The burden of pathogenic variants in clinically actionable genes in a founder population

Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and genetic drift. Using exome sequencing (ES), we quantified the load of pathogenic variants that may be clinically actionable in 6136 apparently hea...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of medical genetics. Part A Vol. 185; no. 11; pp. 3476 - 3484
Main Authors Lynch, Megan T., Maloney, Kristin A., Pollin, Toni I., Streeten, Elizabeth A., Xu, Huichun, Shuldiner, Alan R., Van Hout, Cristopher V., Gonzaga‐Jauregui, Claudia, Mitchell, Braxton D.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1552-4825
1552-4833
1552-4833
DOI10.1002/ajmg.a.62472

Cover

Abstract Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and genetic drift. Using exome sequencing (ES), we quantified the load of pathogenic variants that may be clinically actionable in 6136 apparently healthy adults living in the Lancaster, PA Old Order Amish settlement. We focused on variants in 78 genes deemed clinically actionable by the American College of Medical Genetics and Genomics (ACMG) or Geisinger's MyCode Health Initiative. ES revealed 3191 total variants among these genes including 480 nonsynonymous variants. After quality control and filtering, we applied the ACMG/AMP guidelines for variant interpretation and classified seven variants, across seven genes, as either pathogenic or likely pathogenic. Through genetic drift, all seven variants, are highly enriched in the Amish compared to nonfounder populations. In total, 14.7% of Lancaster Amish individuals carry at least one of these variants, largely explained by the 13% who harbor a copy of a single variant in APOB. Other studies report combined frequencies of pathogenic/likely pathogenic (P/LP) variants in actionable genes between 2.0% and 6.2% in outbred populations. The Amish population harbors fewer actionable variants compared to similarly characterized nonfounder populations but have a higher frequency of each variant identified, offering opportunities for efficient and cost‐effective targeted precision medicine.
AbstractList Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and genetic drift. Using exome sequencing (ES), we quantified the load of pathogenic variants that may be clinically actionable in 6136 apparently healthy adults living in the Lancaster, PA Old Order Amish settlement. We focused on variants in 78 genes deemed clinically actionable by the American College of Medical Genetics and Genomics (ACMG) or Geisinger's MyCode Health Initiative. ES revealed 3191 total variants among these genes including 480 nonsynonymous variants. After quality control and filtering, we applied the ACMG/AMP guidelines for variant interpretation and classified seven variants, across seven genes, as either pathogenic or likely pathogenic. Through genetic drift, all seven variants, are highly enriched in the Amish compared to nonfounder populations. In total, 14.7% of Lancaster Amish individuals carry at least one of these variants, largely explained by the 13% who harbor a copy of a single variant in APOB. Other studies report combined frequencies of pathogenic/likely pathogenic (P/LP) variants in actionable genes between 2.0% and 6.2% in outbred populations. The Amish population harbors fewer actionable variants compared to similarly characterized nonfounder populations but have a higher frequency of each variant identified, offering opportunities for efficient and cost-effective targeted precision medicine.
Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and genetic drift. Using exome sequencing (ES), we quantified the load of pathogenic variants that may be clinically actionable in 6136 apparently healthy adults living in the Lancaster, PA Old Order Amish settlement. We focused on variants in 78 genes deemed clinically actionable by the American College of Medical Genetics and Genomics (ACMG) or Geisinger's MyCode Health Initiative. ES revealed 3191 total variants among these genes including 480 nonsynonymous variants. After quality control and filtering, we applied the ACMG/AMP guidelines for variant interpretation and classified seven variants, across seven genes, as either pathogenic or likely pathogenic. Through genetic drift, all seven variants, are highly enriched in the Amish compared to nonfounder populations. In total, 14.7% of Lancaster Amish individuals carry at least one of these variants, largely explained by the 13% who harbor a copy of a single variant in APOB. Other studies report combined frequencies of pathogenic/likely pathogenic (P/LP) variants in actionable genes between 2.0% and 6.2% in outbred populations. The Amish population harbors fewer actionable variants compared to similarly characterized nonfounder populations but have a higher frequency of each variant identified, offering opportunities for efficient and cost-effective targeted precision medicine.Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and genetic drift. Using exome sequencing (ES), we quantified the load of pathogenic variants that may be clinically actionable in 6136 apparently healthy adults living in the Lancaster, PA Old Order Amish settlement. We focused on variants in 78 genes deemed clinically actionable by the American College of Medical Genetics and Genomics (ACMG) or Geisinger's MyCode Health Initiative. ES revealed 3191 total variants among these genes including 480 nonsynonymous variants. After quality control and filtering, we applied the ACMG/AMP guidelines for variant interpretation and classified seven variants, across seven genes, as either pathogenic or likely pathogenic. Through genetic drift, all seven variants, are highly enriched in the Amish compared to nonfounder populations. In total, 14.7% of Lancaster Amish individuals carry at least one of these variants, largely explained by the 13% who harbor a copy of a single variant in APOB. Other studies report combined frequencies of pathogenic/likely pathogenic (P/LP) variants in actionable genes between 2.0% and 6.2% in outbred populations. The Amish population harbors fewer actionable variants compared to similarly characterized nonfounder populations but have a higher frequency of each variant identified, offering opportunities for efficient and cost-effective targeted precision medicine.
Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and genetic drift. Using exome sequencing (ES), we quantified the load of pathogenic variants that may be clinically actionable in 6136 apparently healthy adults living in the Lancaster, PA Old Order Amish settlement. We focused on variants in 78 genes deemed clinically actionable by the American College of Medical Genetics and Genomics (ACMG) or Geisinger's MyCode Health Initiative. ES revealed 3191 total variants among these genes including 480 nonsynonymous variants. After quality control and filtering, we applied the ACMG/AMP guidelines for variant interpretation and classified seven variants, across seven genes, as either pathogenic or likely pathogenic. Through genetic drift, all seven variants, are highly enriched in the Amish compared to nonfounder populations. In total, 14.7% of Lancaster Amish individuals carry at least one of these variants, largely explained by the 13% who harbor a copy of a single variant in APOB . Other studies report combined frequencies of pathogenic/likely pathogenic (P/LP) variants in actionable genes between 2.0% and 6.2% in outbred populations. The Amish population harbors fewer actionable variants compared to similarly characterized nonfounder populations but have a higher frequency of each variant identified, offering opportunities for efficient and cost‐effective targeted precision medicine.
Author Lynch, Megan T.
Maloney, Kristin A.
Mitchell, Braxton D.
Streeten, Elizabeth A.
Van Hout, Cristopher V.
Shuldiner, Alan R.
Gonzaga‐Jauregui, Claudia
Pollin, Toni I.
Xu, Huichun
AuthorAffiliation Regeneron Genetics Center LLC, Tarrytown, New York, USA
AuthorAffiliation_xml – name: Regeneron Genetics Center LLC, Tarrytown, New York, USA
Author_xml – sequence: 1
  givenname: Megan T.
  orcidid: 0000-0003-4805-9610
  surname: Lynch
  fullname: Lynch, Megan T.
  email: mlynch@som.umaryland.edu
  organization: University of Maryland School of Medicine
– sequence: 2
  givenname: Kristin A.
  surname: Maloney
  fullname: Maloney, Kristin A.
  organization: University of Maryland School of Medicine
– sequence: 3
  givenname: Toni I.
  surname: Pollin
  fullname: Pollin, Toni I.
  organization: University of Maryland School of Medicine
– sequence: 4
  givenname: Elizabeth A.
  surname: Streeten
  fullname: Streeten, Elizabeth A.
  organization: University of Maryland School of Medicine
– sequence: 5
  givenname: Huichun
  surname: Xu
  fullname: Xu, Huichun
  organization: University of Maryland School of Medicine
– sequence: 7
  givenname: Alan R.
  surname: Shuldiner
  fullname: Shuldiner, Alan R.
  organization: Regeneron Genetics Center LLC
– sequence: 8
  givenname: Cristopher V.
  surname: Van Hout
  fullname: Van Hout, Cristopher V.
  organization: Regeneron Genetics Center LLC
– sequence: 9
  givenname: Claudia
  surname: Gonzaga‐Jauregui
  fullname: Gonzaga‐Jauregui, Claudia
  organization: Regeneron Genetics Center LLC
– sequence: 10
  givenname: Braxton D.
  surname: Mitchell
  fullname: Mitchell, Braxton D.
  organization: Baltimore Veterans Administration Medical Center Geriatrics Research and Education Clinical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34467620$$D View this record in MEDLINE/PubMed
BookMark eNp90U1vGyEQBmAUpcr3recKqZceapflY3d9tKI2bZUol1TKDc2yQ4KFYQu7qfzvi-0kh0jtCQTPO4KZU3IYYkBC3ldsXjHGv8Bq_TCHec1lww_ISaUUn8lWiMPXPVfH5DTnFWOCqaY-IsdCyrqpOTsh93ePSLsp9RhotHSA8TE-YHCGPkFyEMZMXaDGu3IE3m8omNHFAJ1HWhzuroHaOIUeEx3iMHnYinPyzoLPePG8npFf377eXX6fXd9e_bhcXs-MqCWfqZ41KG1v25YtOgDsOZNgRNNCx7BDKZpCVNObdqEaI4VVFTedZVVbMsaKM_JpX3dI8feEedRrlw16DwHjlDVXdWkA56Iq9OMbuopTCuV1RbWct0LxRVEfntXUrbHXQ3JrSBv90rMC-B6YFHNOaLVx4-7PYwLndcX0djB6OxgNejeYEvr8JvRS9x9c7vkf53HzX6uXP2-ulvvYX-W1oGY
CitedBy_id crossref_primary_10_1111_ahg_12586
crossref_primary_10_1007_s12041_023_01444_8
crossref_primary_10_1016_j_ajhg_2025_02_018
crossref_primary_10_3390_genes14040937
crossref_primary_10_1186_s13023_024_03056_6
Cites_doi 10.1038/s41436-019-0502-5
10.1186/1471-2350-11-68
10.1002/ajmg.c.31393
10.1002/humu.24152
10.1007/s12687-017-0318-4
10.1002/ajmg.a.31981
10.1038/gim.2017.218
10.1016/j.ymgme.2019.01.013
10.1002/humu.23626
10.1126/science.aaf6814
10.1002/ajmg.c.20002
10.1101/721704
10.1016/j.ajhg.2014.04.009
10.1038/gim.2013.73
10.1186/bcr36
10.1038/s41586-020-2853-0
10.1016/j.ppedcard.2011.02.011
10.1038/gim.2015.187
10.1038/gim.2015.148
10.1038/s41436‐021‐01125‐w
10.2337/db17-0173
10.1016/j.ymgme.2020.09.007
10.1001/archinternmed.2010.384
10.1146/annurev-genom-091212-153506
10.1161/CIRCGEN.120.003133
10.1007/978-3-662-46306-2_10
10.1016/j.ajpath.2020.01.014
10.1016/j.jmoldx.2019.03.004
10.1002/humu.23636
10.1371/journal.pone.0135193
10.1016/j.ymgme.2020.01.006
10.1093/hmg/ddy233
10.2337/db19-0447
10.1002/humu.23630
10.1186/s13073-019-0690-2
10.1038/gim.2016.190
10.1101/gr.183483.114
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
CorporateAuthor Regeneron Genetics Center
CorporateAuthor_xml – name: Regeneron Genetics Center
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/ajmg.a.62472
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Genetics Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1552-4833
EndPage 3484
ExternalDocumentID 34467620
10_1002_ajmg_a_62472
AJMGA62472
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: University of Maryland School of Medicine Program for Personalized and Genomic Medicine
– fundername: Regeneron Pharmaceuticals
GroupedDBID ---
.55
.GA
.Y3
05W
10A
1L6
1OC
23M
31~
33P
3O-
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BDRZF
BFHJK
BRXPI
BY8
C45
CO8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
IX1
JPC
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
OVD
P2W
P4D
QB0
QRW
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
WIH
WIK
WJL
WQJ
WRC
X7M
XG1
XV2
0R~
AAYXX
ABJNI
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QP
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3642-5d07e4fdf8809baaed204ac378ab0ebe4375d057dc8957c43f512cbf018df8cf3
IEDL.DBID DR2
ISSN 1552-4825
1552-4833
IngestDate Thu Sep 04 21:06:41 EDT 2025
Wed Aug 13 07:27:09 EDT 2025
Thu Apr 03 07:01:59 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Tue Jul 01 00:45:34 EDT 2025
Wed Jan 22 16:29:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords genomic medicine
exome sequencing
secondary findings
genetic testing
founder populations
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3642-5d07e4fdf8809baaed204ac378ab0ebe4375d057dc8957c43f512cbf018df8cf3
Notes Funding information
Regeneron Pharmaceuticals; University of Maryland School of Medicine Program for Personalized and Genomic Medicine
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4805-9610
PMID 34467620
PQID 2582283529
PQPubID 2028748
PageCount 9
ParticipantIDs proquest_miscellaneous_2568252231
proquest_journals_2582283529
pubmed_primary_34467620
crossref_citationtrail_10_1002_ajmg_a_62472
crossref_primary_10_1002_ajmg_a_62472
wiley_primary_10_1002_ajmg_a_62472_AJMGA62472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle American journal of medical genetics. Part A
PublicationTitleAlternate Am J Med Genet A
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 11
2017; 8
2020; 42
2014; 166C
2017; 66
2019; 12
2015; 10
2019; 126
2011; 31
2003; 121C
2006
2020; 129
2000; 2
2020; 13
2020; 586
2016; 18
2018; 20
2018; 27
2018; 39
2015; 25
2020; 190
2013; 15
2013; 14
2020; 131
2019; 21
2016; 354
2019
2020; 69
2017; 19
2020; 23
2015
2010; 170
2007; 143A
2014; 94
1988
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 126
  start-page: 475
  year: 2019
  end-page: 488
  article-title: Recessive GM3 synthase deficiency: Natural history, biochemistry, and therapeutic frontier
  publication-title: Molecular Genetics and Metabolism
– volume: 94
  start-page: 818
  year: 2014
  end-page: 826
  article-title: Return of genomic results to research participants: The floor, the ceiling, and the choices in between
  publication-title: American Journal of Human Genetics
– volume: 69
  start-page: 249
  year: 2020
  end-page: 258
  article-title: Clinical and molecular prevalence of lipodystrophy in an unascertained large clinical care cohort
  publication-title: Diabetes
– volume: 14
  start-page: 557
  year: 2013
  end-page: 577
  article-title: Return of individual research results and incidental findings: Facing the challenges of translational science
  publication-title: Annual Review of Genomics and Human Genetics
– volume: 129
  start-page: 193
  year: 2020
  end-page: 206
  article-title: Branched‐chain α‐ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes
  publication-title: Molecular Genetics and Metabolism
– volume: 10
  year: 2015
  article-title: Identification of medically actionable secondary findings in the 1000 genomes
  publication-title: PLoS One
– volume: 18
  start-page: 696
  year: 2016
  end-page: 704
  article-title: Clinical application of whole‐exome sequencing across clinical indications
  publication-title: Genetics in Medicine
– volume: 18
  start-page: 906
  year: 2016
  end-page: 913
  article-title: The Geisinger MyCode community health initiative: An electronic health record‐linked biobank for precision medicine research
  publication-title: Genetics in Medicine
– volume: 170
  start-page: 1850
  year: 2010
  end-page: 1855
  article-title: Familial defective apolipoprotein B‐100 and increased low‐density lipoprotein cholesterol and coronary artery calcification in the old order amish
  publication-title: Archives of Internal Medicine
– volume: 31
  start-page: 129
  year: 2011
  end-page: 134
  article-title: Hypertrophic cardiomyopathy in the Amish community—What we may learn from it
  publication-title: Progress in Pediatric Cardiology
– volume: 11
  start-page: 68
  year: 2010
  article-title: PedHunter 2.0 and its usage to characterize the founder structure of the old order Amish of Lancaster County
  publication-title: BMC Medical Genetics
– volume: 354
  start-page: aaf6814‐1
  issue: 6319
  year: 2016
  end-page: aaf6814‐10
  article-title: Distribution and clinical impact of functional variants in 50,726 whole‐exome sequences from the DiscovEHR study
  publication-title: Science
– volume: 12
  start-page: 3
  year: 2019
  article-title: Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework
  publication-title: Genome Medicine
– volume: 42
  start-page: 223
  issue: 3
  year: 2020
  end-page: 236
  article-title: Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants
  publication-title: Human Mutation
– volume: 20
  start-page: 351
  year: 2018
  end-page: 359
  article-title: Adaptation and validation of the ACMG/AMP variant classification framework for MYH7‐associated inherited cardiomyopathies: Recommendations by ClinGen's inherited cardiomyopathy expert panel
  publication-title: Genetics in Medicine
– volume: 39
  start-page: 1581
  year: 2018
  end-page: 1592
  article-title: Gene‐specific criteria for PTEN variant curation: Recommendations from the ClinGen PTEN expert panel
  publication-title: Human Mutation
– volume: 39
  start-page: 1593
  year: 2018
  end-page: 1613
  article-title: Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss
  publication-title: Human Mutation
– volume: 21
  start-page: 687
  year: 2019
  end-page: 694
  article-title: Development of a novel next‐generation sequencing assay for carrier screening in old order Amish and Mennonite populations of Pennsylvania
  publication-title: The Journal of Molecular Diagnostics
– volume: 19
  start-page: 249
  year: 2017
  end-page: 255
  article-title: Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): A policy statement of the American College of Medical Genetics and Genomics
  publication-title: Genetics in Medicine
– volume: 586
  start-page: 749
  year: 2020
  end-page: 756
  article-title: Exome sequencing and characterization of 49,960 individuals in the UKbiobank
  publication-title: Nature
– volume: 27
  start-page: 3272
  year: 2018
  end-page: 3282
  article-title: TNNT1 nemaline myopathy: Natural history and therapeutic frontier
  publication-title: Human Molecular Genetics
– start-page: 141
  year: 2015
  end-page: 153
– volume: 39
  start-page: 1517
  year: 2018
  end-page: 1524
  article-title: Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion
  publication-title: Human Mutation
– volume: 21
  start-page: 1467
  year: 2019
  end-page: 1468
  article-title: The use of ACMG secondary findings recommendations for general population screening: A policy statement of the American College of Medical Genetics and Genomics (ACMG)
  publication-title: Genetics in Medicine
– volume: 13
  year: 2020
  article-title: KCNQ1 and long QT syndrome in 1/45 Amish: The road from identification to implementation of culturally appropriate precision medicine
  publication-title: Circulation: Genomic and Precision Medicine
– year: 1988
– year: 2006
– volume: 190
  start-page: 918
  year: 2020
  end-page: 933
  article-title: Return of individual research results: A guide for biomedical researchers utilizing human biospecimens
  publication-title: The American Journal of Pathology
– volume: 25
  start-page: 305
  year: 2015
  end-page: 315
  article-title: Actionable exomic incidental findings in 6503 participants: Challenges of variant classification
  publication-title: Genome Research
– volume: 2
  start-page: 77
  year: 2000
  end-page: 81
  article-title: Founder populations and their uses for breast cancer genetics
  publication-title: Breast Cancer Research
– volume: 8
  start-page: 319
  year: 2017
  end-page: 326
  article-title: Genetics in an isolated population like Finland: A different basis for genomic medicine?
  publication-title: Journal of Community Genetics
– volume: 66
  start-page: 2054
  year: 2017
  end-page: 2058
  article-title: Familial hypercholesterolemia and type 2 diabetes in the old order Amish
  publication-title: Diabetes
– volume: 166C
  start-page: 105
  year: 2014
  end-page: 111
  article-title: Return of results: Ethical and legal distinctions between research and clinical care
  publication-title: American Journal of Medical Genetics. Part C, Seminars in Medical Genetics
– volume: 23
  start-page: 1288
  year: 2020
  end-page: 1295
  article-title: Variant curation expert panel recommendations for RYR1 pathogenicity assertions in malignant hyperthermia susceptibility
  publication-title: Genetics
– year: 2019
  article-title: Genetic and functional evidence relates a missense variant in B4GALT1 to lower LDL‐C and fibrinogen
  publication-title: bioRxiv
– volume: 121C
  start-page: 5
  year: 2003
  end-page: 17
  article-title: Pediatric medicine and the genetic disorders of the Amish and Mennonite people of Pennsylvania
  publication-title: American Journal of Medical Genetics
– volume: 131
  start-page: 325
  year: 2020
  end-page: 340
  article-title: Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades
  publication-title: Molecular Genetics and Metabolism
– volume: 143A
  start-page: 2662
  year: 2007
  end-page: 2667
  article-title: Homozygosity for a novel splice site mutation in the cardiac myosin‐binding protein C gene causes severe neonatal hypertrophic cardiomyopathy
  publication-title: American Journal of Medical Genetics. Part A
– volume: 15
  start-page: 565
  year: 2013
  end-page: 574
  article-title: ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing
  publication-title: Genetics in Medicine
– ident: e_1_2_10_3_1
  doi: 10.1038/s41436-019-0502-5
– ident: e_1_2_10_21_1
  doi: 10.1186/1471-2350-11-68
– ident: e_1_2_10_7_1
  doi: 10.1002/ajmg.c.31393
– ident: e_1_2_10_11_1
  doi: 10.1002/humu.24152
– ident: e_1_2_10_18_1
  doi: 10.1007/s12687-017-0318-4
– ident: e_1_2_10_39_1
  doi: 10.1002/ajmg.a.31981
– ident: e_1_2_10_20_1
  doi: 10.1038/gim.2017.218
– ident: e_1_2_10_5_1
  doi: 10.1016/j.ymgme.2019.01.013
– ident: e_1_2_10_2_1
  doi: 10.1002/humu.23626
– ident: e_1_2_10_10_1
  doi: 10.1126/science.aaf6814
– ident: e_1_2_10_35_1
– ident: e_1_2_10_25_1
  doi: 10.1002/ajmg.c.20002
– ident: e_1_2_10_24_1
  doi: 10.1101/721704
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ajhg.2014.04.009
– ident: e_1_2_10_14_1
  doi: 10.1038/gim.2013.73
– ident: e_1_2_10_26_1
  doi: 10.1186/bcr36
– ident: e_1_2_10_36_1
  doi: 10.1038/s41586-020-2853-0
– ident: e_1_2_10_37_1
  doi: 10.1016/j.ppedcard.2011.02.011
– ident: e_1_2_10_8_1
  doi: 10.1038/gim.2015.187
– ident: e_1_2_10_29_1
  doi: 10.1038/gim.2015.148
– ident: e_1_2_10_17_1
  doi: 10.1038/s41436‐021‐01125‐w
– ident: e_1_2_10_40_1
  doi: 10.2337/db17-0173
– ident: e_1_2_10_33_1
  doi: 10.1016/j.ymgme.2020.09.007
– ident: e_1_2_10_30_1
  doi: 10.1001/archinternmed.2010.384
– ident: e_1_2_10_38_1
  doi: 10.1146/annurev-genom-091212-153506
– ident: e_1_2_10_15_1
– ident: e_1_2_10_34_1
  doi: 10.1161/CIRCGEN.120.003133
– ident: e_1_2_10_23_1
  doi: 10.1007/978-3-662-46306-2_10
– ident: e_1_2_10_31_1
  doi: 10.1016/j.ajpath.2020.01.014
– ident: e_1_2_10_9_1
  doi: 10.1016/j.jmoldx.2019.03.004
– ident: e_1_2_10_22_1
  doi: 10.1002/humu.23636
– ident: e_1_2_10_27_1
  doi: 10.1371/journal.pone.0135193
– ident: e_1_2_10_32_1
  doi: 10.1016/j.ymgme.2020.01.006
– ident: e_1_2_10_12_1
  doi: 10.1093/hmg/ddy233
– ident: e_1_2_10_13_1
  doi: 10.2337/db19-0447
– ident: e_1_2_10_28_1
  doi: 10.1002/humu.23630
– ident: e_1_2_10_6_1
  doi: 10.1186/s13073-019-0690-2
– ident: e_1_2_10_19_1
  doi: 10.1038/gim.2016.190
– ident: e_1_2_10_4_1
  doi: 10.1101/gr.183483.114
SSID ssj0030576
Score 2.3453407
Snippet Founder populations may be enriched with certain genetic variants of high clinical impact compared to nonfounder populations due to bottleneck events and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3476
SubjectTerms Adult
Amish - genetics
Exome - genetics
exome sequencing
Female
founder populations
Genetic Diseases, Inborn - diagnosis
Genetic Diseases, Inborn - epidemiology
Genetic Diseases, Inborn - genetics
Genetic diversity
Genetic drift
Genetic Predisposition to Disease
Genetic Testing
Genetic Variation - genetics
genomic medicine
Genomics
Humans
Male
Middle Aged
Precision Medicine
Quality control
secondary findings
Whole Exome Sequencing
Title The burden of pathogenic variants in clinically actionable genes in a founder population
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajmg.a.62472
https://www.ncbi.nlm.nih.gov/pubmed/34467620
https://www.proquest.com/docview/2582283529
https://www.proquest.com/docview/2568252231
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-K0OKLba3aWFu2oE-SM5fdJJvHo60V4XwQhXtb9lP8aE70rqB_fWc2uVQrFdq3wM6SZOdjZ3ZnfgOw7QrjM-mq1HDvU2FknUovbep06bJK57x2dKA_PioPTsXhpJh0B25UC9PiQ_QHbqQZ0V6Tgmtzu_cbNFRf_Dgb6EGZi4pM8JCXBJ3_9bhHj0JJjr3lCGQsFRgJdXnvOH3v4eTHO9ITN_Ox1xq3nf3XoBYf3GabXA7mMzOw939gOf7_H72Blc4jZaNWhN7CC9-swsu2R-XdKrwad7fv72CCMsVMrHtg08ComfEU5e_csp8YcVNCDTtv2KLW8uqOtUUTVJzFzsim0rBmgTo5-Rt23fcOW4PT_W8nXw7SrjNDanGZMXpFPnoRXEDtr43W3uWZ0JZXUpsMxULwCkmKyllZF5UVPKBfYU3IhhLn2MDXYamZNv49sGGQaG-NsaEWIvdV7ehCXTpr6kxaXiSwu-COsh1sOXXPuFIt4HKuaNmUVnHZEtjpqa9buI6_0G0tGK06pb1VeSEJDKjI6wQ-98OobnSHohs_nRNNiZKEPtUwgY1WQPoXcQytcW_JEkgjm5_9AjU6HH8fxcfNf6T_AMs5ZdbEisgtWJrdzP1HdI1m5lNUgF_lhgns
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIh4XHgVKoICR4IS8zcbOxjmuqpaldHtArbQ342dVWrJV2UUqv54ZJxsoCCTELZLHSuJ5eMbj-QbglS9tyJWvuBUhcGlVzVVQjnsz8nllClF7OtCfHowmR3JvVs66PqdUC9PiQ_QHbqQZyV6TgtOB9NYP1FDz6fPxwAxGhazQBl9PKTryij70-FEoy6m7HMGMcYmxUHfzHedv_Tz76p70m6N51W9NG8_uXfi4-uT2vsnpYLmwA_ftFzTH__ine3Cnc0rZuJWi-3AtNOtwo21TebkON6ddAv4BzFCsmE2lD2weGfUznqMInjj2FYNuulPDThq2Krc8u2Rt3QTVZ7FjMqs0bFikZk7hgp337cMewtHuzuH2hHfNGbgTGLPwElkZZPQRDUBtjQm-yKVxolLG5igZUlRIUlbeqbqsnBQRXQtnYz5UOMdF8QjWmnkTHgMbRoUm11oXaymLUNWecurKO1vnyokygzcr9mjXIZdTA40z3WIuF5qWTRudli2D1z31eYvY8Qe6zRWndae3X3RRKsIDKos6g5f9MGocpVFME-ZLohmhKKFbNcxgo5WQ_kUCo2vcXvIMeOLzX79Aj_emb8fp8ck_0r-AW5PD6b7ef3fw_incLuiiTSqQ3IS1xcUyPENPaWGfJ234Dn8iDgo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-hTUy88DFghA0wEjwhd2niJM5jBZQx6IQQk_pm-XMabGm1tZO2v547Jw0MBBK8RfJZSXyftu9-B_DCFcan0lXc5N5zYWTNpZeWO126tNJZXjs60J8clHuHYn9aTLsDN6qFafEh-gM30oxor0nB5y7s_gAN1V9PjwZ6UGaiQhO8Lkr0lBQUfe7ho1CUY3M5QhnjArdCXeI7zt_9efZ1l_RbnHk9bI1-Z3wH1OqL23STb4Plwgzs1S9gjv__S3fhdheSslErQ_fghm824WbbpPJyEzYm3fX7fZiiUDETCx_YLDDqZjxDATy27AK33JRRw44btiq2PLlkbdUEVWexIzKqNKxZoFZO_ozN--ZhD-Bw_PbL6z3etWbgNscdCy-QkV4EF1D9a6O1d1kqtM0rqU2KciHyCkmKyllZF5UVecDAwpqQDiXOsSF_CGvNrPGPgA2DRINrjA21EJmvakc36tJZU6fS5kUCr1bcUbbDLaf2GSeqRVzOFC2b0iouWwIve-p5i9fxB7qdFaNVp7XnKiskoQEVWZ3A834Y9Y0uUXTjZ0uiKVGSMKgaJrDVCkj_ohz31uhc0gR4ZPNfv0CN9ifvRvHx8T_SP4ONT2_G6uP7gw_bcCujLJtYHbkDa4uzpX-CYdLCPI268B1OjQy5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+burden+of+pathogenic+variants+in+clinically+actionable+genes+in+a+founder+population&rft.jtitle=American+journal+of+medical+genetics.+Part+A&rft.au=Lynch%2C+Megan+T&rft.au=Maloney%2C+Kristin+A&rft.au=Pollin%2C+Toni+I&rft.au=Streeten%2C+Elizabeth+A&rft.date=2021-11-01&rft.issn=1552-4833&rft.eissn=1552-4833&rft.volume=185&rft.issue=11&rft.spage=3476&rft_id=info:doi/10.1002%2Fajmg.a.62472&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4825&client=summon