action-rules: GPU-accelerated Python package for counterfactual explanations and recommendations
The action-rules package provides an efficient method for mining action rules using the Action-Apriori algorithm, a modification of the traditional Apriori algorithm tailored specifically for action rule mining. Designed to generate counterfactual explanations, this Python package enables researcher...
Saved in:
| Published in | SoftwareX Vol. 29; p. 102000 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2352-7110 2352-7110 |
| DOI | 10.1016/j.softx.2024.102000 |
Cover
| Abstract | The action-rules package provides an efficient method for mining action rules using the Action-Apriori algorithm, a modification of the traditional Apriori algorithm tailored specifically for action rule mining. Designed to generate counterfactual explanations, this Python package enables researchers and practitioners to discover actionable insights by integrating user-defined parameters directly into the rule generation process, reducing computational overhead. The action-rules package supports optional GPU acceleration to further speed up processing on large datasets. The package provides a user-friendly API, as well as a command-line interface for versatile use. The package supports the customization of stable and flexible attributes, as well as separate minimum support and confidence thresholds for both the desired and undesired components of the rules. Comprehensive documentation, including a Jupyter Notebook example, is provided to facilitate ease of use for both novice and expert users. |
|---|---|
| AbstractList | The action-rules package provides an efficient method for mining action rules using the Action-Apriori algorithm, a modification of the traditional Apriori algorithm tailored specifically for action rule mining. Designed to generate counterfactual explanations, this Python package enables researchers and practitioners to discover actionable insights by integrating user-defined parameters directly into the rule generation process, reducing computational overhead. The action-rules package supports optional GPU acceleration to further speed up processing on large datasets. The package provides a user-friendly API, as well as a command-line interface for versatile use. The package supports the customization of stable and flexible attributes, as well as separate minimum support and confidence thresholds for both the desired and undesired components of the rules. Comprehensive documentation, including a Jupyter Notebook example, is provided to facilitate ease of use for both novice and expert users. |
| ArticleNumber | 102000 |
| Author | Sýkora, Lukáš Kliegr, Tomáš |
| Author_xml | – sequence: 1 givenname: Lukáš orcidid: 0000-0002-6700-5610 surname: Sýkora fullname: Sýkora, Lukáš email: lukas.sykora@vse.cz – sequence: 2 givenname: Tomáš surname: Kliegr fullname: Kliegr, Tomáš email: tomas.kliegr@vse.cz |
| BookMark | eNqNkMtKxDAYRoMoeJsncNMX6Jhbm1ZwIeINBF2M6_g3-aMdO8mQdHTm7e1YEVfiKuEj5xDOIdn1wSMhJ4xOGWXl6XyaguvXU065HBZOKd0hB1wUPFeM0d1f930ySWk-PGAFrwouD8gzmL4NPo-rDtNZdvP4lIMx2GGEHm32uOlfg8-WYN7gBTMXYmbCyvcY3QCuoMtwvezAw1aSMvA2i2jCYoHejtsx2XPQJZx8n0dkdn01u7zN7x9u7i4v7nMjStnnvBGcy4I3hjHFpRBQMwsUZKGYqxVaxKIyiosaqatqZVnV1LaqXFOqEkEckbtRawPM9TK2C4gbHaDVX0OILxpi35oOtamVMA4RGUgpha0ssKakXDEuS1XzwSVH18ovYfMBXfcjZFRvm-u5_mqut8312HzAxIiZGFKK6P5JnY8UDnHeW4w6mRa9QdsOJfvh--2f_CdioZ7M |
| Cites_doi | 10.17219/acem/144413 10.1007/s10844-021-00660-x 10.1016/j.ins.2010.10.030 10.1016/j.ins.2022.06.026 10.1007/3-540-45372-5_70 10.3390/info13030144 10.1145/3660809 10.1109/ICDMW.2008.66 10.1109/MCI.2023.3328098 10.1016/j.softx.2022.101209 10.1007/978-3-540-68416-9_16 10.1007/s10844-019-00551-2 10.1109/ACCESS.2023.3296260 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.softx.2024.102000 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2352-7110 |
| ExternalDocumentID | oai_doaj_org_article_c973cfeee1a4443d8da1b60271246792 10.1016/j.softx.2024.102000 10_1016_j_softx_2024_102000 S2352711024003704 |
| GroupedDBID | 0R~ 457 5VS 6I. AAEDW AAFTH AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ IXB KQ8 M~E O9- OK1 RIG ROL SSZ AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c364t-2b322452bc1172433a91da0a4571f97edee58c7239e0f897d18b9d88fb676ea3 |
| IEDL.DBID | IXB |
| ISSN | 2352-7110 |
| IngestDate | Fri Oct 03 12:51:46 EDT 2025 Tue Aug 19 20:50:52 EDT 2025 Wed Oct 01 05:51:13 EDT 2025 Sat Aug 09 17:32:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Action rules Apriori algorithm Counterfactual explanations Data mining Python |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-2b322452bc1172433a91da0a4571f97edee58c7239e0f897d18b9d88fb676ea3 |
| ORCID | 0000-0002-6700-5610 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352711024003704 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c973cfeee1a4443d8da1b60271246792 unpaywall_primary_10_1016_j_softx_2024_102000 crossref_primary_10_1016_j_softx_2024_102000 elsevier_sciencedirect_doi_10_1016_j_softx_2024_102000 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | SoftwareX |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Raś (b3) 2022; 31 Kalanat, Khanjari (b5) 2020; 54 Nishino R, Loomis S. CuPy: A NumPy-compatible library for NVIDIA GPU calculations. In: 31st conference on neural information processing systems. 2017, p. 151. Sikora, Matyszok, Wróbel (b23) 2022; 607 Gerevini, Maroldi, Olivato, Putelli, Serina (b27) 2023 Okken (b11) 2022 Berger (b13) 2020 Rage, Pamalla, Toyoda, Kitsuregawa (b15) 2024; 25 Rauch (b22) 2013 Rodola (b12) 2020 Sabbatini F, Ciatto G, Calegari R, Omicini A, et al. On the design of PSyKE: A platform for symbolic knowledge extraction. In: CEUR workshop proceedings, vol. 2963. 2021, p. 29–48. Treinen, Zacchiroli (b9) 2008 Stepin, Suffian, Catala, Alonso-Moral (b21) 2024; 19 Shams, Dimanov, Kola, Simidjievski, Terre, Scherer (b18) 2021 Oueslati, Laberge, Lamothe, Khomh (b26) 2024; 1 Powell, Gelich, Ras (b6) 2021; 57 Zhao, Wang, Cui, Sun (b7) 2022; 13 Raś Z, Wyrzykowska E, Wasyluk H. ARAS: Action rules discovery based on agglomerative strategy. In: International workshop on mining complex data. 2007, p. 196–208. Raś Z, Wieczorkowska A. Action-rules: How to increase profit of a company. In: European conference on principles of data mining and knowledge discovery. 2000, p. 587–92. Máša, Rauch (b16) 2022 Sýkora, Kliegr (b8) 2023 Zarlenga, Shams, Jamnik (b19) 2021 Agrawal R, Srikant R, et al. Fast algorithms for mining association rules. In: Proc. 20th int. conf. very large data bases. 1994, p. 487–99. Raś Z, Dardzinska A, Tsay L, Wasyluk H. Association action rules. In: 2008 IEEE international conference on data mining workshops. 2008, p. 283–90. Macha, Kozielski, Wróbel, Sikora (b17) 2022; 20 Błaszczyński, Słowiński, Szeląg (b24) 2011; 181 Dasht Bozorgi, Teinemaa, Dumas, La Rosa, Polyvyanyy (b25) 2020 10.1016/j.softx.2024.102000_b4 Kalanat (10.1016/j.softx.2024.102000_b5) 2020; 54 10.1016/j.softx.2024.102000_b14 10.1016/j.softx.2024.102000_b2 Zarlenga (10.1016/j.softx.2024.102000_b19) 2021 10.1016/j.softx.2024.102000_b1 Raś (10.1016/j.softx.2024.102000_b3) 2022; 31 Powell (10.1016/j.softx.2024.102000_b6) 2021; 57 Oueslati (10.1016/j.softx.2024.102000_b26) 2024; 1 Rodola (10.1016/j.softx.2024.102000_b12) 2020 Sýkora (10.1016/j.softx.2024.102000_b8) 2023 Zhao (10.1016/j.softx.2024.102000_b7) 2022; 13 Máša (10.1016/j.softx.2024.102000_b16) 2022 10.1016/j.softx.2024.102000_b10 Sikora (10.1016/j.softx.2024.102000_b23) 2022; 607 Berger (10.1016/j.softx.2024.102000_b13) 2020 Dasht Bozorgi (10.1016/j.softx.2024.102000_b25) 2020 Stepin (10.1016/j.softx.2024.102000_b21) 2024; 19 Shams (10.1016/j.softx.2024.102000_b18) 2021 Treinen (10.1016/j.softx.2024.102000_b9) 2008 Macha (10.1016/j.softx.2024.102000_b17) 2022; 20 Okken (10.1016/j.softx.2024.102000_b11) 2022 Gerevini (10.1016/j.softx.2024.102000_b27) 2023 Rage (10.1016/j.softx.2024.102000_b15) 2024; 25 Rauch (10.1016/j.softx.2024.102000_b22) 2013 10.1016/j.softx.2024.102000_b20 Błaszczyński (10.1016/j.softx.2024.102000_b24) 2011; 181 |
| References_xml | – volume: 57 start-page: 583 year: 2021 end-page: 599 ident: b6 article-title: How to raise artwork prices using action rules, personalization and artwork visual features publication-title: J Intell Inf Syst – volume: 607 start-page: 849 year: 2022 end-page: 868 ident: b23 article-title: SCARI: Separate and conquer algorithm for action rules and recommendations induction publication-title: Inform Sci – volume: 13 start-page: 144 year: 2022 ident: b7 article-title: Operational rule extraction and construction based on task scenario analysis publication-title: Information – year: 2020 ident: b13 article-title: Scalene: Scripting-language aware profiling for Python – volume: 1 start-page: 2309 year: 2024 end-page: 2331 ident: b26 article-title: Mining action rules for defect reduction planning publication-title: Proc ACM Softw Eng – reference: Sabbatini F, Ciatto G, Calegari R, Omicini A, et al. On the design of PSyKE: A platform for symbolic knowledge extraction. In: CEUR workshop proceedings, vol. 2963. 2021, p. 29–48. – volume: 25 start-page: 1 year: 2024 end-page: 6 ident: b15 article-title: PAMI: An open-source python library for pattern mining publication-title: J Mach Learn Res – year: 2023 ident: b27 article-title: Machine learning techniques for prognosis estimation and knowledge discovery from lab test results with application to the COVID-19 emergency publication-title: IEEE Access – start-page: 233 year: 2013 end-page: 260 ident: b22 article-title: GUHA method and the LISp-miner system publication-title: Observational Calculi and Association Rules – reference: Agrawal R, Srikant R, et al. Fast algorithms for mining association rules. In: Proc. 20th int. conf. very large data bases. 1994, p. 487–99. – year: 2020 ident: b25 article-title: Process mining meets causal machine learning: Discovering causal rules from event logs – volume: 20 year: 2022 ident: b17 article-title: RuleXAI—A package for rule-based explanations of machine learning model publication-title: SoftwareX – reference: Raś Z, Wieczorkowska A. Action-rules: How to increase profit of a company. In: European conference on principles of data mining and knowledge discovery. 2000, p. 587–92. – volume: 31 start-page: 5 year: 2022 end-page: 8 ident: b3 article-title: Reduction of hospital readmissions publication-title: Adv Clin Exp Med – reference: Raś Z, Dardzinska A, Tsay L, Wasyluk H. Association action rules. In: 2008 IEEE international conference on data mining workshops. 2008, p. 283–90. – volume: 181 start-page: 987 year: 2011 end-page: 1002 ident: b24 article-title: Sequential covering rule induction algorithm for variable consistency rough set approaches publication-title: Inform Sci – year: 2022 ident: b11 article-title: Python testing with pytest – year: 2021 ident: b18 article-title: REM: An integrative rule extraction methodology for explainable data analysis in healthcare – reference: Nishino R, Loomis S. CuPy: A NumPy-compatible library for NVIDIA GPU calculations. In: 31st conference on neural information processing systems. 2017, p. 151. – reference: Raś Z, Wyrzykowska E, Wasyluk H. ARAS: Action rules discovery based on agglomerative strategy. In: International workshop on mining complex data. 2007, p. 196–208. – year: 2008 ident: b9 article-title: Description of the CUDF format – volume: 54 start-page: 317 year: 2020 end-page: 339 ident: b5 article-title: Action extraction from social networks publication-title: J Intell Inf Syst – start-page: 123 year: 2022 end-page: 138 ident: b16 article-title: Enhanced association rules and Python publication-title: International conference on machine learning, optimization, and data science – start-page: 30 year: 2023 end-page: 34 ident: b8 article-title: Apriori modified for action rules mining publication-title: Proceedings of the 12th knowledge capture conference 2023 – year: 2020 ident: b12 article-title: Psutil documentation – volume: 19 start-page: 81 year: 2024 end-page: 82 ident: b21 article-title: How to build self-explaining fuzzy systems: from interpretability to explainability publication-title: IEEE Comput Intell Mag – year: 2021 ident: b19 article-title: Efficient decompositional rule extraction for deep neural networks – ident: 10.1016/j.softx.2024.102000_b10 – year: 2020 ident: 10.1016/j.softx.2024.102000_b25 – volume: 31 start-page: 5 year: 2022 ident: 10.1016/j.softx.2024.102000_b3 article-title: Reduction of hospital readmissions publication-title: Adv Clin Exp Med doi: 10.17219/acem/144413 – volume: 57 start-page: 583 year: 2021 ident: 10.1016/j.softx.2024.102000_b6 article-title: How to raise artwork prices using action rules, personalization and artwork visual features publication-title: J Intell Inf Syst doi: 10.1007/s10844-021-00660-x – year: 2020 ident: 10.1016/j.softx.2024.102000_b12 – start-page: 30 year: 2023 ident: 10.1016/j.softx.2024.102000_b8 article-title: Apriori modified for action rules mining – start-page: 233 year: 2013 ident: 10.1016/j.softx.2024.102000_b22 article-title: GUHA method and the LISp-miner system – volume: 181 start-page: 987 year: 2011 ident: 10.1016/j.softx.2024.102000_b24 article-title: Sequential covering rule induction algorithm for variable consistency rough set approaches publication-title: Inform Sci doi: 10.1016/j.ins.2010.10.030 – year: 2008 ident: 10.1016/j.softx.2024.102000_b9 – volume: 607 start-page: 849 year: 2022 ident: 10.1016/j.softx.2024.102000_b23 article-title: SCARI: Separate and conquer algorithm for action rules and recommendations induction publication-title: Inform Sci doi: 10.1016/j.ins.2022.06.026 – year: 2022 ident: 10.1016/j.softx.2024.102000_b11 – ident: 10.1016/j.softx.2024.102000_b1 doi: 10.1007/3-540-45372-5_70 – volume: 13 start-page: 144 year: 2022 ident: 10.1016/j.softx.2024.102000_b7 article-title: Operational rule extraction and construction based on task scenario analysis publication-title: Information doi: 10.3390/info13030144 – ident: 10.1016/j.softx.2024.102000_b20 – volume: 1 start-page: 2309 year: 2024 ident: 10.1016/j.softx.2024.102000_b26 article-title: Mining action rules for defect reduction planning publication-title: Proc ACM Softw Eng doi: 10.1145/3660809 – ident: 10.1016/j.softx.2024.102000_b4 doi: 10.1109/ICDMW.2008.66 – year: 2020 ident: 10.1016/j.softx.2024.102000_b13 – volume: 25 start-page: 1 year: 2024 ident: 10.1016/j.softx.2024.102000_b15 article-title: PAMI: An open-source python library for pattern mining publication-title: J Mach Learn Res – volume: 19 start-page: 81 year: 2024 ident: 10.1016/j.softx.2024.102000_b21 article-title: How to build self-explaining fuzzy systems: from interpretability to explainability publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2023.3328098 – year: 2021 ident: 10.1016/j.softx.2024.102000_b18 – year: 2021 ident: 10.1016/j.softx.2024.102000_b19 – volume: 20 year: 2022 ident: 10.1016/j.softx.2024.102000_b17 article-title: RuleXAI—A package for rule-based explanations of machine learning model publication-title: SoftwareX doi: 10.1016/j.softx.2022.101209 – ident: 10.1016/j.softx.2024.102000_b14 doi: 10.1007/978-3-540-68416-9_16 – ident: 10.1016/j.softx.2024.102000_b2 – start-page: 123 year: 2022 ident: 10.1016/j.softx.2024.102000_b16 article-title: Enhanced association rules and Python – volume: 54 start-page: 317 year: 2020 ident: 10.1016/j.softx.2024.102000_b5 article-title: Action extraction from social networks publication-title: J Intell Inf Syst doi: 10.1007/s10844-019-00551-2 – year: 2023 ident: 10.1016/j.softx.2024.102000_b27 article-title: Machine learning techniques for prognosis estimation and knowledge discovery from lab test results with application to the COVID-19 emergency publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3296260 |
| SSID | ssj0001528524 |
| Score | 2.293522 |
| Snippet | The action-rules package provides an efficient method for mining action rules using the Action-Apriori algorithm, a modification of the traditional Apriori... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 102000 |
| SubjectTerms | Action rules Apriori algorithm Counterfactual explanations Data mining Python |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT90wELYQF7i0UEC8ApUPPWKR2I4XboBYVKkVB5C4BS8TqfQRnt6iwr9nHCfo9dJy6DWKbGvGsyUz30fIV1MAj-AVMzIEln7MMB85MC-shJI7FXSaRv7-Q13dym931d0S1VfqCcvwwFlwR8FqERoAKJ2UUkQTXekVFlMYmJS2nfctjF0qpvJ8MDcVlwPMUNfQNUO_9owVIZcJr6BIM21LoahD7P8jIq0t2ol7-e3G46WIc7FBPvSpIj3JR9wkK9B-Ih8HGgbaW-UWuc-zCWy6GMPsmF5e3zIXAoaThAIR6fVLggegWBv_Qt9BMUmlHUEETNNQwwJ3gOfJ2OWvgjPq2khTlfz4CD3f0myb3Fyc35xdsZ44gQWh5Jxxj2YqK-5DifmJFMLZMrrCyUqXjdUQASoTNBcWisZYHUvjbTSm8UorcGKHrLZPLewSKqWLVtrQCEBrl977QjsvMKlyHle2I3I4iLCeZHiMeugbe6g7iddJ4nWW-IicJjG_vZqwrbsHqPG613j9L42PiBqUVPdpQg7_uNTPv-_O3lT6ntN-_h-n3SPrPFEGd43e-2R1Pl3AAeYxc_-lu7KvrH_w-g priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELbYcuC0PBa0RYB84IhREzt2zA0QDyGBeqASnLJ-TCSWEqqmEY9fzzgPRBFasdfIsa2xx_ONPfMNIbvpAGIPVrJUOMfCwwyzPgZmuRYQxUY6FbKRL6_k-Uhc3CQ3Lc92yIWZe7-v47BKPI6e0ZGLRaAZQA3-QRZlgsC7RxZHV8PD27p8XII4ES1Zxyv09Z9ztqem6J8zQUtVMTEvT2Y8_mBiTpeb3O2yZiYMkSX3-9XM7rvXT7yN35z9CvnZQk162OyNVbIAxRpZ7so40Farf5E_TW4Dm1ZjKA_o2XDEjHNojgKLhKfDl0AvQNG3vsezhyLIpXWBCZiGpIgKR4Dnydg0t4olNYWnwct-eIC2XlO5Tq5PT66Pz1lbeIE5LsWMxRbVXCSxdRHiG8G50ZE3AyMSFeVagQdIUqdirmGQp1r5KLXap2lupZJg-AbpFY8F_CZUCOO10C7ngKeFsNYOlLEcQZmx2LPuk71uRbJJQ6-RdXFnf7NaeFkQXtYIr0-Owqq9Nw3c2PUHFHrWqlrmtOIuB4DICCG4T72JrET3G6GMVDruE9mtedbCjAY-YFd3_x6dve-Q78x28z_bb5HebFrBNqKcmd1pd_cb1JX7Hw priority: 102 providerName: Unpaywall |
| Title | action-rules: GPU-accelerated Python package for counterfactual explanations and recommendations |
| URI | https://dx.doi.org/10.1016/j.softx.2024.102000 https://doi.org/10.1016/j.softx.2024.102000 https://doaj.org/article/c973cfeee1a4443d8da1b60271246792 |
| UnpaywallVersion | publishedVersion |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: KQ8 dateStart: 20150901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: IXB dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-7110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: AKRWK dateStart: 20150901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL5SmWx8oHjlib2E5s97atKIWKagVdsZyCHxO0sE1X-xDtv2fsJKW9IMTVcmxrbM_Dmfk-Ql7rDHgAVzItvWfxxwxzgQNzwkjIuS29itXIH0_L46n8MCtmO-Swr4WJaZWd7m91etLWXcuok-ZoOZ-PPnP0HRRar5gFKVTCBBVSR_qG97ODP-8sBddF4raN_Vn8oAcfSmlea9R2lxgnchlRDLJY6XbDQCUc_1t26u62WdqrX3axuGGHjh6Q-50DScftGh-SHWgekb2enIF2d_Ux-dZWLLDVdgHrffpuMmXWezQyERsi0MlVBA2gGDH_RI1C0XWliTYCVrHUYYszwOVyYdu3wjW1TaAxdj4_h46Faf2EnB29PTs8Zh2dAvOilBvGHV5eWXDnc_RapBDW5MFmVhYqr42CAFBor7gwkNXaqJBrZ4LWtStVCVY8JbvNRQPPCJXSBiONrwWgDpDOuUxZJ9DVsg5HNgPyphdhtWxBM6o-m-xHlSReRYlXrcQH5CCK-bprRLxODRer71W35ZU3SvgaAHIrpRRBB5u7EoNqdFBKZfiAlP0mVbcOEA41__vs7HpL_2W1z_93ohfkHo_kwSnl-yXZ3ay28Ao9mo0bkjvjk09fTobpRWCYDjC2TU8n46-_AUwg9_s |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOil76pb2uJDj7U2sR075lZQYdsCQuoi7S31Y4K2XcJqHyr8e8ZOQuFSVb1a8UNje-YbZ-YbQj6UGfAATrFSes_ijxnmAgfmhJGQc6u8jtnIJ6dqdC6_TorJBjnoc2FiWGWn-1udnrR11zLspDmcT6fD7xyxg0brFaMghY6coFuyQHQSs_gm-38eWgpeFqm4bezAYo-efSjFeS1R3V2jo8hlpDHIYqrbPQuViPwfGKrtdTO3N7_tbHbPEB0-JY87BEk_tYt8RjageU6e9NUZaHdZX5AfbcoCW6xnsNyjR2fnzHqPViaSQwR6dhNZAyi6zL9QpVDErjTVjYBFzHVY4wxwPZ_Z9rFwSW0TaHSeLy-hK8O0fEnGh5_HByPW1VNgXii5Ytzh7ZUFdz5H2CKFsCYPNrOy0HltNASAovSaCwNZXRod8tKZUJa1U1qBFa_IZnPVwGtCpbTBSONrAagEpHMu09YJxFrW4chmQD72IqzmLWtG1YeT_aySxKso8aqV-IDsRzHffRopr1PD1eKi6va88kYLXwNAbqWUIpTB5k6hV40IRWnDB0T1m1Q9OEE41PTvs7O7Lf2X1b7534l2yfZofHJcHX85_bZDHvFYSTjFf78lm6vFGt4hvFm59-n43gKEh_bZ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELbYcuC0PBa0RYB84IhREzt2zA0QDyGBeqASnLJ-TCSWEqqmEY9fzzgPRBFasdfIsa2xx_ONPfMNIbvpAGIPVrJUOMfCwwyzPgZmuRYQxUY6FbKRL6_k-Uhc3CQ3Lc92yIWZe7-v47BKPI6e0ZGLRaAZQA3-QRZlgsC7RxZHV8PD27p8XII4ES1Zxyv09Z9ztqem6J8zQUtVMTEvT2Y8_mBiTpeb3O2yZiYMkSX3-9XM7rvXT7yN35z9CvnZQk162OyNVbIAxRpZ7so40Farf5E_TW4Dm1ZjKA_o2XDEjHNojgKLhKfDl0AvQNG3vsezhyLIpXWBCZiGpIgKR4Dnydg0t4olNYWnwct-eIC2XlO5Tq5PT66Pz1lbeIE5LsWMxRbVXCSxdRHiG8G50ZE3AyMSFeVagQdIUqdirmGQp1r5KLXap2lupZJg-AbpFY8F_CZUCOO10C7ngKeFsNYOlLEcQZmx2LPuk71uRbJJQ6-RdXFnf7NaeFkQXtYIr0-Owqq9Nw3c2PUHFHrWqlrmtOIuB4DICCG4T72JrET3G6GMVDruE9mtedbCjAY-YFd3_x6dve-Q78x28z_bb5HebFrBNqKcmd1pd_cb1JX7Hw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=action-rules%3A+GPU-accelerated+Python+package+for+counterfactual+explanations+and+recommendations&rft.jtitle=SoftwareX&rft.au=S%C3%BDkora%2C+Luk%C3%A1%C5%A1&rft.au=Kliegr%2C+Tom%C3%A1%C5%A1&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=29&rft_id=info:doi/10.1016%2Fj.softx.2024.102000&rft.externalDocID=S2352711024003704 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon |