Extension of LMS stability condition over a wide set of signals

SummaryA sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is not, contrary to the majority of currently known conditions, based on the independence assumption or other statistic properties of the input sign...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of adaptive control and signal processing Vol. 29; no. 5; pp. 653 - 670
Main Author Bismor, Dariusz
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.05.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0890-6327
1099-1115
DOI10.1002/acs.2500

Cover

Abstract SummaryA sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is not, contrary to the majority of currently known conditions, based on the independence assumption or other statistic properties of the input signals. Moreover, it does not make use of the small‐step‐size assumption, neither does it assume the input signals are stationary. Instead, it uses a theory of discrete systems and properties of a discrete state‐space matrix. Therefore, the result can be applied to a wide set of signals, including deterministic and nonstationary signals. The location of all eigenvalues of the matrix responsible for the LMS algorithm stability has been calculated. Simulation experiments, where the step size reaches a couple of hundreds without loss of stability, are shown to support the theory. On the other hand, simulation where the calculations based on the small‐step‐size theory provide a too large estimation of the upper bound for the step size, while the new condition gives a proper solution, is also presented. Therefore, the new condition may be used in cases where fast adaptation is necessary and when the independence theory or the small‐step‐size assumptions do not hold. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList A sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is not, contrary to the majority of currently known conditions, based on the independence assumption or other statistic properties of the input signals. Moreover, it does not make use of the small‐step‐size assumption, neither does it assume the input signals are stationary. Instead, it uses a theory of discrete systems and properties of a discrete state‐space matrix. Therefore, the result can be applied to a wide set of signals, including deterministic and nonstationary signals. The location of all eigenvalues of the matrix responsible for the LMS algorithm stability has been calculated. Simulation experiments, where the step size reaches a couple of hundreds without loss of stability, are shown to support the theory. On the other hand, simulation where the calculations based on the small‐step‐size theory provide a too large estimation of the upper bound for the step size, while the new condition gives a proper solution, is also presented. Therefore, the new condition may be used in cases where fast adaptation is necessary and when the independence theory or the small‐step‐size assumptions do not hold. Copyright © 2014 John Wiley & Sons, Ltd.
A sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is not, contrary to the majority of currently known conditions, based on the independence assumption or other statistic properties of the input signals. Moreover, it does not make use of the small-step-size assumption, neither does it assume the input signals are stationary. Instead, it uses a theory of discrete systems and properties of a discrete state-space matrix. Therefore, the result can be applied to a wide set of signals, including deterministic and nonstationary signals. The location of all eigenvalues of the matrix responsible for the LMS algorithm stability has been calculated. Simulation experiments, where the step size reaches a couple of hundreds without loss of stability, are shown to support the theory. On the other hand, simulation where the calculations based on the small-step-size theory provide a too large estimation of the upper bound for the step size, while the new condition gives a proper solution, is also presented. Therefore, the new condition may be used in cases where fast adaptation is necessary and when the independence theory or the small-step-size assumptions do not hold. Copyright copyright 2014 John Wiley & Sons, Ltd.
Summary A sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is not, contrary to the majority of currently known conditions, based on the independence assumption or other statistic properties of the input signals. Moreover, it does not make use of the small-step-size assumption, neither does it assume the input signals are stationary. Instead, it uses a theory of discrete systems and properties of a discrete state-space matrix. Therefore, the result can be applied to a wide set of signals, including deterministic and nonstationary signals. The location of all eigenvalues of the matrix responsible for the LMS algorithm stability has been calculated. Simulation experiments, where the step size reaches a couple of hundreds without loss of stability, are shown to support the theory. On the other hand, simulation where the calculations based on the small-step-size theory provide a too large estimation of the upper bound for the step size, while the new condition gives a proper solution, is also presented. Therefore, the new condition may be used in cases where fast adaptation is necessary and when the independence theory or the small-step-size assumptions do not hold. Copyright © 2014 John Wiley & Sons, Ltd.
SummaryA sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is not, contrary to the majority of currently known conditions, based on the independence assumption or other statistic properties of the input signals. Moreover, it does not make use of the small‐step‐size assumption, neither does it assume the input signals are stationary. Instead, it uses a theory of discrete systems and properties of a discrete state‐space matrix. Therefore, the result can be applied to a wide set of signals, including deterministic and nonstationary signals. The location of all eigenvalues of the matrix responsible for the LMS algorithm stability has been calculated. Simulation experiments, where the step size reaches a couple of hundreds without loss of stability, are shown to support the theory. On the other hand, simulation where the calculations based on the small‐step‐size theory provide a too large estimation of the upper bound for the step size, while the new condition gives a proper solution, is also presented. Therefore, the new condition may be used in cases where fast adaptation is necessary and when the independence theory or the small‐step‐size assumptions do not hold. Copyright © 2014 John Wiley & Sons, Ltd.
Author Bismor, Dariusz
Author_xml – sequence: 1
  givenname: Dariusz
  surname: Bismor
  fullname: Bismor, Dariusz
  email: Correspondence to: Dariusz Bismor, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland., Dariusz.Bismor@polsl.pl
  organization: Institute of Automatic Control, Silesian University of Technology, 44-100 Gliwice, Poland
BookMark eNp1kEFLwzAYhoMoOKfgTyh48dKZNE2anGRMneLUwxSPIcm-SrRrNcl0-_e2ThRFT9_hfd6Xj2cHbdZNDQjtEzwgGGdH2oZBxjDeQD2CpUwJIWwT9bCQOOU0K7bRTgiPGLcZoT10fLqMUAfX1ElTJpOraRKiNq5ycZXYpp65-BG9gk908uZmkASIHRrcQ62rsIu2yvbA3ufto7uz09vReTq5GV-MhpPUUp7j1ApgUpNSWGksp8JwkbMM9AxKMCanpCQS6IwQwwyXOSuEKQoQYCgIWxBD--hwvfvsm5cFhKjmLlioKl1DswiKcMEEzXIuWvTgF_rYLHz3bEsVuWSUY_o9aH0TgodSPXs3136lCFadSdWaVJ3JFh38Qq2LuhMTvXbVX4V0XXhzFaz-HVbD0fQn70KE5Rev_ZPiBS2Yur8eq0t2e315Jk_UlL4DIl6TwQ
CitedBy_id crossref_primary_10_1007_s00034_021_01868_6
crossref_primary_10_1155_2021_5596309
crossref_primary_10_1002_acs_2646
crossref_primary_10_1016_j_procs_2016_05_450
crossref_primary_10_1016_j_sigpro_2016_07_027
crossref_primary_10_3390_app10010377
crossref_primary_10_1109_ACCESS_2020_2980115
crossref_primary_10_1007_s00521_018_3697_5
crossref_primary_10_1016_j_ymssp_2017_05_025
crossref_primary_10_1155_2022_3039624
Cites_doi 10.1109/TAC.1968.1098860
10.1016/0165-1684(84)90013-6
10.1109/5.60921
10.1109/ICASSP.1995.480504
10.1109/78.236504
10.1109/TASSP.1985.1164493
10.1109/TASSP.1986.1164993
10.1109/LSP.2009.2032996
10.1109/TSP.2008.2007618
10.1109/MSP.2009.932168
10.1016/j.sigpro.2009.05.002
10.1155/1993/438416
10.1109/PROC.1976.10286
10.1016/S0003-682X(02)00027-0
10.1016/0165-1684(87)90016-8
10.1109/TAES.1986.310809
10.1017/CBO9780511810817
10.1109/TAC.1964.1105698
10.1109/TIT.1984.1056892
10.1109/TAC.1967.1098599
10.1016/j.sigpro.2010.05.015
10.1109/81.928156
10.1016/j.sigpro.2010.07.015
10.1109/78.205720
10.2478/v10168-010-0019-z
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.2500
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1099-1115
EndPage 670
ExternalDocumentID 3662973041
10_1002_acs_2500
ACS2500
ark_67375_WNG_K5TNKF9D_S
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3640-c8e59a1f8c9bc638b68452eadefebb431f19e3d11b5b694578b77e8eb3e8c71b3
IEDL.DBID DR2
ISSN 0890-6327
IngestDate Thu Oct 02 06:55:20 EDT 2025
Fri Jul 25 12:27:02 EDT 2025
Wed Oct 01 06:29:37 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Sun Sep 21 06:24:35 EDT 2025
Sun Sep 21 06:18:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3640-c8e59a1f8c9bc638b68452eadefebb431f19e3d11b5b694578b77e8eb3e8c71b3
Notes istex:48FC08088B2669A1AE85CDE8BFCC9DF8B49AE30E
ArticleID:ACS2500
ark:/67375/WNG-K5TNKF9D-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1674953603
PQPubID 996374
PageCount 18
ParticipantIDs proquest_miscellaneous_1685832468
proquest_journals_1674953603
crossref_primary_10_1002_acs_2500
crossref_citationtrail_10_1002_acs_2500
wiley_primary_10_1002_acs_2500_ACS2500
istex_primary_ark_67375_WNG_K5TNKF9D_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05
May 2015
2015-05-00
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationTitleAlternate Int. J. Adapt. Control Signal Process
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Widrow B, McCool J, Larimore M, Johnson J. CR. Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proceedings of the IEEE August 1976; 64(8): 1151-1162.
Givens L. Enhanced-convergence normalized LMS algorithm. IEEE Signal Processing Magazine 2009; 26(3): 81-95.
Kaczorek T. Control and System Theory, Wydawnictwo Naukowe PWN: Warsaw, 1993.
Nitzberg R. Normalized LMS algorithm degradation due to estimation noise. IEEE Transactions on Aerospace and Electronic Systems November 1986; AES-22(6): 740-750.
Bubnicki Z. On the stability condition of nonlinear sampled-data systems. IEEE Transactions on Automatic Control July 1964; 9(3): 280-281.
Butterweck HJ. Steady-state analysis of the long LMS adaptive filter. Signal Processing 2011; 91(4): 690-701.
Pawelczyk M. Analogue active noise control. Applied Acoustics 2002; 63(11): 1193-1213.
Gardner WA. Learning characteristics of stochastic-gradient-descent algorithms: a general study, analysis and critique. Signal Processing 1984; 6: 113-133.
Shi K, Shi P. Convergence analysis of sparse LMS algorithms with l1-norm penalty based on white input signal. Signal Processing 2010; 90(12): 3289-3293.
Latos M, Paweczyk M. Adaptive algorithms for enhancement of speech subject to a high-level noise. Archives of Acoustics 2010; 35(2): 203-212.
McLernon D, Lara M, Orozco-Lugo A. On the convergence of the LMS algorithm with a rank-deficient input autocorrelation matrix. Signal Processing 2009; 89(11): 2244-2250.
Bubnicki Z. Modern Control Theory, Springer-Verlag: Berlin, 2005.
Bendat J, Piersol A. Random Data. Analysis and Measurement Procedures, John Wiley & Sons: New York, 1986.
Florian S, Feuer A. Performance analysis of the LMS algorithm with a tapped delay line (two-dimensional case). IEEE Transactions on Acoustics, Speech and Signal Processing December 1986; 34(6): 1542-1549.
Rupp M. The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes. IEEE Transactions on Signal Processing March 1993; 41(3): 1149-1160.
Pawelczyk M. Active noise control-a review of control-related problems. Archives of Acoustics 2008; 33(4): 509-520.
Nagumo J, Noda A. A learning method for system identification. IEEE Transactions on Automatic Control June 1967; 12(3): 282-287.
Butterweck H. A wave theory of long adaptive filters. IEEE Transactions on Circuits and Systems 2001; 48(6): 739-747.
Bendat J, Piersol A. Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons: New York, 1993.
Aihara S, Bagchi A. Adaptive filtering for stochastic risk premia in bond market. International Journal of Innovative Computing, Information and Control 2012; 8(3 B): 2203-2214.
Kaczorek T. Vectors and Matrices in Automatic Control and Electrotechnics, Wydawnictwo Naukowo-Techniczne: Warsaw, 1998.
Boland FM, Foley JB. Stochastic convergence of the LMS algorithm in adaptive systems. Signal Processing 1987; 13(4): 339-352.
Sayed AH. Fundamentals of Adaptive Filtering, John Wiley & Sons: New York, 2003.
Zeidler J. Performance analysis of LMS adaptive prediction filters. Proceedings of the IEEE December 1990; 78(12): 1781-1806.
Shi K, Ma X. A frequency domain step-size control method for LMS algorithms. IEEE Signal Processing Letters 2010; 17(2): 125-128.
Slock DTM. On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Transactions on Signal Processing 1993; 41(9): 2811-2825.
Bubnicki Z. On the linear conjecture in the deterministic and stochastic stability of discrete systems. IEEE Transactions on Automatic Control April 1968; 13(2): 199-200.
Haykin S. Adaptive Filter Theory (4th edn). Prentice Hall: New York, 2002.
Feuer A, Weinstein E. Convergence analysis of LMS filters with uncorrelated Gaussian data. IEEE Transactions on Acoustics, Speech and Signal Processing February 1985; 33(1): 222-230.
Widrow B, Walach E. On the statistical efficiency of the LMS algorithm with nonstationary inputs. IEEE Transactions on Information Theory March 1984; 30(2): 211-221.
Zhao S, Man Z, Khoo S, Wu HR. Stability and convergence analysis of transform-domain LMS adaptive filters with second-order autoregressive process. IEEE Transactions on Signal Processing 2009; 57(1): 119-130.
Söderström TPS. System Identification, Prentice Hall International, Inc.: New York, 1989.
Zhij Y, Chen B, Hu J. Adaptive filtering with adaptive p-power error criterion. International Journal of Innovative Computing, Information and Control 2011; 7(4): 1725-1737.
Horn RA, Johnson CR. Matrix Analysis, Cambridge University Press: New York, 1985.
1987; 13
2009; 89
1976; 64
1986; AES‐22
1990; 78
2010; 35
1964; 9
2011
2010; 17
1986; 34
1993; 41
1998
2008
1995
2001; 48
2005
2008; 33
1993
2003
2002
2011; 7
2009; 26
1984; 30
2009; 57
1968; 13
2002; 63
2011; 91
1967; 12
1984; 6
1986
1985
1985; 33
2010; 90
2012; 8
1989
e_1_2_9_30_1
e_1_2_9_31_1
Kaczorek T (e_1_2_9_38_1) 1998
Kaczorek T (e_1_2_9_37_1) 1993
e_1_2_9_11_1
Bendat J (e_1_2_9_29_1) 1986
e_1_2_9_34_1
Haykin S (e_1_2_9_2_1) 2002
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_12_1
Aihara S (e_1_2_9_15_1) 2012; 8
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
Zhij Y (e_1_2_9_16_1) 2011; 7
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
Söderström TPS (e_1_2_9_33_1) 1989
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
Pawelczyk M (e_1_2_9_24_1) 2008; 33
e_1_2_9_3_1
Bubnicki Z (e_1_2_9_28_1) 2005
Sayed AH (e_1_2_9_14_1) 2003
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
Bismor D (e_1_2_9_32_1) 2011
e_1_2_9_27_1
References_xml – reference: Zhij Y, Chen B, Hu J. Adaptive filtering with adaptive p-power error criterion. International Journal of Innovative Computing, Information and Control 2011; 7(4): 1725-1737.
– reference: Boland FM, Foley JB. Stochastic convergence of the LMS algorithm in adaptive systems. Signal Processing 1987; 13(4): 339-352.
– reference: Shi K, Ma X. A frequency domain step-size control method for LMS algorithms. IEEE Signal Processing Letters 2010; 17(2): 125-128.
– reference: Kaczorek T. Control and System Theory, Wydawnictwo Naukowe PWN: Warsaw, 1993.
– reference: Horn RA, Johnson CR. Matrix Analysis, Cambridge University Press: New York, 1985.
– reference: Widrow B, McCool J, Larimore M, Johnson J. CR. Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proceedings of the IEEE August 1976; 64(8): 1151-1162.
– reference: Sayed AH. Fundamentals of Adaptive Filtering, John Wiley & Sons: New York, 2003.
– reference: Bendat J, Piersol A. Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons: New York, 1993.
– reference: Aihara S, Bagchi A. Adaptive filtering for stochastic risk premia in bond market. International Journal of Innovative Computing, Information and Control 2012; 8(3 B): 2203-2214.
– reference: Gardner WA. Learning characteristics of stochastic-gradient-descent algorithms: a general study, analysis and critique. Signal Processing 1984; 6: 113-133.
– reference: Shi K, Shi P. Convergence analysis of sparse LMS algorithms with l1-norm penalty based on white input signal. Signal Processing 2010; 90(12): 3289-3293.
– reference: Givens L. Enhanced-convergence normalized LMS algorithm. IEEE Signal Processing Magazine 2009; 26(3): 81-95.
– reference: Bubnicki Z. On the stability condition of nonlinear sampled-data systems. IEEE Transactions on Automatic Control July 1964; 9(3): 280-281.
– reference: Florian S, Feuer A. Performance analysis of the LMS algorithm with a tapped delay line (two-dimensional case). IEEE Transactions on Acoustics, Speech and Signal Processing December 1986; 34(6): 1542-1549.
– reference: McLernon D, Lara M, Orozco-Lugo A. On the convergence of the LMS algorithm with a rank-deficient input autocorrelation matrix. Signal Processing 2009; 89(11): 2244-2250.
– reference: Rupp M. The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes. IEEE Transactions on Signal Processing March 1993; 41(3): 1149-1160.
– reference: Butterweck H. A wave theory of long adaptive filters. IEEE Transactions on Circuits and Systems 2001; 48(6): 739-747.
– reference: Zhao S, Man Z, Khoo S, Wu HR. Stability and convergence analysis of transform-domain LMS adaptive filters with second-order autoregressive process. IEEE Transactions on Signal Processing 2009; 57(1): 119-130.
– reference: Söderström TPS. System Identification, Prentice Hall International, Inc.: New York, 1989.
– reference: Bendat J, Piersol A. Random Data. Analysis and Measurement Procedures, John Wiley & Sons: New York, 1986.
– reference: Widrow B, Walach E. On the statistical efficiency of the LMS algorithm with nonstationary inputs. IEEE Transactions on Information Theory March 1984; 30(2): 211-221.
– reference: Pawelczyk M. Active noise control-a review of control-related problems. Archives of Acoustics 2008; 33(4): 509-520.
– reference: Latos M, Paweczyk M. Adaptive algorithms for enhancement of speech subject to a high-level noise. Archives of Acoustics 2010; 35(2): 203-212.
– reference: Slock DTM. On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Transactions on Signal Processing 1993; 41(9): 2811-2825.
– reference: Haykin S. Adaptive Filter Theory (4th edn). Prentice Hall: New York, 2002.
– reference: Kaczorek T. Vectors and Matrices in Automatic Control and Electrotechnics, Wydawnictwo Naukowo-Techniczne: Warsaw, 1998.
– reference: Feuer A, Weinstein E. Convergence analysis of LMS filters with uncorrelated Gaussian data. IEEE Transactions on Acoustics, Speech and Signal Processing February 1985; 33(1): 222-230.
– reference: Bubnicki Z. Modern Control Theory, Springer-Verlag: Berlin, 2005.
– reference: Pawelczyk M. Analogue active noise control. Applied Acoustics 2002; 63(11): 1193-1213.
– reference: Zeidler J. Performance analysis of LMS adaptive prediction filters. Proceedings of the IEEE December 1990; 78(12): 1781-1806.
– reference: Butterweck HJ. Steady-state analysis of the long LMS adaptive filter. Signal Processing 2011; 91(4): 690-701.
– reference: Bubnicki Z. On the linear conjecture in the deterministic and stochastic stability of discrete systems. IEEE Transactions on Automatic Control April 1968; 13(2): 199-200.
– reference: Nagumo J, Noda A. A learning method for system identification. IEEE Transactions on Automatic Control June 1967; 12(3): 282-287.
– reference: Nitzberg R. Normalized LMS algorithm degradation due to estimation noise. IEEE Transactions on Aerospace and Electronic Systems November 1986; AES-22(6): 740-750.
– volume: 91
  start-page: 690
  issue: 4
  year: 2011
  end-page: 701
  article-title: Steady‐state analysis of the long LMS adaptive filter
  publication-title: Signal Processing
– year: 2011
– year: 1985
– volume: 12
  start-page: 282
  issue: 3
  year: 1967
  end-page: 287
  article-title: A learning method for system identification
  publication-title: IEEE Transactions on Automatic Control
– volume: 7
  start-page: 1725
  issue: 4
  year: 2011
  end-page: 1737
  article-title: Adaptive filtering with adaptive p‐power error criterion
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: AES‐22
  start-page: 740
  issue: 6
  year: 1986
  end-page: 750
  article-title: Normalized LMS algorithm degradation due to estimation noise
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– year: 2005
– volume: 63
  start-page: 1193
  issue: 11
  year: 2002
  end-page: 1213
  article-title: Analogue active noise control
  publication-title: Applied Acoustics
– volume: 33
  start-page: 222
  issue: 1
  year: 1985
  end-page: 230
  article-title: Convergence analysis of LMS filters with uncorrelated Gaussian data
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
– volume: 9
  start-page: 280
  issue: 3
  year: 1964
  end-page: 281
  article-title: On the stability condition of nonlinear sampled‐data systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 41
  start-page: 2811
  issue: 9
  year: 1993
  end-page: 2825
  article-title: On the convergence behavior of the LMS and the normalized LMS algorithms
  publication-title: IEEE Transactions on Signal Processing
– volume: 89
  start-page: 2244
  issue: 11
  year: 2009
  end-page: 2250
  article-title: On the convergence of the LMS algorithm with a rank‐deficient input autocorrelation matrix
  publication-title: Signal Processing
– volume: 34
  start-page: 1542
  issue: 6
  year: 1986
  end-page: 1549
  article-title: Performance analysis of the LMS algorithm with a tapped delay line (two‐dimensional case)
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
– year: 1989
– year: 2003
– volume: 78
  start-page: 1781
  issue: 12
  year: 1990
  end-page: 1806
  article-title: Performance analysis of LMS adaptive prediction filters
  publication-title: Proceedings of the IEEE
– volume: 90
  start-page: 3289
  issue: 12
  year: 2010
  end-page: 3293
  article-title: Convergence analysis of sparse LMS algorithms with l1‐norm penalty based on white input signal
  publication-title: Signal Processing
– volume: 41
  start-page: 1149
  issue: 3
  year: 1993
  end-page: 1160
  article-title: The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes
  publication-title: IEEE Transactions on Signal Processing
– volume: 13
  start-page: 339
  issue: 4
  year: 1987
  end-page: 352
  article-title: Stochastic convergence of the LMS algorithm in adaptive systems
  publication-title: Signal Processing
– start-page: 1404
  year: 1995
  end-page: 1407
– volume: 57
  start-page: 119
  issue: 1
  year: 2009
  end-page: 130
  article-title: Stability and convergence analysis of transform‐domain LMS adaptive filters with second‐order autoregressive process
  publication-title: IEEE Transactions on Signal Processing
– year: 1998
– volume: 6
  start-page: 113
  year: 1984
  end-page: 133
  article-title: Learning characteristics of stochastic‐gradient‐descent algorithms: a general study, analysis and critique
  publication-title: Signal Processing
– year: 1986
– start-page: 242
  year: 1998
  end-page: 251
– start-page: 2931
  year: 2008
  end-page: 2938
– volume: 17
  start-page: 125
  issue: 2
  year: 2010
  end-page: 128
  article-title: A frequency domain step‐size control method for LMS algorithms
  publication-title: IEEE Signal Processing Letters
– year: 2002
– volume: 30
  start-page: 211
  issue: 2
  year: 1984
  end-page: 221
  article-title: On the statistical efficiency of the LMS algorithm with nonstationary inputs
  publication-title: IEEE Transactions on Information Theory
– volume: 48
  start-page: 739
  issue: 6
  year: 2001
  end-page: 747
  article-title: A wave theory of long adaptive filters
  publication-title: IEEE Transactions on Circuits and Systems
– volume: 26
  start-page: 81
  issue: 3
  year: 2009
  end-page: 95
  article-title: Enhanced‐convergence normalized LMS algorithm
  publication-title: IEEE Signal Processing Magazine
– volume: 13
  start-page: 199
  issue: 2
  year: 1968
  end-page: 200
  article-title: On the linear conjecture in the deterministic and stochastic stability of discrete systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 8
  start-page: 2203
  issue: 3 B
  year: 2012
  end-page: 2214
  article-title: Adaptive filtering for stochastic risk premia in bond market
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 33
  start-page: 509
  issue: 4
  year: 2008
  end-page: 520
  article-title: Active noise control—a review of control‐related problems
  publication-title: Archives of Acoustics
– volume: 64
  start-page: 1151
  issue: 8
  year: 1976
  end-page: 1162
  article-title: CR. Stationary and nonstationary learning characteristics of the LMS adaptive filter
  publication-title: Proceedings of the IEEE
– volume: 35
  start-page: 203
  issue: 2
  year: 2010
  end-page: 212
  article-title: Adaptive algorithms for enhancement of speech subject to a high‐level noise
  publication-title: Archives of Acoustics
– year: 1993
– ident: e_1_2_9_27_1
  doi: 10.1109/TAC.1968.1098860
– volume-title: Vectors and Matrices in Automatic Control and Electrotechnics
  year: 1998
  ident: e_1_2_9_38_1
– volume-title: System Identification
  year: 1989
  ident: e_1_2_9_33_1
– volume-title: Random Data. Analysis and Measurement Procedures
  year: 1986
  ident: e_1_2_9_29_1
– ident: e_1_2_9_13_1
  doi: 10.1016/0165-1684(84)90013-6
– ident: e_1_2_9_25_1
– volume-title: Fundamentals of Adaptive Filtering
  year: 2003
  ident: e_1_2_9_14_1
– ident: e_1_2_9_34_1
  doi: 10.1109/5.60921
– ident: e_1_2_9_11_1
  doi: 10.1109/ICASSP.1995.480504
– ident: e_1_2_9_8_1
  doi: 10.1109/78.236504
– volume-title: 18th International Congress on Sound and Vibration 2011, ICSV 2011
  year: 2011
  ident: e_1_2_9_32_1
– ident: e_1_2_9_4_1
  doi: 10.1109/TASSP.1985.1164493
– ident: e_1_2_9_6_1
  doi: 10.1109/TASSP.1986.1164993
– ident: e_1_2_9_22_1
  doi: 10.1109/LSP.2009.2032996
– volume-title: Modern Control Theory
  year: 2005
  ident: e_1_2_9_28_1
– ident: e_1_2_9_21_1
  doi: 10.1109/TSP.2008.2007618
– volume: 33
  start-page: 509
  issue: 4
  year: 2008
  ident: e_1_2_9_24_1
  article-title: Active noise control—a review of control‐related problems
  publication-title: Archives of Acoustics
– ident: e_1_2_9_23_1
  doi: 10.1109/MSP.2009.932168
– volume-title: Adaptive Filter Theory
  year: 2002
  ident: e_1_2_9_2_1
– ident: e_1_2_9_19_1
  doi: 10.1016/j.sigpro.2009.05.002
– ident: e_1_2_9_30_1
  doi: 10.1155/1993/438416
– ident: e_1_2_9_10_1
– ident: e_1_2_9_3_1
  doi: 10.1109/PROC.1976.10286
– ident: e_1_2_9_35_1
  doi: 10.1016/S0003-682X(02)00027-0
– ident: e_1_2_9_7_1
  doi: 10.1016/0165-1684(87)90016-8
– ident: e_1_2_9_5_1
  doi: 10.1109/TAES.1986.310809
– volume: 7
  start-page: 1725
  issue: 4
  year: 2011
  ident: e_1_2_9_16_1
  article-title: Adaptive filtering with adaptive p‐power error criterion
  publication-title: International Journal of Innovative Computing, Information and Control
– ident: e_1_2_9_39_1
  doi: 10.1017/CBO9780511810817
– volume: 8
  start-page: 2203
  issue: 3
  year: 2012
  ident: e_1_2_9_15_1
  article-title: Adaptive filtering for stochastic risk premia in bond market
  publication-title: International Journal of Innovative Computing, Information and Control
– ident: e_1_2_9_26_1
  doi: 10.1109/TAC.1964.1105698
– ident: e_1_2_9_12_1
  doi: 10.1109/TIT.1984.1056892
– ident: e_1_2_9_31_1
  doi: 10.1109/TAC.1967.1098599
– ident: e_1_2_9_20_1
  doi: 10.1016/j.sigpro.2010.05.015
– ident: e_1_2_9_17_1
  doi: 10.1109/81.928156
– ident: e_1_2_9_18_1
  doi: 10.1016/j.sigpro.2010.07.015
– ident: e_1_2_9_9_1
  doi: 10.1109/78.205720
– ident: e_1_2_9_36_1
  doi: 10.2478/v10168-010-0019-z
– volume-title: Control and System Theory
  year: 1993
  ident: e_1_2_9_37_1
SSID ssj0009913
Score 2.1799452
Snippet SummaryA sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is not,...
A sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is not,...
Summary A sufficient condition for least mean squares (LMS) algorithm stability with a small set of assumptions is derived in this paper. The derivation is...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 653
SubjectTerms adaptive filtering
Algorithms
Computer simulation
Derivation
Discrete systems
discrete-time systems
Eigenvalues
least mean squares (LMS) method
Mathematical analysis
Stability
Statistics
Title Extension of LMS stability condition over a wide set of signals
URI https://api.istex.fr/ark:/67375/WNG-K5TNKF9D-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.2500
https://www.proquest.com/docview/1674953603
https://www.proquest.com/docview/1685832468
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1099-1115
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0009913
  issn: 0890-6327
  databaseCode: AMVHM
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0890-6327
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009913
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXNpDgbaoy0tGqsopSx6O45yqFbCsoLsHlpfEwfIrUrVVFrG74vHrO-Mky0MgVT3lkImcjD2eb-LPnwn5nmeFjiPHAwXZPmAqtIGyigeJFpYbBUkjw43C_QHvnbPjq_SqZlXiXphKH2L-ww0jw8_XGOBKT_aeREOVmbQhf2O5HiXcV1OnT8pRAHv84rLIoTpK4qzRnQ3jvebBF5loCZ16_wJmPgerPtt0l8l1854VyWTUnk112zy-knD8vw9ZIZ9qEEo71ahZJQuu_Ew-PpMm_EJ-Ht57bvu4pOOC_uoPKcBIT6R9oFBCW8_0osj_pIre_baOTtwUTZEQAkP6KznvHp7t94L6sIXAJJyFgREuzVVUCJNrA0GpuWBpjHTqwmkNMKOIcpfYKNKp5jmDQNdZ5gTU4k6YLNLJGlksx6X7RqgVzqpYC0ACjmlrVVJYywwK8Wch06ZFdhvHS1MrkeOBGH9kpaEcS3CJRJe0yM7c8qZS33jD5ofvu7mBuh0hWy1L5eXgSJ6kZ4OTbn4ghy2y2XSurAN1InETBq5ghwm0Nb8NIYbrJqp04xnaiBQmPsYFtOV78t2XkZ39IV7X_9Vwg3wACJZWFMpNsji9nbktgDlTvU2WOv2LXn_bD-y_0Qf6jg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hOBQOtLRFDaWwlapycojttb0WB4SANDSPAwkqh0qrfVmqQA4iiUr76zuzjsNDrVRx8sFjrT274_lm99tvAT7lWaGj0KWBwmwfcNWygbIqDWItbGoUJo2MNgr3B2nngn-9TC6X4KDeC1PpQywm3Cgy_P-aApwmpPfvVUOVmTQxgWO9vsJTLFMIEZ3fa0ch8PHLyyLH-iiOslp5thXt108-ykUr5Na7R0DzIVz1-ab9Er7Xb1rRTK6as6lumt9PRByf-SmvYH2OQ9lRNXA2YMmVr2HtgTrhGzg8vfP09nHJxgXr9YcMkaTn0v5iWEVbT_ZiRAFliv38YR2buCmZEicER_VbuGifjo47wfy8hcDE6MDACJfkKiyEybXBuNSp4ElEjOrCaY1IowhzF9sw1IlOc46xrrPMCSzHnTBZqONNWC7HpXsHzApnVaQFggHHtbUqLqzlhrT4sxbXpgF7teelmYuR05kY17KSUY4kukSSSxrwcWF5Uwlw_MXms--8hYG6vSLCWpbIb4MvspuMBt12fiKHDdiue1fOY3UiaR8GLWK3YmxrcRujjJZOVOnGM7IRCf77eCqwLd-V_3wZeXQ8pOvW_xruwovOqN-TvbNB9z2sIiJLKkblNixPb2fuA6Keqd7xo_sPmg_9Ew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CAqU9NOmLbpumKpT25I0fki2TQwnZbNNuspRuQnMICL0MJcUbsrvk8eszI683SWmh9OSDx8geaTTfWJ8-Abwvi8qkic8jjdk-4jp2kXY6jzIjXW41Jo2CNgofDPO9I_71WBwvwVa7F6bRh1j8cKPICPM1Bbg_c9XmrWqotpMuJnCs11e4KCXx-Xrfb7WjEPiE5WVZYn2UpUWrPBunm-2T93LRCrn18h7QvAtXQ77pr8JJ-6YNzeS0O5uarr3-TcTxPz9lDR7PcSjbbgbOE1jy9VN4dEed8Bl82r0M9PZxzcYV2z8YMUSSgUt7xbCKdoHsxYgCyjS7-Ok8m_gpmRInBEf1czjq7x7u7EXz8xYim-U8jqz0otRJJW1pLMalySUXKTGqK28MIo0qKX3mksQIk5ccY90UhZdYjntpi8RkL2C5Htf-JTAnvdOpkQgGPDfO6axyjlvS4i9ibmwHPraeV3YuRk5nYvxSjYxyqtAlilzSgXcLy7NGgOMPNh9C5y0M9PkpEdYKoX4MP6uBOBwO-mVPjTqw3vaumsfqRNE-DFrEjjNsa3Ebo4yWTnTtxzOykQLnPp5LbCt05V9fRm3vjOj66l8N38KDb72-2v8yHLyGhwjIREOoXIfl6fnMv0HQMzUbYXDfAEZl_Jc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extension+of+LMS+stability+condition+over+a+wide+set+of+signals&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Bismor%2C+Dariusz&rft.date=2015-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=29&rft.issue=5&rft.spage=653&rft.epage=670&rft_id=info:doi/10.1002%2Facs.2500&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_K5TNKF9D_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon