Deep Learning Based Inversion of Locally Anisotropic Weld Properties from Ultrasonic Array Data

The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as the orientations of the weld’s locally anisotropic grain structure. These orientations are usually unknown but it has been shown recently that...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 2; p. 532
Main Authors Singh, Jonathan, Tant, Katherine, Mulholland, Anthony, MacLeod, Charles
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app12020532

Cover

Abstract The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as the orientations of the weld’s locally anisotropic grain structure. These orientations are usually unknown but it has been shown recently that they can be estimated from ultrasonic scattered wave data. However, conventional algorithms used for solving this inverse problem incur a significant computational cost. In this paper, we propose a framework which uses deep neural networks (DNNs) to reconstruct crystallographic orientations in a welded material from ultrasonic travel time data, in real-time. Acquiring the large amount of training data required for DNNs experimentally is practically infeasible for this problem, therefore a model based training approach is investigated instead, where a simple and efficient analytical method for modelling ultrasonic wave travel times through given weld geometries is implemented. The proposed method is validated by testing the trained networks on data arising from sophisticated finite element simulations of wave propagation through weld microstructures. The trained deep neural network predicts grain orientations to within 3° and in near real-time (0.04 s), presenting a significant step towards realising real-time, accurate characterisation of weld microstructures from ultrasonic non-destructive measurements. The subsequent improvement in defect imaging is then demonstrated via use of the DNN predicted crystallographic orientations to correct the delay laws on which the total focusing method imaging algorithm is based. An improvement of up to 5.3 dB in the signal-to-noise ratio is achieved.
AbstractList The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as the orientations of the weld’s locally anisotropic grain structure. These orientations are usually unknown but it has been shown recently that they can be estimated from ultrasonic scattered wave data. However, conventional algorithms used for solving this inverse problem incur a significant computational cost. In this paper, we propose a framework which uses deep neural networks (DNNs) to reconstruct crystallographic orientations in a welded material from ultrasonic travel time data, in real-time. Acquiring the large amount of training data required for DNNs experimentally is practically infeasible for this problem, therefore a model based training approach is investigated instead, where a simple and efficient analytical method for modelling ultrasonic wave travel times through given weld geometries is implemented. The proposed method is validated by testing the trained networks on data arising from sophisticated finite element simulations of wave propagation through weld microstructures. The trained deep neural network predicts grain orientations to within 3° and in near real-time (0.04 s), presenting a significant step towards realising real-time, accurate characterisation of weld microstructures from ultrasonic non-destructive measurements. The subsequent improvement in defect imaging is then demonstrated via use of the DNN predicted crystallographic orientations to correct the delay laws on which the total focusing method imaging algorithm is based. An improvement of up to 5.3 dB in the signal-to-noise ratio is achieved.
Author Singh, Jonathan
Mulholland, Anthony
Tant, Katherine
MacLeod, Charles
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Singh
  fullname: Singh, Jonathan
– sequence: 2
  givenname: Katherine
  orcidid: 0000-0003-4345-7054
  surname: Tant
  fullname: Tant, Katherine
– sequence: 3
  givenname: Anthony
  surname: Mulholland
  fullname: Mulholland, Anthony
– sequence: 4
  givenname: Charles
  surname: MacLeod
  fullname: MacLeod, Charles
BookMark eNqFkUtrWzEQhUVxoK6TVf-AoMvWiR73obt04zwMhmYRk6UYS6MgcyPdStcp_vdV4lJCKFSbGaSjjzlnPpFJiAEJ-czZuZQdu4Bh4IIJVkvxgUwFa5u5rHg7edN_JGc571g5HZeKsynRS8SBrhFS8OGRfoeMlq7CM6bsY6DR0XU00PcHugg-xzHFwRv6gL2ld6XHNHrM1KX4RDf9mCDHUN4XKcGBLmGEU3LioM949qfOyOb66v7ydr7-cbO6XKznRjbVOBdQs86oRtZKNLY2lZVGcScqxzpVM8uwwc5s5ZbbrgUpeSNUJ8Ap2Si0VsgZWR25NsJOD8k_QTroCF6_XsT0qKHManrURm2NspXhQtWVZFuFAE44JzsnW-VsYX07svZhgMOv4v4vkDP9krV-k3WRfznKhxR_7jGPehf3KRS3WjSCi1aoYmxGvh5VJsWcE7r_MPk7tfEjjGUlJWPf__PPb9QInYU
CitedBy_id crossref_primary_10_1016_j_jmsy_2023_05_026
crossref_primary_10_1088_2632_2153_ad134a
crossref_primary_10_1016_j_ultras_2023_107041
crossref_primary_10_1109_TUFFC_2024_3459619
crossref_primary_10_1098_rspa_2023_0236
crossref_primary_10_14489_td_2023_11_pp_044_050
Cites_doi 10.1016/j.ultras.2017.03.004
10.1093/gji/ggaa328
10.1007/s00521-020-04921-8
10.1016/j.neucom.2021.09.035
10.1111/j.1365-246X.2008.03721.x
10.1016/j.ultras.2004.01.012
10.1038/s41746-020-0240-8
10.1063/1.4940499
10.1121/1.3372724
10.1109/IUS52206.2021.9593586
10.1088/1749-4699/8/1/014008
10.1080/17415977.2020.1762596
10.1016/S0308-0161(03)00024-3
10.1063/1.3591933
10.1093/gji/ggaa170
10.1016/j.ndteint.2008.07.003
10.1364/OE.14.010435
10.1111/j.1365-246X.2009.04226.x
10.1016/S0963-8695(00)00021-9
10.1190/tle37010058.1
10.1016/j.ndteint.2005.04.002
10.1016/0041-624X(86)90005-3
10.1088/1361-6420/aaca8f
10.1063/1.1307835
10.1093/oso/9780198538493.001.0001
10.1093/gji/ggx305
10.1016/j.ijpvp.2019.02.011
10.1121/1.3613936
10.1093/gji/ggt267
10.1088/1361-6560/aa7e5a
10.1109/TUFFC.2012.2481
10.1016/j.ndteint.2009.12.005
10.1088/1361-6560/abb5c3
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app12020532
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_c8bc8d4c1285430b8eaaf2ff39f378fd
10.3390/app12020532
10_3390_app12020532
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
AFFHD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c364t-2a509c8635826d5c4d3c81f24f09850d0e6e9cb3b1d97a33162892af8368edd23
IEDL.DBID UNPAY
ISSN 2076-3417
IngestDate Tue Oct 14 19:05:08 EDT 2025
Wed Oct 29 12:04:59 EDT 2025
Mon Jun 30 07:28:19 EDT 2025
Thu Oct 16 04:41:11 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-2a509c8635826d5c4d3c81f24f09850d0e6e9cb3b1d97a33162892af8368edd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4345-7054
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/12/2/532/pdf?version=1641448333
PQID 2621272886
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_c8bc8d4c1285430b8eaaf2ff39f378fd
unpaywall_primary_10_3390_app12020532
proquest_journals_2621272886
crossref_primary_10_3390_app12020532
crossref_citationtrail_10_3390_app12020532
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Holmes (ref_30) 2004; 46
Holmes (ref_1) 2005; 38
ref_36
Lebedev (ref_19) 2008; 173
Connolly (ref_31) 2010; 127
Zhang (ref_16) 2020; 222
Bergstra (ref_41) 2015; 8
Harvey (ref_12) 2011; Volume 1335
Chassignole (ref_33) 2010; 43
Bai (ref_17) 2013; 195
Earp (ref_24) 2020; 223
Earp (ref_25) 2020; 32
Huthwaite (ref_22) 2011; 130
ref_39
Bodin (ref_15) 2009; 178
ref_38
Connolly (ref_2) 2009; 465
ref_37
Chassignole (ref_14) 2017; 78
Moysan (ref_8) 2009; 42
Jennings (ref_26) 2018; 37
Zhu (ref_18) 2017; 211
Abrahams (ref_10) 1992; 436
Moysan (ref_13) 2003; 80
Chassignole (ref_7) 2000; Volume 509
Bernard (ref_21) 2017; 62
Ploix (ref_34) 2019; 171
Nageswaran (ref_6) 2009; 51
Calmon (ref_35) 2000; 33
Sharples (ref_9) 2006; 14
ref_23
Zhao (ref_28) 2020; 65
ref_44
Zhang (ref_3) 2012; 59
ref_43
ref_42
ref_40
Dobson (ref_32) 2016; Volume 1706
Guasch (ref_20) 2020; 3
Spies (ref_11) 2004; 42
Ogilvy (ref_29) 1986; 24
ref_4
Fan (ref_27) 2022; 467
Tant (ref_5) 2018; 34
References_xml – volume: 78
  start-page: 40
  year: 2017
  ident: ref_14
  article-title: Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2017.03.004
– volume: 223
  start-page: 1741
  year: 2020
  ident: ref_24
  article-title: Probabilistic neural network tomography across Grane field (North Sea) from surface wave dispersion data
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa328
– volume: 32
  start-page: 17077
  year: 2020
  ident: ref_25
  article-title: Probabilistic neural network-based 2D travel-time tomography
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04921-8
– volume: 467
  start-page: 10
  year: 2022
  ident: ref_27
  article-title: Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.035
– volume: 173
  start-page: 505
  year: 2008
  ident: ref_19
  article-title: Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2008.03721.x
– volume: 42
  start-page: 213
  year: 2004
  ident: ref_11
  article-title: Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2004.01.012
– volume: 3
  start-page: 1
  year: 2020
  ident: ref_20
  article-title: Full-waveform inversion imaging of the human brain
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-0240-8
– volume: Volume 1706
  start-page: 040005
  year: 2016
  ident: ref_32
  article-title: Finite element analysis simulations for ultrasonic array NDE inspections
  publication-title: Proceedings of the AIP Conference Proceedings
  doi: 10.1063/1.4940499
– volume: 127
  start-page: 2802
  year: 2010
  ident: ref_31
  article-title: Correction of ultrasonic array images to improve reflector sizing and location in inhomogeneous materials using a ray-tracing model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3372724
– ident: ref_40
  doi: 10.1109/IUS52206.2021.9593586
– volume: 8
  start-page: 014008
  year: 2015
  ident: ref_41
  article-title: Hyperopt: A Python library for model selection and hyperparameter optimization
  publication-title: Comput. Sci. Discov.
  doi: 10.1088/1749-4699/8/1/014008
– ident: ref_39
– ident: ref_4
  doi: 10.1080/17415977.2020.1762596
– volume: 436
  start-page: 449
  year: 1992
  ident: ref_10
  article-title: The propagation of elastic waves in a certain class of inhomogeneous anisotropic materials. I. The refraction of a horizontally polarized shear wave source
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
– ident: ref_37
– ident: ref_42
– volume: 80
  start-page: 77
  year: 2003
  ident: ref_13
  article-title: Modelling the grain orientation of austenitic stainless steel multipass welds to improve ultrasonic assessment of structural integrity
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/S0308-0161(03)00024-3
– ident: ref_44
– volume: Volume 1335
  start-page: 827
  year: 2011
  ident: ref_12
  article-title: Finite element analysis of ultrasonic phased array inspections on anisotropic welds
  publication-title: Proceedings of the AIP Conference Proceedings
  doi: 10.1063/1.3591933
– volume: 465
  start-page: 3401
  year: 2009
  ident: ref_2
  article-title: The application of Fermat’s principle for imaging anisotropic and inhomogeneous media with application to austenitic steel weld inspection
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 222
  start-page: 406
  year: 2020
  ident: ref_16
  article-title: Variational full-waveform inversion
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa170
– volume: 42
  start-page: 47
  year: 2009
  ident: ref_8
  article-title: Direct model optimisation for data inversion. Application to ultrasonic characterisation of heterogeneous welds
  publication-title: NDT & E Int.
  doi: 10.1016/j.ndteint.2008.07.003
– volume: 14
  start-page: 10435
  year: 2006
  ident: ref_9
  article-title: Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure
  publication-title: Opt. Express
  doi: 10.1364/OE.14.010435
– volume: 178
  start-page: 1411
  year: 2009
  ident: ref_15
  article-title: Seismic tomography with the reversible jump algorithm
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04226.x
– volume: 33
  start-page: 499
  year: 2000
  ident: ref_35
  article-title: Modeling tools for ultrasonic inspection of welds
  publication-title: NDT & E Int.
  doi: 10.1016/S0963-8695(00)00021-9
– volume: 37
  start-page: 58
  year: 2018
  ident: ref_26
  article-title: Deep-learning tomography
  publication-title: Lead. Edge
  doi: 10.1190/tle37010058.1
– volume: 46
  start-page: 677
  year: 2004
  ident: ref_30
  article-title: The post-processing of ultrasonic array data using the total focusing method
  publication-title: Insight-Non-Destr. Test. Cond. Monit.
– volume: 38
  start-page: 701
  year: 2005
  ident: ref_1
  article-title: Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation
  publication-title: NDT & E Int.
  doi: 10.1016/j.ndteint.2005.04.002
– volume: 24
  start-page: 337
  year: 1986
  ident: ref_29
  article-title: Ultrasonic beam profiles and beam propagation in an austenitic weld using a theoretical ray tracing model
  publication-title: Ultrasonics
  doi: 10.1016/0041-624X(86)90005-3
– volume: 51
  start-page: 660
  year: 2009
  ident: ref_6
  article-title: Microstructural quantification, modelling and array ultrasonics to improve the inspection of austenitic welds
  publication-title: Insight-Non-Destr. Test. Cond. Monit.
– volume: 34
  start-page: 095002
  year: 2018
  ident: ref_5
  article-title: A transdimensional Bayesian approach to ultrasonic travel-time tomography for non-destructive testing
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aaca8f
– volume: Volume 509
  start-page: 1325
  year: 2000
  ident: ref_7
  article-title: Characterization of austenitic stainless steel welds for ultrasonic NDT
  publication-title: Proceedings of the AIP Conference Proceedings
  doi: 10.1063/1.1307835
– ident: ref_23
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 211
  start-page: 349
  year: 2017
  ident: ref_18
  article-title: Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggx305
– volume: 171
  start-page: 125
  year: 2019
  ident: ref_34
  article-title: Influence of the uncertainty of elastic constants on the modelling of ultrasound propagation through multi-pass austenitic welds. Impact on non-destructive testing
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2019.02.011
– volume: 130
  start-page: 1721
  year: 2011
  ident: ref_22
  article-title: High-resolution imaging without iteration: A fast and robust method for breast ultrasound tomography
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3613936
– ident: ref_38
– volume: 195
  start-page: 1068
  year: 2013
  ident: ref_17
  article-title: Ray tracing of multiple transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media and application to crosswell traveltime tomography
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt267
– volume: 62
  start-page: 7011
  year: 2017
  ident: ref_21
  article-title: Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa7e5a
– ident: ref_36
– ident: ref_43
– volume: 59
  start-page: 2487
  year: 2012
  ident: ref_3
  article-title: Monte Carlo inversion of ultrasonic array data to map anisotropic weld properties
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2481
– volume: 43
  start-page: 273
  year: 2010
  ident: ref_33
  article-title: Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: Towards a higher reliability in ultrasonic non-destructive testing
  publication-title: NDT & E Int.
  doi: 10.1016/j.ndteint.2009.12.005
– volume: 65
  start-page: 235021
  year: 2020
  ident: ref_28
  article-title: Ultrasound transmission tomography image reconstruction with a fully convolutional neural network
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abb5c3
SSID ssj0000913810
Score 2.2549086
Snippet The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 532
SubjectTerms anisotropy
deep neural networks
Inverse problems
Medical imaging
Microstructure
Propagation
Seismology
Stainless steel
Thermal cycling
Tomography
total focusing method
Ultrasonic imaging
ultrasonic non-destructive evaluation
Ultrasonic transducers
Velocity
welds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEIAX6UU9iE-sVtmDggrBZCfZbo5WLSIqHix6C5t9SCGkJU2R_nt3klgiiF68hjkMM5OdmU3mG0JO_FD5WkfCM6nf90KrIk_EfekhWgYAeMyq3YCPT_xuFN6_RW-tVV_4T1iNB64Nd6lEqoQOVYCjfuCnwkhpmbUQW-gLq_H09UXcaqaqMzgOEF1VD-SB6-vxe3DgGn1chPAtBVWk_m_l5eo8n8rFh8yyVqYZbpKNpkSkV7VqW2TF5NtkvQUO3CZbzSs5o2cNN_p8hyQ3xkxpA0x9pwOXnzRFjkZ1I0Ynlj5g4soW9CofzyZlMZmOFX01mabPeCVfIFuV4rwJHWVlIWdIzXVqFHJBb2Qpd8loePtyfec1-xM8BTwsPSZdNaAEx2FYriMValAisCy0fiwiX_uGm1ilkAbauQcg4K77YtIK4MJozWCPdPJJbvYJFQwiayNwYtZ1hLHLaanrlCIOQSBByS65-DJpohq4OO64yBLXZKD9k5b9u-RkKTytmRo_iw3QN0sRBGFXD1x4JE14JH-FR5f0vjybNG_nLGEcufZMCN4lp0tv_6bLwX_ockjWGA5PVBc4PdIpi7k5ciVNmR5X0fsJHpHyiw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3da9RAEMCHen1QH8RWpVer7EMFFYLJTrK3eRDp2ZYiehTxsG9hsx-lEJIzl1Luv3cntzmvIH0NQ1h2dnc-duc3AMdxqmNjMhnZMp5EqdNZJPOJiggtg4gi531vwB8zcTFPv11lVzswG2ph6FnlcCb2B7VpNOXIP3FBLHIupfiy-BNR1yi6XR1aaKjQWsF87hFjj2CXExlrBLvTs9nlz03WhSiYMonXhXro4326J06495ky5PdMU0_wv-d2Pr6tF2p1p6pqywKdP4dnwXVkJ2td78GOrffh6RZQcB_2wlZdsveBJ_3hBRSn1i5YAKles6m3W4YRX6PPlLHGse9k0KoVO6lvlk3XNosbzX7byrBLStW3xFxlVIfC5lXXqiXRdP0wWrVip6pTL2F-fvbr60UU-ipEGkXaRVx5L0FLQUWywmQ6Nahl4njq4lxmsYmtsLkusUyMVxtiInxUxpWTKKQ1huMrGNVNbQ-ASY6Zcxl6MecjxdzbutJHUJnAJFGo1Rg-DlNa6AAdp94XVeGDD5r_Ymv-x3C8EV6sWRv_F5uSbjYiBMjuPzTtdRH2W6FlqaVJdUIVohiX0irluHOYO5xIZ8ZwNGi2CLt2WfxbY2N4t9H2Q2M5fPg3r-EJp3KJPmVzBKOuvbVvvBPTlW_DyvwLRUzvQg
  priority: 102
  providerName: ProQuest
Title Deep Learning Based Inversion of Locally Anisotropic Weld Properties from Ultrasonic Array Data
URI https://www.proquest.com/docview/2621272886
https://www.mdpi.com/2076-3417/12/2/532/pdf?version=1641448333
https://doaj.org/article/c8bc8d4c1285430b8eaaf2ff39f378fd
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Acceso a contenido Full Text - Doaj
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6x9gF4GGyA6BiVH4YESFkTO3adJ9SylQlBVSEqxlPk-MdUESVRmoLKX4-dulWHEEK8RpfE0d357rv4vgM4C2MZKkV5oLNwGMRG0oAnQxE4ahlCCEtwOxvw45RdzeP31_TaF9yW_lilheKLdpPGFmQHdpsdDiI8wANK8KBS5s13X0mymb6FA9w-8gC6jNpcvAPd-XQ2-uomym3v3TTlEYvt3T_hyIJ9NwzhVhhq2fpvpZh3V0Ul1j9Enu9Fm8kDSLfr3Bwy-Xa-arJz-fM3Csf__5CHcOgTUTTaWM4R3NHFMdzfoyc8hiPv-Ev00rNTv3oE6YXWFfK0rDdobKOgQo6to30JKg364MJjvkajYrEsm7qsFhJ90blCM1f4rx2DK3JdLWieN7VYOm5eu4xarNGFaMRjmE8uP7-9CvyUhkASFjcBFjbnkJy5llumqIwVkTwyODZhwmmoQs10IjOSRcoaASERsxgPC8MJ41opTJ5ApygL_RQQx4QaQ4kVMxZ3JjZyZhaPUUaiSBApevB6q7RUegpzN0kjTy2UcRpO9zTcg7OdcLVh7viz2Nhpfyfi6LbbC2V9k3rvTSXPJFexjFy_KQkzroUw2BiSGDLkRvXgdGs7qd8Dlilmjj0fc8568GJnT39by8k_yj2De9h1YTjKSXoKnaZe6ec2N2qyPhzwybs-dMeX09mnflth6Hun-AVXAgm4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RAFB9Ke6gexFbF1apzaEGFYDIvmZ0cinTdlq3dLkW62FuczEcphM2apJT95_zbnJedrFuQ3noNjzB5b-Z9TX6_R8h-GKtQ60QEJg_7QWxVEoi0LwOklgEAnrJ2NuD5hI-m8fer5GqD_OmwMPhbZecTW0etS4U98i-MIxc5E4J_nf8OcGoU3q52IzSkH62gD1uKMQ_sODOLO1fC1YenQ2fvA8ZOji-_jQI_ZSBQwOMmYNLFTCU4Qka5TlSsQYnIstiGqUhCHRpuUpVDHmn3EQARdzUKk1YAF0ZrJD5wIWArhjh1xd_W4Hhy8WPV5UHWTRGFS2AgQBrivXTEXI6WALsXCtuJAffS3O3b2Vwu7mRRrEW8k-fkmU9V6dFyb-2QDTPbJU_XCAx3yY53DTX96PmrP70g2dCYOfXErdd04OKkpsjn0XbmaGnpGANosaBHs5u6bKpyfqPoT1NoeoFXAxVyvFLEvdBp0VSyRvZet4xKLuhQNvIlmT6Khl-RzVk5M68JFQwSaxNwYtZVpqmLrbmr2BIOUSRByR753Kk0U57kHGdtFJkrdlD_2Zr-e2R_JTxfcnv8X2yAtlmJICF3-6CsrjN_vjMlciV0rCJEpEKYCyOlZdZCaqEvrO6Rvc6ymfcSdfZvT_fIwcraD63lzcOv-UC2R5fn42x8Ojl7S54whGq07aI9stlUt-adS6Ca_L3fpZT8euyD8ReAeisN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIvE4IFpALC3gQysBUlTHk3idA0Ity9LSUvXAit6C40dVKUrSJFW1f41fhyebLFsJ9dZrNIrsmfG87PmGkB0WaWZMLAObsXEQOR0HMhmrAKFlAEAkvJsN-ONUHM6i7-fx-Rr5M_TC4LPKwSZ2htqUGmvke1wgFjmXUuy5_lnE2WT6uboKcIIU3rQO4zQWKnJs5zc-fWs-HU28rHc5n379-eUw6CcMBBpE1AZceX-ppcB2UWFiHRnQMnQ8ciyRMTPMCpvoDLLQ-A0AhMLnJ1w5CUJaYxD0wJv_B2NEcccu9em3ZX0H8TZlyBYtgQAJwxvpkPvoLAZ-ywl2swJuBbiProtKzW9Unq_4uukz8rQPUun-Qqs2yJotNsmTFejCTbLRG4WGvu-Rqz88J-nE2or2kK0X9MB7SEMRyaOrydHS0RN0nfmc7heXTdnWZXWp6S-bG3qGlwI1ortS7Hihs7ytVYO4vX4ZtZrTiWrVCzK7F_6-JOtFWdhXhEoOsXMxeDLnc9LEe9XM52qxgDBUoNWIfBxYmuoe3hynbOSpT3OQ_-kK_0dkZ0lcLVA9_k92gLJZkiAUd_ehrC_S_mSnWmZamkiH2IsKLJNWKcedg8TBWDozItuDZNPePjTpP20ekd2ltO9ay-u7f_OOPPTHIT05Oj3eIo859mh0daJtst7W1_aNj5za7G2nopT8vu8z8RdNFCin
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagewAeBhtMdAzkhyEBUtbEF7vOE-oY04Rg2gMV4yly_GOqiJooSUHlr-eculWHEEK8RpfE0d357rv4viPkOE51bAyXkS3icZQ6zSOZjVXkqWUAQGSsnw346VJcTNMP1_w6FNzacKwSofis36QZguwIt9nxKGEjNuLARrVxb7-HShJm-ggHJD7yLtkRHHPxAdmZXl5NvvqJcut7V015gNje_xNOEOz7YQi3wlDP1n8rxby3mNdq-UOV5Va0OX9I8vU6V4dMvp0suuJE__yNwvH_P-QR2Q2JKJ2sLGeP3LHzffJgi55wn-wFx2_pq8BO_foxyc-srWmgZb2hpxgFDfVsHf1LaOXoRx8eyyWdzGdt1TVVPdP0iy0NvfKF_8YzuFLf1UKnZdeo1nPz4jIataRnqlNPyPT8_ed3F1GY0hBpEGkXMYU5h5bCt9wKw3VqQMvEsdTFmeSxia2wmS6gSAwaAUAiEOMx5SQIaY1hcEAG82punxIqGXDnOKCYQ9yZYeQsEI9xAUmiQKshebNWWq4DhbmfpFHmCGW8hvMtDQ_J8Ua4XjF3_Fns1Gt_I-LptvsLVXOTB-_NtSy0NKlOfL8pxIW0SjnmHGQOxtKZITla204e9oA2Z8Kz5zMpxZC83NjT39Zy-I9yz8h95rsw-krQERl0zcI-x9yoK14EB_gFvvcGOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Inversion+of+Locally+Anisotropic+Weld+Properties+from+Ultrasonic+Array+Data&rft.jtitle=Applied+sciences&rft.au=Singh%2C+Jonathan&rft.au=Tant%2C+Katherine&rft.au=Mulholland%2C+Anthony&rft.au=MacLeod%2C+Charles&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=2&rft.spage=532&rft_id=info:doi/10.3390%2Fapp12020532&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon