A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data

We present a model of incompressible isotropic hyperelastic material behavior based on a strain energy description separable in terms of logarithmic strains and piecewise spline interpolations of uniaxial tension–compression test data. Valuable attributes are that no fitting of model constants is ca...

Full description

Saved in:
Bibliographic Details
Published inCommunications in numerical methods in engineering Vol. 25; no. 1; pp. 53 - 63
Main Authors Sussman, Theodore, Bathe, Klaus-Jürgen
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2009
Wiley
Subjects
Online AccessGet full text
ISSN1069-8299
1099-0887
DOI10.1002/cnm.1105

Cover

Abstract We present a model of incompressible isotropic hyperelastic material behavior based on a strain energy description separable in terms of logarithmic strains and piecewise spline interpolations of uniaxial tension–compression test data. Valuable attributes are that no fitting of model constants is carried out and the model replicates even physically complicated test data very accurately for small and large strains and for tension and compression. The model is well suited for use in finite element analysis. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList We present a model of incompressible isotropic hyperelastic material behavior based on a strain energy description separable in terms of logarithmic strains and piecewise spline interpolations of uniaxial tension-compression test data. Valuable attributes are that no fitting of model constants is carried out and the model replicates even physically complicated test data very accurately for small and large strains and for tension and compression. The model is well suited for use in finite element analysis.
We present a model of incompressible isotropic hyperelastic material behavior based on a strain energy description separable in terms of logarithmic strains and piecewise spline interpolations of uniaxial tension–compression test data. Valuable attributes are that no fitting of model constants is carried out and the model replicates even physically complicated test data very accurately for small and large strains and for tension and compression. The model is well suited for use in finite element analysis. Copyright © 2008 John Wiley & Sons, Ltd.
Author Sussman, Theodore
Bathe, Klaus-Jürgen
Author_xml – sequence: 1
  givenname: Theodore
  surname: Sussman
  fullname: Sussman, Theodore
  organization: ADINA R & D, Inc., Watertown, MA 02472, U.S.A
– sequence: 2
  givenname: Klaus-Jürgen
  surname: Bathe
  fullname: Bathe, Klaus-Jürgen
  email: kjb@mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20948106$$DView record in Pascal Francis
BookMark eNp1kctuFDEQRVsoSOSBxCf0BsSmJ267H_YyGpEAebABIbGxqj3VxOC2G5cHmBW_Hk8mGokIVlVln3tLqntUHPjgsShe1GxRM8ZPjZ8Wdc3aJ8VhzZSqmJT9wbbvVCW5Us-KI6JvjDHFJDss_pyVU1ihK8NYWm_CNEcksoPD0lJIMczWlLebGSM6oJSHCRJGC64c8BZ-2hDLNVn_taTZWZ9VPn_PwUGywdPWNqGn3Fd78-DzG6VyBQlOiqcjOMLnD_W4-HT-5uPybXX14eLd8uyqMqJr2qoTRgGvR6GMaAA5SoWGKxh4I7FtBKhBCdkPI_LVyIZOGpCD6lgv1Niamovj4tXOd47hxzpv15Mlg86Bx7AmLdqm5x1rMvjyAQQy4MYI3ljSc7QTxI3mTDUyHzNzr3eciYEo4rhHaqa3SeichN4mkdHFI9TYdH-fFMG6fwmqneCXdbj5r7Fe3lz_zVtK-HvPQ_yuu170rf58c6GX8kvfnV--19fiDpkpre0
CitedBy_id crossref_primary_10_1016_j_cmpb_2014_06_001
crossref_primary_10_1016_j_jmbbm_2015_11_018
crossref_primary_10_1016_j_advengsoft_2019_01_004
crossref_primary_10_1016_j_cma_2021_114034
crossref_primary_10_1016_j_compstruc_2017_03_001
crossref_primary_10_1016_j_ijsolstr_2013_12_041
crossref_primary_10_1016_j_jmps_2020_104279
crossref_primary_10_1088_1361_6633_aaafe2
crossref_primary_10_1016_j_ijnonlinmec_2018_09_011
crossref_primary_10_1016_j_jmps_2023_105404
crossref_primary_10_1007_s00419_023_02466_5
crossref_primary_10_1016_j_compstruc_2014_07_021
crossref_primary_10_1002_pamm_202300239
crossref_primary_10_1007_s00466_013_0971_3
crossref_primary_10_1016_j_jmps_2023_105453
crossref_primary_10_1016_j_cma_2021_113852
crossref_primary_10_1177_1464420715604004
crossref_primary_10_1007_s00366_022_01781_9
crossref_primary_10_1016_j_jbiomech_2012_01_020
crossref_primary_10_1115_1_4037405
crossref_primary_10_1016_j_cma_2021_113816
crossref_primary_10_1016_j_ijnonlinmec_2017_08_005
crossref_primary_10_1007_s00466_020_01927_w
crossref_primary_10_1016_j_compstruc_2018_02_011
crossref_primary_10_3390_ma14195837
crossref_primary_10_1007_s00466_015_1184_8
crossref_primary_10_1002_nme_6459
crossref_primary_10_1177_096739111402200704
crossref_primary_10_1016_j_eml_2024_102243
crossref_primary_10_1017_dce_2020_20
crossref_primary_10_1016_j_crme_2019_11_009
crossref_primary_10_1016_j_compstruc_2015_09_001
crossref_primary_10_1016_j_euromechsol_2020_104078
crossref_primary_10_1016_j_jmps_2023_105381
crossref_primary_10_1115_1_4000953
crossref_primary_10_1016_j_cma_2022_115225
crossref_primary_10_1016_j_cma_2024_117208
crossref_primary_10_1016_j_cma_2022_115867
crossref_primary_10_1016_j_compstruc_2020_106209
crossref_primary_10_1007_s10659_018_9699_9
crossref_primary_10_1098_rspa_2021_0330
crossref_primary_10_1016_j_cma_2017_08_027
crossref_primary_10_1016_j_ijmecsci_2017_11_038
crossref_primary_10_1016_j_ijsolstr_2015_04_027
crossref_primary_10_1098_rsif_2015_0325
crossref_primary_10_4028_www_scientific_net_AMR_747_631
crossref_primary_10_1016_j_ijnonlinmec_2016_11_005
crossref_primary_10_1590_1679_78258253
crossref_primary_10_1016_j_euromechsol_2015_03_007
crossref_primary_10_1016_j_finel_2017_05_009
crossref_primary_10_1016_j_euromechsol_2023_104931
crossref_primary_10_1016_j_ijengsci_2019_05_013
crossref_primary_10_1038_s41524_022_00752_4
crossref_primary_10_1016_j_compbiomed_2023_106897
crossref_primary_10_1007_s00466_016_1335_6
crossref_primary_10_1016_j_compstruc_2011_02_011
crossref_primary_10_1108_EC_05_2020_0251
crossref_primary_10_1016_j_ijsolstr_2016_08_006
crossref_primary_10_1016_j_apm_2017_06_038
crossref_primary_10_1016_j_compstruc_2013_01_018
crossref_primary_10_1007_s11831_017_9233_4
crossref_primary_10_1016_j_brain_2021_100036
crossref_primary_10_1145_3618406
crossref_primary_10_1016_j_compstruc_2017_05_003
crossref_primary_10_1098_rsta_2021_0324
crossref_primary_10_1016_j_cma_2023_116366
crossref_primary_10_1186_s40323_024_00281_3
crossref_primary_10_1007_s10439_015_1323_6
crossref_primary_10_1016_j_jmbbm_2017_09_012
crossref_primary_10_1145_2766917
crossref_primary_10_1016_j_compstruc_2017_07_031
crossref_primary_10_1016_j_compositesb_2020_108591
crossref_primary_10_1016_j_apm_2015_10_045
crossref_primary_10_1016_j_cma_2020_112898
crossref_primary_10_1007_s10439_016_1723_2
crossref_primary_10_1016_j_msec_2016_09_026
crossref_primary_10_1016_j_euromechsol_2012_09_010
Cites_doi 10.1088/0022-3727/8/11/007
10.1016/0955-7997(84)90049-3
10.1063/1.1712836
10.1122/1.549568
10.1063/1.1710039
10.1016/0045-7949(87)90265-3
10.5254/1.3547602
10.1063/1.1735971
10.1007/BF00789105
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/cnm.1105
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1099-0887
EndPage 63
ExternalDocumentID 20948106
10_1002_cnm_1105
CNM1105
ark_67375_WNG_C8Z76FKJ_M
Genre article
GroupedDBID -~X
.GA
.Y3
10A
1L6
1OB
1OC
1ZS
31~
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
66C
6J9
7PT
8-1
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BRXPI
BSCLL
BY8
CO8
CS3
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
GBZZK
GNP
GODZA
HBH
HF~
HGLYW
HHY
HVGLF
I-F
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6O
MEWTI
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P4D
PALCI
QB0
QRW
RIWAO
RJQFR
ROL
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
WIB
WIH
WIK
WQJ
WXSBR
XG1
XPP
XV2
ZY4
~02
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3645-63c9a21f39c34ae2e89ec29ab248e543a9b9387bfe2df0b68ca8b960739f5c123
ISSN 1069-8299
IngestDate Fri Jul 11 04:12:32 EDT 2025
Mon Jul 21 09:13:53 EDT 2025
Wed Oct 01 04:56:20 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Sun Sep 21 06:22:47 EDT 2025
Sun Sep 21 06:20:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords High strain
rubber-like materials
Logarithmic function
Strain energy
Uniaxial tension stress
Data compression
Incompressible material
finite element analysis
Compression test
Modeling
Tension test
Spline approximation
Hyperelasticity
Finite element method
Uniaxial compression
incompressible materials
Model matching
material modeling
Rubber
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3645-63c9a21f39c34ae2e89ec29ab248e543a9b9387bfe2df0b68ca8b960739f5c123
Notes ark:/67375/WNG-C8Z76FKJ-M
istex:445DBC697FA685EF3CDD9D90CF21DEAA65691FD8
ArticleID:CNM1105
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35472604
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_35472604
pascalfrancis_primary_20948106
crossref_primary_10_1002_cnm_1105
crossref_citationtrail_10_1002_cnm_1105
wiley_primary_10_1002_cnm_1105_CNM1105
istex_primary_ark_67375_WNG_C8Z76FKJ_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01
January 2009
2009-01-00
2009
20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Communications in numerical methods in engineering
PublicationTitleAlternate Commun. Numer. Meth. Engng
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Mooney M. A theory of large elastic deformation. Journal of Applied Physics 1940; 2:582-592.
Hamming RW. Numerical Methods for Scientists and Engineers. Dover: New York, 1973.
Boyce MC, Arruda EM. Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology 2000; 73(3):504-523.
Sussman T, Bathe KJ. A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Journal of Computers and Structures 1987; 26:357-409.
Carmichael AJ, Holdaway HW. Phenomenological elastomechanical behavior of rubbers over wide ranges of strain. Journal of Applied Physics 1961; 32(2):159-166.
Valanis KC, Landel RF. The strain-energy function of a hyperelastic material in terms of the extension ratios. Journal of Applied Physics 1967; 38(7):2997-3002.
van den Bogert PAJ, de Borst R. On the behaviour of rubber-like materials in compression and shear. Archive of Applied Mechanics 1994; 64:136-146.
Kearsley EA, Zapas LJ. Some methods of measurement of an elastic strain-energy function of the Valanis-Landel type. Journal of Rheology 1980; 24(4):483-500.
Jones DF, Treloar LRG. The properties of rubber in pure homogeneous strain. Journal of Physics D: Applied Physics 1975; 8:1285-1304.
Bathe KJ. Finite Element Procedures. Prentice-Hall: Englewood Cliffs, NJ, 1996.
Ogden RW. Non-Linear Elastic Deformations. Ellis Horwood: Chichester, U.K., 1984.
1940; 2
2000; 73
1996
1984
1973
1961; 32
1967; 38
1975; 8
1980; 24
1987; 26
1994; 64
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_3_2
e_1_2_1_12_2
Bathe KJ (e_1_2_1_2_2) 1996
e_1_2_1_10_2
Hamming RW (e_1_2_1_11_2) 1973
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Ogden RW. Non-Linear Elastic Deformations. Ellis Horwood: Chichester, U.K., 1984.
– reference: Mooney M. A theory of large elastic deformation. Journal of Applied Physics 1940; 2:582-592.
– reference: Sussman T, Bathe KJ. A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Journal of Computers and Structures 1987; 26:357-409.
– reference: van den Bogert PAJ, de Borst R. On the behaviour of rubber-like materials in compression and shear. Archive of Applied Mechanics 1994; 64:136-146.
– reference: Valanis KC, Landel RF. The strain-energy function of a hyperelastic material in terms of the extension ratios. Journal of Applied Physics 1967; 38(7):2997-3002.
– reference: Carmichael AJ, Holdaway HW. Phenomenological elastomechanical behavior of rubbers over wide ranges of strain. Journal of Applied Physics 1961; 32(2):159-166.
– reference: Bathe KJ. Finite Element Procedures. Prentice-Hall: Englewood Cliffs, NJ, 1996.
– reference: Boyce MC, Arruda EM. Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology 2000; 73(3):504-523.
– reference: Kearsley EA, Zapas LJ. Some methods of measurement of an elastic strain-energy function of the Valanis-Landel type. Journal of Rheology 1980; 24(4):483-500.
– reference: Jones DF, Treloar LRG. The properties of rubber in pure homogeneous strain. Journal of Physics D: Applied Physics 1975; 8:1285-1304.
– reference: Hamming RW. Numerical Methods for Scientists and Engineers. Dover: New York, 1973.
– volume: 38
  start-page: 2997
  issue: 7
  year: 1967
  end-page: 3002
  article-title: The strain‐energy function of a hyperelastic material in terms of the extension ratios
  publication-title: Journal of Applied Physics
– year: 1973
– year: 1996
– volume: 32
  start-page: 159
  issue: 2
  year: 1961
  end-page: 166
  article-title: Phenomenological elastomechanical behavior of rubbers over wide ranges of strain
  publication-title: Journal of Applied Physics
– volume: 73
  start-page: 504
  issue: 3
  year: 2000
  end-page: 523
  article-title: Constitutive models of rubber elasticity: a review
  publication-title: Rubber Chemistry and Technology
– year: 1984
– volume: 8
  start-page: 1285
  year: 1975
  end-page: 1304
  article-title: The properties of rubber in pure homogeneous strain
  publication-title: Journal of Physics D: Applied Physics
– volume: 2
  start-page: 582
  year: 1940
  end-page: 592
  article-title: A theory of large elastic deformation
  publication-title: Journal of Applied Physics
– volume: 26
  start-page: 357
  year: 1987
  end-page: 409
  article-title: A finite element formulation for nonlinear incompressible elastic and inelastic analysis
  publication-title: Journal of Computers and Structures
– volume: 64
  start-page: 136
  year: 1994
  end-page: 146
  article-title: On the behaviour of rubber‐like materials in compression and shear
  publication-title: Archive of Applied Mechanics
– volume: 24
  start-page: 483
  issue: 4
  year: 1980
  end-page: 500
  article-title: Some methods of measurement of an elastic strain‐energy function of the Valanis–Landel type
  publication-title: Journal of Rheology
– ident: e_1_2_1_10_2
  doi: 10.1088/0022-3727/8/11/007
– ident: e_1_2_1_9_2
  doi: 10.1016/0955-7997(84)90049-3
– ident: e_1_2_1_5_2
  doi: 10.1063/1.1712836
– ident: e_1_2_1_8_2
  doi: 10.1122/1.549568
– ident: e_1_2_1_7_2
  doi: 10.1063/1.1710039
– ident: e_1_2_1_12_2
  doi: 10.1016/0045-7949(87)90265-3
– ident: e_1_2_1_3_2
  doi: 10.5254/1.3547602
– ident: e_1_2_1_6_2
  doi: 10.1063/1.1735971
– volume-title: Numerical Methods for Scientists and Engineers
  year: 1973
  ident: e_1_2_1_11_2
– volume-title: Finite Element Procedures
  year: 1996
  ident: e_1_2_1_2_2
– ident: e_1_2_1_4_2
  doi: 10.1007/BF00789105
SSID ssj0009080
Score 1.7240692
Snippet We present a model of incompressible isotropic hyperelastic material behavior based on a strain energy description separable in terms of logarithmic strains...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 53
SubjectTerms Applied sciences
Computational techniques
Elastomers
Exact sciences and technology
finite element analysis
Fundamental areas of phenomenology (including applications)
hyperelasticity
incompressible materials
Industrial polymers. Preparations
material modeling
Mathematical methods in physics
Physics
Polymer industry, paints, wood
rubber-like materials
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Technology of polymers
Title A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data
URI https://api.istex.fr/ark:/67375/WNG-C8Z76FKJ-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1105
https://www.proquest.com/docview/35472604
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-0887
  dateEnd: 20100131
  omitProxy: true
  ssIdentifier: ssj0009080
  issn: 1069-8299
  databaseCode: ABDBF
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj9JAEN8QiIk--HFqxI9zTYw-kHp1t5-PBUXCBV4O4sWXZrtsk4vYEgqJ8cX4nzuz25b2xPjxUmAp7Yb5dXZmZ-Y3hLzkPhOw7sCDxFcrcFC4Z4V-yizbk7CeeMxJNJH2bO5Nls700r3sdH40q0t2yRv57Whdyf9IFcZArlgl-w-SrS8KA_Ae5AtHkDAc_0rGkWlkY2gfMDlcJ7ViLdRVke-2-QYJrMHRxIIV5GMegHmq51VX5w_2eq-g2Ghr88o03Wqkx-n89jyz6otjbAEWkkFZ03ZgOWgWmugc22xvgkHrsku1HlQH-sN6b2d5cTGL5iZbSeXY-aTeI4gWE52teb4W-8KaYlR_OMJy0dZmxTVl2NCzthdaATO9kSpFbCqgW4AzWtXQCZfrs9GHv2h-wyQrsy9Y2OAeVrcqon9t0atTEZmNfDVI2t5juKXTJb1o-G44PjA324GhtChnXDEY2-ysulvLpunh4_kVc2xFAf9xavqjtByYphuk7ZjFXXK7dEBoZNB0j3RUdkLulM4ILVV9cUJuNZgq4dOspveF727ovGFZ3CffI6ohSPOUtiFIawjSJgRpBUFaQZBqCFIDQdqGIF72CAQpQpAiBB-Q5fj9YjSxyp4elsSAt-VxGQr2NuWh5I5QTAWhkiwUCXMC5TpchEnIAz9JFVulduIFUgQJeNk-D1NXgpn1kHSzPFOPCPV8Ds5JIlZKkxypJHSEz1fSS1gKVpbfJ68rqcSyJLzHvivr2FB1sxjkF6P8-uRFfebGkLwcOeeVFmx9gth-xqRI340_zj_Eo-CT743Pp_GsT05bkq9_UCGtT55XUIhBl2OATmQq3xcxdx2febYD99II-e1k4tF8hq-P_3SvJ-SmCX_inuFT0t1t9-oZWNG75LTE-U-VBtGC
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+of+incompressible+isotropic+hyperelastic+material+behavior+using+spline+interpolations+of+tension-compression+test+data&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=SUSSMAN%2C+Theodore&rft.au=BATHE%2C+Klaus-J%C3%BCrgen&rft.date=2009&rft.pub=Wiley&rft.issn=1069-8299&rft.volume=25&rft.issue=1&rft.spage=53&rft.epage=63&rft_id=info:doi/10.1002%2Fcnm.1105&rft.externalDBID=n%2Fa&rft.externalDocID=20948106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon