Exponential Growth and Properties of Solutions for a Forced System of Incompressible Navier–Stokes Equations in Sobolev–Gevrey Spaces

One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniquen...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 13; no. 1; p. 148
Main Author Diaz Palencia, Jose Luis
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2025
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math13010148

Cover

Abstract One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniqueness of solutions to the incompressible Navier–Stokes equations within the Sobolev–Gevrey space Ha,σ1(R3). Sobolev–Gevrey spaces are well suited for our purposes, as they provide high regularity and control over derivative growth, and this is particularly relevant for us, given the maximum exponential growth in the forcing term. Additionally, the structured bounds in Gevrey spaces help monitor potential solution blow-up by maintaining regularity, though they do not fully prevent or resolve global blow-up scenarios. Utilizing the Banach fixed-point theorem, we demonstrate that the nonlinear operator associated with the Navier–Stokes equations is locally Lipschitz continuous in Ha,σ1(R3). Through energy estimates and the application of Grönwall’s inequality, we establish that solutions exist, are unique, and also exhibit exponential growth in their Sobolev–Gevrey norms over time under certain assumptions in the forcing term. This analysis in intended to contribute in the understanding of the behavior of fluid flows with forcing terms in high-regularity function spaces.
AbstractList One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniqueness of solutions to the incompressible Navier–Stokes equations within the Sobolev–Gevrey space Ha,σ1(R3). Sobolev–Gevrey spaces are well suited for our purposes, as they provide high regularity and control over derivative growth, and this is particularly relevant for us, given the maximum exponential growth in the forcing term. Additionally, the structured bounds in Gevrey spaces help monitor potential solution blow-up by maintaining regularity, though they do not fully prevent or resolve global blow-up scenarios. Utilizing the Banach fixed-point theorem, we demonstrate that the nonlinear operator associated with the Navier–Stokes equations is locally Lipschitz continuous in Ha,σ1(R3). Through energy estimates and the application of Grönwall’s inequality, we establish that solutions exist, are unique, and also exhibit exponential growth in their Sobolev–Gevrey norms over time under certain assumptions in the forcing term. This analysis in intended to contribute in the understanding of the behavior of fluid flows with forcing terms in high-regularity function spaces.
One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniqueness of solutions to the incompressible Navier–Stokes equations within the Sobolev–Gevrey space Ha,σ1( R 3) . Sobolev–Gevrey spaces are well suited for our purposes, as they provide high regularity and control over derivative growth, and this is particularly relevant for us, given the maximum exponential growth in the forcing term. Additionally, the structured bounds in Gevrey spaces help monitor potential solution blow-up by maintaining regularity, though they do not fully prevent or resolve global blow-up scenarios. Utilizing the Banach fixed-point theorem, we demonstrate that the nonlinear operator associated with the Navier–Stokes equations is locally Lipschitz continuous in Ha,σ1( R 3) . Through energy estimates and the application of Grönwall’s inequality, we establish that solutions exist, are unique, and also exhibit exponential growth in their Sobolev–Gevrey norms over time under certain assumptions in the forcing term. This analysis in intended to contribute in the understanding of the behavior of fluid flows with forcing terms in high-regularity function spaces.
One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniqueness of solutions to the incompressible Navier–Stokes equations within the Sobolev–Gevrey space H[sub.a,σ] [sup.1] (R[sup.3] ). Sobolev–Gevrey spaces are well suited for our purposes, as they provide high regularity and control over derivative growth, and this is particularly relevant for us, given the maximum exponential growth in the forcing term. Additionally, the structured bounds in Gevrey spaces help monitor potential solution blow-up by maintaining regularity, though they do not fully prevent or resolve global blow-up scenarios. Utilizing the Banach fixed-point theorem, we demonstrate that the nonlinear operator associated with the Navier–Stokes equations is locally Lipschitz continuous in H[sub.a,σ] [sup.1] (R[sup.3] ). Through energy estimates and the application of Grönwall’s inequality, we establish that solutions exist, are unique, and also exhibit exponential growth in their Sobolev–Gevrey norms over time under certain assumptions in the forcing term. This analysis in intended to contribute in the understanding of the behavior of fluid flows with forcing terms in high-regularity function spaces.
Audience Academic
Author Díaz Palencia, José Luis
Author_xml – sequence: 1
  fullname: Diaz Palencia, Jose Luis
BookMark eNp9kcFu1DAQhiNUJErpjQewxJUUO3Zs51hV22WlCpAWztHEmbReEju1ky1748q5b9gnwUsQ6gn7YGvm_z_N6H-dnTjvMMveMnrBeUU_DDDdMU4ZZUK_yE6LolC5So2TZ_9X2XmMO5pOxbgW1Wn2a_VjTBw3WejJOviH6Y6Aa8mX4EcMk8VIfEe2vp8n610knQ8EyLUPBluyPcQJh6Ng44wfxoAx2qZH8gn2FsPTz8ft5L8nxOp-hsVvXYI1vsd96q5xH_BAtiMYjG-ylx30Ec__vmfZt-vV16uP-c3n9ebq8iY3XPIpx67SQrWCq4ZqbVopDDVlJ7SsaCl5Q1VrugZaoUraSCVZC6aoeKk4GkAp-Vm2Wbith109BjtAONQebP2n4MNtDWlx02MNJeMMOSqJSlQ0wU1RGirKRkBrJE2sfGHNboTDA_T9PyCj9TGW-nksSf9u0Y_B388Yp3rn5-DSujVnJdeUFvKoulhUt5CGsK7zUwCTbouDNSmtzqb6pS4qrVWlVTK8Xwwm-BgDdv-f4jc1r7BY
Cites_doi 10.1017/S0308210500022976
10.1112/jlms/s2-35.2.303
10.1016/0022-1236(89)90015-3
10.1007/978-3-642-16830-7
10.1002/cpa.3160410704
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math13010148
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_a5131e3e76e74903b0c25c045b4adc60
10.3390/math13010148
A829887987
10_3390_math13010148
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c363t-ef9847d437b088cd64c0c5f48690563b07dcfbad4750b6761dac293573ecae663
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:31:51 EDT 2025
Tue Aug 19 22:40:44 EDT 2025
Fri Jul 25 11:53:41 EDT 2025
Tue Jun 10 20:59:10 EDT 2025
Wed Oct 01 01:49:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ef9847d437b088cd64c0c5f48690563b07dcfbad4750b6761dac293573ecae663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4677-0970
OpenAccessLink https://doaj.org/article/a5131e3e76e74903b0c25c045b4adc60
PQID 3153800268
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_a5131e3e76e74903b0c25c045b4adc60
unpaywall_primary_10_3390_math13010148
proquest_journals_3153800268
gale_infotracacademiconefile_A829887987
crossref_primary_10_3390_math13010148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_1
ref_3
Schonbek (ref_5) 1996; 126
Benameur (ref_6) 2016; 104
Kato (ref_7) 1988; 41
Wiegner (ref_4) 1987; 35
Foias (ref_2) 1989; 87
References_xml – volume: 126
  start-page: 677
  year: 1996
  ident: ref_5
  article-title: On the decay of higher-order norms of the solutions of Navier-Stokes equations
  publication-title: Proc. R. Soc. Edinb. Sect. A Math.
  doi: 10.1017/S0308210500022976
– ident: ref_1
– volume: 35
  start-page: 303
  year: 1987
  ident: ref_4
  article-title: Decay results for weak solutions of the Navier-Stokes equations on Rn
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s2-35.2.303
– volume: 104
  start-page: 1
  year: 2016
  ident: ref_6
  article-title: Long time decay for 3D Navier-Stokes equations in Sobolev-Gevrey spaces
  publication-title: Electron. J. Differ. Equ.
– volume: 87
  start-page: 359
  year: 1989
  ident: ref_2
  article-title: Gevrey class regularity for the solutions of the Navier-Stokes equations
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(89)90015-3
– ident: ref_3
  doi: 10.1007/978-3-642-16830-7
– volume: 41
  start-page: 891
  year: 1988
  ident: ref_7
  article-title: Commutator estimates and the Euler and Navier-Stokes equations
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160410704
SSID ssj0000913849
Score 2.2893567
Snippet One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 148
SubjectTerms Algebra
energy estimates
Estimates
Exponentiation
Fixed points (mathematics)
Fluid dynamics
Fluid flow
Function space
Incompressible flow
local existence
Navier-Stokes equations
Operators (mathematics)
Partial differential equations
Regularity
Sobolev–Gevrey spaces
Tests, problems and exercises
Theorems
uniqueness
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHKAHVF4i0CIfeJyiJrFjOyfUVrtbIbVCKpV6s_wKrVglaTYtcOPKmX_IL2EmyYYipF4Ty3Iyr8_j8TeEvM5LbqVNfayKzMQ8k2Bz1oaYpy5lueCClZjQPzoWh6f8w1l-NibcVmNZ5don9o7a1w5z5LsMTRN3DOp9cxlj1yg8XR1baNwl99IMNAlvis8XU44FOS8VL4Z6dwa7-11AgefgtbFBrfonEvWE_f-75U1y_6pqzPevZrm8EXfmW-ThCBjp3iDhR-ROqB6TzaOJbXX1hPycfWvqCst-YOAC9tXdOTWVpx8x0d4iYyqtSzolwCjgVGrovG5d8HSgLMcB4CrAOfR1sXYZ6LHBkPn7x6-Trv4CU8wuB1bwFb2oYDJbL8M1vF2Ea9AGetJgbddTcjqffTo4jMcWC7FjgnVxKAsIT54zacHdOC-4SxzID_tU5YLZRHpXWuM5AAsrpEi9cQAQcsmCMwHQyjOyUcEXPic0T5xyxhTKZhYPBwsYCOiIM269Uj6NyJv179bNwKShYQeCYtE3xRKRfZTFNAb5r_sHdftZj-akTZ6yNLAgRZC8SGChLssdwFPLjXciicg7lKRGK-1a48x42QCWinxXek9lBbjXQsmIbK-FrUfzXem_yhaRt5MC3LrsF7fP85I8yLBzcJ-82SYbXXsVdgDOdPZVr7N_AB68914
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6h9AA98EYECtoDj5Mbr3e9a59QQEkrpEaVSqRysvbltmpkG8cJjxNXzvxDfgkzthMVkBDimoxXY-3szDfj2W8IeRbnwijDXJCkkQ5EpODMGeMDwSzjsRSS51jQP5rJw7l4exqf9gW3Zd9WCan4Reuk8Z5moCArHzE-YiNA7qPK5a_WfSWJKR4jezve39uR-IFpQHbms-Pxe5wot3m263bnuApgwHPw2TieNvklDrV0_X865V1yfVVU-vNHvVhciTrTWyTb6Ns1m1zurxqzb7_8RuX4_y90m9zsASkddxZ0h1zzxV2ye7Rlc13eI98mn6qywLYiEDyAvL05p7pw9BgL-TUystIyp9sCGwUcTDWdlrX1jnaU6CgArgicT9t3axaezjSG5B9fv5805SUsMfnQsY4v6UUBi5ly4dfw74Ffg7XRkwp7x-6T-XTy7s1h0I9wCCyXvAl8nkL4c4IrA-7MOilsaME-cA5WLLkJlbO50U4AcDFSSea0BQASK-6t9oCGHpBBAW_4kNA4tInVOk1MZPDjYwqCgL4EF8YliWND8nyzoVnVMXVkkOHgxmdXN35IXuNub2WQX7v9oazPsv64ZjpmnHnulfRKpCEoaqPYAvw1QjsrwyF5ibaSoRdoam11f5kBVEU-rWycRCm47zRRQ7K3Maesdw_LjGOcwfQXtHmxNbG_qv3oXwUfkxsRzihuy0R7ZNDUK_8EgFNjnvan4ydWmhVp
  priority: 102
  providerName: Unpaywall
Title Exponential Growth and Properties of Solutions for a Forced System of Incompressible Navier–Stokes Equations in Sobolev–Gevrey Spaces
URI https://www.proquest.com/docview/3153800268
https://www.mdpi.com/2227-7390/13/1/148/pdf?version=1735874409
https://doaj.org/article/a5131e3e76e74903b0c25c045b4adc60
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOUAPiKcItNEeeJysxt71Po5plaRCahRRIpXTal9WKyI7JG6BG9ee-w_5JczYbhSEBBeOtler8c7szDfr8TeEvM4L7qRLQ6J0ZhOeSdhzzsWEpz5lueCCFXigfzIVx3P-_iw_22r1hTVhLT1wu3AHNk9ZGlmUIkquB8wNfJZ7ACKO2-BFk61DGNtKphofrFOmuG4r3Rnk9QeA_87BX2NrWvVbDGqo-v90yLvk_mW5tN-_2sViK-KMH5GHHVSkw1bEx-ROLJ-Q3ZMNz-r6KbkefVtWJRb8wMAJZNT1ObVloDM8Yl8hVyqtCro5-qKAUKml42rlY6AtWTkOACcBbqGpiHWLSKcWg-XPHzendfUZphh9afnA1_SihMlctYhX8HQSr8AO6OkSq7qekfl49PHoOOmaKySeCVYnsdAQmAJn0oGj8UFwP_CgOexQlQtYZhl84WzgACmckCIN1gM0yCWL3kbAKc_JTglv-ILQfOCVt1Yrlzn8LKhhIOAizrgLSoW0R97cLrdZthwaBnIPVIvZVkuPHKIuNmOQ-bq5AfZgOnsw_7KHHnmHmjS4P-uV9bb7zQBERaYrM1SZBseqleyRvVtlm27jrg3DCICJKUjzdmMAfxX75f8Q-xV5kGFn4eZwZ4_s1KvLuA9wp3Z9cleNJ31y73A0nX3oN3YOV_PpbPjpFw44A7o
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9RAEB6FUIQUiKc4CLAFgcqK7V3b6wKhAPcIyZ2QkkjpzL5MECf74nMS0tFS8z_4UfwSZmzfEYSULq29Gq0979nZbwBeRLnQiQ6sJ9NQeSJMUOe0dp4ITMCjWMQ8p4L-eBKPDsWHo-hoBX4t7sJQW-XCJjaG2paGauRbnFSTMgb5Znbi0dQoOl1djNBoxWLXXZxjyjZ_vfMe-bsZhoP-wbuR100V8AyPee25PEWLbAVPNGqYsbEwvsEt02imKObaT6zJtbICfamOMcu3yqBPjBLujHLooJHuDbgpOOeE1S8Hw2VNhzA2pUjb_nrOU38Lo85j9BI0EFf-4_maAQH_u4F1WDstZuriXE2nl_zc4A7c7gJUtt1K1F1YccU9WB8v0V3n9-FH_9usLKjNCBcOMY-vj5kqLPtIhf2KEFpZmbNlwY1hXMwUG5SVcZa1EOm0AE0TGqOmD1dPHZsoctG_v__cr8uvSKJ_0qKQz9mXAonpcurO8O3QnaH0sf0Z9ZI9gMNr-fkPYbXAL3wELPKNNEqlUoeaDiNTXIjRmOBCWylt0IPNxe_OZi1yR4YZD7Elu8yWHrwlXizXEN5286CsPmed-mYqCnjguEtil4jUx42aMDIYDmuhrIn9HrwiTmZkFepKGdVdbsCtEr5Wti3DFM15KpMebCyYnXXmYp79Fe4evFwKwJXbfnw1neewNjoY72V7O5PdJ3ArpKnFTeFoA1br6tQ9xVCq1s8a-WXw6boV5g9yRzQ5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQT0gHiKhQI-UDhFm8TO61Chlu62pXS1olTqLfgVilgl6W7a0htXzvwrfga_hJlsEoqQeus1sUa25-nx-BuAl0EmVKQ848SJLx3hR6hzSllHeNrjQShCnlFCf38c7hyKd0fB0RL8at_CUFllaxNrQ20KTTnyASfVpBNDPMiasojJ1uhNeeJQBym6aW3bacimzYJZr-HGmkcee_biHI9z8_XdLeT9mu-Phh_f7jhNxwFH85BXjs0StNZG8Eih9mkTCu1qXA61bQpCrtzI6ExJI9DPqjAKPSM1-ssg4lZLi84b6d6A5Yjei_ZgeXM4nnzoMj6EwBmLZFF9z3niDjAmPUYfQu1y43_8Yt0-4H8nsQK3TvNSXpzL6fSSFxzdhTtN-Mo2FvJ2D5Zsfh9W9jvs1_kD-DH8VhY5FSHhwG085VfHTOaGTSjtPyP8VlZkrEvHMYyamWSjYqatYQsAdRqAhgtNVV2lq6aWjSU58N_ffx5UxVckMTxZYJTP2Zccialias_w77Y9Q9lkByVVmj2Ew2vZ_kfQy3GFj4EFro61lEmsfEVXlQkOxFhNcKFMHBuvD2vtdqflAtcjxfMQsSW9zJY-bBIvujGExl1_KGaf00a5Uxl43LPcRqGNROLiRLUfaAyWlZBGh24fXhMnU7IZ1Uxq2Tx9wKkS-la6EfsJGvskjvqw2jI7bYzJPP0r-n141QnAldN-cjWdF3ATlSd9vzveewq3fWppXGeVVqFXzU7tM4yzKvW8EWAGn65bZ_4AgvI_Ew
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6h9AA98EYECtoDj5Mbr3e9a59QQEkrpEaVSqRysvbltmpkG8cJjxNXzvxDfgkzthMVkBDimoxXY-3szDfj2W8IeRbnwijDXJCkkQ5EpODMGeMDwSzjsRSS51jQP5rJw7l4exqf9gW3Zd9WCan4Reuk8Z5moCArHzE-YiNA7qPK5a_WfSWJKR4jezve39uR-IFpQHbms-Pxe5wot3m263bnuApgwHPw2TieNvklDrV0_X865V1yfVVU-vNHvVhciTrTWyTb6Ns1m1zurxqzb7_8RuX4_y90m9zsASkddxZ0h1zzxV2ye7Rlc13eI98mn6qywLYiEDyAvL05p7pw9BgL-TUystIyp9sCGwUcTDWdlrX1jnaU6CgArgicT9t3axaezjSG5B9fv5805SUsMfnQsY4v6UUBi5ly4dfw74Ffg7XRkwp7x-6T-XTy7s1h0I9wCCyXvAl8nkL4c4IrA-7MOilsaME-cA5WLLkJlbO50U4AcDFSSea0BQASK-6t9oCGHpBBAW_4kNA4tInVOk1MZPDjYwqCgL4EF8YliWND8nyzoVnVMXVkkOHgxmdXN35IXuNub2WQX7v9oazPsv64ZjpmnHnulfRKpCEoaqPYAvw1QjsrwyF5ibaSoRdoam11f5kBVEU-rWycRCm47zRRQ7K3Maesdw_LjGOcwfQXtHmxNbG_qv3oXwUfkxsRzihuy0R7ZNDUK_8EgFNjnvan4ydWmhVp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+Growth+and+Properties+of+Solutions+for+a+Forced+System+of+Incompressible+Navier%E2%80%93Stokes+Equations+in+Sobolev%E2%80%93Gevrey+Spaces&rft.jtitle=Mathematics+%28Basel%29&rft.au=Jos%C3%A9+Luis+D%C3%ADaz+Palencia&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=1&rft.spage=148&rft_id=info:doi/10.3390%2Fmath13010148&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a5131e3e76e74903b0c25c045b4adc60
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon