DeepGun: Deep Feature-Driven One-Class Classifier for Firearm Detection Using Visual Gun Features and Human Body Pose Estimation

The increasing frequency of mass shootings at public events and public buildings underscores the limitations of traditional surveillance systems, which rely on human operators monitoring multiple screens. Delayed response times often hinder security teams from intervening before an attack unfolds. S...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 11; p. 5830
Main Authors Singh, Harbinder, Deniz, Oscar, Ruiz-Santaquiteria, Jesus, Muñoz, Juan D., Bueno, Gloria
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app15115830

Cover

Abstract The increasing frequency of mass shootings at public events and public buildings underscores the limitations of traditional surveillance systems, which rely on human operators monitoring multiple screens. Delayed response times often hinder security teams from intervening before an attack unfolds. Since firearms are rarely seen in public spaces and constitute anomalous observations, firearm detection can be considered as an anomaly detection (AD) problem, for which one-class classifiers (OCCs) are well-suited. To address this challenge, we propose a holistic firearm detection approach that integrates OCCs with visual hand-held gun features and human pose estimation (HPE). In the first stage, a variational autoencoder (VAE) learns latent representations of firearm-related instances, ensuring that the latent space is dedicated exclusively to the target class. Hand patches of variable sizes are extracted from each frame using body landmarks, dynamically adjusting based on the subject’s distance from the camera. In the second stage, a unified feature vector is generated by integrating VAE-extracted latent features with landmark-based arm positioning features. Finally, an isolation forest (IFC)-based OCC model evaluates this unified feature representation to estimate the probability that a test sample belongs to the firearm-related distribution. By utilizing skeletal representations of human actions, our approach overcomes the limitations of appearance-based gun features extracted by camera, which are often affected by background variations. Experimental results on diverse firearm datasets validate the effectiveness of our anomaly detection approach, achieving an F1-score of 86.6%, accuracy of 85.2%, precision of 95.3%, recall of 74.0%, and average precision (AP) of 83.5%. These results demonstrate the superiority of our method over traditional approaches that rely solely on visual features.
AbstractList The increasing frequency of mass shootings at public events and public buildings underscores the limitations of traditional surveillance systems, which rely on human operators monitoring multiple screens. Delayed response times often hinder security teams from intervening before an attack unfolds. Since firearms are rarely seen in public spaces and constitute anomalous observations, firearm detection can be considered as an anomaly detection (AD) problem, for which one-class classifiers (OCCs) are well-suited. To address this challenge, we propose a holistic firearm detection approach that integrates OCCs with visual hand-held gun features and human pose estimation (HPE). In the first stage, a variational autoencoder (VAE) learns latent representations of firearm-related instances, ensuring that the latent space is dedicated exclusively to the target class. Hand patches of variable sizes are extracted from each frame using body landmarks, dynamically adjusting based on the subject’s distance from the camera. In the second stage, a unified feature vector is generated by integrating VAE-extracted latent features with landmark-based arm positioning features. Finally, an isolation forest (IFC)-based OCC model evaluates this unified feature representation to estimate the probability that a test sample belongs to the firearm-related distribution. By utilizing skeletal representations of human actions, our approach overcomes the limitations of appearance-based gun features extracted by camera, which are often affected by background variations. Experimental results on diverse firearm datasets validate the effectiveness of our anomaly detection approach, achieving an F1-score of 86.6%, accuracy of 85.2%, precision of 95.3%, recall of 74.0%, and average precision (AP) of 83.5%. These results demonstrate the superiority of our method over traditional approaches that rely solely on visual features.
Audience Academic
Author Deniz, Oscar
Bueno, Gloria
Muñoz, Juan D.
Singh, Harbinder
Ruiz-Santaquiteria, Jesus
Author_xml – sequence: 1
  givenname: Harbinder
  orcidid: 0000-0002-9713-6048
  surname: Singh
  fullname: Singh, Harbinder
– sequence: 2
  givenname: Oscar
  orcidid: 0000-0002-0841-4131
  surname: Deniz
  fullname: Deniz, Oscar
– sequence: 3
  givenname: Jesus
  orcidid: 0000-0003-1454-7624
  surname: Ruiz-Santaquiteria
  fullname: Ruiz-Santaquiteria, Jesus
– sequence: 4
  givenname: Juan D.
  orcidid: 0009-0008-2484-4087
  surname: Muñoz
  fullname: Muñoz, Juan D.
– sequence: 5
  givenname: Gloria
  orcidid: 0000-0002-7345-4869
  surname: Bueno
  fullname: Bueno, Gloria
BookMark eNp9kU1v1DAQhiNUJErpiT9giSOk2OuPxNzKtttWqlQOlGs0sccrr7J2sBPQ3vjpOF1APWFLntHoncczel9XJyEGrKq3jF5wrulHGEcmGZMtpy-q0xVtVM0Fa06e5a-q85x3tBzNeMvoafXrCnG8mcMnsiRkgzDNCeur5H9gIA8B6_UAOZOn1zuPibiYyMYnhLQvTROaycdAHrMPW_LN5xkGUoB_UZlAsOR23kMgn6M9kC8xI7nOk9_D0vimeulgyHj-J55Vj5vrr-vb-v7h5m59eV8brvhUO7vqXW9BW2Fta3oqWt1IqSg2lGlrjEG9KluV9aUSjAkBmureauSGGQb8rLo7cm2EXTem8n06dBF891SIadtBmrwZsFPSgZTWKsWd6KXonVTYNkrrRhlJRWF9OLLmMMLhJwzDPyCj3WJG98yMIn93lI8pfp8xT90uzimUbTu-Yk2zzL1AL46qLZQZfHBxSmDKtbj3pljtfKlftkLStmnVgn1_bDAp5pzQ_XeI3_wZqAg
Cites_doi 10.1109/EISIC49498.2019.9108871
10.1016/j.eswa.2022.118698
10.1080/00401706.1999.10485670
10.1016/j.knosys.2021.107886
10.1016/j.asoc.2023.110176
10.3390/fi14120380
10.1109/ICITACEE55701.2022.9924010
10.1109/CCST.2007.4373499
10.1109/RMKMATE59243.2023.10369889
10.1109/CVPR.2018.00907
10.1007/s00521-024-10373-1
10.1016/j.cviu.2021.103225
10.1109/CVPR.2016.90
10.1561/2200000056
10.2139/ssrn.5212589
10.1007/s00521-021-06317-8
10.1109/CVPR.2018.00675
10.1109/CVPR.2018.00678
10.1109/CVPR.2019.00301
10.1109/MSP.2017.2738401
10.1007/978-0-387-73003-5_196
10.1016/j.cosrev.2023.100612
10.1109/ACCESS.2021.3061626
10.1145/3154979.3154988
10.1109/TVCG.2018.2868527
10.1016/j.dib.2024.110030
10.1109/ACCESS.2021.3110335
10.1016/j.chemolab.2024.105276
10.3390/s24185865
10.1109/CVPR46437.2021.01576
10.1109/ICCV51070.2023.01267
10.1007/BF00994018
10.1007/s00521-020-05365-w
10.1016/j.patcog.2022.109252
10.1002/wics.101
10.1109/WACV56688.2023.00074
10.1109/5254.708428
10.1109/ICM46511.2021.9385618
10.1109/CVPR.2017.243
10.3390/s22103862
10.1109/ICDM.2008.17
10.3390/s16010047
10.1109/TPAMI.2019.2929257
10.23919/IConAC.2019.8895110
10.1109/CVPR.2018.00474
10.1186/s40537-021-00514-x
10.3390/jimaging11030072
10.1016/j.neucom.2017.05.012
10.3390/app11136085
10.1109/TIP.2019.2917862
10.1017/S026988891300043X
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app15115830
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_65fa55dd663f4b54bf56e8769976c504
10.3390/app15115830
A845087860
10_3390_app15115830
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c363t-fd2bfbda9d4dd8cb048975560e7019dccce920911585641144a909bd9e3c1c1a3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 14 19:02:44 EDT 2025
Tue Aug 19 23:47:22 EDT 2025
Sat Aug 23 12:46:37 EDT 2025
Tue Jul 01 05:43:29 EDT 2025
Thu Oct 16 04:44:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-fd2bfbda9d4dd8cb048975560e7019dccce920911585641144a909bd9e3c1c1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-2484-4087
0000-0002-0841-4131
0000-0003-1454-7624
0000-0002-7345-4869
0000-0002-9713-6048
OpenAccessLink https://doaj.org/article/65fa55dd663f4b54bf56e8769976c504
PQID 3217720914
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_65fa55dd663f4b54bf56e8769976c504
unpaywall_primary_10_3390_app15115830
proquest_journals_3217720914
gale_infotracacademiconefile_A845087860
crossref_primary_10_3390_app15115830
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Akrami (ref_63) 2022; 238
Maigler (ref_11) 2024; 52
Perera (ref_42) 2019; 28
Cha (ref_25) 2018; 24
Seliya (ref_37) 2021; 8
ref_14
ref_58
ref_13
ref_57
ref_12
ref_56
ref_55
ref_53
ref_19
ref_18
ref_16
ref_15
ref_59
Ramirez (ref_28) 2021; 9
Cao (ref_35) 2019; 43
Vallez (ref_31) 2021; 9
ref_60
ref_24
ref_23
ref_22
Soares (ref_30) 2024; 36
ref_21
ref_20
ref_62
ref_29
ref_27
Burnayev (ref_2) 2023; 14
Santos (ref_3) 2024; 51
Abdi (ref_51) 2010; 2
Vallez (ref_7) 2023; 136
Wang (ref_64) 2021; 210
Olmos (ref_9) 2018; 275
ref_36
Khan (ref_39) 2014; 29
ref_34
ref_33
Hearst (ref_17) 1998; 13
ref_32
Kingma (ref_44) 2019; 12
Vallez (ref_26) 2021; 33
Ramachandram (ref_49) 2017; 34
ref_38
Vallez (ref_61) 2021; 33
Li (ref_48) 2023; 138
ref_47
ref_46
ref_45
Petersen (ref_43) 2025; 256
Yadav (ref_10) 2023; 212
ref_41
ref_40
ref_1
Rousseeuw (ref_54) 1999; 41
Cortes (ref_52) 1995; 20
ref_8
ref_5
ref_4
ref_6
References_xml – ident: ref_32
– ident: ref_15
  doi: 10.1109/EISIC49498.2019.9108871
– volume: 212
  start-page: 118698
  year: 2023
  ident: ref_10
  article-title: A comprehensive study towards high-level approaches for weapon detection using classical machine learning and deep learning methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118698
– volume: 41
  start-page: 212
  year: 1999
  ident: ref_54
  article-title: A Fast Algorithm for the Minimum Covariance Determinant Estimator
  publication-title: Technometrics
  doi: 10.1080/00401706.1999.10485670
– volume: 238
  start-page: 107886
  year: 2022
  ident: ref_63
  article-title: A robust variational autoencoder using beta divergence
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107886
– volume: 138
  start-page: 110176
  year: 2023
  ident: ref_48
  article-title: A comprehensive survey on design and application of autoencoder in deep learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110176
– ident: ref_27
  doi: 10.3390/fi14120380
– ident: ref_47
  doi: 10.1109/ICITACEE55701.2022.9924010
– ident: ref_1
– ident: ref_33
  doi: 10.1109/CCST.2007.4373499
– ident: ref_4
  doi: 10.1109/RMKMATE59243.2023.10369889
– ident: ref_57
  doi: 10.1109/CVPR.2018.00907
– volume: 36
  start-page: 22013
  year: 2024
  ident: ref_30
  article-title: Firearm detection using DETR with multiple self-coordinated neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-024-10373-1
– volume: 210
  start-page: 103225
  year: 2021
  ident: ref_64
  article-title: Deep 3D human pose estimation: A review
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103225
– ident: ref_56
– ident: ref_55
  doi: 10.1109/CVPR.2016.90
– volume: 12
  start-page: 307
  year: 2019
  ident: ref_44
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000056
– ident: ref_18
  doi: 10.2139/ssrn.5212589
– ident: ref_13
– ident: ref_62
– volume: 33
  start-page: 17273
  year: 2021
  ident: ref_26
  article-title: Using human pose information for handgun detection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06317-8
– ident: ref_38
– ident: ref_21
  doi: 10.1109/CVPR.2018.00675
– ident: ref_36
  doi: 10.1109/CVPR.2018.00678
– ident: ref_45
– ident: ref_40
  doi: 10.1109/CVPR.2019.00301
– volume: 34
  start-page: 96
  year: 2017
  ident: ref_49
  article-title: Deep multimodal learning: A survey on recent advances and trends
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2738401
– ident: ref_53
  doi: 10.1007/978-0-387-73003-5_196
– volume: 51
  start-page: 100612
  year: 2024
  ident: ref_3
  article-title: Systematic review on weapon detection in surveillance footage through deep learning
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2023.100612
– volume: 9
  start-page: 33532
  year: 2021
  ident: ref_28
  article-title: Fall Detection and Activity Recognition Using Human Skeleton Features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061626
– ident: ref_34
– ident: ref_16
  doi: 10.1145/3154979.3154988
– volume: 24
  start-page: 2993
  year: 2018
  ident: ref_25
  article-title: Towards fully mobile 3D face, body, and environment capture using only head-worn cameras
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2018.2868527
– volume: 52
  start-page: 110030
  year: 2024
  ident: ref_11
  article-title: Firearm-related action recognition and object detection dataset for video surveillance systems
  publication-title: Data Brief
  doi: 10.1016/j.dib.2024.110030
– volume: 9
  start-page: 123815
  year: 2021
  ident: ref_31
  article-title: Handgun detection using combined human pose and weapon appearance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3110335
– volume: 256
  start-page: 105276
  year: 2025
  ident: ref_43
  article-title: VAE-SIMCA—Data-driven method for building one class classifiers with variational autoencoders
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2024.105276
– ident: ref_23
  doi: 10.3390/s24185865
– ident: ref_19
  doi: 10.1109/CVPR46437.2021.01576
– ident: ref_20
  doi: 10.1109/ICCV51070.2023.01267
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_52
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 33
  start-page: 5885
  year: 2021
  ident: ref_61
  article-title: Deep autoencoder for false positive reduction in handgun detection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05365-w
– ident: ref_14
– volume: 136
  start-page: 109252
  year: 2023
  ident: ref_7
  article-title: Improving handgun detection through a combination of visual features and body pose-based data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109252
– volume: 2
  start-page: 433
  year: 2010
  ident: ref_51
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.101
– ident: ref_22
  doi: 10.1109/WACV56688.2023.00074
– volume: 13
  start-page: 18
  year: 1998
  ident: ref_17
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.708428
– ident: ref_29
  doi: 10.1109/ICM46511.2021.9385618
– ident: ref_58
  doi: 10.1109/CVPR.2017.243
– ident: ref_24
  doi: 10.3390/s22103862
– ident: ref_6
– ident: ref_46
– ident: ref_50
  doi: 10.1109/ICDM.2008.17
– volume: 14
  start-page: 0140586
  year: 2023
  ident: ref_2
  article-title: Weapons Detection System Based on Edge Computing and Computer Vision
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_12
  doi: 10.3390/s16010047
– volume: 43
  start-page: 172
  year: 2019
  ident: ref_35
  article-title: Openpose: Realtime multi-person 2d pose estimation using part affinity fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2929257
– ident: ref_41
  doi: 10.23919/IConAC.2019.8895110
– ident: ref_59
  doi: 10.1109/CVPR.2018.00474
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_37
  article-title: A literature review on one-class classification and its potential applications in big data
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00514-x
– ident: ref_60
– ident: ref_8
  doi: 10.3390/jimaging11030072
– volume: 275
  start-page: 66
  year: 2018
  ident: ref_9
  article-title: Automatic handgun detection alarm in videos using deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.012
– ident: ref_5
  doi: 10.3390/app11136085
– volume: 28
  start-page: 5450
  year: 2019
  ident: ref_42
  article-title: Learning deep features for one-class classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2917862
– volume: 29
  start-page: 345
  year: 2014
  ident: ref_39
  article-title: One-class classification: Taxonomy of study and review of techniques
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988891300043X
SSID ssj0000913810
Score 2.322733
Snippet The increasing frequency of mass shootings at public events and public buildings underscores the limitations of traditional surveillance systems, which rely on...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 5830
SubjectTerms anomaly
Datasets
Deep learning
Gun violence
human action recognition
Law enforcement
Mass murders
Neural networks
one-class classifiers
Performance evaluation
Public safety
Robbery
Surveillance
Surveillance equipment
Weapons
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UH7ILYqPa2yDxX1YfFy2c1lBZGevbMInkWs9C3sV6RQkzMfSN_8053ZJOeB0JcQQrJZdnZmfruz8xuA40QYLVHLuDJecrSSnqepsTxROpnk6Ux3WfyfV8nZhfh0KS93YDXkwtCxysEmBkPtSkt75G9ixM6zKXo38X79i1PVKIquDiU0dF9awb0LFGN3YHdKzFgj2J0vVudfN7suxIKZRpMuUS_G9T7FidHpRTKlc9Bbrikw-P9vp_fgblus9c1vfX295YiWD-B-jyDZSSfyfdjxxQHsbfEKHsB-r7E1e9XTSr9-CH9OvV9_bIu3jG4YYb-28vy0InvHvhSehwKZLFyvcnSXDAEtW6JN1NVP_KgJp7YKFk4ZsO9XdYvdwAaHpmqmC8dCVIDNS3fDzsvaswXakC498hFcLBffPpzxvv4Ct3ESNzx3U5Mbp5UTzqXWoLKrmUSI5InD3VlrvSKJ4ODJRODCSmg1UcYpH9vIRjp-DKOiLPwhMFzV5J6i3LF3wkYqFVGO4AvxgYqtif0Yjoehz9YdzUaGyxOSULYloTHMSSybV4gbOzwoqx9Zr2pZInMtpXOIpXJhpDC5TDxOR4XIy8qJGMNLEmpGGtxU2uo-EQF7SlxY2UkqELXO0gR_dzTIPetVu87-TcQxvNjMhdt6_eT2Zp7CvSkVFQ5bO0cwaqrWP0Ok05jn_fT9C-Wa_DM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgPUAPhRYqUgryoQg4uInjx665oJQ2VEiUHggqp5WfKKJson2AyomfzngfVQAJIXFZrVb2rC2PP39je2YQOpDcaAGzjCjjBQGU9CRNjSVSaTkOaaJbL_63Z_J0zt9ciIs1L_54rRJM8UUD0hMwsgnAbDKiYkTpSKRsPFq58PJrt5cEdDpRNFUiuYk2pAA2PkAb87Pz6ceYU66v3brlMbDu46kwLHE0CvplIWri9f-JypvoVp2v9NU3fXm5tuzM7iDdN7i9bfL5sK7Mof3-WyzH_-nRXbTVcVI8bZVoG93w-Q7aXItUuIO2Owwo8bMuUPXze-jHsfer13X-AscXHNlkXXhyXEQExe9yT5qUm7h5LgIswBgoMp4ByuriC1SqmntgOW7uLeAPi7KGZoDAXlSJde5wc86Aj5buCp8vS49PAJVah8v7aD47ef_qlHQZHYhlklUkuIkJxmnluHOpNQAfKhFAunyMCu-stV5NgMHAAAnJwVTjWo2VccozSy3VbBcN8mXuHyAMdlLw8dycecctVSmnAegcMA7FrGF-iA764c1WbeCODAyeqAXZmhYM0VEc-usiMdp282FZfMq6yZtJEbQQzgE7C9wIboKQHhRcAZezYsyH6GlUnCxiQlVoqzvXBmhpjK6VTVMOPDhJJfxuv9etrAOLMmNgFiax2yDoybW-_a3Ve_9Y7iG6PYn5iptdo300qIraPwISVZnH3Tz5CY77FEU
  priority: 102
  providerName: Unpaywall
Title DeepGun: Deep Feature-Driven One-Class Classifier for Firearm Detection Using Visual Gun Features and Human Body Pose Estimation
URI https://www.proquest.com/docview/3217720914
https://www.mdpi.com/2076-3417/15/11/5830/pdf?version=1747918957
https://doaj.org/article/65fa55dd663f4b54bf56e8769976c504
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Lb9MwGLfGdoAd0DZAFEblwxBwiGjqR21u7dZuQqJUiKJxsvyUJo20ykNoN_50PjvpFAkJLlyiJEqcL_7etr-fETrj1GgGWpZJ41kGVtJnQhibcan5KIiJbqv4Py351Zp-vGbXva2-4pqwFh647bj3nAXNmHPgGQM1jJrAuIfGJfhRy1ok0JGQvWQq2WCZR-iqtiCPQF4f54PBueVMxPXOPReUkPr_tMeH6GFTbPXdT31723M4iyP0uIsU8bSl8Bjt-eIEHfbwA0_QcaeZFX7bwUe_e4J-XXi_vWyKDzie4BjjNaXPLspo1_DnwmdpI0ycjjcB3CKGwBUvwPbp8ge8VKfVWQVOqwnwt5uqATKgwV1TFdaFw2n0H8827g6vNpXHc7AVbRnkU7RezL-eX2XdPguZJZzUWXBjE4zT0lHnhDWg1HLCIBTyEavdWWu9HEOPQucxTiGBolqOpHHSE5vbXJNnaL_YFP45wpC9BB9ns4l31OZS0DxAkAVxgCTWED9AZ7uuV9sWTkNBGhI5pHocGqBZZMv9IxEDO90AyVCdZKh_ScYAvYlMVVFT61Jb3RUcAKUR80pNBYXodCI4fO50x3fVqXClCCRrk_jb0NDre1n4G9Uv_gfVL9GjcdxiOA30nKL9umz8K4h7ajNED8TicogOZvPl6sswCTxcrZer6fffetcCEQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSACBTYQyvgYGF7144XqUINSUhpGyrUot6WfRlVKnawHVW58cv4bcz6ESIh9dZLFEXO7Moz-803uzszAHsxUzLCVeZxZSMPUdJ6SaK0F3MZ-2nSl00W_-k0nlywz5fR5Rr86XJh3LXKDhNroDa5dnvk7yhy536I3o19mP3yXNcod7ratdCQbWsFc1CXGGsTO47t4gZDuPLgaIj63g_D8ej848Rruwx4msa08lITqlQZyQ0zJtEKTZr3IyQC1lUqN1pry924ARLrmGH4wCT3uTLcUh3oQFKUew82GGUcg7-NwWh69nW5y-OqbiaB3yQGUsp9dy6NThaFuXvXK66w7hjwv1_Ygs15NpOLG3l9veL4xg_hQctYyWFjYtuwZrMd2FqpY7gD2y1ClORNW8b67SP4PbR29mmevSfuC3Fcc15Yb1g4fCVfMuvVDTlJ_XmVonsmSKDJGDFYFj_xT1V9Sywj9a0G8u2qnOM0UGAnqiQyM6Q-hSCD3CzIWV5aMkLMatIxH8PFnWjiCaxneWafAsEoKrXuVJ1aw3TAExakSPaQj3CqFbU92OtevZg1ZT0EhkNOQ2JFQz0YOLUsH3G1uOsf8uKHaJe2iKNURpExyN1SpiKm0ii2aP4cmZ6OfNaD106pwiFGVUgt28QHnKmrvSUOE4YsuZ_EONxup3fRQkkp_hl-D_aXtnDbrJ_dLuYVbE7OT0_EydH0-DncD11D43pbaRfWq2JuXyDLqtTL1pQJfL_r1fMXQ8U5Xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJioHI6hxFbUPEPUwYR49jzYxBlwGEEUOYriN_RpDgjPrPEL25u_y11k1j3UTE25cNpvNbHVnqvqrr7vrAbAVcSVDXGWOUDZ0ECWtkyRKO5GQkZsnseyz-D-fRIdn_ON5eL4Cf8ZcGAqrHDGxA2pTajoj3wmQO8c-eje-kw9hEafT9P3sl0MdpOimdWyn0ZvIsZ1f4fatfnc0RV1v-366__XDoTN0GHB0EAWNkxtf5cpIYbgxiVZoziIOkQRYqlJutNZW0JgekuqI49aBS-EKZYQNtKc9GaDcW3A7pirulKWeHizOd6jeZuK5fUpgEAiXbqTRvaIoirhecoJdr4D_PcIa3G2LmZxfycvLJZeXPoD7A1dlu71xrcOKLTZgbamC4QasD9hQs9dDAes3D-H31NrZQVu8ZfSFEctsK-tMK0JW9qWwTteKk3WfFzk6ZobUmaWIvrL6iX9quviwgnXxDOzbRd3iNFDgKKpmsjCsu39ge6WZs9Oytmwf0apPxHwEZzeih8ewWpSFfQIM90-5pfv0wBquPZFwL0eah0xEBFoFdgJb46vPZn1Bjww3QqShbElDE9gjtSweoSrc3Q9l9SMbFnUWhbkMQ2OQteVchVzlYWTR8AVyPB26fAKvSKkZYUVTSS2HlAecKVXdynYTjvw4TiIcbnPUezaASJ39M_kJbC9s4bpZP71ezEu4g2sm-3R0cvwM7vnUybg7T9qE1aZq7XOkV4160dkxg-83vXD-ArCxNvg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgPUAPhRYqUgryoQg4uInjx665oJQ2VEiUHggqp5WfKKJson2AyomfzngfVQAJIXFZrVb2rC2PP39je2YQOpDcaAGzjCjjBQGU9CRNjSVSaTkOaaJbL_63Z_J0zt9ciIs1L_54rRJM8UUD0hMwsgnAbDKiYkTpSKRsPFq58PJrt5cEdDpRNFUiuYk2pAA2PkAb87Pz6ceYU66v3brlMbDu46kwLHE0CvplIWri9f-JypvoVp2v9NU3fXm5tuzM7iDdN7i9bfL5sK7Mof3-WyzH_-nRXbTVcVI8bZVoG93w-Q7aXItUuIO2Owwo8bMuUPXze-jHsfer13X-AscXHNlkXXhyXEQExe9yT5qUm7h5LgIswBgoMp4ByuriC1SqmntgOW7uLeAPi7KGZoDAXlSJde5wc86Aj5buCp8vS49PAJVah8v7aD47ef_qlHQZHYhlklUkuIkJxmnluHOpNQAfKhFAunyMCu-stV5NgMHAAAnJwVTjWo2VccozSy3VbBcN8mXuHyAMdlLw8dycecctVSmnAegcMA7FrGF-iA764c1WbeCODAyeqAXZmhYM0VEc-usiMdp282FZfMq6yZtJEbQQzgE7C9wIboKQHhRcAZezYsyH6GlUnCxiQlVoqzvXBmhpjK6VTVMOPDhJJfxuv9etrAOLMmNgFiax2yDoybW-_a3Ve_9Y7iG6PYn5iptdo300qIraPwISVZnH3Tz5CY77FEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepGun%3A+Deep+Feature-Driven+One-Class+Classifier+for+Firearm+Detection+Using+Visual+Gun+Features+and+Human+Body+Pose+Estimation&rft.jtitle=Applied+sciences&rft.au=Harbinder+Singh&rft.au=Oscar+Deniz&rft.au=Jesus+Ruiz-Santaquiteria&rft.au=Juan+D.+Mu%C3%B1oz&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=11&rft.spage=5830&rft_id=info:doi/10.3390%2Fapp15115830&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_65fa55dd663f4b54bf56e8769976c504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon