DeepGun: Deep Feature-Driven One-Class Classifier for Firearm Detection Using Visual Gun Features and Human Body Pose Estimation
The increasing frequency of mass shootings at public events and public buildings underscores the limitations of traditional surveillance systems, which rely on human operators monitoring multiple screens. Delayed response times often hinder security teams from intervening before an attack unfolds. S...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 15; no. 11; p. 5830 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.06.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app15115830 | 
Cover
| Abstract | The increasing frequency of mass shootings at public events and public buildings underscores the limitations of traditional surveillance systems, which rely on human operators monitoring multiple screens. Delayed response times often hinder security teams from intervening before an attack unfolds. Since firearms are rarely seen in public spaces and constitute anomalous observations, firearm detection can be considered as an anomaly detection (AD) problem, for which one-class classifiers (OCCs) are well-suited. To address this challenge, we propose a holistic firearm detection approach that integrates OCCs with visual hand-held gun features and human pose estimation (HPE). In the first stage, a variational autoencoder (VAE) learns latent representations of firearm-related instances, ensuring that the latent space is dedicated exclusively to the target class. Hand patches of variable sizes are extracted from each frame using body landmarks, dynamically adjusting based on the subject’s distance from the camera. In the second stage, a unified feature vector is generated by integrating VAE-extracted latent features with landmark-based arm positioning features. Finally, an isolation forest (IFC)-based OCC model evaluates this unified feature representation to estimate the probability that a test sample belongs to the firearm-related distribution. By utilizing skeletal representations of human actions, our approach overcomes the limitations of appearance-based gun features extracted by camera, which are often affected by background variations. Experimental results on diverse firearm datasets validate the effectiveness of our anomaly detection approach, achieving an F1-score of 86.6%, accuracy of 85.2%, precision of 95.3%, recall of 74.0%, and average precision (AP) of 83.5%. These results demonstrate the superiority of our method over traditional approaches that rely solely on visual features. | 
    
|---|---|
| AbstractList | The increasing frequency of mass shootings at public events and public buildings underscores the limitations of traditional surveillance systems, which rely on human operators monitoring multiple screens. Delayed response times often hinder security teams from intervening before an attack unfolds. Since firearms are rarely seen in public spaces and constitute anomalous observations, firearm detection can be considered as an anomaly detection (AD) problem, for which one-class classifiers (OCCs) are well-suited. To address this challenge, we propose a holistic firearm detection approach that integrates OCCs with visual hand-held gun features and human pose estimation (HPE). In the first stage, a variational autoencoder (VAE) learns latent representations of firearm-related instances, ensuring that the latent space is dedicated exclusively to the target class. Hand patches of variable sizes are extracted from each frame using body landmarks, dynamically adjusting based on the subject’s distance from the camera. In the second stage, a unified feature vector is generated by integrating VAE-extracted latent features with landmark-based arm positioning features. Finally, an isolation forest (IFC)-based OCC model evaluates this unified feature representation to estimate the probability that a test sample belongs to the firearm-related distribution. By utilizing skeletal representations of human actions, our approach overcomes the limitations of appearance-based gun features extracted by camera, which are often affected by background variations. Experimental results on diverse firearm datasets validate the effectiveness of our anomaly detection approach, achieving an F1-score of 86.6%, accuracy of 85.2%, precision of 95.3%, recall of 74.0%, and average precision (AP) of 83.5%. These results demonstrate the superiority of our method over traditional approaches that rely solely on visual features. | 
    
| Audience | Academic | 
    
| Author | Deniz, Oscar Bueno, Gloria Muñoz, Juan D. Singh, Harbinder Ruiz-Santaquiteria, Jesus  | 
    
| Author_xml | – sequence: 1 givenname: Harbinder orcidid: 0000-0002-9713-6048 surname: Singh fullname: Singh, Harbinder – sequence: 2 givenname: Oscar orcidid: 0000-0002-0841-4131 surname: Deniz fullname: Deniz, Oscar – sequence: 3 givenname: Jesus orcidid: 0000-0003-1454-7624 surname: Ruiz-Santaquiteria fullname: Ruiz-Santaquiteria, Jesus – sequence: 4 givenname: Juan D. orcidid: 0009-0008-2484-4087 surname: Muñoz fullname: Muñoz, Juan D. – sequence: 5 givenname: Gloria orcidid: 0000-0002-7345-4869 surname: Bueno fullname: Bueno, Gloria  | 
    
| BookMark | eNp9kU1v1DAQhiNUJErpiT9giSOk2OuPxNzKtttWqlQOlGs0sccrr7J2sBPQ3vjpOF1APWFLntHoncczel9XJyEGrKq3jF5wrulHGEcmGZMtpy-q0xVtVM0Fa06e5a-q85x3tBzNeMvoafXrCnG8mcMnsiRkgzDNCeur5H9gIA8B6_UAOZOn1zuPibiYyMYnhLQvTROaycdAHrMPW_LN5xkGUoB_UZlAsOR23kMgn6M9kC8xI7nOk9_D0vimeulgyHj-J55Vj5vrr-vb-v7h5m59eV8brvhUO7vqXW9BW2Fta3oqWt1IqSg2lGlrjEG9KluV9aUSjAkBmureauSGGQb8rLo7cm2EXTem8n06dBF891SIadtBmrwZsFPSgZTWKsWd6KXonVTYNkrrRhlJRWF9OLLmMMLhJwzDPyCj3WJG98yMIn93lI8pfp8xT90uzimUbTu-Yk2zzL1AL46qLZQZfHBxSmDKtbj3pljtfKlftkLStmnVgn1_bDAp5pzQ_XeI3_wZqAg | 
    
| Cites_doi | 10.1109/EISIC49498.2019.9108871 10.1016/j.eswa.2022.118698 10.1080/00401706.1999.10485670 10.1016/j.knosys.2021.107886 10.1016/j.asoc.2023.110176 10.3390/fi14120380 10.1109/ICITACEE55701.2022.9924010 10.1109/CCST.2007.4373499 10.1109/RMKMATE59243.2023.10369889 10.1109/CVPR.2018.00907 10.1007/s00521-024-10373-1 10.1016/j.cviu.2021.103225 10.1109/CVPR.2016.90 10.1561/2200000056 10.2139/ssrn.5212589 10.1007/s00521-021-06317-8 10.1109/CVPR.2018.00675 10.1109/CVPR.2018.00678 10.1109/CVPR.2019.00301 10.1109/MSP.2017.2738401 10.1007/978-0-387-73003-5_196 10.1016/j.cosrev.2023.100612 10.1109/ACCESS.2021.3061626 10.1145/3154979.3154988 10.1109/TVCG.2018.2868527 10.1016/j.dib.2024.110030 10.1109/ACCESS.2021.3110335 10.1016/j.chemolab.2024.105276 10.3390/s24185865 10.1109/CVPR46437.2021.01576 10.1109/ICCV51070.2023.01267 10.1007/BF00994018 10.1007/s00521-020-05365-w 10.1016/j.patcog.2022.109252 10.1002/wics.101 10.1109/WACV56688.2023.00074 10.1109/5254.708428 10.1109/ICM46511.2021.9385618 10.1109/CVPR.2017.243 10.3390/s22103862 10.1109/ICDM.2008.17 10.3390/s16010047 10.1109/TPAMI.2019.2929257 10.23919/IConAC.2019.8895110 10.1109/CVPR.2018.00474 10.1186/s40537-021-00514-x 10.3390/jimaging11030072 10.1016/j.neucom.2017.05.012 10.3390/app11136085 10.1109/TIP.2019.2917862 10.1017/S026988891300043X  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app15115830 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_65fa55dd663f4b54bf56e8769976c504 10.3390/app15115830 A845087860 10_3390_app15115830  | 
    
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c363t-fd2bfbda9d4dd8cb048975560e7019dccce920911585641144a909bd9e3c1c1a3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Tue Oct 14 19:02:44 EDT 2025 Tue Aug 19 23:47:22 EDT 2025 Sat Aug 23 12:46:37 EDT 2025 Tue Jul 01 05:43:29 EDT 2025 Thu Oct 16 04:44:26 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-fd2bfbda9d4dd8cb048975560e7019dccce920911585641144a909bd9e3c1c1a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0008-2484-4087 0000-0002-0841-4131 0000-0003-1454-7624 0000-0002-7345-4869 0000-0002-9713-6048  | 
    
| OpenAccessLink | https://doaj.org/article/65fa55dd663f4b54bf56e8769976c504 | 
    
| PQID | 3217720914 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_65fa55dd663f4b54bf56e8769976c504 unpaywall_primary_10_3390_app15115830 proquest_journals_3217720914 gale_infotracacademiconefile_A845087860 crossref_primary_10_3390_app15115830  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-06-01 | 
    
| PublicationDateYYYYMMDD | 2025-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | ref_50 Akrami (ref_63) 2022; 238 Maigler (ref_11) 2024; 52 Perera (ref_42) 2019; 28 Cha (ref_25) 2018; 24 Seliya (ref_37) 2021; 8 ref_14 ref_58 ref_13 ref_57 ref_12 ref_56 ref_55 ref_53 ref_19 ref_18 ref_16 ref_15 ref_59 Ramirez (ref_28) 2021; 9 Cao (ref_35) 2019; 43 Vallez (ref_31) 2021; 9 ref_60 ref_24 ref_23 ref_22 Soares (ref_30) 2024; 36 ref_21 ref_20 ref_62 ref_29 ref_27 Burnayev (ref_2) 2023; 14 Santos (ref_3) 2024; 51 Abdi (ref_51) 2010; 2 Vallez (ref_7) 2023; 136 Wang (ref_64) 2021; 210 Olmos (ref_9) 2018; 275 ref_36 Khan (ref_39) 2014; 29 ref_34 ref_33 Hearst (ref_17) 1998; 13 ref_32 Kingma (ref_44) 2019; 12 Vallez (ref_26) 2021; 33 Ramachandram (ref_49) 2017; 34 ref_38 Vallez (ref_61) 2021; 33 Li (ref_48) 2023; 138 ref_47 ref_46 ref_45 Petersen (ref_43) 2025; 256 Yadav (ref_10) 2023; 212 ref_41 ref_40 ref_1 Rousseeuw (ref_54) 1999; 41 Cortes (ref_52) 1995; 20 ref_8 ref_5 ref_4 ref_6  | 
    
| References_xml | – ident: ref_32 – ident: ref_15 doi: 10.1109/EISIC49498.2019.9108871 – volume: 212 start-page: 118698 year: 2023 ident: ref_10 article-title: A comprehensive study towards high-level approaches for weapon detection using classical machine learning and deep learning methods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118698 – volume: 41 start-page: 212 year: 1999 ident: ref_54 article-title: A Fast Algorithm for the Minimum Covariance Determinant Estimator publication-title: Technometrics doi: 10.1080/00401706.1999.10485670 – volume: 238 start-page: 107886 year: 2022 ident: ref_63 article-title: A robust variational autoencoder using beta divergence publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107886 – volume: 138 start-page: 110176 year: 2023 ident: ref_48 article-title: A comprehensive survey on design and application of autoencoder in deep learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110176 – ident: ref_27 doi: 10.3390/fi14120380 – ident: ref_47 doi: 10.1109/ICITACEE55701.2022.9924010 – ident: ref_1 – ident: ref_33 doi: 10.1109/CCST.2007.4373499 – ident: ref_4 doi: 10.1109/RMKMATE59243.2023.10369889 – ident: ref_57 doi: 10.1109/CVPR.2018.00907 – volume: 36 start-page: 22013 year: 2024 ident: ref_30 article-title: Firearm detection using DETR with multiple self-coordinated neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-024-10373-1 – volume: 210 start-page: 103225 year: 2021 ident: ref_64 article-title: Deep 3D human pose estimation: A review publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2021.103225 – ident: ref_56 – ident: ref_55 doi: 10.1109/CVPR.2016.90 – volume: 12 start-page: 307 year: 2019 ident: ref_44 article-title: An introduction to variational autoencoders publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000056 – ident: ref_18 doi: 10.2139/ssrn.5212589 – ident: ref_13 – ident: ref_62 – volume: 33 start-page: 17273 year: 2021 ident: ref_26 article-title: Using human pose information for handgun detection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06317-8 – ident: ref_38 – ident: ref_21 doi: 10.1109/CVPR.2018.00675 – ident: ref_36 doi: 10.1109/CVPR.2018.00678 – ident: ref_45 – ident: ref_40 doi: 10.1109/CVPR.2019.00301 – volume: 34 start-page: 96 year: 2017 ident: ref_49 article-title: Deep multimodal learning: A survey on recent advances and trends publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2738401 – ident: ref_53 doi: 10.1007/978-0-387-73003-5_196 – volume: 51 start-page: 100612 year: 2024 ident: ref_3 article-title: Systematic review on weapon detection in surveillance footage through deep learning publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2023.100612 – volume: 9 start-page: 33532 year: 2021 ident: ref_28 article-title: Fall Detection and Activity Recognition Using Human Skeleton Features publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061626 – ident: ref_34 – ident: ref_16 doi: 10.1145/3154979.3154988 – volume: 24 start-page: 2993 year: 2018 ident: ref_25 article-title: Towards fully mobile 3D face, body, and environment capture using only head-worn cameras publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2018.2868527 – volume: 52 start-page: 110030 year: 2024 ident: ref_11 article-title: Firearm-related action recognition and object detection dataset for video surveillance systems publication-title: Data Brief doi: 10.1016/j.dib.2024.110030 – volume: 9 start-page: 123815 year: 2021 ident: ref_31 article-title: Handgun detection using combined human pose and weapon appearance publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110335 – volume: 256 start-page: 105276 year: 2025 ident: ref_43 article-title: VAE-SIMCA—Data-driven method for building one class classifiers with variational autoencoders publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2024.105276 – ident: ref_23 doi: 10.3390/s24185865 – ident: ref_19 doi: 10.1109/CVPR46437.2021.01576 – ident: ref_20 doi: 10.1109/ICCV51070.2023.01267 – volume: 20 start-page: 273 year: 1995 ident: ref_52 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 33 start-page: 5885 year: 2021 ident: ref_61 article-title: Deep autoencoder for false positive reduction in handgun detection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05365-w – ident: ref_14 – volume: 136 start-page: 109252 year: 2023 ident: ref_7 article-title: Improving handgun detection through a combination of visual features and body pose-based data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109252 – volume: 2 start-page: 433 year: 2010 ident: ref_51 article-title: Principal component analysis publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.101 – ident: ref_22 doi: 10.1109/WACV56688.2023.00074 – volume: 13 start-page: 18 year: 1998 ident: ref_17 article-title: Support vector machines publication-title: IEEE Intell. Syst. Their Appl. doi: 10.1109/5254.708428 – ident: ref_29 doi: 10.1109/ICM46511.2021.9385618 – ident: ref_58 doi: 10.1109/CVPR.2017.243 – ident: ref_24 doi: 10.3390/s22103862 – ident: ref_6 – ident: ref_46 – ident: ref_50 doi: 10.1109/ICDM.2008.17 – volume: 14 start-page: 0140586 year: 2023 ident: ref_2 article-title: Weapons Detection System Based on Edge Computing and Computer Vision publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_12 doi: 10.3390/s16010047 – volume: 43 start-page: 172 year: 2019 ident: ref_35 article-title: Openpose: Realtime multi-person 2d pose estimation using part affinity fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2929257 – ident: ref_41 doi: 10.23919/IConAC.2019.8895110 – ident: ref_59 doi: 10.1109/CVPR.2018.00474 – volume: 8 start-page: 1 year: 2021 ident: ref_37 article-title: A literature review on one-class classification and its potential applications in big data publication-title: J. Big Data doi: 10.1186/s40537-021-00514-x – ident: ref_60 – ident: ref_8 doi: 10.3390/jimaging11030072 – volume: 275 start-page: 66 year: 2018 ident: ref_9 article-title: Automatic handgun detection alarm in videos using deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.012 – ident: ref_5 doi: 10.3390/app11136085 – volume: 28 start-page: 5450 year: 2019 ident: ref_42 article-title: Learning deep features for one-class classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2917862 – volume: 29 start-page: 345 year: 2014 ident: ref_39 article-title: One-class classification: Taxonomy of study and review of techniques publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988891300043X  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.322733 | 
    
| Snippet | The increasing frequency of mass shootings at public events and public buildings underscores the limitations of traditional surveillance systems, which rely on... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 5830 | 
    
| SubjectTerms | anomaly Datasets Deep learning Gun violence human action recognition Law enforcement Mass murders Neural networks one-class classifiers Performance evaluation Public safety Robbery Surveillance Surveillance equipment Weapons  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UH7ILYqPa2yDxX1YfFy2c1lBZGevbMInkWs9C3sV6RQkzMfSN_8053ZJOeB0JcQQrJZdnZmfruz8xuA40QYLVHLuDJecrSSnqepsTxROpnk6Ux3WfyfV8nZhfh0KS93YDXkwtCxysEmBkPtSkt75G9ixM6zKXo38X79i1PVKIquDiU0dF9awb0LFGN3YHdKzFgj2J0vVudfN7suxIKZRpMuUS_G9T7FidHpRTKlc9Bbrikw-P9vp_fgblus9c1vfX295YiWD-B-jyDZSSfyfdjxxQHsbfEKHsB-r7E1e9XTSr9-CH9OvV9_bIu3jG4YYb-28vy0InvHvhSehwKZLFyvcnSXDAEtW6JN1NVP_KgJp7YKFk4ZsO9XdYvdwAaHpmqmC8dCVIDNS3fDzsvaswXakC498hFcLBffPpzxvv4Ct3ESNzx3U5Mbp5UTzqXWoLKrmUSI5InD3VlrvSKJ4ODJRODCSmg1UcYpH9vIRjp-DKOiLPwhMFzV5J6i3LF3wkYqFVGO4AvxgYqtif0Yjoehz9YdzUaGyxOSULYloTHMSSybV4gbOzwoqx9Zr2pZInMtpXOIpXJhpDC5TDxOR4XIy8qJGMNLEmpGGtxU2uo-EQF7SlxY2UkqELXO0gR_dzTIPetVu87-TcQxvNjMhdt6_eT2Zp7CvSkVFQ5bO0cwaqrWP0Ok05jn_fT9C-Wa_DM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgPUAPhRYqUgryoQg4uInjx665oJQ2VEiUHggqp5WfKKJson2AyomfzngfVQAJIXFZrVb2rC2PP39je2YQOpDcaAGzjCjjBQGU9CRNjSVSaTkOaaJbL_63Z_J0zt9ciIs1L_54rRJM8UUD0hMwsgnAbDKiYkTpSKRsPFq58PJrt5cEdDpRNFUiuYk2pAA2PkAb87Pz6ceYU66v3brlMbDu46kwLHE0CvplIWri9f-JypvoVp2v9NU3fXm5tuzM7iDdN7i9bfL5sK7Mof3-WyzH_-nRXbTVcVI8bZVoG93w-Q7aXItUuIO2Owwo8bMuUPXze-jHsfer13X-AscXHNlkXXhyXEQExe9yT5qUm7h5LgIswBgoMp4ByuriC1SqmntgOW7uLeAPi7KGZoDAXlSJde5wc86Aj5buCp8vS49PAJVah8v7aD47ef_qlHQZHYhlklUkuIkJxmnluHOpNQAfKhFAunyMCu-stV5NgMHAAAnJwVTjWo2VccozSy3VbBcN8mXuHyAMdlLw8dycecctVSmnAegcMA7FrGF-iA764c1WbeCODAyeqAXZmhYM0VEc-usiMdp282FZfMq6yZtJEbQQzgE7C9wIboKQHhRcAZezYsyH6GlUnCxiQlVoqzvXBmhpjK6VTVMOPDhJJfxuv9etrAOLMmNgFiax2yDoybW-_a3Ve_9Y7iG6PYn5iptdo300qIraPwISVZnH3Tz5CY77FEU priority: 102 providerName: Unpaywall  | 
    
| Title | DeepGun: Deep Feature-Driven One-Class Classifier for Firearm Detection Using Visual Gun Features and Human Body Pose Estimation | 
    
| URI | https://www.proquest.com/docview/3217720914 https://www.mdpi.com/2076-3417/15/11/5830/pdf?version=1747918957 https://doaj.org/article/65fa55dd663f4b54bf56e8769976c504  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Lb9MwGLfGdoAd0DZAFEblwxBwiGjqR21u7dZuQqJUiKJxsvyUJo20ykNoN_50PjvpFAkJLlyiJEqcL_7etr-fETrj1GgGWpZJ41kGVtJnQhibcan5KIiJbqv4Py351Zp-vGbXva2-4pqwFh647bj3nAXNmHPgGQM1jJrAuIfGJfhRy1ok0JGQvWQq2WCZR-iqtiCPQF4f54PBueVMxPXOPReUkPr_tMeH6GFTbPXdT31723M4iyP0uIsU8bSl8Bjt-eIEHfbwA0_QcaeZFX7bwUe_e4J-XXi_vWyKDzie4BjjNaXPLspo1_DnwmdpI0ycjjcB3CKGwBUvwPbp8ge8VKfVWQVOqwnwt5uqATKgwV1TFdaFw2n0H8827g6vNpXHc7AVbRnkU7RezL-eX2XdPguZJZzUWXBjE4zT0lHnhDWg1HLCIBTyEavdWWu9HEOPQucxTiGBolqOpHHSE5vbXJNnaL_YFP45wpC9BB9ns4l31OZS0DxAkAVxgCTWED9AZ7uuV9sWTkNBGhI5pHocGqBZZMv9IxEDO90AyVCdZKh_ScYAvYlMVVFT61Jb3RUcAKUR80pNBYXodCI4fO50x3fVqXClCCRrk_jb0NDre1n4G9Uv_gfVL9GjcdxiOA30nKL9umz8K4h7ajNED8TicogOZvPl6sswCTxcrZer6fffetcCEQ | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSACBTYQyvgYGF7144XqUINSUhpGyrUot6WfRlVKnawHVW58cv4bcz6ESIh9dZLFEXO7Moz-803uzszAHsxUzLCVeZxZSMPUdJ6SaK0F3MZ-2nSl00W_-k0nlywz5fR5Rr86XJh3LXKDhNroDa5dnvk7yhy536I3o19mP3yXNcod7ratdCQbWsFc1CXGGsTO47t4gZDuPLgaIj63g_D8ej848Rruwx4msa08lITqlQZyQ0zJtEKTZr3IyQC1lUqN1pry924ARLrmGH4wCT3uTLcUh3oQFKUew82GGUcg7-NwWh69nW5y-OqbiaB3yQGUsp9dy6NThaFuXvXK66w7hjwv1_Ygs15NpOLG3l9veL4xg_hQctYyWFjYtuwZrMd2FqpY7gD2y1ClORNW8b67SP4PbR29mmevSfuC3Fcc15Yb1g4fCVfMuvVDTlJ_XmVonsmSKDJGDFYFj_xT1V9Sywj9a0G8u2qnOM0UGAnqiQyM6Q-hSCD3CzIWV5aMkLMatIxH8PFnWjiCaxneWafAsEoKrXuVJ1aw3TAExakSPaQj3CqFbU92OtevZg1ZT0EhkNOQ2JFQz0YOLUsH3G1uOsf8uKHaJe2iKNURpExyN1SpiKm0ii2aP4cmZ6OfNaD106pwiFGVUgt28QHnKmrvSUOE4YsuZ_EONxup3fRQkkp_hl-D_aXtnDbrJ_dLuYVbE7OT0_EydH0-DncD11D43pbaRfWq2JuXyDLqtTL1pQJfL_r1fMXQ8U5Xg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJioHI6hxFbUPEPUwYR49jzYxBlwGEEUOYriN_RpDgjPrPEL25u_y11k1j3UTE25cNpvNbHVnqvqrr7vrAbAVcSVDXGWOUDZ0ECWtkyRKO5GQkZsnseyz-D-fRIdn_ON5eL4Cf8ZcGAqrHDGxA2pTajoj3wmQO8c-eje-kw9hEafT9P3sl0MdpOimdWyn0ZvIsZ1f4fatfnc0RV1v-366__XDoTN0GHB0EAWNkxtf5cpIYbgxiVZoziIOkQRYqlJutNZW0JgekuqI49aBS-EKZYQNtKc9GaDcW3A7pirulKWeHizOd6jeZuK5fUpgEAiXbqTRvaIoirhecoJdr4D_PcIa3G2LmZxfycvLJZeXPoD7A1dlu71xrcOKLTZgbamC4QasD9hQs9dDAes3D-H31NrZQVu8ZfSFEctsK-tMK0JW9qWwTteKk3WfFzk6ZobUmaWIvrL6iX9quviwgnXxDOzbRd3iNFDgKKpmsjCsu39ge6WZs9Oytmwf0apPxHwEZzeih8ewWpSFfQIM90-5pfv0wBquPZFwL0eah0xEBFoFdgJb46vPZn1Bjww3QqShbElDE9gjtSweoSrc3Q9l9SMbFnUWhbkMQ2OQteVchVzlYWTR8AVyPB26fAKvSKkZYUVTSS2HlAecKVXdynYTjvw4TiIcbnPUezaASJ39M_kJbC9s4bpZP71ezEu4g2sm-3R0cvwM7vnUybg7T9qE1aZq7XOkV4160dkxg-83vXD-ArCxNvg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgPUAPhRYqUgryoQg4uInjx665oJQ2VEiUHggqp5WfKKJson2AyomfzngfVQAJIXFZrVb2rC2PP39je2YQOpDcaAGzjCjjBQGU9CRNjSVSaTkOaaJbL_63Z_J0zt9ciIs1L_54rRJM8UUD0hMwsgnAbDKiYkTpSKRsPFq58PJrt5cEdDpRNFUiuYk2pAA2PkAb87Pz6ceYU66v3brlMbDu46kwLHE0CvplIWri9f-JypvoVp2v9NU3fXm5tuzM7iDdN7i9bfL5sK7Mof3-WyzH_-nRXbTVcVI8bZVoG93w-Q7aXItUuIO2Owwo8bMuUPXze-jHsfer13X-AscXHNlkXXhyXEQExe9yT5qUm7h5LgIswBgoMp4ByuriC1SqmntgOW7uLeAPi7KGZoDAXlSJde5wc86Aj5buCp8vS49PAJVah8v7aD47ef_qlHQZHYhlklUkuIkJxmnluHOpNQAfKhFAunyMCu-stV5NgMHAAAnJwVTjWo2VccozSy3VbBcN8mXuHyAMdlLw8dycecctVSmnAegcMA7FrGF-iA764c1WbeCODAyeqAXZmhYM0VEc-usiMdp282FZfMq6yZtJEbQQzgE7C9wIboKQHhRcAZezYsyH6GlUnCxiQlVoqzvXBmhpjK6VTVMOPDhJJfxuv9etrAOLMmNgFiax2yDoybW-_a3Ve_9Y7iG6PYn5iptdo300qIraPwISVZnH3Tz5CY77FEU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepGun%3A+Deep+Feature-Driven+One-Class+Classifier+for+Firearm+Detection+Using+Visual+Gun+Features+and+Human+Body+Pose+Estimation&rft.jtitle=Applied+sciences&rft.au=Harbinder+Singh&rft.au=Oscar+Deniz&rft.au=Jesus+Ruiz-Santaquiteria&rft.au=Juan+D.+Mu%C3%B1oz&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=11&rft.spage=5830&rft_id=info:doi/10.3390%2Fapp15115830&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_65fa55dd663f4b54bf56e8769976c504 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |