Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species

Interaction between vibration and rotation in light molecules is responsible for many spectroscopic corrections to the fundamental rigid‐rotor model. In this context, we discuss the interpretation of the coherent anti‐Stokes Raman scattering (CARS) intensity that is recurrently considered in combust...

Full description

Saved in:
Bibliographic Details
Published inJournal of Raman spectroscopy Vol. 43; no. 5; pp. 595 - 598
Main Authors Marrocco, Michele, Magnotti, Gaetano, Cutler, Andrew D.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.05.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0377-0486
1097-4555
DOI10.1002/jrs.3131

Cover

Abstract Interaction between vibration and rotation in light molecules is responsible for many spectroscopic corrections to the fundamental rigid‐rotor model. In this context, we discuss the interpretation of the coherent anti‐Stokes Raman scattering (CARS) intensity that is recurrently considered in combustion science to measure high temperatures. Intensity changes are quantified by the Herman–Wallis (HW) factor and, unlike other recent works appearing on the subject where the focus is on thermometry, the present work examines the consequences for the quantitative detection of chemical species. Indeed, the diagnostic potential of CARS spectra is not limited to gas‐phase thermometry in that multiple species detection is also possible. To this end, we describe an experiment based on a conventional set‐up designed according to the principles of dual‐pump CARS that, in our case, allows for the simultaneous measurements of temperatures and mole fractions of nitrogen and oxygen observed in a reference flame operated at equivalence ratios below or near stoichiometry. Two HW factors are compared with common reference to the experimental spectra and the results show that, beyond the confirmation of thermometric corrections of about 0.5% for nitrogen CARS, the choice between different vibrational HW models significantly affects the measurement of mole fractions. The effect reaches 1% for nitrogen at stoichiometric conditions, whereas the sensitivity of oxygen to HW models reaches 2.5%. Copyright © 2012 John Wiley & Sons, Ltd. Dual‐pump CARS spectra of nitrogen and oxygen are used to verify the effect of vibration‐rotation coupling (quantified through the Herman–Wallis factor) on diagnostic predictions of temperature and mole fractions in flames. Beyond the known thermometric correction of about 0.5%, mole fractions are subject to variations of about 1% for nitrogen at stoichiometric conditions, whereas the sensitivity of oxygen to vibration‐rotation coupling can reach 2.5%.
AbstractList Interaction between vibration and rotation in light molecules is responsible for many spectroscopic corrections to the fundamental rigid-rotor model. In this context, we discuss the interpretation of the coherent anti-Stokes Raman scattering (CARS) intensity that is recurrently considered in combustion science to measure high temperatures. Intensity changes are quantified by the Herman-Wallis (HW) factor and, unlike other recent works appearing on the subject where the focus is on thermometry, the present work examines the consequences for the quantitative detection of chemical species. Indeed, the diagnostic potential of CARS spectra is not limited to gas-phase thermometry in that multiple species detection is also possible. To this end, we describe an experiment based on a conventional set-up designed according to the principles of dual-pump CARS that, in our case, allows for the simultaneous measurements of temperatures and mole fractions of nitrogen and oxygen observed in a reference flame operated at equivalence ratios below or near stoichiometry. Two HW factors are compared with common reference to the experimental spectra and the results show that, beyond the confirmation of thermometric corrections of about 0.5% for nitrogen CARS, the choice between different vibrational HW models significantly affects the measurement of mole fractions. The effect reaches 1% for nitrogen at stoichiometric conditions, whereas the sensitivity of oxygen to HW models reaches 2.5%. Copyright copyright 2012 John Wiley & Sons, Ltd. Dual-pump CARS spectra of nitrogen and oxygen are used to verify the effect of vibration-rotation coupling (quantified through the Herman-Wallis factor) on diagnostic predictions of temperature and mole fractions in flames. Beyond the known thermometric correction of about 0.5%, mole fractions are subject to variations of about 1% for nitrogen at stoichiometric conditions, whereas the sensitivity of oxygen to vibration-rotation coupling can reach 2.5%.
Interaction between vibration and rotation in light molecules is responsible for many spectroscopic corrections to the fundamental rigid-rotor model. In this context, we discuss the interpretation of the coherent anti-Stokes Raman scattering (CARS) intensity that is recurrently considered in combustion science to measure high temperatures. Intensity changes are quantified by the Herman-Wallis (HW) factor and, unlike other recent works appearing on the subject where the focus is on thermometry, the present work examines the consequences for the quantitative detection of chemical species. Indeed, the diagnostic potential of CARS spectra is not limited to gas-phase thermometry in that multiple species detection is also possible. To this end, we describe an experiment based on a conventional set-up designed according to the principles of dual-pump CARS that, in our case, allows for the simultaneous measurements of temperatures and mole fractions of nitrogen and oxygen observed in a reference flame operated at equivalence ratios below or near stoichiometry. Two HW factors are compared with common reference to the experimental spectra and the results show that, beyond the confirmation of thermometric corrections of about 0.5% for nitrogen CARS, the choice between different vibrational HW models significantly affects the measurement of mole fractions. The effect reaches 1% for nitrogen at stoichiometric conditions, whereas the sensitivity of oxygen to HW models reaches 2.5%. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Interaction between vibration and rotation in light molecules is responsible for many spectroscopic corrections to the fundamental rigid‐rotor model. In this context, we discuss the interpretation of the coherent anti‐Stokes Raman scattering (CARS) intensity that is recurrently considered in combustion science to measure high temperatures. Intensity changes are quantified by the Herman–Wallis (HW) factor and, unlike other recent works appearing on the subject where the focus is on thermometry, the present work examines the consequences for the quantitative detection of chemical species. Indeed, the diagnostic potential of CARS spectra is not limited to gas‐phase thermometry in that multiple species detection is also possible. To this end, we describe an experiment based on a conventional set‐up designed according to the principles of dual‐pump CARS that, in our case, allows for the simultaneous measurements of temperatures and mole fractions of nitrogen and oxygen observed in a reference flame operated at equivalence ratios below or near stoichiometry. Two HW factors are compared with common reference to the experimental spectra and the results show that, beyond the confirmation of thermometric corrections of about 0.5% for nitrogen CARS, the choice between different vibrational HW models significantly affects the measurement of mole fractions. The effect reaches 1% for nitrogen at stoichiometric conditions, whereas the sensitivity of oxygen to HW models reaches 2.5%. Copyright © 2012 John Wiley & Sons, Ltd.
Interaction between vibration and rotation in light molecules is responsible for many spectroscopic corrections to the fundamental rigid‐rotor model. In this context, we discuss the interpretation of the coherent anti‐Stokes Raman scattering (CARS) intensity that is recurrently considered in combustion science to measure high temperatures. Intensity changes are quantified by the Herman–Wallis (HW) factor and, unlike other recent works appearing on the subject where the focus is on thermometry, the present work examines the consequences for the quantitative detection of chemical species. Indeed, the diagnostic potential of CARS spectra is not limited to gas‐phase thermometry in that multiple species detection is also possible. To this end, we describe an experiment based on a conventional set‐up designed according to the principles of dual‐pump CARS that, in our case, allows for the simultaneous measurements of temperatures and mole fractions of nitrogen and oxygen observed in a reference flame operated at equivalence ratios below or near stoichiometry. Two HW factors are compared with common reference to the experimental spectra and the results show that, beyond the confirmation of thermometric corrections of about 0.5% for nitrogen CARS, the choice between different vibrational HW models significantly affects the measurement of mole fractions. The effect reaches 1% for nitrogen at stoichiometric conditions, whereas the sensitivity of oxygen to HW models reaches 2.5%. Copyright © 2012 John Wiley & Sons, Ltd. Dual‐pump CARS spectra of nitrogen and oxygen are used to verify the effect of vibration‐rotation coupling (quantified through the Herman–Wallis factor) on diagnostic predictions of temperature and mole fractions in flames. Beyond the known thermometric correction of about 0.5%, mole fractions are subject to variations of about 1% for nitrogen at stoichiometric conditions, whereas the sensitivity of oxygen to vibration‐rotation coupling can reach 2.5%.
Author Marrocco, Michele
Cutler, Andrew D.
Magnotti, Gaetano
Author_xml – sequence: 1
  givenname: Michele
  surname: Marrocco
  fullname: Marrocco, Michele
  email: michele.marrocco@enea.it, michele.marrocco@enea.it
  organization: ENEA, via Anguillarese 301, Rome, 00123, Santa Maria di Galeria, Italy
– sequence: 2
  givenname: Gaetano
  surname: Magnotti
  fullname: Magnotti, Gaetano
  organization: Mechanical and Aerospace Engineering Department, The George Washington University, 1 Old Oyster Point Road, Suite 200, VA, 23602, Newport News, USA
– sequence: 3
  givenname: Andrew D.
  surname: Cutler
  fullname: Cutler, Andrew D.
  organization: Mechanical and Aerospace Engineering Department, The George Washington University, 1 Old Oyster Point Road, Suite 200, VA, 23602, Newport News, USA
BookMark eNp10E1rFEEQBuBGIriJgj9hwIuX2fR37xzDajbGJcJGyc2mprcGep3pGbt70Px7e4lEDHoqKJ56Kd5TchLGgIS8ZnTJKOXnh5iWggn2jCwYbUwtlVInZEGFMTWVK_2CnKZ0oJQ2jWYL8vUK4wChvoO-96lyY4zosh9Dqnyo9jP09TQPU7W-2N2WTcaQfPaYqm6MRQ_tnI66yjhMGCHPESsI-ypN6Ap7SZ530Cd89XuekS-X7z-vr-rtp82H9cW2dkJLVhu34nuhJKcoEdFJALYHxg2ylWgBuoZ3quOgUWjeOK0d75q2bJRohW6ZOCNvH3KnOH6fMWU7-OSw7yHgOCfLlGSSc26aQt88oYdxjqF8VxQzkmsu1Z9AF8eUInZ2in6AeG8ZtceibSnaHosudPmEOp_h2EqO4Pt_HdQPBz98j_f_DbbXu9u_vU8Zfz56iN-sNsIoe3ezsR_l7vpm-25rN-IXTl2gTg
CODEN JRSPAF
CitedBy_id crossref_primary_10_1002_jrs_4108
crossref_primary_10_1002_jrs_5836
crossref_primary_10_1002_jrs_4417
crossref_primary_10_1002_jrs_4829
crossref_primary_10_1016_j_jqsrt_2022_108479
crossref_primary_10_1002_jrs_4861
crossref_primary_10_1364_AO_52_004779
crossref_primary_10_1016_j_proci_2024_105457
crossref_primary_10_1002_jrs_4357
Cites_doi 10.1016/S0022-4073(01)00014-0
10.1016/j.proci.2008.06.045
10.1002/jrs.2662
10.1080/00102200903463704
10.1002/jrs.2201
10.1016/j.phpro.2010.08.102
10.1364/AO.49.001305
10.1007/978-94-009-1620-3_18
10.1063/1.1742069
10.2514/1.26768
10.1002/jrs.2869
10.1016/j.pecs.2009.11.001
10.1002/jrs.2965
10.1063/1.1730279
10.1016/j.cplett.2007.05.103
10.1016/j.proci.2008.06.026
10.1088/0957-0233/22/1/015301
10.1364/OL.12.000078
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
DOI 10.1002/jrs.3131
DatabaseName Istex
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1097-4555
EndPage 598
ExternalDocumentID 3278733481
10_1002_jrs_3131
JRS3131
ark_67375_WNG_K4RJNLDL_G
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCUC
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
ID FETCH-LOGICAL-c3641-7c82d35420e4eeec4aa1da127e183baaf92f5f2a6e3629c66c2f9b5f253b36b13
IEDL.DBID DR2
ISSN 0377-0486
IngestDate Fri Jul 11 13:33:42 EDT 2025
Sun Jul 13 05:33:13 EDT 2025
Wed Oct 01 02:22:06 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Jan 22 16:24:38 EST 2025
Sun Sep 21 06:19:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3641-7c82d35420e4eeec4aa1da127e183baaf92f5f2a6e3629c66c2f9b5f253b36b13
Notes istex:6570F18228CFF1AB8897C7264B115F806ECC8CDB
This article is part of the Journal of Raman Spectroscopy special issue entitled "Development and applications of nonlinear optical spectroscopy -10th ECONOS / 30th ECW meeting in Enschede, The Netherlands" edited by Herman Offerhaus, Peter Radi, and Cees Otto.
ark:/67375/WNG-K4RJNLDL-G
ArticleID:JRS3131
This article is part of the Journal of Raman Spectroscopy special issue entitled “Development and applications of nonlinear optical spectroscopy ‐10th ECONOS / 30th ECW meeting in Enschede, The Netherlands” edited by Herman Offerhaus, Peter Radi, and Cees Otto.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1517426245
PQPubID 1016368
PageCount 4
ParticipantIDs proquest_miscellaneous_1541422279
proquest_journals_1517426245
crossref_primary_10_1002_jrs_3131
crossref_citationtrail_10_1002_jrs_3131
wiley_primary_10_1002_jrs_3131_JRS3131
istex_primary_ark_67375_WNG_K4RJNLDL_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2012
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle Journal of Raman spectroscopy
PublicationTitleAlternate J. Raman Spectrosc
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References M. Marrocco, Chem. Phys. Lett. 2007, 442, 224.
M. Marrocco, J. Raman Spectrosc. 2009, 40, 741.
K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, T. W. Grasser, Combust. Sci. Technol. 2010, 182, 941.
A. D. Cutler, G. Magnotti, in 48th AIAA Aerospace Sciences Meeting, Orlando, Fl, 2010.
R. Herman, R. F. Wallis, J. Chem. Phys. 1955, 23, 637.
M. Marrocco, J. Raman Spectrosc. 2010, 41, 870.
A. Bohlin, P.-E. Bengtsson, M. Marrocco, J. Raman Spectrosc. 2011, on-line DOI: 10.1002/jrs.2869.
R. E. Palmer, SAND89-8206, SANDIA National Labs, Livermore, CA, 1989.
S. C. Eichmann, Y. Gao, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, Phys. Procedia 2010, 5, 703.
G. Magnotti, A. D. Cutler, P. M. Danehy, in 48th AIAA Aerospace Sciences Meeting, Vol. AIAA-2010-1400, Orlando, FL, 2010.
A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Gordon and Breach Publishers, Amsterdam, 1996.
J. Kiefer, M. C. Weikl, T. Seeger, F. von Issendorff, F. Beyrau, A. Leipertz, Proc. Combust. Inst. 2009, 32, 3123.
S. A. Tedder, J. L. Wheeler, A. D. Cutler, P. M. Danehy, Appl. Opt. 2010, 49, 1305.
R. H. Tipping, J. P. Bouanich, J. Quant. Spectrosc. Radiat. Transfer 2001, 71, 99.
S. Roy, J. R. Gord, A. K. Patnaik, Prog. Energy Combust. Sci. 2010, 36, 280.
M. Marrocco, J. Raman Spectrosc. 2011, on-line DOI: 10.1002/jrs.2965.
S. A. Tedder, P. M. Danehy, G. Magnotti, A. D. Cutler, in 47th Aerospace Sciences Meeting, Vol. AIAA-2009-0524, Orlando, FL, 2009.
S. O'Byrne, P. M. Danehy, S. A. Tedder, A. D. Cutler, AIAA J. 2007, 45, 922.
T. C. James, W. Klemperer, J. Chem. Phys. 1959, 31, 130.
R. P. Lucht, Opt. Lett. 1987, 12, 78.
G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, P. M. Danehy, J Raman Spectrosc. 2012, in press.
M. Marrocco, Proc. Combust. Inst. 2009, 32, 863.
M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, R. P. Lucht, Meas. Sci. Technol. 2011, 22, 015301.
2007; 442
2001; 71
1987; 12
1959; 31
2010; 49
2009; 40
2010; 36
2009; 32
2012
2011
2010
1996
2011; 22
2010; 182
2010; 5
2007; 45
2010; 41
2009; AIAA‐2009‐0524
2010; AIAA‐2010‐1400
1955; 23
1989
e_1_2_6_10_1
Magnotti G. (e_1_2_6_22_1) 2012
e_1_2_6_9_1
Tedder S. A. (e_1_2_6_20_1) 2009
e_1_2_6_8_1
Cutler A. D. (e_1_2_6_23_1) 2010
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
Magnotti G. (e_1_2_6_21_1) 2010
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
Palmer R. E. (e_1_2_6_24_1) 1989
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – reference: M. Marrocco, J. Raman Spectrosc. 2010, 41, 870.
– reference: A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Gordon and Breach Publishers, Amsterdam, 1996.
– reference: R. Herman, R. F. Wallis, J. Chem. Phys. 1955, 23, 637.
– reference: R. P. Lucht, Opt. Lett. 1987, 12, 78.
– reference: S. O'Byrne, P. M. Danehy, S. A. Tedder, A. D. Cutler, AIAA J. 2007, 45, 922.
– reference: A. D. Cutler, G. Magnotti, in 48th AIAA Aerospace Sciences Meeting, Orlando, Fl, 2010.
– reference: R. E. Palmer, SAND89-8206, SANDIA National Labs, Livermore, CA, 1989.
– reference: M. Marrocco, Chem. Phys. Lett. 2007, 442, 224.
– reference: K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, T. W. Grasser, Combust. Sci. Technol. 2010, 182, 941.
– reference: R. H. Tipping, J. P. Bouanich, J. Quant. Spectrosc. Radiat. Transfer 2001, 71, 99.
– reference: J. Kiefer, M. C. Weikl, T. Seeger, F. von Issendorff, F. Beyrau, A. Leipertz, Proc. Combust. Inst. 2009, 32, 3123.
– reference: S. C. Eichmann, Y. Gao, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, Phys. Procedia 2010, 5, 703.
– reference: A. Bohlin, P.-E. Bengtsson, M. Marrocco, J. Raman Spectrosc. 2011, on-line DOI: 10.1002/jrs.2869.
– reference: M. Marrocco, J. Raman Spectrosc. 2011, on-line DOI: 10.1002/jrs.2965.
– reference: S. A. Tedder, J. L. Wheeler, A. D. Cutler, P. M. Danehy, Appl. Opt. 2010, 49, 1305.
– reference: G. Magnotti, A. D. Cutler, P. M. Danehy, in 48th AIAA Aerospace Sciences Meeting, Vol. AIAA-2010-1400, Orlando, FL, 2010.
– reference: M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, R. P. Lucht, Meas. Sci. Technol. 2011, 22, 015301.
– reference: M. Marrocco, J. Raman Spectrosc. 2009, 40, 741.
– reference: S. A. Tedder, P. M. Danehy, G. Magnotti, A. D. Cutler, in 47th Aerospace Sciences Meeting, Vol. AIAA-2009-0524, Orlando, FL, 2009.
– reference: G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, P. M. Danehy, J Raman Spectrosc. 2012, in press.
– reference: S. Roy, J. R. Gord, A. K. Patnaik, Prog. Energy Combust. Sci. 2010, 36, 280.
– reference: M. Marrocco, Proc. Combust. Inst. 2009, 32, 863.
– reference: T. C. James, W. Klemperer, J. Chem. Phys. 1959, 31, 130.
– volume: 182
  start-page: 941
  year: 2010
  publication-title: Combust. Sci. Technol.
– volume: 23
  start-page: 637
  year: 1955
  publication-title: J. Chem. Phys.
– volume: 41
  start-page: 870
  year: 2010
  publication-title: J. Raman Spectrosc.
– volume: 31
  start-page: 130
  year: 1959
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 863
  year: 2009
  publication-title: Proc. Combust. Inst.
– volume: 32
  start-page: 3123
  year: 2009
  publication-title: Proc. Combust. Inst.
– volume: 12
  start-page: 78
  year: 1987
  publication-title: Opt. Lett.
– volume: AIAA‐2009‐0524
  year: 2009
– year: 2012
  publication-title: J Raman Spectrosc.
– year: 1989
– year: 1996
– volume: AIAA‐2010‐1400
  year: 2010
– volume: 36
  start-page: 280
  year: 2010
  publication-title: Prog. Energy Combust. Sci.
– volume: 22
  start-page: 015301
  year: 2011
  publication-title: Meas. Sci. Technol.
– volume: 45
  start-page: 922
  year: 2007
  publication-title: AIAA J.
– volume: 40
  start-page: 741
  year: 2009
  publication-title: J. Raman Spectrosc.
– volume: 442
  start-page: 224
  year: 2007
  publication-title: Chem. Phys. Lett.
– volume: 71
  start-page: 99
  year: 2001
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 5
  start-page: 703
  year: 2010
  publication-title: Phys. Procedia
– year: 2010
– year: 2011
  publication-title: J. Raman Spectrosc.
– volume: 49
  start-page: 1305
  year: 2010
  publication-title: Appl. Opt.
– volume-title: 48th AIAA Aerospace Sciences Meeting
  year: 2010
  ident: e_1_2_6_23_1
– ident: e_1_2_6_18_1
  doi: 10.1016/S0022-4073(01)00014-0
– ident: e_1_2_6_6_1
  doi: 10.1016/j.proci.2008.06.045
– ident: e_1_2_6_8_1
  doi: 10.1002/jrs.2662
– ident: e_1_2_6_13_1
  doi: 10.1080/00102200903463704
– ident: e_1_2_6_7_1
  doi: 10.1002/jrs.2201
– ident: e_1_2_6_17_1
  doi: 10.1016/j.phpro.2010.08.102
– year: 2012
  ident: e_1_2_6_22_1
  publication-title: J Raman Spectrosc.
– ident: e_1_2_6_12_1
  doi: 10.1364/AO.49.001305
– ident: e_1_2_6_2_1
  doi: 10.1007/978-94-009-1620-3_18
– volume-title: 48th AIAA Aerospace Sciences Meeting
  year: 2010
  ident: e_1_2_6_21_1
– ident: e_1_2_6_4_1
  doi: 10.1063/1.1742069
– volume-title: 47th Aerospace Sciences Meeting
  year: 2009
  ident: e_1_2_6_20_1
– ident: e_1_2_6_16_1
  doi: 10.2514/1.26768
– volume-title: SAND89‐8206
  year: 1989
  ident: e_1_2_6_24_1
– ident: e_1_2_6_9_1
  doi: 10.1002/jrs.2869
– ident: e_1_2_6_3_1
  doi: 10.1016/j.pecs.2009.11.001
– ident: e_1_2_6_10_1
  doi: 10.1002/jrs.2965
– ident: e_1_2_6_19_1
  doi: 10.1063/1.1730279
– ident: e_1_2_6_5_1
  doi: 10.1016/j.cplett.2007.05.103
– ident: e_1_2_6_11_1
  doi: 10.1016/j.proci.2008.06.026
– ident: e_1_2_6_14_1
  doi: 10.1088/0957-0233/22/1/015301
– ident: e_1_2_6_15_1
  doi: 10.1364/OL.12.000078
SSID ssj0009961
Score 2.0374873
Snippet Interaction between vibration and rotation in light molecules is responsible for many spectroscopic corrections to the fundamental rigid‐rotor model. In this...
Interaction between vibration and rotation in light molecules is responsible for many spectroscopic corrections to the fundamental rigid-rotor model. In this...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 595
SubjectTerms Chemical speciation
coherent anti-Stokes Raman scattering
Combustion
Diagnostic systems
High temperature
Joining
laser spectroscopy
Mathematical models
Moles
Nitrogen
Raman scattering
Spectra
spectroscopic techniques
Stoichiometry
Temperature measurement
Vibration
Title Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species
URI https://api.istex.fr/ark:/67375/WNG-K4RJNLDL-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.3131
https://www.proquest.com/docview/1517426245
https://www.proquest.com/docview/1541422279
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0377-0486
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-4555
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009961
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbQJgQvbAwQHRsyEoKnbIljx83jVNiqMvWhY2ISD5Z9caRukE5NK0087Scg8Q_3S7hzko4hkBBPkZKL7PjO9pfz3XeMvabKVRAXLoqLVEWI_-PIQr-Mirj0IteQiCJE-Y6z4akcnamzNqqScmEafoiVw41mRlivaYJbV-_fkoaez2v84Qwp1Emqwgnt5JY5CmF8KJaXah0Rq1zHOxuL_e7FOzvROg3q1R2Y-StYDbvN4Qb73PWzCTK52Fsu3B58-43C8f8-ZJM9akEoP2is5jG756st9mDQ1X7bYvdDYCjUT5gb0tJd3Vz_IJf7tOZA5TxCMkTNpxWnVK6b6--XaBV8cDA54dMmJp54WjkCYpT_6qhi2KziRIPVcjhzWxWcsjxR7Ck7PXz_cTCM2roMEaSZTCINfYGalSL20nsP0tqksInQHtcHZ22Zi1KVwmYed8ccsgxEmTu8o1KXZi5Jn7G1alb554w7L51WhfMJeAngnbKg-rn2UCiROdFjbzsdGWhJy6l2xhfT0C0Lg6NnaPR67NVK8rIh6viDzJug5pWAnV9QYJtW5tP4yHyQk9H4-N2xOeqxnc4OTDuna5MQqbfIhFTY1uoxKoaOWGzlZ0uSkcGppnNsKyj9r50xo8kJXbf_VfAFe4hoTTTRljtsbTFf-l1ERAv3Mtj-T48AC7c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED8h0MRexsY2UWCbkabtKZA4dtxoT6gMutL1oYDGwyTLdhypA1LUtBLaEx9h0r4hn2Q-Jyl_tEkTT5GSi-z4fPYv57vfAbzHylUmzHQQZjEPHP4PA2XaeZCFuaWpMBHNfJTvIOmesN4pP12AT00uTMUPMXe4oWX49RoNHB3SO7esoT8mpfvjxBzqJTyeQ6vcG95yRzkg78vlxUIEyCvXMM-GdKd5895etITDenUPaN6Fq36_2V-B701PqzCTs-3ZVG-bnw9IHB_5Kc_hWY1DyW41cV7Agi1WYbnTlH9bhSc-NtSUL0F3cfUubq5_o9d9VBKDFT18PkRJRgXBbK6b61-XbmKQzu7wiIyqsHikaiUOEzv5C41Fw8YFQSasmsaZqCIjmOjpxF7Byf7n4043qEszBCZOWBQI06ZOuYyGlllrDVMqylREhXVLhFYqT2nOc6oS6zbI1CSJoXmq3R0e6zjRUfwaFotxYdeAaMu04Jm2kbHMGKu5MrydCmsyThNNW_CxUZI0NW85ls84lxXjMpVu9CSOXgu25pKXFVfHX2Q-eD3PBdTkDGPbBJffBgfykA17g_5eXx60YLOZCLI261JGyOtNE8q4a2v-2CkGT1lUYcczlGHeryZS15bX-j87I3vDI7yu_6_gO1juHn_ty_6XweEGPHXgjVbBl5uwOJ3M7BsHkKb6rTeEPyyTD9M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJj5e-BggCgOMhOApW-L4o3mcOrrSVRXqmJjEg2U7jlS2pVXTSoin_QlI_If7S7hzko4hkBBPkZKL7Ph89s-Xu98R8horV7k4t1GcpyIC_B9HxnWLKI8LzzLlEpaHKN-xHBzz4Yk4aaIqMRem5odYO9zQMsJ6jQY-z4vdK9LQL4sKDpyYQr3JJRyuEBBNrqijAMeHanmpUhHSyrXEszHbbd-8thVt4qh-vYYzf0WrYbvp3yOf247WUSanO6ul3XHffuNw_L8vuU_uNiiU7tXT5gG54cstcrvXFn_bIjdDZKirHhI7wLW7vLz4gT73aUUd1vMI2RAVnZYUc7kuL77PYVrQ3t7kiE7roHgkaqWAiEH-3GLJsFlJkQerIXGmpswppnmC2CNy3H_3sTeImsIMkUslTyLlugxUy1nsuffecWOS3CRMeVggrDFFxgpRMCM9bI-Zk9KxIrNwR6Q2lTZJH5ONclb6J4Raz60SufWJ89w5b4Vxopsp73LBpGUd8rbVkXYNazkWzzjTNd8y0zB6GkevQ16tJec1U8cfZN4ENa8FzOIUI9uU0J_GB_qQT4bj0f5IH3TIdjsPdGPUlU6Q1ZtJxgW0tX4MisF_LKb0sxXK8OBVUxm0FZT-187o4eQIr0__VfAlufVhv69H78eHz8gdQG6sjrzcJhvLxco_B3S0tC-CGfwEAnwOgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Herman-Wallis+corrections+in+dual-pump+CARS+intensities+for+combustion+temperature+and+species&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Marrocco%2C+Michele&rft.au=Magnotti%2C+Gaetano&rft.au=Cutler%2C+Andrew+D&rft.date=2012-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=43&rft.issue=5&rft.spage=595&rft_id=info:doi/10.1002%2Fjrs.3131&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3278733481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon