A New Ensemble Strategy Based on Surprisingly Popular Algorithm and Classifier Prediction Confidence

Traditional ensemble methods rely on majority voting, which may fail to recognize correct answers held by a minority in scenarios requiring specialized knowledge. Therefore, this paper proposes two novel ensemble methods for supervised classification, named Confidence Truth Serum (CTS) and Confidenc...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 6; p. 3003
Main Authors Shi, Haochen, Yuan, Zirui, Zhang, Yankai, Zhang, Haoran, Wang, Xiujuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app15063003

Cover

Abstract Traditional ensemble methods rely on majority voting, which may fail to recognize correct answers held by a minority in scenarios requiring specialized knowledge. Therefore, this paper proposes two novel ensemble methods for supervised classification, named Confidence Truth Serum (CTS) and Confidence Truth Serum with Single Regression (CTS-SR). The former is based on the principles of Bayesian Truth Serum (BTS) and introduces classification confidence to calculate the prior and posterior probabilities of events, enabling the recovery of correct judgments provided by a confident minority beyond majority voting. CTS-SR further simplifies the algorithm by constructing a single regression model to reduce computational overhead, making it suitable for large-scale applications. Experiments are conducted on multiple binary classification datasets to evaluate CTS and CTS-SR. Experimental results demonstrate that, compared with existing ensemble methods, both of the proposed methods significantly outperform baseline algorithms in terms of accuracy and F1 scores. Specifically, there is an average improvement of 2–6% in accuracy and an average increase of 2–4% in F1 score. Notably, on the Musk and Hilly datasets, our method achieves a 5% improvement compared to the traditional majority voting approach. Particularly on the Hilly dataset, which generally exhibits the poorest classification performance and poses the greatest prediction challenges, our method demonstrates the best discriminative performance. validating the importance of confidence as a feature in ensemble learning.
AbstractList Traditional ensemble methods rely on majority voting, which may fail to recognize correct answers held by a minority in scenarios requiring specialized knowledge. Therefore, this paper proposes two novel ensemble methods for supervised classification, named Confidence Truth Serum (CTS) and Confidence Truth Serum with Single Regression (CTS-SR). The former is based on the principles of Bayesian Truth Serum (BTS) and introduces classification confidence to calculate the prior and posterior probabilities of events, enabling the recovery of correct judgments provided by a confident minority beyond majority voting. CTS-SR further simplifies the algorithm by constructing a single regression model to reduce computational overhead, making it suitable for large-scale applications. Experiments are conducted on multiple binary classification datasets to evaluate CTS and CTS-SR. Experimental results demonstrate that, compared with existing ensemble methods, both of the proposed methods significantly outperform baseline algorithms in terms of accuracy and F1 scores. Specifically, there is an average improvement of 2–6% in accuracy and an average increase of 2–4% in F1 score. Notably, on the Musk and Hilly datasets, our method achieves a 5% improvement compared to the traditional majority voting approach. Particularly on the Hilly dataset, which generally exhibits the poorest classification performance and poses the greatest prediction challenges, our method demonstrates the best discriminative performance. validating the importance of confidence as a feature in ensemble learning.
Audience Academic
Author Wang, Xiujuan
Zhang, Yankai
Zhang, Haoran
Shi, Haochen
Yuan, Zirui
Author_xml – sequence: 1
  givenname: Haochen
  surname: Shi
  fullname: Shi, Haochen
– sequence: 2
  givenname: Zirui
  surname: Yuan
  fullname: Yuan, Zirui
– sequence: 3
  givenname: Yankai
  surname: Zhang
  fullname: Zhang, Yankai
– sequence: 4
  givenname: Haoran
  surname: Zhang
  fullname: Zhang, Haoran
– sequence: 5
  givenname: Xiujuan
  orcidid: 0000-0003-1520-9053
  surname: Wang
  fullname: Wang, Xiujuan
BookMark eNp9UU1v1DAQjVCRKKUn_oAljrDFH3HiHJdVKZWqtlLL2ZrY4-BV1g52omr_PW6DUE94DrZG7715fvO-OgkxYFV9ZPRCiI5-hWlikjaCUvGmOuW0bTaiZu3Jq_e76jznPS2nY0IxelrZLbnFJ3IZMh76EcnDnGDG4Ui-QUZLYiAPS5qSzz4M45Hcx2kZIZHtOMTk518HAsGS3Qg5e-cxkfuE1pvZF-IuBuctBoMfqrcOxoznf--z6uf3y8fdj83N3dX1bnuzMaIR8wYdYqtaKwynIJvGIe_RGGTUtpw5zjoOCjhDqLHvwbkGeilQKSEl9NiKs-p61bUR9rq4PkA66ghevzRiGjSk2ZsRNfaqjGskRSvrWtpeYIedk4Y2wERNi9aXVWsJExyfYBz_CTKqnwPXrwIv8E8rfErx94J51vu4pFB-qwVTrKZKtLygLlbUAMWDDy6WuE0piwdvyjqdL_2tElx1QrWqED6vBJNizgndf038ARdfoMs
Cites_doi 10.1016/j.jbi.2020.103411
10.1109/34.273716
10.1126/science.1102081
10.1023/A:1007607513941
10.1016/j.catena.2020.104886
10.1109/TKDE.2004.29
10.24963/ijcai.2021/35
10.1007/3-540-45014-9_1
10.1016/j.engappai.2022.105151
10.1109/TIP.2020.2978645
10.1109/COMPSAC48688.2020.00-73
10.1023/A:1007614523901
10.1002/widm.1249
10.1007/s12652-020-01882-7
10.1007/s10515-015-0179-1
10.1038/nature21054
10.1109/MCAS.2006.1688199
10.1145/2939672.2939785
10.1016/j.patcog.2016.06.017
10.1007/s10994-022-06183-y
10.1016/j.asoc.2018.01.038
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app15063003
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_eb8efe650ed5445db3e9e9f5c06a1340
10.3390/app15063003
A832893878
10_3390_app15063003
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c363t-efee787d3c20a566fe2becce10d721f2192a8a21ea4ebbaff6ab53e88355abe73
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Fri Oct 03 12:51:31 EDT 2025
Sun Sep 07 10:51:55 EDT 2025
Mon Jun 30 12:04:23 EDT 2025
Mon Oct 20 16:55:19 EDT 2025
Thu Oct 16 04:46:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-efee787d3c20a566fe2becce10d721f2192a8a21ea4ebbaff6ab53e88355abe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1520-9053
OpenAccessLink https://www.proquest.com/docview/3181408372?pq-origsite=%requestingapplication%&accountid=15518
PQID 3181408372
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_eb8efe650ed5445db3e9e9f5c06a1340
unpaywall_primary_10_3390_app15063003
proquest_journals_3181408372
gale_infotracacademiconefile_A832893878
crossref_primary_10_3390_app15063003
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mccoy (ref_9) 2023; 70
Yang (ref_21) 2020; 29
ref_14
ref_13
Schapire (ref_11) 1999; 37
ref_10
ref_20
An (ref_23) 2020; 105
Ganaie (ref_3) 2022; 115
Ho (ref_5) 1994; 16
ref_2
Phama (ref_19) 2021; 196
Dietterich (ref_12) 2000; 40
Polikar (ref_1) 2006; 6
Yu (ref_17) 2016; 60
Prelec (ref_6) 2004; 306
Prelec (ref_7) 2017; 541
Zhang (ref_16) 2018; 65
Wang (ref_22) 2016; 23
Webb (ref_15) 2004; 16
Svargiv (ref_18) 2020; 13
Luo (ref_8) 2022; 112
Sagi (ref_4) 2018; 8
References_xml – volume: 105
  start-page: 103411
  year: 2020
  ident: ref_23
  article-title: Deep ensemble learning for Alzheimer’s disease classification
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2020.103411
– volume: 16
  start-page: 66
  year: 1994
  ident: ref_5
  article-title: Decision Combination in Multiple Classifiers Systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.273716
– volume: 306
  start-page: 462
  year: 2004
  ident: ref_6
  article-title: A Bayesian Truth Serum for Subjective Data
  publication-title: Science
  doi: 10.1126/science.1102081
– volume: 40
  start-page: 139
  year: 2000
  ident: ref_12
  article-title: An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007607513941
– volume: 196
  start-page: 104886
  year: 2021
  ident: ref_19
  article-title: Ensemble learning-based classification models for slope stability analysis
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104886
– volume: 16
  start-page: 981
  year: 2004
  ident: ref_15
  article-title: Multistrategy Ensemble Learning: Reducing Error by Combining Ensemble Learning Techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2004.29
– ident: ref_10
  doi: 10.24963/ijcai.2021/35
– ident: ref_2
  doi: 10.1007/3-540-45014-9_1
– volume: 115
  start-page: 105151
  year: 2022
  ident: ref_3
  article-title: Ensemble deep learning: A review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105151
– volume: 29
  start-page: 5038
  year: 2020
  ident: ref_21
  article-title: Image Denoising via Sequential Ensemble Learning
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2978645
– ident: ref_20
  doi: 10.1109/COMPSAC48688.2020.00-73
– volume: 37
  start-page: 297
  year: 1999
  ident: ref_11
  article-title: Improved Boosting Algorithms Using Confidence-rated Predictions
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007614523901
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_4
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 13
  start-page: 3467
  year: 2020
  ident: ref_18
  article-title: A new ensemble learning method based on learning automata
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01882-7
– volume: 23
  start-page: 569
  year: 2016
  ident: ref_22
  article-title: Multiple Kernel Ensemble Learning for Softwaredefect prediction
  publication-title: Autom. Softw. Eng.
  doi: 10.1007/s10515-015-0179-1
– volume: 541
  start-page: 532
  year: 2017
  ident: ref_7
  article-title: A solution to the single-question crowd wisdom problem
  publication-title: Nature
  doi: 10.1038/nature21054
– volume: 70
  start-page: 5931
  year: 2023
  ident: ref_9
  article-title: A Bayesian Hierarchical Model of Crowd Wisdom Based on Predicting Opinions of Others
  publication-title: Manag. Sci.
– volume: 6
  start-page: 21
  year: 2006
  ident: ref_1
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2006.1688199
– ident: ref_13
  doi: 10.1145/2939672.2939785
– volume: 60
  start-page: 692
  year: 2016
  ident: ref_17
  article-title: Progressive Subspace Ensemble Learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.017
– volume: 112
  start-page: 789
  year: 2022
  ident: ref_8
  article-title: Machine truth serum: A surprisingly popular approach to improving ensemble methods
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-022-06183-y
– ident: ref_14
– volume: 65
  start-page: 632
  year: 2018
  ident: ref_16
  article-title: A robust semi-supervised SVM via ensemble learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.038
SSID ssj0000913810
Score 2.3142016
Snippet Traditional ensemble methods rely on majority voting, which may fail to recognize correct answers held by a minority in scenarios requiring specialized...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3003
SubjectTerms Accuracy
Algorithms
Bayesian Truth Serum
Classification
confidence
Datasets
Decision making
ensemble learning
Hypotheses
Machine learning
Methods
supervised classification
Voting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC4WL-pBfGJ80QcX3UMwSed5HEWRhV2EVfDWdKerVYgZmRmR-fdWJT0SWNCL1xBCUV-q6iu66yuA40gSJ3BVGtqMetUUCxsajGTIWjeOCXmc8oDzn7_59V36-z67H6z64jthvTxw77gzNCU6JB6BlnVjrJFYYeWyOsp1LNOuW4_KatBMdTm4ilm6qh_Ik9TX83kwi-nJaLEey5egTqn__3y8Csuv7Yuev-mmGRScq3VY80xRjHoLN-AHtpuwOtAP3IQNH5lTcerlo39tgR0Jylzisp3is2lQeP3ZuTingmXFuBX_yLkU2_SJZi5uug1eEzFqHsaTp9njs9CtFd2uzCdHNVPcTPgsh_ETPB7YLyHdhrury9uL69DvUghrmctZSD5Eik0r6yTSROEcJowexpGlHtBR3kp0qZMYdYrGaOdybTKJJRG0TBss5A4steMWd0FopiDaENEtXFrIunSVqW1hijy1WWFMAMcL96qXXjJDUavBKKgBCgGcs-s_XmGd6-4Boa88-uor9AM4YeAURyN5s9Z-qIAsZV0rNaKERYysLMoADhbYKh-mU0UJjRpM6tGTAH5-4P2Z1XvfYfU-rCS8Rri7ynYAS7PJKx4St5mZo-43fgetCPg3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB7K9UH7YG1VjG1lwYr6kJLLJtncY6otRbAc6EF9Wnazs1pMc-UuR7n-9Z1JcuWsoL6GTRjm5zds5huAw0gSJvCjJHQp9aoJKhdajGTIXDeeAfkw4QHnL-fZ2ST5fJFebMCb1SzM2v29pHacr3GZA0-2jJ6bWUqAewCbk_Nx8Z3XxlEXHlIeVt3k3cM3fqs1LSX_n4l3Cx4t6muzvDFVtVZZTrfh00qm7oeSX0eLxh6Vtw_oGv8h9FN40iNLUXSusAMbWO_C1hrf4C7s9JE8F-97uukPz8AVgjKdOKnneGUrFD1f7VIcU4FzYlqLr2QMygX0iWopxu3Gr5koqh_T2WXz80qY2ol2t-alpxorxjO--2F7Cx4n7JaWPofJ6cm3j2dhv3shLGUmmxA9IsWyk2UcGYJ8HmO2Ng4jRz2jpzwXm9zEQzQJWmu8z4xNJeYE6FJjUckXMKinNb4EYRiyGEvAWPlEyTL3I1s6ZVWWuFRZG8Dhykr6uqPY0NSasCb1miYDOGYL3h9hXuz2AWle92Gm0eYkOaFOdMwy5KzEEY58WkaZGcokCuAd219z9JI2S9MPIZCkzIOlC0pwhOBylQewv3IR3Yf1XFMCpIaUevo4gLf3bvM3qV_957k9eBzzZuH277Z9GDSzBR4Q3Gns697d7wBlDPvz
  priority: 102
  providerName: Unpaywall
Title A New Ensemble Strategy Based on Surprisingly Popular Algorithm and Classifier Prediction Confidence
URI https://www.proquest.com/docview/3181408372
https://doi.org/10.3390/app15063003
https://doaj.org/article/eb8efe650ed5445db3e9e9f5c06a1340
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t3QPsAbEBWsao_DAEPEQkcX71AaEUtUxIVBVQaTxFdnweSFnatZ1Q_3vuUqdUQtpjoiiy7nzn72zf9wFcBpIwgR3EvkmoVo0xM77GQPrMdWMZkIcxNzh_naRXs_jLdXJ9AJOuF4avVXY5sU3UZl7xHvl7mntUC1A5FX1c3PmsGsWnq52EhnLSCuZDSzF2CEcRM2P14Gg4mky_7XZdmAUzD4Nto56kep_PiZlkTwadbJZbmloG___z9DE8um8WavNH1fXeQjR-Ck8cghTF1uUncIDNKRzv8QqewomL2JV462il3z0DUwjKaGLUrPBW1ygcL-1GDGkhM2LeiO9kdIp5-kW9EdNW2WspivqGzLD-dStUY0Srofnb0loqpks-42G_Cm4b3IqTPofZePTj05XvNBb8SqZy7aNFpJg1sooCRdDOYsRexTAwVBtaymeRylUUoopRa2VtqnQiMSfgliiNmXwBvWbe4BkIxdBEaQLAmY0zWeV2oCuT6SyNTZJp7cFlZ95ysaXSKKkEYS-Ue17wYMim333C_Nfti_nypnThVKLOaeSELtEwm5DREgc4sEkVpCqUceDBG3ZcyVFK1qyUazagkTLfVVlQIiOklme5Bxedb0sXvqvy32Tz4PXO3w-N-vzh37yExxELB7eX1y6gt17e4ytCM2vdh8N8_LnvJmq_3ROgp9lkWvz8CxWS-Nc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxNBEJ4gPCAPRlBjEXUfIOrDxevt_XwgptWSItA0Cglvx-7tLJIc19qWkP5z_m3OXPdqExPeeG2azd7M7Mw3tzffB7DvS8IENgs9E1GvGmJiPI2-9JjrxjIgb4c84Hw2iPsX4ffL6HIN_jSzMPxZZZMT60RtRgW_I_9MsUe9ALVTwZfxb49Vo_h2tZHQUE5awRzWFGNusOME5_fUwk0Pj7-Rvw-C4Kh3_rXvOZUBr5CxnHloESlqjSwCXxG4sRjwc2HbN9QdWTrRgUpV0EYVotbK2ljpSGJK0CVSGhNJ6z6BjVCGGTV_G93eYPhj-ZaHWTfTtr8YDJQy8_lemkn9pN_IdLlSWCsG_F8XtmDzrhqr-b0qy5XCd_QcnjnEKjqLENuGNax2YGuFx3AHtl2GmIqPjsb60wswHUEZVPSqKd7qEoXjwZ2LLhVOI0aV-ElOphxDS5RzMayVxCaiU16T2We_boWqjKg1O28s1W4xnPCdEseR4DHFhRjqS7h4FGu_gvVqVOFrEIqhkNIEuBMbJrJIbaYLk-gkDk2UaN2C_ca8-XhB3ZFTy8NeyFe80IIum375F-bbrn8YTa5zd3xz1CntnNAsGmYvMlpihpmNCj9WbRn6LfjAjss5K5A1C-WGG2inzK-VdyhxEjJMk7QFe41vc5cupvm_4G7BwdLfD-169-Fl3sNm__zsND89Hpy8gacBixbXH87twfpscodvCUnN9DsXrgKuHvuE_AWTazUD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IFpABAr40Ao4RE3iPA8IbWmXlkK1ElTqzdjxuCCl2WV3q2r_Gr-OmTyWlZB66zWKLGee38SebwB2AkmYwBWxbxOqVWPMrG8wkD5z3TgG5GHMDc5fT9Ojs_jzeXK-Bn_6Xhi-VtnHxCZQ23HJ_8j3yPaoFqByKtpz3bWI0cHww-S3zxOk-KS1H6fRmsgJLq6pfJu9Pz4gXe9G0fDw-8cjv5sw4JcylXMfHSJZrJVlFGgCNg4j_iYMA0uVkSNvjnSuoxB1jMZo51JtEok5wZZEG8wkrXsH7mbM4s5d6sNPy_87zLeZh0HbEihlEfCJNNP5yaAf0NUlwWZWwP8ZYQPuX9UTvbjWVbWS8oaP4GGHVcWgNa5NWMN6CzZWGAy3YLOLDTPxtiOwfvcY7EBQ7BSH9QwvTYWiY8BdiH1KmVaMa_GN1EvRhZaoFmLUzBCbikF1QUKe_7wUuraimdb5y1HWFqMpnyaxBQluUGzHoD6Bs1uR9VNYr8c1PgOhGQRpQ1A7c3Emy9wVprSZydLYJpkxHuz04lWTlrRDUbHDWlArWvBgn0W_fIWZtpsH4-mF6hxXoclp54Rj0TJvkTUSCyxcUgapDmUcePCGFac4HpA0S921NdBOmVlLDShkEibMs9yD7V63qgsUM_XPrD3YXer7pl0_v3mZ13CP_EJ9OT49eQEPIp5W3NyY24b1-fQKXxKEmptXja0K-HHbzvEXOAAynQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB7K9UH7YG1VjG1lwYr6kJLLJtncY6otRbAc6EF9Wnazs1pMc-UuR7n-9Z1JcuWsoL6GTRjm5zds5huAw0gSJvCjJHQp9aoJKhdajGTIXDeeAfkw4QHnL-fZ2ST5fJFebMCb1SzM2v29pHacr3GZA0-2jJ6bWUqAewCbk_Nx8Z3XxlEXHlIeVt3k3cM3fqs1LSX_n4l3Cx4t6muzvDFVtVZZTrfh00qm7oeSX0eLxh6Vtw_oGv8h9FN40iNLUXSusAMbWO_C1hrf4C7s9JE8F-97uukPz8AVgjKdOKnneGUrFD1f7VIcU4FzYlqLr2QMygX0iWopxu3Gr5koqh_T2WXz80qY2ol2t-alpxorxjO--2F7Cx4n7JaWPofJ6cm3j2dhv3shLGUmmxA9IsWyk2UcGYJ8HmO2Ng4jRz2jpzwXm9zEQzQJWmu8z4xNJeYE6FJjUckXMKinNb4EYRiyGEvAWPlEyTL3I1s6ZVWWuFRZG8Dhykr6uqPY0NSasCb1miYDOGYL3h9hXuz2AWle92Gm0eYkOaFOdMwy5KzEEY58WkaZGcokCuAd219z9JI2S9MPIZCkzIOlC0pwhOBylQewv3IR3Yf1XFMCpIaUevo4gLf3bvM3qV_957k9eBzzZuH277Z9GDSzBR4Q3Gns697d7wBlDPvz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Ensemble+Strategy+Based+on+Surprisingly+Popular+Algorithm+and+Classifier+Prediction+Confidence&rft.jtitle=Applied+sciences&rft.au=Shi%2C+Haochen&rft.au=Yuan%2C+Zirui&rft.au=Zhang%2C+Yankai&rft.au=Zhang%2C+Haoran&rft.date=2025-03-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=6&rft.spage=3003&rft_id=info:doi/10.3390%2Fapp15063003&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15063003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon