Exponential Growth and Properties of Solutions for a Forced System of Incompressible Navier–Stokes Equations in Sobolev–Gevrey Spaces
One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniquen...
Saved in:
Published in | Mathematics (Basel) Vol. 13; no. 1; p. 148 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math13010148 |
Cover
Abstract | One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniqueness of solutions to the incompressible Navier–Stokes equations within the Sobolev–Gevrey space Ha,σ1(R3). Sobolev–Gevrey spaces are well suited for our purposes, as they provide high regularity and control over derivative growth, and this is particularly relevant for us, given the maximum exponential growth in the forcing term. Additionally, the structured bounds in Gevrey spaces help monitor potential solution blow-up by maintaining regularity, though they do not fully prevent or resolve global blow-up scenarios. Utilizing the Banach fixed-point theorem, we demonstrate that the nonlinear operator associated with the Navier–Stokes equations is locally Lipschitz continuous in Ha,σ1(R3). Through energy estimates and the application of Grönwall’s inequality, we establish that solutions exist, are unique, and also exhibit exponential growth in their Sobolev–Gevrey norms over time under certain assumptions in the forcing term. This analysis in intended to contribute in the understanding of the behavior of fluid flows with forcing terms in high-regularity function spaces. |
---|---|
AbstractList | One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniqueness of solutions to the incompressible Navier–Stokes equations within the Sobolev–Gevrey space Ha,σ1(R3). Sobolev–Gevrey spaces are well suited for our purposes, as they provide high regularity and control over derivative growth, and this is particularly relevant for us, given the maximum exponential growth in the forcing term. Additionally, the structured bounds in Gevrey spaces help monitor potential solution blow-up by maintaining regularity, though they do not fully prevent or resolve global blow-up scenarios. Utilizing the Banach fixed-point theorem, we demonstrate that the nonlinear operator associated with the Navier–Stokes equations is locally Lipschitz continuous in Ha,σ1(R3). Through energy estimates and the application of Grönwall’s inequality, we establish that solutions exist, are unique, and also exhibit exponential growth in their Sobolev–Gevrey norms over time under certain assumptions in the forcing term. This analysis in intended to contribute in the understanding of the behavior of fluid flows with forcing terms in high-regularity function spaces. One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniqueness of solutions to the incompressible Navier–Stokes equations within the Sobolev–Gevrey space Ha,σ1( R 3) . Sobolev–Gevrey spaces are well suited for our purposes, as they provide high regularity and control over derivative growth, and this is particularly relevant for us, given the maximum exponential growth in the forcing term. Additionally, the structured bounds in Gevrey spaces help monitor potential solution blow-up by maintaining regularity, though they do not fully prevent or resolve global blow-up scenarios. Utilizing the Banach fixed-point theorem, we demonstrate that the nonlinear operator associated with the Navier–Stokes equations is locally Lipschitz continuous in Ha,σ1( R 3) . Through energy estimates and the application of Grönwall’s inequality, we establish that solutions exist, are unique, and also exhibit exponential growth in their Sobolev–Gevrey norms over time under certain assumptions in the forcing term. This analysis in intended to contribute in the understanding of the behavior of fluid flows with forcing terms in high-regularity function spaces. One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or external force. In this work, we consider an external force of a maximum exponential growth, and we investigate the local existence and uniqueness of solutions to the incompressible Navier–Stokes equations within the Sobolev–Gevrey space H[sub.a,σ] [sup.1] (R[sup.3] ). Sobolev–Gevrey spaces are well suited for our purposes, as they provide high regularity and control over derivative growth, and this is particularly relevant for us, given the maximum exponential growth in the forcing term. Additionally, the structured bounds in Gevrey spaces help monitor potential solution blow-up by maintaining regularity, though they do not fully prevent or resolve global blow-up scenarios. Utilizing the Banach fixed-point theorem, we demonstrate that the nonlinear operator associated with the Navier–Stokes equations is locally Lipschitz continuous in H[sub.a,σ] [sup.1] (R[sup.3] ). Through energy estimates and the application of Grönwall’s inequality, we establish that solutions exist, are unique, and also exhibit exponential growth in their Sobolev–Gevrey norms over time under certain assumptions in the forcing term. This analysis in intended to contribute in the understanding of the behavior of fluid flows with forcing terms in high-regularity function spaces. |
Audience | Academic |
Author | Díaz Palencia, José Luis |
Author_xml | – sequence: 1 fullname: Diaz Palencia, Jose Luis |
BookMark | eNp9kcFu1DAQhiNUJErpjQewxJUUO3Zs51hV22WlCpAWztHEmbReEju1ky1748q5b9gnwUsQ6gn7YGvm_z_N6H-dnTjvMMveMnrBeUU_DDDdMU4ZZUK_yE6LolC5So2TZ_9X2XmMO5pOxbgW1Wn2a_VjTBw3WejJOviH6Y6Aa8mX4EcMk8VIfEe2vp8n610knQ8EyLUPBluyPcQJh6Ng44wfxoAx2qZH8gn2FsPTz8ft5L8nxOp-hsVvXYI1vsd96q5xH_BAtiMYjG-ylx30Ec__vmfZt-vV16uP-c3n9ebq8iY3XPIpx67SQrWCq4ZqbVopDDVlJ7SsaCl5Q1VrugZaoUraSCVZC6aoeKk4GkAp-Vm2Wbith109BjtAONQebP2n4MNtDWlx02MNJeMMOSqJSlQ0wU1RGirKRkBrJE2sfGHNboTDA_T9PyCj9TGW-nksSf9u0Y_B388Yp3rn5-DSujVnJdeUFvKoulhUt5CGsK7zUwCTbouDNSmtzqb6pS4qrVWlVTK8Xwwm-BgDdv-f4jc1r7BY |
Cites_doi | 10.1017/S0308210500022976 10.1112/jlms/s2-35.2.303 10.1016/0022-1236(89)90015-3 10.1007/978-3-642-16830-7 10.1002/cpa.3160410704 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
DOI | 10.3390/math13010148 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_a5131e3e76e74903b0c25c045b4adc60 10.3390/math13010148 A829887987 10_3390_math13010148 |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c363t-ef9847d437b088cd64c0c5f48690563b07dcfbad4750b6761dac293573ecae663 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:31:51 EDT 2025 Tue Aug 19 22:40:44 EDT 2025 Fri Jul 25 11:53:41 EDT 2025 Tue Jun 10 20:59:10 EDT 2025 Wed Oct 01 01:49:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-ef9847d437b088cd64c0c5f48690563b07dcfbad4750b6761dac293573ecae663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4677-0970 |
OpenAccessLink | https://doaj.org/article/a5131e3e76e74903b0c25c045b4adc60 |
PQID | 3153800268 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5131e3e76e74903b0c25c045b4adc60 unpaywall_primary_10_3390_math13010148 proquest_journals_3153800268 gale_infotracacademiconefile_A829887987 crossref_primary_10_3390_math13010148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_1 ref_3 Schonbek (ref_5) 1996; 126 Benameur (ref_6) 2016; 104 Kato (ref_7) 1988; 41 Wiegner (ref_4) 1987; 35 Foias (ref_2) 1989; 87 |
References_xml | – volume: 126 start-page: 677 year: 1996 ident: ref_5 article-title: On the decay of higher-order norms of the solutions of Navier-Stokes equations publication-title: Proc. R. Soc. Edinb. Sect. A Math. doi: 10.1017/S0308210500022976 – ident: ref_1 – volume: 35 start-page: 303 year: 1987 ident: ref_4 article-title: Decay results for weak solutions of the Navier-Stokes equations on Rn publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/s2-35.2.303 – volume: 104 start-page: 1 year: 2016 ident: ref_6 article-title: Long time decay for 3D Navier-Stokes equations in Sobolev-Gevrey spaces publication-title: Electron. J. Differ. Equ. – volume: 87 start-page: 359 year: 1989 ident: ref_2 article-title: Gevrey class regularity for the solutions of the Navier-Stokes equations publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(89)90015-3 – ident: ref_3 doi: 10.1007/978-3-642-16830-7 – volume: 41 start-page: 891 year: 1988 ident: ref_7 article-title: Commutator estimates and the Euler and Navier-Stokes equations publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160410704 |
SSID | ssj0000913849 |
Score | 2.2893567 |
Snippet | One problem of interest in the analysis of Navier–Stokes equations is concerned with the behavior of solutions for certain conditions in the forcing term or... |
SourceID | doaj unpaywall proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 148 |
SubjectTerms | Algebra energy estimates Estimates Exponentiation Fixed points (mathematics) Fluid dynamics Fluid flow Function space Incompressible flow local existence Navier-Stokes equations Operators (mathematics) Partial differential equations Regularity Sobolev–Gevrey spaces Tests, problems and exercises Theorems uniqueness |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHKAHVF4i0CIfeJyiJrFjOyfUVrtbIbVCKpV6s_wKrVglaTYtcOPKmX_IL2EmyYYipF4Ty3Iyr8_j8TeEvM5LbqVNfayKzMQ8k2Bz1oaYpy5lueCClZjQPzoWh6f8w1l-NibcVmNZ5don9o7a1w5z5LsMTRN3DOp9cxlj1yg8XR1baNwl99IMNAlvis8XU44FOS8VL4Z6dwa7-11AgefgtbFBrfonEvWE_f-75U1y_6pqzPevZrm8EXfmW-ThCBjp3iDhR-ROqB6TzaOJbXX1hPycfWvqCst-YOAC9tXdOTWVpx8x0d4iYyqtSzolwCjgVGrovG5d8HSgLMcB4CrAOfR1sXYZ6LHBkPn7x6-Trv4CU8wuB1bwFb2oYDJbL8M1vF2Ea9AGetJgbddTcjqffTo4jMcWC7FjgnVxKAsIT54zacHdOC-4SxzID_tU5YLZRHpXWuM5AAsrpEi9cQAQcsmCMwHQyjOyUcEXPic0T5xyxhTKZhYPBwsYCOiIM269Uj6NyJv179bNwKShYQeCYtE3xRKRfZTFNAb5r_sHdftZj-akTZ6yNLAgRZC8SGChLssdwFPLjXciicg7lKRGK-1a48x42QCWinxXek9lBbjXQsmIbK-FrUfzXem_yhaRt5MC3LrsF7fP85I8yLBzcJ-82SYbXXsVdgDOdPZVr7N_AB68914 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6h9AA98EYECtoDj5Mbr3e9a59QQEkrpEaVSqRysvbltmpkG8cJjxNXzvxDfgkzthMVkBDimoxXY-3szDfj2W8IeRbnwijDXJCkkQ5EpODMGeMDwSzjsRSS51jQP5rJw7l4exqf9gW3Zd9WCan4Reuk8Z5moCArHzE-YiNA7qPK5a_WfSWJKR4jezve39uR-IFpQHbms-Pxe5wot3m263bnuApgwHPw2TieNvklDrV0_X865V1yfVVU-vNHvVhciTrTWyTb6Ns1m1zurxqzb7_8RuX4_y90m9zsASkddxZ0h1zzxV2ye7Rlc13eI98mn6qywLYiEDyAvL05p7pw9BgL-TUystIyp9sCGwUcTDWdlrX1jnaU6CgArgicT9t3axaezjSG5B9fv5805SUsMfnQsY4v6UUBi5ly4dfw74Ffg7XRkwp7x-6T-XTy7s1h0I9wCCyXvAl8nkL4c4IrA-7MOilsaME-cA5WLLkJlbO50U4AcDFSSea0BQASK-6t9oCGHpBBAW_4kNA4tInVOk1MZPDjYwqCgL4EF8YliWND8nyzoVnVMXVkkOHgxmdXN35IXuNub2WQX7v9oazPsv64ZjpmnHnulfRKpCEoaqPYAvw1QjsrwyF5ibaSoRdoam11f5kBVEU-rWycRCm47zRRQ7K3Maesdw_LjGOcwfQXtHmxNbG_qv3oXwUfkxsRzihuy0R7ZNDUK_8EgFNjnvan4ydWmhVp priority: 102 providerName: Unpaywall |
Title | Exponential Growth and Properties of Solutions for a Forced System of Incompressible Navier–Stokes Equations in Sobolev–Gevrey Spaces |
URI | https://www.proquest.com/docview/3153800268 https://www.mdpi.com/2227-7390/13/1/148/pdf?version=1735874409 https://doaj.org/article/a5131e3e76e74903b0c25c045b4adc60 |
UnpaywallVersion | publishedVersion |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOUAPiKcItNEeeJysxt71Po5plaRCahRRIpXTal9WKyI7JG6BG9ee-w_5JczYbhSEBBeOtler8c7szDfr8TeEvM4L7qRLQ6J0ZhOeSdhzzsWEpz5lueCCFXigfzIVx3P-_iw_22r1hTVhLT1wu3AHNk9ZGlmUIkquB8wNfJZ7ACKO2-BFk61DGNtKphofrFOmuG4r3Rnk9QeA_87BX2NrWvVbDGqo-v90yLvk_mW5tN-_2sViK-KMH5GHHVSkw1bEx-ROLJ-Q3ZMNz-r6KbkefVtWJRb8wMAJZNT1ObVloDM8Yl8hVyqtCro5-qKAUKml42rlY6AtWTkOACcBbqGpiHWLSKcWg-XPHzendfUZphh9afnA1_SihMlctYhX8HQSr8AO6OkSq7qekfl49PHoOOmaKySeCVYnsdAQmAJn0oGj8UFwP_CgOexQlQtYZhl84WzgACmckCIN1gM0yCWL3kbAKc_JTglv-ILQfOCVt1Yrlzn8LKhhIOAizrgLSoW0R97cLrdZthwaBnIPVIvZVkuPHKIuNmOQ-bq5AfZgOnsw_7KHHnmHmjS4P-uV9bb7zQBERaYrM1SZBseqleyRvVtlm27jrg3DCICJKUjzdmMAfxX75f8Q-xV5kGFn4eZwZ4_s1KvLuA9wp3Z9cleNJ31y73A0nX3oN3YOV_PpbPjpFw44A7o |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9RAEB6FUIQUiKc4CLAFgcqK7V3b6wKhAPcIyZ2QkkjpzL5MECf74nMS0tFS8z_4UfwSZmzfEYSULq29Gq0979nZbwBeRLnQiQ6sJ9NQeSJMUOe0dp4ITMCjWMQ8p4L-eBKPDsWHo-hoBX4t7sJQW-XCJjaG2paGauRbnFSTMgb5Znbi0dQoOl1djNBoxWLXXZxjyjZ_vfMe-bsZhoP-wbuR100V8AyPee25PEWLbAVPNGqYsbEwvsEt02imKObaT6zJtbICfamOMcu3yqBPjBLujHLooJHuDbgpOOeE1S8Hw2VNhzA2pUjb_nrOU38Lo85j9BI0EFf-4_maAQH_u4F1WDstZuriXE2nl_zc4A7c7gJUtt1K1F1YccU9WB8v0V3n9-FH_9usLKjNCBcOMY-vj5kqLPtIhf2KEFpZmbNlwY1hXMwUG5SVcZa1EOm0AE0TGqOmD1dPHZsoctG_v__cr8uvSKJ_0qKQz9mXAonpcurO8O3QnaH0sf0Z9ZI9gMNr-fkPYbXAL3wELPKNNEqlUoeaDiNTXIjRmOBCWylt0IPNxe_OZi1yR4YZD7Elu8yWHrwlXizXEN5286CsPmed-mYqCnjguEtil4jUx42aMDIYDmuhrIn9HrwiTmZkFepKGdVdbsCtEr5Wti3DFM15KpMebCyYnXXmYp79Fe4evFwKwJXbfnw1neewNjoY72V7O5PdJ3ArpKnFTeFoA1br6tQ9xVCq1s8a-WXw6boV5g9yRzQ5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQT0gHiKhQI-UDhFm8TO61Chlu62pXS1olTqLfgVilgl6W7a0htXzvwrfga_hJlsEoqQeus1sUa25-nx-BuAl0EmVKQ848SJLx3hR6hzSllHeNrjQShCnlFCf38c7hyKd0fB0RL8at_CUFllaxNrQ20KTTnyASfVpBNDPMiasojJ1uhNeeJQBym6aW3bacimzYJZr-HGmkcee_biHI9z8_XdLeT9mu-Phh_f7jhNxwFH85BXjs0StNZG8Eih9mkTCu1qXA61bQpCrtzI6ExJI9DPqjAKPSM1-ssg4lZLi84b6d6A5Yjei_ZgeXM4nnzoMj6EwBmLZFF9z3niDjAmPUYfQu1y43_8Yt0-4H8nsQK3TvNSXpzL6fSSFxzdhTtN-Mo2FvJ2D5Zsfh9W9jvs1_kD-DH8VhY5FSHhwG085VfHTOaGTSjtPyP8VlZkrEvHMYyamWSjYqatYQsAdRqAhgtNVV2lq6aWjSU58N_ffx5UxVckMTxZYJTP2Zccialias_w77Y9Q9lkByVVmj2Ew2vZ_kfQy3GFj4EFro61lEmsfEVXlQkOxFhNcKFMHBuvD2vtdqflAtcjxfMQsSW9zJY-bBIvujGExl1_KGaf00a5Uxl43LPcRqGNROLiRLUfaAyWlZBGh24fXhMnU7IZ1Uxq2Tx9wKkS-la6EfsJGvskjvqw2jI7bYzJPP0r-n141QnAldN-cjWdF3ATlSd9vzveewq3fWppXGeVVqFXzU7tM4yzKvW8EWAGn65bZ_4AgvI_Ew |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6h9AA98EYECtoDj5Mbr3e9a59QQEkrpEaVSqRysvbltmpkG8cJjxNXzvxDfgkzthMVkBDimoxXY-3szDfj2W8IeRbnwijDXJCkkQ5EpODMGeMDwSzjsRSS51jQP5rJw7l4exqf9gW3Zd9WCan4Reuk8Z5moCArHzE-YiNA7qPK5a_WfSWJKR4jezve39uR-IFpQHbms-Pxe5wot3m263bnuApgwHPw2TieNvklDrV0_X865V1yfVVU-vNHvVhciTrTWyTb6Ns1m1zurxqzb7_8RuX4_y90m9zsASkddxZ0h1zzxV2ye7Rlc13eI98mn6qywLYiEDyAvL05p7pw9BgL-TUystIyp9sCGwUcTDWdlrX1jnaU6CgArgicT9t3axaezjSG5B9fv5805SUsMfnQsY4v6UUBi5ly4dfw74Ffg7XRkwp7x-6T-XTy7s1h0I9wCCyXvAl8nkL4c4IrA-7MOilsaME-cA5WLLkJlbO50U4AcDFSSea0BQASK-6t9oCGHpBBAW_4kNA4tInVOk1MZPDjYwqCgL4EF8YliWND8nyzoVnVMXVkkOHgxmdXN35IXuNub2WQX7v9oazPsv64ZjpmnHnulfRKpCEoaqPYAvw1QjsrwyF5ibaSoRdoam11f5kBVEU-rWycRCm47zRRQ7K3Maesdw_LjGOcwfQXtHmxNbG_qv3oXwUfkxsRzihuy0R7ZNDUK_8EgFNjnvan4ydWmhVp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+Growth+and+Properties+of+Solutions+for+a+Forced+System+of+Incompressible+Navier%E2%80%93Stokes+Equations+in+Sobolev%E2%80%93Gevrey+Spaces&rft.jtitle=Mathematics+%28Basel%29&rft.au=Jos%C3%A9+Luis+D%C3%ADaz+Palencia&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=1&rft.spage=148&rft_id=info:doi/10.3390%2Fmath13010148&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a5131e3e76e74903b0c25c045b4adc60 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |