.03.083
– volume: 150
  start-page: 423
  year: 2017
  ident: ref_5
  article-title: Multi-site solar power forecasting using gradient boosted regression trees
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.04.066
– volume: 104
  start-page: 281
  year: 2017
  ident: ref_105
  article-title: Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.023
– ident: ref_137
  doi: 10.1109/I2CT45611.2019.9033864
– volume: 232
  start-page: 232
  year: 2022
  ident: ref_41
  article-title: Measurement of diffuse and plane of array irradiance by a combination of a pyranometer and an all-sky imager
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.11.064
– volume: 115
  start-page: 645
  year: 2015
  ident: ref_94
  article-title: Cloud motion and stability estimation for intra-hour solar forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.03.030
– volume: 2
  start-page: 243
  year: 1998
  ident: ref_213
  article-title: Image matching as a diffusion process: An analogy with Maxwell’s demons
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(98)80022-4
– ident: ref_77
  doi: 10.3390/rs13091852
– volume: 104
  start-page: 69
  year: 2019
  ident: ref_67
  article-title: Forecasting mesoscale distribution of surface solar irradiation using a proposed hybrid approach combining satellite remote sensing and time series models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.12.055
– volume: 219
  start-page: 165207
  year: 2020
  ident: ref_133
  article-title: One month-ahead forecasting of mean daily global solar radiation using time series models
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165207
– volume: 170
  start-page: 924
  year: 2018
  ident: ref_27
  article-title: Solar irradiance forecast using aerosols measurements: A data driven approach
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.05.089
– volume: 26
  start-page: 608
  year: 2017
  ident: ref_89
  article-title: Validation of an all-sky imager–based nowcasting system for industrial PV plants
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.2968
– volume: 158
  start-page: 595
  year: 2017
  ident: ref_147
  article-title: Minimum redundancy—Maximum relevance with extreme learning machines for global solar radiation forecasting: Toward an optimized dimensionality reduction for solar time series
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.10.035
– volume: 5
  start-page: 2881
  year: 2012
  ident: ref_188
  article-title: A method for cloud detection and opacity classification based on ground based sky imagery
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-5-2881-2012
– volume: 158
  start-page: 1026
  year: 2017
  ident: ref_61
  article-title: Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.09.068
– volume: 27
  start-page: 1504
  year: 2010
  ident: ref_186
  article-title: The Use of Euclidean Geometric Distance on RGB Color Space for the Classification of Sky and Cloud Patterns
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2010JTECHA1353.1
– volume: 104
  start-page: 235
  year: 2019
  ident: ref_65
  article-title: Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.009
– volume: 112
  start-page: 446
  year: 2015
  ident: ref_131
  article-title: A benchmarking of machine learning techniques for solar radiation forecasting in an insular context
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.12.014
– volume: 8
  start-page: 1231
  year: 2008
  ident: ref_201
  article-title: Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount
  publication-title: Atmos. Meas. Tech.
– volume: 167
  start-page: 112680
  year: 2022
  ident: ref_142
  article-title: Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112680
– volume: 292
  start-page: 116838
  year: 2021
  ident: ref_14
  article-title: Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116838
– volume: 75
  start-page: 607
  year: 2015
  ident: ref_129
  article-title: Spatial-temporal forecasting of solar radiation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.10.035
– volume: 108
  start-page: 447
  year: 2014
  ident: ref_36
  article-title: Streamline-based method for intra-day solar forecasting through remote sensing
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.07.026
– volume: 147
  start-page: 663
  year: 2020
  ident: ref_57
  article-title: Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.09.011
– volume: 56
  start-page: 3385
  year: 2020
  ident: ref_148
  article-title: Deep Learning Based Surface Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image
  publication-title: IEEE Trans. Ind. Appl.
– volume: 162
  start-page: 232
  year: 2018
  ident: ref_64
  article-title: A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.005
– volume: 198
  start-page: 68
  year: 2020
  ident: ref_68
  article-title: Global horizontal irradiance forecast for Finland based on geostationary weather satellite data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.01.008
– volume: 15
  start-page: 407
  year: 2022
  ident: ref_107
  article-title: Retrieval of aerosol properties using relative radiance measurements from an all-sky camera
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-15-407-2022
SSID ssj0000913810
Score 2.3085518
SecondaryResourceType review_article
Snippet The increasing penetration of solar energy into the grid has led to management difficulties that require high accuracy forecasting systems. New techniques and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5605
SubjectTerms all-sky camera
Alternative energy sources
Cameras
Comparative analysis
Electricity distribution
Energy consumption
Energy industry
Energy resources
Forecasting techniques
Industrial plant emissions
nowcasting
Radiation
regression method
Renewable resources
satellite
Satellites
Sensors
Solar energy
solar irradiance
statistical method
Time series
Weather forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA5WX9qHUm1Lr1WZBx_aQujuJptNCiJeOdGCh9ge-Lbkpwh2z3pX8M93ks2elhYfdzcb2J3JzDeTzDeE7MlgbFXphjYiCMo5V9TUilPNRBM0r61tYr3z6VQcz_j3i_pijUyHWph4rHKwiclQu7mNOfIvqIsKoY2omoOb3zR2jYq7q0MLDZ1bK7j9RDH2jGygSZao9xvjyfTsfJV1iSyYsiz6Qj2G8X7cJy7RkKPjr_9yTYnB_x8DnbzO0SvyMsNFOOzlu0nWfLdFXjwiEdwim3l5LuBj5pD-9JrcHUKf9QfdOZisKL1hHgAhHySMGS9wZrjq4OQX2hU6Rpfm4EeMdmGSigIhtu60ehEPR38F1Ck4TS2nUzI-zf2Qm4cZvv2GzI4mP78d09xkgVom-JJWtioCd8JL7aQuguQeIyTnSmuUjmjPm6C8UrjQhUA0Ia0JtatrFkp0bkaxt2S9m3f-HQGFsZHHkIbxoLj3hREI5mKtapC28TKMyOfh_7Y2M5DHRhjXLUYiURjtI2GMyN5q8E1PvPH_YeMoqNWQyJadbsxvL9u8-FqEPPg9wjBmLdclM943XlWa1YUNGPOOyPYg5jYv4UX7oHDvn378gTyvEOn0Z3i3yfry9o_fQaSyNLtZ_e4BApbntA
  priority: 102
  providerName: ProQuest
Title A Review and Evaluation of the State of Art in Image-Based Solar Energy Forecasting: The Methodology and Technology Used
URI https://www.proquest.com/docview/3079020627
https://doaj.org/article/015d1c6b33cc4a13bee7e92a350cf210
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED5BeRkPEyub1tFV99AHQIqWxI4T87ailILUCgGV-hbZji1NgnRai8TP5-xkXRBIe-ExkeNEd-e77xzfdwDTwmmTpiqPcuFExDmXkc4kjxQTuVM8Myb39c7LlVis-adNtum1-vJnwlp64FZwVxSu6sQIzZgxXCVMW5tbmSqWxcalbXFVLONeMhV8sEw8dVVbkMcor_f_gxNy2BTgsz9CUGDq_8sRh-gyfwHHHSzE6_ZzTuCJbYbwvEcWOISTbhnu8HXHFf3mJfy6xnZ3H1VTY3mg7satQ4J2GLCkv6CZ8abBjz_If0QzCl01fvVZLZah-A99i06jdv4Q9Dsk28FlaC0dNt3D3A978Limp09hPS-_vV9EXTOFyDDB91Fq0tjxWthC1YWKXcEtZUI1yVZL5VGd1U5aKWlBC0GooTDaZXWWMZdQENOSncGg2Tb2HFBSDmQpdWHcSW5trAWBNl-T6gqT28KN4O29fCvTMY37hhffK8o4vDKqnjJGMD0Mvm0JNv49bOYVdRjiWbHDDbKVqrOV6jFbGcH4Xs1Vt1R3FTk5SZhZpPnF_3jHKzhKCfe0J3rHMNjf_bSXhFv2egJPi_mHCTyblavPXybBYH8D79HsZw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELWqcgAOiBYQCwV8KBIgWSS249hICLWwyy7t9kJX6i3Yjl1VgmzpLgJ-im9kxkm2RVS99ZjEiRTPeOa9sWeGkG0dnefclqxUUTEppWGuMJJZocpoZeF9ifnO0wM1nslPR8XRGvnT58LgscreJiZDXc89xshfgy4agDaKl-9OvzPsGoW7q30LjVYt9sLvn0DZFm8nH0C-zzkfDQ_fj1nXVYB5oeSScc-zKGsVtK21zaKWAShBXefeGYvwJrhogjGg2UqB-9TexaIuChFzsOYOiy-Byb8hgdvhKtKjj6uYDtbY1HnWpgEKYTLchc7BTQCsKP5xfKk_wH_mP_m00V1ypwOjdKfVng2yFppNcvtCicJNstEt_gV90VWofnmP_Nqh7Z4CtU1Nh6uC4XQeKQBKmhAsXsCX6UlDJ9_AarFdcJg1_Yxcmg5TyiHFxqDeLvDo9RsKGkunqaF1CvWnb59H_ukM3r5PZtcy2Q_IejNvwkNCDTCvAIRJyGhkCJlTABUxEzZqXwYdB-RVP7-V7-qbY5uNrxXwHBRGdUEYA7K9GnzalvW4fNguCmo1BGtxpxvzs-OqW9oVACr4H-WE8F7aXLgQymC4FUXmIzDqAdnqxVx1BmJRnavzo6sfPyM3x4fT_Wp_crD3mNzigKna08JbZH159iM8AUy0dE-TIlLy5bo1_y8AiB4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RaxQxEA6lguiD2Kp4WnUeKqgQ3N1ks4kg0to7e9YWQQ_6tibZRATdq70T9a_565zJ7l4rim993N3swma-zHyTycwwtq2j80VhK16pqLiU0nBXGsmtUFW0svS-onznwyO1P5Ovj8vjNfZryIWhY5WDTkyKupl72iN_ilg0SG0UuuqxPxbxdm_y4uQrpw5SFGkd2ml0EDkIP7-j-7Z4Pt1DWT8sisn4_ct93ncY4F4oueSFL7IoGxW0bbTNopYB3YOmyb0zlqhOcNEEYxDlSqEp1d7FsilLEXPU7I4KMaH6v1SJytDq0pNXq_0dqrep86xLCRTCZBSRztFkIMUo_zCCqVfAX6Yg2bfJdXatJ6aw0yFpg62FdpNdPVeucJNt9IpgAY_6atWPb7AfO9DFF8C2DYxXxcNhHgHJJSQ2Sxf4ZfjUwvQLajC-i8azgXfkV8M4pR8CNQn1dkHHsJ8BohcOU3PrtO2fvn0WBYAZvn2TzS5ksm-x9XbehtsMDHphAZ0nIaORIWROIW2krNiofRV0HLEnw_zWvq91Ti03Ptfo85Aw6nPCGLHt1eCTrsTHv4ftkqBWQ6gud7oxP_1Y98u8RnKF_6OcEN5LmwsXQhVMYUWZ-Yje9YhtDWKue2WxqM-gfef_jx-wy4j5-s306OAuu1IgveoODm-x9eXpt3AP6dHS3U84BPbhooH_GyzcIlY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+and+Evaluation+of+the+State+of+Art+in+Image-Based+Solar+Energy+Forecasting%3A+The+Methodology+and+Technology+Used&rft.jtitle=Applied+sciences&rft.au=Carlos+M.+Travieso-Gonz%C3%A1lez&rft.au=Fidel+Cabrera-Quintero&rft.au=Alejandro+Pi%C3%B1%C3%A1n-Roescher&rft.au=Sergio+Celada-Bernal&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=13&rft.spage=5605&rft_id=info:doi/10.3390%2Fapp14135605&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_015d1c6b33cc4a13bee7e92a350cf210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon