A New Ensemble Strategy Based on Surprisingly Popular Algorithm and Classifier Prediction Confidence
Traditional ensemble methods rely on majority voting, which may fail to recognize correct answers held by a minority in scenarios requiring specialized knowledge. Therefore, this paper proposes two novel ensemble methods for supervised classification, named Confidence Truth Serum (CTS) and Confidenc...
Saved in:
| Published in | Applied sciences Vol. 15; no. 6; p. 3003 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app15063003 |
Cover
| Abstract | Traditional ensemble methods rely on majority voting, which may fail to recognize correct answers held by a minority in scenarios requiring specialized knowledge. Therefore, this paper proposes two novel ensemble methods for supervised classification, named Confidence Truth Serum (CTS) and Confidence Truth Serum with Single Regression (CTS-SR). The former is based on the principles of Bayesian Truth Serum (BTS) and introduces classification confidence to calculate the prior and posterior probabilities of events, enabling the recovery of correct judgments provided by a confident minority beyond majority voting. CTS-SR further simplifies the algorithm by constructing a single regression model to reduce computational overhead, making it suitable for large-scale applications. Experiments are conducted on multiple binary classification datasets to evaluate CTS and CTS-SR. Experimental results demonstrate that, compared with existing ensemble methods, both of the proposed methods significantly outperform baseline algorithms in terms of accuracy and F1 scores. Specifically, there is an average improvement of 2–6% in accuracy and an average increase of 2–4% in F1 score. Notably, on the Musk and Hilly datasets, our method achieves a 5% improvement compared to the traditional majority voting approach. Particularly on the Hilly dataset, which generally exhibits the poorest classification performance and poses the greatest prediction challenges, our method demonstrates the best discriminative performance. validating the importance of confidence as a feature in ensemble learning. |
|---|---|
| AbstractList | Traditional ensemble methods rely on majority voting, which may fail to recognize correct answers held by a minority in scenarios requiring specialized knowledge. Therefore, this paper proposes two novel ensemble methods for supervised classification, named Confidence Truth Serum (CTS) and Confidence Truth Serum with Single Regression (CTS-SR). The former is based on the principles of Bayesian Truth Serum (BTS) and introduces classification confidence to calculate the prior and posterior probabilities of events, enabling the recovery of correct judgments provided by a confident minority beyond majority voting. CTS-SR further simplifies the algorithm by constructing a single regression model to reduce computational overhead, making it suitable for large-scale applications. Experiments are conducted on multiple binary classification datasets to evaluate CTS and CTS-SR. Experimental results demonstrate that, compared with existing ensemble methods, both of the proposed methods significantly outperform baseline algorithms in terms of accuracy and F1 scores. Specifically, there is an average improvement of 2–6% in accuracy and an average increase of 2–4% in F1 score. Notably, on the Musk and Hilly datasets, our method achieves a 5% improvement compared to the traditional majority voting approach. Particularly on the Hilly dataset, which generally exhibits the poorest classification performance and poses the greatest prediction challenges, our method demonstrates the best discriminative performance. validating the importance of confidence as a feature in ensemble learning. |
| Audience | Academic |
| Author | Wang, Xiujuan Zhang, Yankai Zhang, Haoran Shi, Haochen Yuan, Zirui |
| Author_xml | – sequence: 1 givenname: Haochen surname: Shi fullname: Shi, Haochen – sequence: 2 givenname: Zirui surname: Yuan fullname: Yuan, Zirui – sequence: 3 givenname: Yankai surname: Zhang fullname: Zhang, Yankai – sequence: 4 givenname: Haoran surname: Zhang fullname: Zhang, Haoran – sequence: 5 givenname: Xiujuan orcidid: 0000-0003-1520-9053 surname: Wang fullname: Wang, Xiujuan |
| BookMark | eNp9UU1v1DAQjVCRKKUn_oAljrDFH3HiHJdVKZWqtlLL2ZrY4-BV1g52omr_PW6DUE94DrZG7715fvO-OgkxYFV9ZPRCiI5-hWlikjaCUvGmOuW0bTaiZu3Jq_e76jznPS2nY0IxelrZLbnFJ3IZMh76EcnDnGDG4Ui-QUZLYiAPS5qSzz4M45Hcx2kZIZHtOMTk518HAsGS3Qg5e-cxkfuE1pvZF-IuBuctBoMfqrcOxoznf--z6uf3y8fdj83N3dX1bnuzMaIR8wYdYqtaKwynIJvGIe_RGGTUtpw5zjoOCjhDqLHvwbkGeilQKSEl9NiKs-p61bUR9rq4PkA66ghevzRiGjSk2ZsRNfaqjGskRSvrWtpeYIedk4Y2wERNi9aXVWsJExyfYBz_CTKqnwPXrwIv8E8rfErx94J51vu4pFB-qwVTrKZKtLygLlbUAMWDDy6WuE0piwdvyjqdL_2tElx1QrWqED6vBJNizgndf038ARdfoMs |
| Cites_doi | 10.1016/j.jbi.2020.103411 10.1109/34.273716 10.1126/science.1102081 10.1023/A:1007607513941 10.1016/j.catena.2020.104886 10.1109/TKDE.2004.29 10.24963/ijcai.2021/35 10.1007/3-540-45014-9_1 10.1016/j.engappai.2022.105151 10.1109/TIP.2020.2978645 10.1109/COMPSAC48688.2020.00-73 10.1023/A:1007614523901 10.1002/widm.1249 10.1007/s12652-020-01882-7 10.1007/s10515-015-0179-1 10.1038/nature21054 10.1109/MCAS.2006.1688199 10.1145/2939672.2939785 10.1016/j.patcog.2016.06.017 10.1007/s10994-022-06183-y 10.1016/j.asoc.2018.01.038 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app15063003 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_eb8efe650ed5445db3e9e9f5c06a1340 10.3390/app15063003 A832893878 10_3390_app15063003 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c363t-efee787d3c20a566fe2becce10d721f2192a8a21ea4ebbaff6ab53e88355abe73 |
| IEDL.DBID | BENPR |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:51:31 EDT 2025 Sun Sep 07 10:51:55 EDT 2025 Mon Jun 30 12:04:23 EDT 2025 Mon Oct 20 16:55:19 EDT 2025 Thu Oct 16 04:46:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-efee787d3c20a566fe2becce10d721f2192a8a21ea4ebbaff6ab53e88355abe73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1520-9053 |
| OpenAccessLink | https://www.proquest.com/docview/3181408372?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3181408372 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_eb8efe650ed5445db3e9e9f5c06a1340 unpaywall_primary_10_3390_app15063003 proquest_journals_3181408372 gale_infotracacademiconefile_A832893878 crossref_primary_10_3390_app15063003 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mccoy (ref_9) 2023; 70 Yang (ref_21) 2020; 29 ref_14 ref_13 Schapire (ref_11) 1999; 37 ref_10 ref_20 An (ref_23) 2020; 105 Ganaie (ref_3) 2022; 115 Ho (ref_5) 1994; 16 ref_2 Phama (ref_19) 2021; 196 Dietterich (ref_12) 2000; 40 Polikar (ref_1) 2006; 6 Yu (ref_17) 2016; 60 Prelec (ref_6) 2004; 306 Prelec (ref_7) 2017; 541 Zhang (ref_16) 2018; 65 Wang (ref_22) 2016; 23 Webb (ref_15) 2004; 16 Svargiv (ref_18) 2020; 13 Luo (ref_8) 2022; 112 Sagi (ref_4) 2018; 8 |
| References_xml | – volume: 105 start-page: 103411 year: 2020 ident: ref_23 article-title: Deep ensemble learning for Alzheimer’s disease classification publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2020.103411 – volume: 16 start-page: 66 year: 1994 ident: ref_5 article-title: Decision Combination in Multiple Classifiers Systems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.273716 – volume: 306 start-page: 462 year: 2004 ident: ref_6 article-title: A Bayesian Truth Serum for Subjective Data publication-title: Science doi: 10.1126/science.1102081 – volume: 40 start-page: 139 year: 2000 ident: ref_12 article-title: An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization publication-title: Mach. Learn. doi: 10.1023/A:1007607513941 – volume: 196 start-page: 104886 year: 2021 ident: ref_19 article-title: Ensemble learning-based classification models for slope stability analysis publication-title: Catena doi: 10.1016/j.catena.2020.104886 – volume: 16 start-page: 981 year: 2004 ident: ref_15 article-title: Multistrategy Ensemble Learning: Reducing Error by Combining Ensemble Learning Techniques publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2004.29 – ident: ref_10 doi: 10.24963/ijcai.2021/35 – ident: ref_2 doi: 10.1007/3-540-45014-9_1 – volume: 115 start-page: 105151 year: 2022 ident: ref_3 article-title: Ensemble deep learning: A review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105151 – volume: 29 start-page: 5038 year: 2020 ident: ref_21 article-title: Image Denoising via Sequential Ensemble Learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2978645 – ident: ref_20 doi: 10.1109/COMPSAC48688.2020.00-73 – volume: 37 start-page: 297 year: 1999 ident: ref_11 article-title: Improved Boosting Algorithms Using Confidence-rated Predictions publication-title: Mach. Learn. doi: 10.1023/A:1007614523901 – volume: 8 start-page: e1249 year: 2018 ident: ref_4 article-title: Ensemble learning: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 – volume: 13 start-page: 3467 year: 2020 ident: ref_18 article-title: A new ensemble learning method based on learning automata publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-01882-7 – volume: 23 start-page: 569 year: 2016 ident: ref_22 article-title: Multiple Kernel Ensemble Learning for Softwaredefect prediction publication-title: Autom. Softw. Eng. doi: 10.1007/s10515-015-0179-1 – volume: 541 start-page: 532 year: 2017 ident: ref_7 article-title: A solution to the single-question crowd wisdom problem publication-title: Nature doi: 10.1038/nature21054 – volume: 70 start-page: 5931 year: 2023 ident: ref_9 article-title: A Bayesian Hierarchical Model of Crowd Wisdom Based on Predicting Opinions of Others publication-title: Manag. Sci. – volume: 6 start-page: 21 year: 2006 ident: ref_1 article-title: Ensemble based systems in decision making publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2006.1688199 – ident: ref_13 doi: 10.1145/2939672.2939785 – volume: 60 start-page: 692 year: 2016 ident: ref_17 article-title: Progressive Subspace Ensemble Learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.017 – volume: 112 start-page: 789 year: 2022 ident: ref_8 article-title: Machine truth serum: A surprisingly popular approach to improving ensemble methods publication-title: Mach. Learn. doi: 10.1007/s10994-022-06183-y – ident: ref_14 – volume: 65 start-page: 632 year: 2018 ident: ref_16 article-title: A robust semi-supervised SVM via ensemble learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.01.038 |
| SSID | ssj0000913810 |
| Score | 2.3142016 |
| Snippet | Traditional ensemble methods rely on majority voting, which may fail to recognize correct answers held by a minority in scenarios requiring specialized... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 3003 |
| SubjectTerms | Accuracy Algorithms Bayesian Truth Serum Classification confidence Datasets Decision making ensemble learning Hypotheses Machine learning Methods supervised classification Voting |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC4WL-pBfGJ80QcX3UMwSed5HEWRhV2EVfDWdKerVYgZmRmR-fdWJT0SWNCL1xBCUV-q6iu66yuA40gSJ3BVGtqMetUUCxsajGTIWjeOCXmc8oDzn7_59V36-z67H6z64jthvTxw77gzNCU6JB6BlnVjrJFYYeWyOsp1LNOuW4_KatBMdTm4ilm6qh_Ik9TX83kwi-nJaLEey5egTqn__3y8Csuv7Yuev-mmGRScq3VY80xRjHoLN-AHtpuwOtAP3IQNH5lTcerlo39tgR0Jylzisp3is2lQeP3ZuTingmXFuBX_yLkU2_SJZi5uug1eEzFqHsaTp9njs9CtFd2uzCdHNVPcTPgsh_ETPB7YLyHdhrury9uL69DvUghrmctZSD5Eik0r6yTSROEcJowexpGlHtBR3kp0qZMYdYrGaOdybTKJJRG0TBss5A4steMWd0FopiDaENEtXFrIunSVqW1hijy1WWFMAMcL96qXXjJDUavBKKgBCgGcs-s_XmGd6-4Boa88-uor9AM4YeAURyN5s9Z-qIAsZV0rNaKERYysLMoADhbYKh-mU0UJjRpM6tGTAH5-4P2Z1XvfYfU-rCS8Rri7ynYAS7PJKx4St5mZo-43fgetCPg3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB7K9UH7YG1VjG1lwYr6kJLLJtncY6otRbAc6EF9Wnazs1pMc-UuR7n-9Z1JcuWsoL6GTRjm5zds5huAw0gSJvCjJHQp9aoJKhdajGTIXDeeAfkw4QHnL-fZ2ST5fJFebMCb1SzM2v29pHacr3GZA0-2jJ6bWUqAewCbk_Nx8Z3XxlEXHlIeVt3k3cM3fqs1LSX_n4l3Cx4t6muzvDFVtVZZTrfh00qm7oeSX0eLxh6Vtw_oGv8h9FN40iNLUXSusAMbWO_C1hrf4C7s9JE8F-97uukPz8AVgjKdOKnneGUrFD1f7VIcU4FzYlqLr2QMygX0iWopxu3Gr5koqh_T2WXz80qY2ol2t-alpxorxjO--2F7Cx4n7JaWPofJ6cm3j2dhv3shLGUmmxA9IsWyk2UcGYJ8HmO2Ng4jRz2jpzwXm9zEQzQJWmu8z4xNJeYE6FJjUckXMKinNb4EYRiyGEvAWPlEyTL3I1s6ZVWWuFRZG8Dhykr6uqPY0NSasCb1miYDOGYL3h9hXuz2AWle92Gm0eYkOaFOdMwy5KzEEY58WkaZGcokCuAd219z9JI2S9MPIZCkzIOlC0pwhOBylQewv3IR3Yf1XFMCpIaUevo4gLf3bvM3qV_957k9eBzzZuH277Z9GDSzBR4Q3Gns697d7wBlDPvz priority: 102 providerName: Unpaywall |
| Title | A New Ensemble Strategy Based on Surprisingly Popular Algorithm and Classifier Prediction Confidence |
| URI | https://www.proquest.com/docview/3181408372 https://doi.org/10.3390/app15063003 https://doaj.org/article/eb8efe650ed5445db3e9e9f5c06a1340 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t3QPsAbEBWsao_DAEPEQkcX71AaEUtUxIVBVQaTxFdnweSFnatZ1Q_3vuUqdUQtpjoiiy7nzn72zf9wFcBpIwgR3EvkmoVo0xM77GQPrMdWMZkIcxNzh_naRXs_jLdXJ9AJOuF4avVXY5sU3UZl7xHvl7mntUC1A5FX1c3PmsGsWnq52EhnLSCuZDSzF2CEcRM2P14Gg4mky_7XZdmAUzD4Nto56kep_PiZlkTwadbJZbmloG___z9DE8um8WavNH1fXeQjR-Ck8cghTF1uUncIDNKRzv8QqewomL2JV462il3z0DUwjKaGLUrPBW1ygcL-1GDGkhM2LeiO9kdIp5-kW9EdNW2WspivqGzLD-dStUY0Srofnb0loqpks-42G_Cm4b3IqTPofZePTj05XvNBb8SqZy7aNFpJg1sooCRdDOYsRexTAwVBtaymeRylUUoopRa2VtqnQiMSfgliiNmXwBvWbe4BkIxdBEaQLAmY0zWeV2oCuT6SyNTZJp7cFlZ95ysaXSKKkEYS-Ue17wYMim333C_Nfti_nypnThVKLOaeSELtEwm5DREgc4sEkVpCqUceDBG3ZcyVFK1qyUazagkTLfVVlQIiOklme5Bxedb0sXvqvy32Tz4PXO3w-N-vzh37yExxELB7eX1y6gt17e4ytCM2vdh8N8_LnvJmq_3ROgp9lkWvz8CxWS-Nc |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxNBEJ4gPCAPRlBjEXUfIOrDxevt_XwgptWSItA0Cglvx-7tLJIc19qWkP5z_m3OXPdqExPeeG2azd7M7Mw3tzffB7DvS8IENgs9E1GvGmJiPI2-9JjrxjIgb4c84Hw2iPsX4ffL6HIN_jSzMPxZZZMT60RtRgW_I_9MsUe9ALVTwZfxb49Vo_h2tZHQUE5awRzWFGNusOME5_fUwk0Pj7-Rvw-C4Kh3_rXvOZUBr5CxnHloESlqjSwCXxG4sRjwc2HbN9QdWTrRgUpV0EYVotbK2ljpSGJK0CVSGhNJ6z6BjVCGGTV_G93eYPhj-ZaHWTfTtr8YDJQy8_lemkn9pN_IdLlSWCsG_F8XtmDzrhqr-b0qy5XCd_QcnjnEKjqLENuGNax2YGuFx3AHtl2GmIqPjsb60wswHUEZVPSqKd7qEoXjwZ2LLhVOI0aV-ElOphxDS5RzMayVxCaiU16T2We_boWqjKg1O28s1W4xnPCdEseR4DHFhRjqS7h4FGu_gvVqVOFrEIqhkNIEuBMbJrJIbaYLk-gkDk2UaN2C_ca8-XhB3ZFTy8NeyFe80IIum375F-bbrn8YTa5zd3xz1CntnNAsGmYvMlpihpmNCj9WbRn6LfjAjss5K5A1C-WGG2inzK-VdyhxEjJMk7QFe41vc5cupvm_4G7BwdLfD-169-Fl3sNm__zsND89Hpy8gacBixbXH87twfpscodvCUnN9DsXrgKuHvuE_AWTazUD |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IFpABAr40Ao4RE3iPA8IbWmXlkK1ElTqzdjxuCCl2WV3q2r_Gr-OmTyWlZB66zWKLGee38SebwB2AkmYwBWxbxOqVWPMrG8wkD5z3TgG5GHMDc5fT9Ojs_jzeXK-Bn_6Xhi-VtnHxCZQ23HJ_8j3yPaoFqByKtpz3bWI0cHww-S3zxOk-KS1H6fRmsgJLq6pfJu9Pz4gXe9G0fDw-8cjv5sw4JcylXMfHSJZrJVlFGgCNg4j_iYMA0uVkSNvjnSuoxB1jMZo51JtEok5wZZEG8wkrXsH7mbM4s5d6sNPy_87zLeZh0HbEihlEfCJNNP5yaAf0NUlwWZWwP8ZYQPuX9UTvbjWVbWS8oaP4GGHVcWgNa5NWMN6CzZWGAy3YLOLDTPxtiOwfvcY7EBQ7BSH9QwvTYWiY8BdiH1KmVaMa_GN1EvRhZaoFmLUzBCbikF1QUKe_7wUuraimdb5y1HWFqMpnyaxBQluUGzHoD6Bs1uR9VNYr8c1PgOhGQRpQ1A7c3Emy9wVprSZydLYJpkxHuz04lWTlrRDUbHDWlArWvBgn0W_fIWZtpsH4-mF6hxXoclp54Rj0TJvkTUSCyxcUgapDmUcePCGFac4HpA0S921NdBOmVlLDShkEibMs9yD7V63qgsUM_XPrD3YXer7pl0_v3mZ13CP_EJ9OT49eQEPIp5W3NyY24b1-fQKXxKEmptXja0K-HHbzvEXOAAynQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB7K9UH7YG1VjG1lwYr6kJLLJtncY6otRbAc6EF9Wnazs1pMc-UuR7n-9Z1JcuWsoL6GTRjm5zds5huAw0gSJvCjJHQp9aoJKhdajGTIXDeeAfkw4QHnL-fZ2ST5fJFebMCb1SzM2v29pHacr3GZA0-2jJ6bWUqAewCbk_Nx8Z3XxlEXHlIeVt3k3cM3fqs1LSX_n4l3Cx4t6muzvDFVtVZZTrfh00qm7oeSX0eLxh6Vtw_oGv8h9FN40iNLUXSusAMbWO_C1hrf4C7s9JE8F-97uukPz8AVgjKdOKnneGUrFD1f7VIcU4FzYlqLr2QMygX0iWopxu3Gr5koqh_T2WXz80qY2ol2t-alpxorxjO--2F7Cx4n7JaWPofJ6cm3j2dhv3shLGUmmxA9IsWyk2UcGYJ8HmO2Ng4jRz2jpzwXm9zEQzQJWmu8z4xNJeYE6FJjUckXMKinNb4EYRiyGEvAWPlEyTL3I1s6ZVWWuFRZG8Dhykr6uqPY0NSasCb1miYDOGYL3h9hXuz2AWle92Gm0eYkOaFOdMwy5KzEEY58WkaZGcokCuAd219z9JI2S9MPIZCkzIOlC0pwhOBylQewv3IR3Yf1XFMCpIaUevo4gLf3bvM3qV_957k9eBzzZuH277Z9GDSzBR4Q3Gns697d7wBlDPvz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Ensemble+Strategy+Based+on+Surprisingly+Popular+Algorithm+and+Classifier+Prediction+Confidence&rft.jtitle=Applied+sciences&rft.au=Shi%2C+Haochen&rft.au=Yuan%2C+Zirui&rft.au=Zhang%2C+Yankai&rft.au=Zhang%2C+Haoran&rft.date=2025-03-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=6&rft.spage=3003&rft_id=info:doi/10.3390%2Fapp15063003&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15063003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |