Deep Learning Based Inversion of Locally Anisotropic Weld Properties from Ultrasonic Array Data
The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as the orientations of the weld’s locally anisotropic grain structure. These orientations are usually unknown but it has been shown recently that...
Saved in:
| Published in | Applied sciences Vol. 12; no. 2; p. 532 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app12020532 |
Cover
| Abstract | The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as the orientations of the weld’s locally anisotropic grain structure. These orientations are usually unknown but it has been shown recently that they can be estimated from ultrasonic scattered wave data. However, conventional algorithms used for solving this inverse problem incur a significant computational cost. In this paper, we propose a framework which uses deep neural networks (DNNs) to reconstruct crystallographic orientations in a welded material from ultrasonic travel time data, in real-time. Acquiring the large amount of training data required for DNNs experimentally is practically infeasible for this problem, therefore a model based training approach is investigated instead, where a simple and efficient analytical method for modelling ultrasonic wave travel times through given weld geometries is implemented. The proposed method is validated by testing the trained networks on data arising from sophisticated finite element simulations of wave propagation through weld microstructures. The trained deep neural network predicts grain orientations to within 3° and in near real-time (0.04 s), presenting a significant step towards realising real-time, accurate characterisation of weld microstructures from ultrasonic non-destructive measurements. The subsequent improvement in defect imaging is then demonstrated via use of the DNN predicted crystallographic orientations to correct the delay laws on which the total focusing method imaging algorithm is based. An improvement of up to 5.3 dB in the signal-to-noise ratio is achieved. |
|---|---|
| AbstractList | The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as the orientations of the weld’s locally anisotropic grain structure. These orientations are usually unknown but it has been shown recently that they can be estimated from ultrasonic scattered wave data. However, conventional algorithms used for solving this inverse problem incur a significant computational cost. In this paper, we propose a framework which uses deep neural networks (DNNs) to reconstruct crystallographic orientations in a welded material from ultrasonic travel time data, in real-time. Acquiring the large amount of training data required for DNNs experimentally is practically infeasible for this problem, therefore a model based training approach is investigated instead, where a simple and efficient analytical method for modelling ultrasonic wave travel times through given weld geometries is implemented. The proposed method is validated by testing the trained networks on data arising from sophisticated finite element simulations of wave propagation through weld microstructures. The trained deep neural network predicts grain orientations to within 3° and in near real-time (0.04 s), presenting a significant step towards realising real-time, accurate characterisation of weld microstructures from ultrasonic non-destructive measurements. The subsequent improvement in defect imaging is then demonstrated via use of the DNN predicted crystallographic orientations to correct the delay laws on which the total focusing method imaging algorithm is based. An improvement of up to 5.3 dB in the signal-to-noise ratio is achieved. |
| Author | Singh, Jonathan Mulholland, Anthony Tant, Katherine MacLeod, Charles |
| Author_xml | – sequence: 1 givenname: Jonathan surname: Singh fullname: Singh, Jonathan – sequence: 2 givenname: Katherine orcidid: 0000-0003-4345-7054 surname: Tant fullname: Tant, Katherine – sequence: 3 givenname: Anthony surname: Mulholland fullname: Mulholland, Anthony – sequence: 4 givenname: Charles surname: MacLeod fullname: MacLeod, Charles |
| BookMark | eNqFkUtrWzEQhUVxoK6TVf-AoMvWiR73obt04zwMhmYRk6UYS6MgcyPdStcp_vdV4lJCKFSbGaSjjzlnPpFJiAEJ-czZuZQdu4Bh4IIJVkvxgUwFa5u5rHg7edN_JGc571g5HZeKsynRS8SBrhFS8OGRfoeMlq7CM6bsY6DR0XU00PcHugg-xzHFwRv6gL2ld6XHNHrM1KX4RDf9mCDHUN4XKcGBLmGEU3LioM949qfOyOb66v7ydr7-cbO6XKznRjbVOBdQs86oRtZKNLY2lZVGcScqxzpVM8uwwc5s5ZbbrgUpeSNUJ8Ap2Si0VsgZWR25NsJOD8k_QTroCF6_XsT0qKHManrURm2NspXhQtWVZFuFAE44JzsnW-VsYX07svZhgMOv4v4vkDP9krV-k3WRfznKhxR_7jGPehf3KRS3WjSCi1aoYmxGvh5VJsWcE7r_MPk7tfEjjGUlJWPf__PPb9QInYU |
| CitedBy_id | crossref_primary_10_1016_j_jmsy_2023_05_026 crossref_primary_10_1088_2632_2153_ad134a crossref_primary_10_1016_j_ultras_2023_107041 crossref_primary_10_1109_TUFFC_2024_3459619 crossref_primary_10_1098_rspa_2023_0236 crossref_primary_10_14489_td_2023_11_pp_044_050 |
| Cites_doi | 10.1016/j.ultras.2017.03.004 10.1093/gji/ggaa328 10.1007/s00521-020-04921-8 10.1016/j.neucom.2021.09.035 10.1111/j.1365-246X.2008.03721.x 10.1016/j.ultras.2004.01.012 10.1038/s41746-020-0240-8 10.1063/1.4940499 10.1121/1.3372724 10.1109/IUS52206.2021.9593586 10.1088/1749-4699/8/1/014008 10.1080/17415977.2020.1762596 10.1016/S0308-0161(03)00024-3 10.1063/1.3591933 10.1093/gji/ggaa170 10.1016/j.ndteint.2008.07.003 10.1364/OE.14.010435 10.1111/j.1365-246X.2009.04226.x 10.1016/S0963-8695(00)00021-9 10.1190/tle37010058.1 10.1016/j.ndteint.2005.04.002 10.1016/0041-624X(86)90005-3 10.1088/1361-6420/aaca8f 10.1063/1.1307835 10.1093/oso/9780198538493.001.0001 10.1093/gji/ggx305 10.1016/j.ijpvp.2019.02.011 10.1121/1.3613936 10.1093/gji/ggt267 10.1088/1361-6560/aa7e5a 10.1109/TUFFC.2012.2481 10.1016/j.ndteint.2009.12.005 10.1088/1361-6560/abb5c3 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app12020532 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Acceso a contenido Full Text - Doaj url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_c8bc8d4c1285430b8eaaf2ff39f378fd 10.3390/app12020532 10_3390_app12020532 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC AFFHD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c364t-2a509c8635826d5c4d3c81f24f09850d0e6e9cb3b1d97a33162892af8368edd23 |
| IEDL.DBID | UNPAY |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:05:08 EDT 2025 Wed Oct 29 12:04:59 EDT 2025 Mon Jun 30 07:28:19 EDT 2025 Thu Oct 16 04:41:11 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-2a509c8635826d5c4d3c81f24f09850d0e6e9cb3b1d97a33162892af8368edd23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4345-7054 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/12/2/532/pdf?version=1641448333 |
| PQID | 2621272886 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c8bc8d4c1285430b8eaaf2ff39f378fd unpaywall_primary_10_3390_app12020532 proquest_journals_2621272886 crossref_primary_10_3390_app12020532 crossref_citationtrail_10_3390_app12020532 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Holmes (ref_30) 2004; 46 Holmes (ref_1) 2005; 38 ref_36 Lebedev (ref_19) 2008; 173 Connolly (ref_31) 2010; 127 Zhang (ref_16) 2020; 222 Bergstra (ref_41) 2015; 8 Harvey (ref_12) 2011; Volume 1335 Chassignole (ref_33) 2010; 43 Bai (ref_17) 2013; 195 Earp (ref_24) 2020; 223 Earp (ref_25) 2020; 32 Huthwaite (ref_22) 2011; 130 ref_39 Bodin (ref_15) 2009; 178 ref_38 Connolly (ref_2) 2009; 465 ref_37 Chassignole (ref_14) 2017; 78 Moysan (ref_8) 2009; 42 Jennings (ref_26) 2018; 37 Zhu (ref_18) 2017; 211 Abrahams (ref_10) 1992; 436 Moysan (ref_13) 2003; 80 Chassignole (ref_7) 2000; Volume 509 Bernard (ref_21) 2017; 62 Ploix (ref_34) 2019; 171 Nageswaran (ref_6) 2009; 51 Calmon (ref_35) 2000; 33 Sharples (ref_9) 2006; 14 ref_23 Zhao (ref_28) 2020; 65 ref_44 Zhang (ref_3) 2012; 59 ref_43 ref_42 ref_40 Dobson (ref_32) 2016; Volume 1706 Guasch (ref_20) 2020; 3 Spies (ref_11) 2004; 42 Ogilvy (ref_29) 1986; 24 ref_4 Fan (ref_27) 2022; 467 Tant (ref_5) 2018; 34 |
| References_xml | – volume: 78 start-page: 40 year: 2017 ident: ref_14 article-title: Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.03.004 – volume: 223 start-page: 1741 year: 2020 ident: ref_24 article-title: Probabilistic neural network tomography across Grane field (North Sea) from surface wave dispersion data publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa328 – volume: 32 start-page: 17077 year: 2020 ident: ref_25 article-title: Probabilistic neural network-based 2D travel-time tomography publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04921-8 – volume: 467 start-page: 10 year: 2022 ident: ref_27 article-title: Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.09.035 – volume: 173 start-page: 505 year: 2008 ident: ref_19 article-title: Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2008.03721.x – volume: 42 start-page: 213 year: 2004 ident: ref_11 article-title: Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media publication-title: Ultrasonics doi: 10.1016/j.ultras.2004.01.012 – volume: 3 start-page: 1 year: 2020 ident: ref_20 article-title: Full-waveform inversion imaging of the human brain publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-0240-8 – volume: Volume 1706 start-page: 040005 year: 2016 ident: ref_32 article-title: Finite element analysis simulations for ultrasonic array NDE inspections publication-title: Proceedings of the AIP Conference Proceedings doi: 10.1063/1.4940499 – volume: 127 start-page: 2802 year: 2010 ident: ref_31 article-title: Correction of ultrasonic array images to improve reflector sizing and location in inhomogeneous materials using a ray-tracing model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3372724 – ident: ref_40 doi: 10.1109/IUS52206.2021.9593586 – volume: 8 start-page: 014008 year: 2015 ident: ref_41 article-title: Hyperopt: A Python library for model selection and hyperparameter optimization publication-title: Comput. Sci. Discov. doi: 10.1088/1749-4699/8/1/014008 – ident: ref_39 – ident: ref_4 doi: 10.1080/17415977.2020.1762596 – volume: 436 start-page: 449 year: 1992 ident: ref_10 article-title: The propagation of elastic waves in a certain class of inhomogeneous anisotropic materials. I. The refraction of a horizontally polarized shear wave source publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. – ident: ref_37 – ident: ref_42 – volume: 80 start-page: 77 year: 2003 ident: ref_13 article-title: Modelling the grain orientation of austenitic stainless steel multipass welds to improve ultrasonic assessment of structural integrity publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/S0308-0161(03)00024-3 – ident: ref_44 – volume: Volume 1335 start-page: 827 year: 2011 ident: ref_12 article-title: Finite element analysis of ultrasonic phased array inspections on anisotropic welds publication-title: Proceedings of the AIP Conference Proceedings doi: 10.1063/1.3591933 – volume: 465 start-page: 3401 year: 2009 ident: ref_2 article-title: The application of Fermat’s principle for imaging anisotropic and inhomogeneous media with application to austenitic steel weld inspection publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 222 start-page: 406 year: 2020 ident: ref_16 article-title: Variational full-waveform inversion publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa170 – volume: 42 start-page: 47 year: 2009 ident: ref_8 article-title: Direct model optimisation for data inversion. Application to ultrasonic characterisation of heterogeneous welds publication-title: NDT & E Int. doi: 10.1016/j.ndteint.2008.07.003 – volume: 14 start-page: 10435 year: 2006 ident: ref_9 article-title: Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure publication-title: Opt. Express doi: 10.1364/OE.14.010435 – volume: 178 start-page: 1411 year: 2009 ident: ref_15 article-title: Seismic tomography with the reversible jump algorithm publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2009.04226.x – volume: 33 start-page: 499 year: 2000 ident: ref_35 article-title: Modeling tools for ultrasonic inspection of welds publication-title: NDT & E Int. doi: 10.1016/S0963-8695(00)00021-9 – volume: 37 start-page: 58 year: 2018 ident: ref_26 article-title: Deep-learning tomography publication-title: Lead. Edge doi: 10.1190/tle37010058.1 – volume: 46 start-page: 677 year: 2004 ident: ref_30 article-title: The post-processing of ultrasonic array data using the total focusing method publication-title: Insight-Non-Destr. Test. Cond. Monit. – volume: 38 start-page: 701 year: 2005 ident: ref_1 article-title: Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation publication-title: NDT & E Int. doi: 10.1016/j.ndteint.2005.04.002 – volume: 24 start-page: 337 year: 1986 ident: ref_29 article-title: Ultrasonic beam profiles and beam propagation in an austenitic weld using a theoretical ray tracing model publication-title: Ultrasonics doi: 10.1016/0041-624X(86)90005-3 – volume: 51 start-page: 660 year: 2009 ident: ref_6 article-title: Microstructural quantification, modelling and array ultrasonics to improve the inspection of austenitic welds publication-title: Insight-Non-Destr. Test. Cond. Monit. – volume: 34 start-page: 095002 year: 2018 ident: ref_5 article-title: A transdimensional Bayesian approach to ultrasonic travel-time tomography for non-destructive testing publication-title: Inverse Probl. doi: 10.1088/1361-6420/aaca8f – volume: Volume 509 start-page: 1325 year: 2000 ident: ref_7 article-title: Characterization of austenitic stainless steel welds for ultrasonic NDT publication-title: Proceedings of the AIP Conference Proceedings doi: 10.1063/1.1307835 – ident: ref_23 doi: 10.1093/oso/9780198538493.001.0001 – volume: 211 start-page: 349 year: 2017 ident: ref_18 article-title: Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx305 – volume: 171 start-page: 125 year: 2019 ident: ref_34 article-title: Influence of the uncertainty of elastic constants on the modelling of ultrasound propagation through multi-pass austenitic welds. Impact on non-destructive testing publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2019.02.011 – volume: 130 start-page: 1721 year: 2011 ident: ref_22 article-title: High-resolution imaging without iteration: A fast and robust method for breast ultrasound tomography publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3613936 – ident: ref_38 – volume: 195 start-page: 1068 year: 2013 ident: ref_17 article-title: Ray tracing of multiple transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media and application to crosswell traveltime tomography publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt267 – volume: 62 start-page: 7011 year: 2017 ident: ref_21 article-title: Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa7e5a – ident: ref_36 – ident: ref_43 – volume: 59 start-page: 2487 year: 2012 ident: ref_3 article-title: Monte Carlo inversion of ultrasonic array data to map anisotropic weld properties publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2481 – volume: 43 start-page: 273 year: 2010 ident: ref_33 article-title: Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: Towards a higher reliability in ultrasonic non-destructive testing publication-title: NDT & E Int. doi: 10.1016/j.ndteint.2009.12.005 – volume: 65 start-page: 235021 year: 2020 ident: ref_28 article-title: Ultrasound transmission tomography image reconstruction with a fully convolutional neural network publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/abb5c3 |
| SSID | ssj0000913810 |
| Score | 2.2549086 |
| Snippet | The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 532 |
| SubjectTerms | anisotropy deep neural networks Inverse problems Medical imaging Microstructure Propagation Seismology Stainless steel Thermal cycling Tomography total focusing method Ultrasonic imaging ultrasonic non-destructive evaluation Ultrasonic transducers Velocity welds |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEIAX6UU9iE-sVtmDggrBZCfZbo5WLSIqHix6C5t9SCGkJU2R_nt3klgiiF68hjkMM5OdmU3mG0JO_FD5WkfCM6nf90KrIk_EfekhWgYAeMyq3YCPT_xuFN6_RW-tVV_4T1iNB64Nd6lEqoQOVYCjfuCnwkhpmbUQW-gLq_H09UXcaqaqMzgOEF1VD-SB6-vxe3DgGn1chPAtBVWk_m_l5eo8n8rFh8yyVqYZbpKNpkSkV7VqW2TF5NtkvQUO3CZbzSs5o2cNN_p8hyQ3xkxpA0x9pwOXnzRFjkZ1I0Ynlj5g4soW9CofzyZlMZmOFX01mabPeCVfIFuV4rwJHWVlIWdIzXVqFHJBb2Qpd8loePtyfec1-xM8BTwsPSZdNaAEx2FYriMValAisCy0fiwiX_uGm1ilkAbauQcg4K77YtIK4MJozWCPdPJJbvYJFQwiayNwYtZ1hLHLaanrlCIOQSBByS65-DJpohq4OO64yBLXZKD9k5b9u-RkKTytmRo_iw3QN0sRBGFXD1x4JE14JH-FR5f0vjybNG_nLGEcufZMCN4lp0tv_6bLwX_ockjWGA5PVBc4PdIpi7k5ciVNmR5X0fsJHpHyiw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3da9RAEMCHen1QH8RWpVer7EMFFYLJTrK3eRDp2ZYiehTxsG9hsx-lEJIzl1Luv3cntzmvIH0NQ1h2dnc-duc3AMdxqmNjMhnZMp5EqdNZJPOJiggtg4gi531vwB8zcTFPv11lVzswG2ph6FnlcCb2B7VpNOXIP3FBLHIupfiy-BNR1yi6XR1aaKjQWsF87hFjj2CXExlrBLvTs9nlz03WhSiYMonXhXro4326J06495ky5PdMU0_wv-d2Pr6tF2p1p6pqywKdP4dnwXVkJ2td78GOrffh6RZQcB_2wlZdsveBJ_3hBRSn1i5YAKles6m3W4YRX6PPlLHGse9k0KoVO6lvlk3XNosbzX7byrBLStW3xFxlVIfC5lXXqiXRdP0wWrVip6pTL2F-fvbr60UU-ipEGkXaRVx5L0FLQUWywmQ6Nahl4njq4lxmsYmtsLkusUyMVxtiInxUxpWTKKQ1huMrGNVNbQ-ASY6Zcxl6MecjxdzbutJHUJnAJFGo1Rg-DlNa6AAdp94XVeGDD5r_Ymv-x3C8EV6sWRv_F5uSbjYiBMjuPzTtdRH2W6FlqaVJdUIVohiX0irluHOYO5xIZ8ZwNGi2CLt2WfxbY2N4t9H2Q2M5fPg3r-EJp3KJPmVzBKOuvbVvvBPTlW_DyvwLRUzvQg priority: 102 providerName: ProQuest |
| Title | Deep Learning Based Inversion of Locally Anisotropic Weld Properties from Ultrasonic Array Data |
| URI | https://www.proquest.com/docview/2621272886 https://www.mdpi.com/2076-3417/12/2/532/pdf?version=1641448333 https://doaj.org/article/c8bc8d4c1285430b8eaaf2ff39f378fd |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Acceso a contenido Full Text - Doaj customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6x9gF4GGyA6BiVH4YESFkTO3adJ9SylQlBVSEqxlPk-MdUESVRmoLKX4-dulWHEEK8RpfE0d357rv4vgM4C2MZKkV5oLNwGMRG0oAnQxE4ahlCCEtwOxvw45RdzeP31_TaF9yW_lilheKLdpPGFmQHdpsdDiI8wANK8KBS5s13X0mymb6FA9w-8gC6jNpcvAPd-XQ2-uomym3v3TTlEYvt3T_hyIJ9NwzhVhhq2fpvpZh3V0Ul1j9Enu9Fm8kDSLfr3Bwy-Xa-arJz-fM3Csf__5CHcOgTUTTaWM4R3NHFMdzfoyc8hiPv-Ev00rNTv3oE6YXWFfK0rDdobKOgQo6to30JKg364MJjvkajYrEsm7qsFhJ90blCM1f4rx2DK3JdLWieN7VYOm5eu4xarNGFaMRjmE8uP7-9CvyUhkASFjcBFjbnkJy5llumqIwVkTwyODZhwmmoQs10IjOSRcoaASERsxgPC8MJ41opTJ5ApygL_RQQx4QaQ4kVMxZ3JjZyZhaPUUaiSBApevB6q7RUegpzN0kjTy2UcRpO9zTcg7OdcLVh7viz2Nhpfyfi6LbbC2V9k3rvTSXPJFexjFy_KQkzroUw2BiSGDLkRvXgdGs7qd8Dlilmjj0fc8568GJnT39by8k_yj2De9h1YTjKSXoKnaZe6ec2N2qyPhzwybs-dMeX09mnflth6Hun-AVXAgm4 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RAFB9Ke6gexFbF1apzaEGFYDIvmZ0cinTdlq3dLkW62FuczEcphM2apJT95_zbnJedrFuQ3noNjzB5b-Z9TX6_R8h-GKtQ60QEJg_7QWxVEoi0LwOklgEAnrJ2NuD5hI-m8fer5GqD_OmwMPhbZecTW0etS4U98i-MIxc5E4J_nf8OcGoU3q52IzSkH62gD1uKMQ_sODOLO1fC1YenQ2fvA8ZOji-_jQI_ZSBQwOMmYNLFTCU4Qka5TlSsQYnIstiGqUhCHRpuUpVDHmn3EQARdzUKk1YAF0ZrJD5wIWArhjh1xd_W4Hhy8WPV5UHWTRGFS2AgQBrivXTEXI6WALsXCtuJAffS3O3b2Vwu7mRRrEW8k-fkmU9V6dFyb-2QDTPbJU_XCAx3yY53DTX96PmrP70g2dCYOfXErdd04OKkpsjn0XbmaGnpGANosaBHs5u6bKpyfqPoT1NoeoFXAxVyvFLEvdBp0VSyRvZet4xKLuhQNvIlmT6Khl-RzVk5M68JFQwSaxNwYtZVpqmLrbmr2BIOUSRByR753Kk0U57kHGdtFJkrdlD_2Zr-e2R_JTxfcnv8X2yAtlmJICF3-6CsrjN_vjMlciV0rCJEpEKYCyOlZdZCaqEvrO6Rvc6ymfcSdfZvT_fIwcraD63lzcOv-UC2R5fn42x8Ojl7S54whGq07aI9stlUt-adS6Ca_L3fpZT8euyD8ReAeisN |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIvE4IFpALC3gQysBUlTHk3idA0Ity9LSUvXAit6C40dVKUrSJFW1f41fhyebLFsJ9dZrNIrsmfG87PmGkB0WaWZMLAObsXEQOR0HMhmrAKFlAEAkvJsN-ONUHM6i7-fx-Rr5M_TC4LPKwSZ2htqUGmvke1wgFjmXUuy5_lnE2WT6uboKcIIU3rQO4zQWKnJs5zc-fWs-HU28rHc5n379-eUw6CcMBBpE1AZceX-ppcB2UWFiHRnQMnQ8ciyRMTPMCpvoDLLQ-A0AhMLnJ1w5CUJaYxD0wJv_B2NEcccu9em3ZX0H8TZlyBYtgQAJwxvpkPvoLAZ-ywl2swJuBbiProtKzW9Unq_4uukz8rQPUun-Qqs2yJotNsmTFejCTbLRG4WGvu-Rqz88J-nE2or2kK0X9MB7SEMRyaOrydHS0RN0nfmc7heXTdnWZXWp6S-bG3qGlwI1ortS7Hihs7ytVYO4vX4ZtZrTiWrVCzK7F_6-JOtFWdhXhEoOsXMxeDLnc9LEe9XM52qxgDBUoNWIfBxYmuoe3hynbOSpT3OQ_-kK_0dkZ0lcLVA9_k92gLJZkiAUd_ehrC_S_mSnWmZamkiH2IsKLJNWKcedg8TBWDozItuDZNPePjTpP20ekd2ltO9ay-u7f_OOPPTHIT05Oj3eIo859mh0daJtst7W1_aNj5za7G2nopT8vu8z8RdNFCin |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagewAeBhtMdAzkhyEBUtbEF7vOE-oY04Rg2gMV4yly_GOqiJooSUHlr-eculWHEEK8RpfE0d357rv4viPkOE51bAyXkS3icZQ6zSOZjVXkqWUAQGSsnw346VJcTNMP1_w6FNzacKwSofis36QZguwIt9nxKGEjNuLARrVxb7-HShJm-ggHJD7yLtkRHHPxAdmZXl5NvvqJcut7V015gNje_xNOEOz7YQi3wlDP1n8rxby3mNdq-UOV5Va0OX9I8vU6V4dMvp0suuJE__yNwvH_P-QR2Q2JKJ2sLGeP3LHzffJgi55wn-wFx2_pq8BO_foxyc-srWmgZb2hpxgFDfVsHf1LaOXoRx8eyyWdzGdt1TVVPdP0iy0NvfKF_8YzuFLf1UKnZdeo1nPz4jIataRnqlNPyPT8_ed3F1GY0hBpEGkXMYU5h5bCt9wKw3VqQMvEsdTFmeSxia2wmS6gSAwaAUAiEOMx5SQIaY1hcEAG82punxIqGXDnOKCYQ9yZYeQsEI9xAUmiQKshebNWWq4DhbmfpFHmCGW8hvMtDQ_J8Ua4XjF3_Fns1Gt_I-LptvsLVXOTB-_NtSy0NKlOfL8pxIW0SjnmHGQOxtKZITla204e9oA2Z8Kz5zMpxZC83NjT39Zy-I9yz8h95rsw-krQERl0zcI-x9yoK14EB_gFvvcGOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Inversion+of+Locally+Anisotropic+Weld+Properties+from+Ultrasonic+Array+Data&rft.jtitle=Applied+sciences&rft.au=Singh%2C+Jonathan&rft.au=Tant%2C+Katherine&rft.au=Mulholland%2C+Anthony&rft.au=MacLeod%2C+Charles&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=2&rft.spage=532&rft_id=info:doi/10.3390%2Fapp12020532&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |