action-rules: GPU-accelerated Python package for counterfactual explanations and recommendations

The action-rules package provides an efficient method for mining action rules using the Action-Apriori algorithm, a modification of the traditional Apriori algorithm tailored specifically for action rule mining. Designed to generate counterfactual explanations, this Python package enables researcher...

Full description

Saved in:
Bibliographic Details
Published inSoftwareX Vol. 29; p. 102000
Main Authors Sýkora, Lukáš, Kliegr, Tomáš
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2352-7110
2352-7110
DOI10.1016/j.softx.2024.102000

Cover

Abstract The action-rules package provides an efficient method for mining action rules using the Action-Apriori algorithm, a modification of the traditional Apriori algorithm tailored specifically for action rule mining. Designed to generate counterfactual explanations, this Python package enables researchers and practitioners to discover actionable insights by integrating user-defined parameters directly into the rule generation process, reducing computational overhead. The action-rules package supports optional GPU acceleration to further speed up processing on large datasets. The package provides a user-friendly API, as well as a command-line interface for versatile use. The package supports the customization of stable and flexible attributes, as well as separate minimum support and confidence thresholds for both the desired and undesired components of the rules. Comprehensive documentation, including a Jupyter Notebook example, is provided to facilitate ease of use for both novice and expert users.
AbstractList The action-rules package provides an efficient method for mining action rules using the Action-Apriori algorithm, a modification of the traditional Apriori algorithm tailored specifically for action rule mining. Designed to generate counterfactual explanations, this Python package enables researchers and practitioners to discover actionable insights by integrating user-defined parameters directly into the rule generation process, reducing computational overhead. The action-rules package supports optional GPU acceleration to further speed up processing on large datasets. The package provides a user-friendly API, as well as a command-line interface for versatile use. The package supports the customization of stable and flexible attributes, as well as separate minimum support and confidence thresholds for both the desired and undesired components of the rules. Comprehensive documentation, including a Jupyter Notebook example, is provided to facilitate ease of use for both novice and expert users.
ArticleNumber 102000
Author Sýkora, Lukáš
Kliegr, Tomáš
Author_xml – sequence: 1
  givenname: Lukáš
  orcidid: 0000-0002-6700-5610
  surname: Sýkora
  fullname: Sýkora, Lukáš
  email: lukas.sykora@vse.cz
– sequence: 2
  givenname: Tomáš
  surname: Kliegr
  fullname: Kliegr, Tomáš
  email: tomas.kliegr@vse.cz
BookMark eNqNkMtKxDAYRoMoeJsncNMX6Jhbm1ZwIeINBF2M6_g3-aMdO8mQdHTm7e1YEVfiKuEj5xDOIdn1wSMhJ4xOGWXl6XyaguvXU065HBZOKd0hB1wUPFeM0d1f930ySWk-PGAFrwouD8gzmL4NPo-rDtNZdvP4lIMx2GGEHm32uOlfg8-WYN7gBTMXYmbCyvcY3QCuoMtwvezAw1aSMvA2i2jCYoHejtsx2XPQJZx8n0dkdn01u7zN7x9u7i4v7nMjStnnvBGcy4I3hjHFpRBQMwsUZKGYqxVaxKIyiosaqatqZVnV1LaqXFOqEkEckbtRawPM9TK2C4gbHaDVX0OILxpi35oOtamVMA4RGUgpha0ssKakXDEuS1XzwSVH18ovYfMBXfcjZFRvm-u5_mqut8312HzAxIiZGFKK6P5JnY8UDnHeW4w6mRa9QdsOJfvh--2f_CdioZ7M
Cites_doi 10.17219/acem/144413
10.1007/s10844-021-00660-x
10.1016/j.ins.2010.10.030
10.1016/j.ins.2022.06.026
10.1007/3-540-45372-5_70
10.3390/info13030144
10.1145/3660809
10.1109/ICDMW.2008.66
10.1109/MCI.2023.3328098
10.1016/j.softx.2022.101209
10.1007/978-3-540-68416-9_16
10.1007/s10844-019-00551-2
10.1109/ACCESS.2023.3296260
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.softx.2024.102000
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2352-7110
ExternalDocumentID oai_doaj_org_article_c973cfeee1a4443d8da1b60271246792
10.1016/j.softx.2024.102000
10_1016_j_softx_2024_102000
S2352711024003704
GroupedDBID 0R~
457
5VS
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
IXB
KQ8
M~E
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c364t-2b322452bc1172433a91da0a4571f97edee58c7239e0f897d18b9d88fb676ea3
IEDL.DBID IXB
ISSN 2352-7110
IngestDate Fri Oct 03 12:51:46 EDT 2025
Tue Aug 19 20:50:52 EDT 2025
Wed Oct 01 05:51:13 EDT 2025
Sat Aug 09 17:32:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Action rules
Apriori algorithm
Counterfactual explanations
Data mining
Python
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2b322452bc1172433a91da0a4571f97edee58c7239e0f897d18b9d88fb676ea3
ORCID 0000-0002-6700-5610
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352711024003704
ParticipantIDs doaj_primary_oai_doaj_org_article_c973cfeee1a4443d8da1b60271246792
unpaywall_primary_10_1016_j_softx_2024_102000
crossref_primary_10_1016_j_softx_2024_102000
elsevier_sciencedirect_doi_10_1016_j_softx_2024_102000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle SoftwareX
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Raś (b3) 2022; 31
Kalanat, Khanjari (b5) 2020; 54
Nishino R, Loomis S. CuPy: A NumPy-compatible library for NVIDIA GPU calculations. In: 31st conference on neural information processing systems. 2017, p. 151.
Sikora, Matyszok, Wróbel (b23) 2022; 607
Gerevini, Maroldi, Olivato, Putelli, Serina (b27) 2023
Okken (b11) 2022
Berger (b13) 2020
Rage, Pamalla, Toyoda, Kitsuregawa (b15) 2024; 25
Rauch (b22) 2013
Rodola (b12) 2020
Sabbatini F, Ciatto G, Calegari R, Omicini A, et al. On the design of PSyKE: A platform for symbolic knowledge extraction. In: CEUR workshop proceedings, vol. 2963. 2021, p. 29–48.
Treinen, Zacchiroli (b9) 2008
Stepin, Suffian, Catala, Alonso-Moral (b21) 2024; 19
Shams, Dimanov, Kola, Simidjievski, Terre, Scherer (b18) 2021
Oueslati, Laberge, Lamothe, Khomh (b26) 2024; 1
Powell, Gelich, Ras (b6) 2021; 57
Zhao, Wang, Cui, Sun (b7) 2022; 13
Raś Z, Wyrzykowska E, Wasyluk H. ARAS: Action rules discovery based on agglomerative strategy. In: International workshop on mining complex data. 2007, p. 196–208.
Raś Z, Wieczorkowska A. Action-rules: How to increase profit of a company. In: European conference on principles of data mining and knowledge discovery. 2000, p. 587–92.
Máša, Rauch (b16) 2022
Sýkora, Kliegr (b8) 2023
Zarlenga, Shams, Jamnik (b19) 2021
Agrawal R, Srikant R, et al. Fast algorithms for mining association rules. In: Proc. 20th int. conf. very large data bases. 1994, p. 487–99.
Raś Z, Dardzinska A, Tsay L, Wasyluk H. Association action rules. In: 2008 IEEE international conference on data mining workshops. 2008, p. 283–90.
Macha, Kozielski, Wróbel, Sikora (b17) 2022; 20
Błaszczyński, Słowiński, Szeląg (b24) 2011; 181
Dasht Bozorgi, Teinemaa, Dumas, La Rosa, Polyvyanyy (b25) 2020
10.1016/j.softx.2024.102000_b4
Kalanat (10.1016/j.softx.2024.102000_b5) 2020; 54
10.1016/j.softx.2024.102000_b14
10.1016/j.softx.2024.102000_b2
Zarlenga (10.1016/j.softx.2024.102000_b19) 2021
10.1016/j.softx.2024.102000_b1
Raś (10.1016/j.softx.2024.102000_b3) 2022; 31
Powell (10.1016/j.softx.2024.102000_b6) 2021; 57
Oueslati (10.1016/j.softx.2024.102000_b26) 2024; 1
Rodola (10.1016/j.softx.2024.102000_b12) 2020
Sýkora (10.1016/j.softx.2024.102000_b8) 2023
Zhao (10.1016/j.softx.2024.102000_b7) 2022; 13
Máša (10.1016/j.softx.2024.102000_b16) 2022
10.1016/j.softx.2024.102000_b10
Sikora (10.1016/j.softx.2024.102000_b23) 2022; 607
Berger (10.1016/j.softx.2024.102000_b13) 2020
Dasht Bozorgi (10.1016/j.softx.2024.102000_b25) 2020
Stepin (10.1016/j.softx.2024.102000_b21) 2024; 19
Shams (10.1016/j.softx.2024.102000_b18) 2021
Treinen (10.1016/j.softx.2024.102000_b9) 2008
Macha (10.1016/j.softx.2024.102000_b17) 2022; 20
Okken (10.1016/j.softx.2024.102000_b11) 2022
Gerevini (10.1016/j.softx.2024.102000_b27) 2023
Rage (10.1016/j.softx.2024.102000_b15) 2024; 25
Rauch (10.1016/j.softx.2024.102000_b22) 2013
10.1016/j.softx.2024.102000_b20
Błaszczyński (10.1016/j.softx.2024.102000_b24) 2011; 181
References_xml – volume: 57
  start-page: 583
  year: 2021
  end-page: 599
  ident: b6
  article-title: How to raise artwork prices using action rules, personalization and artwork visual features
  publication-title: J Intell Inf Syst
– volume: 607
  start-page: 849
  year: 2022
  end-page: 868
  ident: b23
  article-title: SCARI: Separate and conquer algorithm for action rules and recommendations induction
  publication-title: Inform Sci
– volume: 13
  start-page: 144
  year: 2022
  ident: b7
  article-title: Operational rule extraction and construction based on task scenario analysis
  publication-title: Information
– year: 2020
  ident: b13
  article-title: Scalene: Scripting-language aware profiling for Python
– volume: 1
  start-page: 2309
  year: 2024
  end-page: 2331
  ident: b26
  article-title: Mining action rules for defect reduction planning
  publication-title: Proc ACM Softw Eng
– reference: Sabbatini F, Ciatto G, Calegari R, Omicini A, et al. On the design of PSyKE: A platform for symbolic knowledge extraction. In: CEUR workshop proceedings, vol. 2963. 2021, p. 29–48.
– volume: 25
  start-page: 1
  year: 2024
  end-page: 6
  ident: b15
  article-title: PAMI: An open-source python library for pattern mining
  publication-title: J Mach Learn Res
– year: 2023
  ident: b27
  article-title: Machine learning techniques for prognosis estimation and knowledge discovery from lab test results with application to the COVID-19 emergency
  publication-title: IEEE Access
– start-page: 233
  year: 2013
  end-page: 260
  ident: b22
  article-title: GUHA method and the LISp-miner system
  publication-title: Observational Calculi and Association Rules
– reference: Agrawal R, Srikant R, et al. Fast algorithms for mining association rules. In: Proc. 20th int. conf. very large data bases. 1994, p. 487–99.
– year: 2020
  ident: b25
  article-title: Process mining meets causal machine learning: Discovering causal rules from event logs
– volume: 20
  year: 2022
  ident: b17
  article-title: RuleXAI—A package for rule-based explanations of machine learning model
  publication-title: SoftwareX
– reference: Raś Z, Wieczorkowska A. Action-rules: How to increase profit of a company. In: European conference on principles of data mining and knowledge discovery. 2000, p. 587–92.
– volume: 31
  start-page: 5
  year: 2022
  end-page: 8
  ident: b3
  article-title: Reduction of hospital readmissions
  publication-title: Adv Clin Exp Med
– reference: Raś Z, Dardzinska A, Tsay L, Wasyluk H. Association action rules. In: 2008 IEEE international conference on data mining workshops. 2008, p. 283–90.
– volume: 181
  start-page: 987
  year: 2011
  end-page: 1002
  ident: b24
  article-title: Sequential covering rule induction algorithm for variable consistency rough set approaches
  publication-title: Inform Sci
– year: 2022
  ident: b11
  article-title: Python testing with pytest
– year: 2021
  ident: b18
  article-title: REM: An integrative rule extraction methodology for explainable data analysis in healthcare
– reference: Nishino R, Loomis S. CuPy: A NumPy-compatible library for NVIDIA GPU calculations. In: 31st conference on neural information processing systems. 2017, p. 151.
– reference: Raś Z, Wyrzykowska E, Wasyluk H. ARAS: Action rules discovery based on agglomerative strategy. In: International workshop on mining complex data. 2007, p. 196–208.
– year: 2008
  ident: b9
  article-title: Description of the CUDF format
– volume: 54
  start-page: 317
  year: 2020
  end-page: 339
  ident: b5
  article-title: Action extraction from social networks
  publication-title: J Intell Inf Syst
– start-page: 123
  year: 2022
  end-page: 138
  ident: b16
  article-title: Enhanced association rules and Python
  publication-title: International conference on machine learning, optimization, and data science
– start-page: 30
  year: 2023
  end-page: 34
  ident: b8
  article-title: Apriori modified for action rules mining
  publication-title: Proceedings of the 12th knowledge capture conference 2023
– year: 2020
  ident: b12
  article-title: Psutil documentation
– volume: 19
  start-page: 81
  year: 2024
  end-page: 82
  ident: b21
  article-title: How to build self-explaining fuzzy systems: from interpretability to explainability
  publication-title: IEEE Comput Intell Mag
– year: 2021
  ident: b19
  article-title: Efficient decompositional rule extraction for deep neural networks
– ident: 10.1016/j.softx.2024.102000_b10
– year: 2020
  ident: 10.1016/j.softx.2024.102000_b25
– volume: 31
  start-page: 5
  year: 2022
  ident: 10.1016/j.softx.2024.102000_b3
  article-title: Reduction of hospital readmissions
  publication-title: Adv Clin Exp Med
  doi: 10.17219/acem/144413
– volume: 57
  start-page: 583
  year: 2021
  ident: 10.1016/j.softx.2024.102000_b6
  article-title: How to raise artwork prices using action rules, personalization and artwork visual features
  publication-title: J Intell Inf Syst
  doi: 10.1007/s10844-021-00660-x
– year: 2020
  ident: 10.1016/j.softx.2024.102000_b12
– start-page: 30
  year: 2023
  ident: 10.1016/j.softx.2024.102000_b8
  article-title: Apriori modified for action rules mining
– start-page: 233
  year: 2013
  ident: 10.1016/j.softx.2024.102000_b22
  article-title: GUHA method and the LISp-miner system
– volume: 181
  start-page: 987
  year: 2011
  ident: 10.1016/j.softx.2024.102000_b24
  article-title: Sequential covering rule induction algorithm for variable consistency rough set approaches
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2010.10.030
– year: 2008
  ident: 10.1016/j.softx.2024.102000_b9
– volume: 607
  start-page: 849
  year: 2022
  ident: 10.1016/j.softx.2024.102000_b23
  article-title: SCARI: Separate and conquer algorithm for action rules and recommendations induction
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2022.06.026
– year: 2022
  ident: 10.1016/j.softx.2024.102000_b11
– ident: 10.1016/j.softx.2024.102000_b1
  doi: 10.1007/3-540-45372-5_70
– volume: 13
  start-page: 144
  year: 2022
  ident: 10.1016/j.softx.2024.102000_b7
  article-title: Operational rule extraction and construction based on task scenario analysis
  publication-title: Information
  doi: 10.3390/info13030144
– ident: 10.1016/j.softx.2024.102000_b20
– volume: 1
  start-page: 2309
  year: 2024
  ident: 10.1016/j.softx.2024.102000_b26
  article-title: Mining action rules for defect reduction planning
  publication-title: Proc ACM Softw Eng
  doi: 10.1145/3660809
– ident: 10.1016/j.softx.2024.102000_b4
  doi: 10.1109/ICDMW.2008.66
– year: 2020
  ident: 10.1016/j.softx.2024.102000_b13
– volume: 25
  start-page: 1
  year: 2024
  ident: 10.1016/j.softx.2024.102000_b15
  article-title: PAMI: An open-source python library for pattern mining
  publication-title: J Mach Learn Res
– volume: 19
  start-page: 81
  year: 2024
  ident: 10.1016/j.softx.2024.102000_b21
  article-title: How to build self-explaining fuzzy systems: from interpretability to explainability
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2023.3328098
– year: 2021
  ident: 10.1016/j.softx.2024.102000_b18
– year: 2021
  ident: 10.1016/j.softx.2024.102000_b19
– volume: 20
  year: 2022
  ident: 10.1016/j.softx.2024.102000_b17
  article-title: RuleXAI—A package for rule-based explanations of machine learning model
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2022.101209
– ident: 10.1016/j.softx.2024.102000_b14
  doi: 10.1007/978-3-540-68416-9_16
– ident: 10.1016/j.softx.2024.102000_b2
– start-page: 123
  year: 2022
  ident: 10.1016/j.softx.2024.102000_b16
  article-title: Enhanced association rules and Python
– volume: 54
  start-page: 317
  year: 2020
  ident: 10.1016/j.softx.2024.102000_b5
  article-title: Action extraction from social networks
  publication-title: J Intell Inf Syst
  doi: 10.1007/s10844-019-00551-2
– year: 2023
  ident: 10.1016/j.softx.2024.102000_b27
  article-title: Machine learning techniques for prognosis estimation and knowledge discovery from lab test results with application to the COVID-19 emergency
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3296260
SSID ssj0001528524
Score 2.293522
Snippet The action-rules package provides an efficient method for mining action rules using the Action-Apriori algorithm, a modification of the traditional Apriori...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 102000
SubjectTerms Action rules
Apriori algorithm
Counterfactual explanations
Data mining
Python
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT90wELYQF7i0UEC8ApUPPWKR2I4XboBYVKkVB5C4BS8TqfQRnt6iwr9nHCfo9dJy6DWKbGvGsyUz30fIV1MAj-AVMzIEln7MMB85MC-shJI7FXSaRv7-Q13dym931d0S1VfqCcvwwFlwR8FqERoAKJ2UUkQTXekVFlMYmJS2nfctjF0qpvJ8MDcVlwPMUNfQNUO_9owVIZcJr6BIM21LoahD7P8jIq0t2ol7-e3G46WIc7FBPvSpIj3JR9wkK9B-Ih8HGgbaW-UWuc-zCWy6GMPsmF5e3zIXAoaThAIR6fVLggegWBv_Qt9BMUmlHUEETNNQwwJ3gOfJ2OWvgjPq2khTlfz4CD3f0myb3Fyc35xdsZ44gQWh5Jxxj2YqK-5DifmJFMLZMrrCyUqXjdUQASoTNBcWisZYHUvjbTSm8UorcGKHrLZPLewSKqWLVtrQCEBrl977QjsvMKlyHle2I3I4iLCeZHiMeugbe6g7iddJ4nWW-IicJjG_vZqwrbsHqPG613j9L42PiBqUVPdpQg7_uNTPv-_O3lT6ntN-_h-n3SPrPFEGd43e-2R1Pl3AAeYxc_-lu7KvrH_w-g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELbYcuC0PBa0RYB84IhREzt2zA0QDyGBeqASnLJ-TCSWEqqmEY9fzzgPRBFasdfIsa2xx_ONPfMNIbvpAGIPVrJUOMfCwwyzPgZmuRYQxUY6FbKRL6_k-Uhc3CQ3Lc92yIWZe7-v47BKPI6e0ZGLRaAZQA3-QRZlgsC7RxZHV8PD27p8XII4ES1Zxyv09Z9ztqem6J8zQUtVMTEvT2Y8_mBiTpeb3O2yZiYMkSX3-9XM7rvXT7yN35z9CvnZQk162OyNVbIAxRpZ7so40Farf5E_TW4Dm1ZjKA_o2XDEjHNojgKLhKfDl0AvQNG3vsezhyLIpXWBCZiGpIgKR4Dnydg0t4olNYWnwct-eIC2XlO5Tq5PT66Pz1lbeIE5LsWMxRbVXCSxdRHiG8G50ZE3AyMSFeVagQdIUqdirmGQp1r5KLXap2lupZJg-AbpFY8F_CZUCOO10C7ngKeFsNYOlLEcQZmx2LPuk71uRbJJQ6-RdXFnf7NaeFkQXtYIr0-Owqq9Nw3c2PUHFHrWqlrmtOIuB4DICCG4T72JrET3G6GMVDruE9mtedbCjAY-YFd3_x6dve-Q78x28z_bb5HebFrBNqKcmd1pd_cb1JX7Hw
  priority: 102
  providerName: Unpaywall
Title action-rules: GPU-accelerated Python package for counterfactual explanations and recommendations
URI https://dx.doi.org/10.1016/j.softx.2024.102000
https://doi.org/10.1016/j.softx.2024.102000
https://doaj.org/article/c973cfeee1a4443d8da1b60271246792
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: KQ8
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: IXB
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-7110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528524
  issn: 2352-7110
  databaseCode: AKRWK
  dateStart: 20150901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL5SmWx8oHjlib2E5s97atKIWKagVdsZyCHxO0sE1X-xDtv2fsJKW9IMTVcmxrbM_Dmfk-Ql7rDHgAVzItvWfxxwxzgQNzwkjIuS29itXIH0_L46n8MCtmO-Swr4WJaZWd7m91etLWXcuok-ZoOZ-PPnP0HRRar5gFKVTCBBVSR_qG97ODP-8sBddF4raN_Vn8oAcfSmlea9R2lxgnchlRDLJY6XbDQCUc_1t26u62WdqrX3axuGGHjh6Q-50DScftGh-SHWgekb2enIF2d_Ux-dZWLLDVdgHrffpuMmXWezQyERsi0MlVBA2gGDH_RI1C0XWliTYCVrHUYYszwOVyYdu3wjW1TaAxdj4_h46Faf2EnB29PTs8Zh2dAvOilBvGHV5eWXDnc_RapBDW5MFmVhYqr42CAFBor7gwkNXaqJBrZ4LWtStVCVY8JbvNRQPPCJXSBiONrwWgDpDOuUxZJ9DVsg5HNgPyphdhtWxBM6o-m-xHlSReRYlXrcQH5CCK-bprRLxODRer71W35ZU3SvgaAHIrpRRBB5u7EoNqdFBKZfiAlP0mVbcOEA41__vs7HpL_2W1z_93ohfkHo_kwSnl-yXZ3ay28Ao9mo0bkjvjk09fTobpRWCYDjC2TU8n46-_AUwg9_s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOil76pb2uJDj7U2sR075lZQYdsCQuoi7S31Y4K2XcJqHyr8e8ZOQuFSVb1a8UNje-YbZ-YbQj6UGfAATrFSes_ijxnmAgfmhJGQc6u8jtnIJ6dqdC6_TorJBjnoc2FiWGWn-1udnrR11zLspDmcT6fD7xyxg0brFaMghY6coFuyQHQSs_gm-38eWgpeFqm4bezAYo-efSjFeS1R3V2jo8hlpDHIYqrbPQuViPwfGKrtdTO3N7_tbHbPEB0-JY87BEk_tYt8RjageU6e9NUZaHdZX5AfbcoCW6xnsNyjR2fnzHqPViaSQwR6dhNZAyi6zL9QpVDErjTVjYBFzHVY4wxwPZ_Z9rFwSW0TaHSeLy-hK8O0fEnGh5_HByPW1VNgXii5Ytzh7ZUFdz5H2CKFsCYPNrOy0HltNASAovSaCwNZXRod8tKZUJa1U1qBFa_IZnPVwGtCpbTBSONrAagEpHMu09YJxFrW4chmQD72IqzmLWtG1YeT_aySxKso8aqV-IDsRzHffRopr1PD1eKi6va88kYLXwNAbqWUIpTB5k6hV40IRWnDB0T1m1Q9OEE41PTvs7O7Lf2X1b7534l2yfZofHJcHX85_bZDHvFYSTjFf78lm6vFGt4hvFm59-n43gKEh_bZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELbYcuC0PBa0RYB84IhREzt2zA0QDyGBeqASnLJ-TCSWEqqmEY9fzzgPRBFasdfIsa2xx_ONPfMNIbvpAGIPVrJUOMfCwwyzPgZmuRYQxUY6FbKRL6_k-Uhc3CQ3Lc92yIWZe7-v47BKPI6e0ZGLRaAZQA3-QRZlgsC7RxZHV8PD27p8XII4ES1Zxyv09Z9ztqem6J8zQUtVMTEvT2Y8_mBiTpeb3O2yZiYMkSX3-9XM7rvXT7yN35z9CvnZQk162OyNVbIAxRpZ7so40Farf5E_TW4Dm1ZjKA_o2XDEjHNojgKLhKfDl0AvQNG3vsezhyLIpXWBCZiGpIgKR4Dnydg0t4olNYWnwct-eIC2XlO5Tq5PT66Pz1lbeIE5LsWMxRbVXCSxdRHiG8G50ZE3AyMSFeVagQdIUqdirmGQp1r5KLXap2lupZJg-AbpFY8F_CZUCOO10C7ngKeFsNYOlLEcQZmx2LPuk71uRbJJQ6-RdXFnf7NaeFkQXtYIr0-Owqq9Nw3c2PUHFHrWqlrmtOIuB4DICCG4T72JrET3G6GMVDruE9mtedbCjAY-YFd3_x6dve-Q78x28z_bb5HebFrBNqKcmd1pd_cb1JX7Hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=action-rules%3A+GPU-accelerated+Python+package+for+counterfactual+explanations+and+recommendations&rft.jtitle=SoftwareX&rft.au=S%C3%BDkora%2C+Luk%C3%A1%C5%A1&rft.au=Kliegr%2C+Tom%C3%A1%C5%A1&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=29&rft_id=info:doi/10.1016%2Fj.softx.2024.102000&rft.externalDocID=S2352711024003704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon