Prediction of Disk Failure Based on Classification Intensity Resampling

With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as disk faults occur frequently, causing serious system availability issues. In this context, hardware fault prediction based on AI and big data...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 15; no. 6; p. 322
Main Authors Wu, Sheng, Guan, Jihong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text
ISSN2078-2489
2078-2489
DOI10.3390/info15060322

Cover

Abstract With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as disk faults occur frequently, causing serious system availability issues. In this context, hardware fault prediction based on AI and big data technologies has become a research hotspot, aiming to guide operation and maintenance personnel to implement preventive replacement through accurate prediction to reduce hardware failure rates. However, existing methods still have weaknesses in terms of accuracy due to the impacts of data quality issues such as the sample imbalance. This article proposes a disk fault prediction method based on classification intensity resampling, which fills the gap between the degree of data imbalance and the actual classification intensity of the task by introducing a base classifier to calculate the classification intensity, thus better preserving the data features of the original dataset. In addition, using ensemble learning methods such as random forests, combined with resampling, an integrated classifier for imbalanced data is developed to further improve the prediction accuracy. Experimental verification shows that compared with traditional methods, the F1-score of disk fault prediction is improved by 6%, and the model training time is also greatly reduced. The fault prediction method proposed in this paper has been applied to approximately 80 disk drives and nearly 40,000 disks in the production environment of a large bank’s data center to guide preventive replacements. Compared to traditional methods, the number of preventive replacements based on our method has decreased by approximately 21%, while the overall disk failure rate remains unchanged, thus demonstrating the effectiveness of our method.
AbstractList With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as disk faults occur frequently, causing serious system availability issues. In this context, hardware fault prediction based on AI and big data technologies has become a research hotspot, aiming to guide operation and maintenance personnel to implement preventive replacement through accurate prediction to reduce hardware failure rates. However, existing methods still have weaknesses in terms of accuracy due to the impacts of data quality issues such as the sample imbalance. This article proposes a disk fault prediction method based on classification intensity resampling, which fills the gap between the degree of data imbalance and the actual classification intensity of the task by introducing a base classifier to calculate the classification intensity, thus better preserving the data features of the original dataset. In addition, using ensemble learning methods such as random forests, combined with resampling, an integrated classifier for imbalanced data is developed to further improve the prediction accuracy. Experimental verification shows that compared with traditional methods, the F1-score of disk fault prediction is improved by 6%, and the model training time is also greatly reduced. The fault prediction method proposed in this paper has been applied to approximately 80 disk drives and nearly 40,000 disks in the production environment of a large bank’s data center to guide preventive replacements. Compared to traditional methods, the number of preventive replacements based on our method has decreased by approximately 21%, while the overall disk failure rate remains unchanged, thus demonstrating the effectiveness of our method.
Audience Academic
Author Wu, Sheng
Guan, Jihong
Author_xml – sequence: 1
  givenname: Sheng
  orcidid: 0009-0001-2355-2727
  surname: Wu
  fullname: Wu, Sheng
– sequence: 2
  givenname: Jihong
  surname: Guan
  fullname: Guan, Jihong
BookMark eNp9kUtvGyEUhVHlSk0c7_oDRsq24_KaGVi6TuNaitSoStajy8vCHYMDY0X-98WZqsqqsABdvns4HK7RLMRgEfpM8JIxib_64CJpcIsZpR_QFcWdqCkXcvZu_wktct7jMrpOcEGu0OYxWeP16GOooqvufP5d3YMfTslW3yBbU5WD9QA5e-c1vHHbMNqQ_XiuftkMh-Pgw-4GfXQwZLv4u87R8_33p_WP-uHnZrtePdSatWysrcMdVsoAUwo7jiXntuFUE64kQGMoY1gTwh20mjgplbAWhDKYam1MI9kcbSddE2HfH5M_QDr3EXz_Vohp10MavR5szzBztHHglDRca1CCN0440gjalphM0aonrVM4wvkVhuGfIMH9JdT-faiFv534Y4ovJ5vHfh9PKZTnlrs6yhrcyYvD5UTtoJi4CIwJdJnGHrwuf-Z8qa8K2jLCRVcavkwNOsWck3X_d_EHnJKW6w
Cites_doi 10.1109/MSST.2013.6558427
10.1109/SMARTCOMP58114.2023.00069
10.1109/TNNLS.2017.2736643
10.1007/978-3-642-01307-2_43
10.1631/FITEE.2200488
10.1109/ICDM.2006.158
10.1613/jair.953
10.1109/ICMLA.2017.00-92
10.1145/2939672.2939699
10.1109/TC.2022.3160365
10.1016/j.future.2023.05.020
10.1007/11538059_91
10.1007/978-3-031-43430-3_5
10.1109/IJCNN.2018.8489097
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/info15060322
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_303f25fafb9d4ccab845f8f15826060d
10.3390/info15060322
A799631487
10_3390_info15060322
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
XH6
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c363t-ef070bbda3bb0f40944e542c14b9aa5d2330c114fa6c1f99b8eea8bd02ccdd593
IEDL.DBID UNPAY
ISSN 2078-2489
IngestDate Fri Oct 03 12:53:09 EDT 2025
Sun Oct 26 04:11:19 EDT 2025
Sun Sep 07 03:28:19 EDT 2025
Mon Oct 20 16:58:34 EDT 2025
Thu Oct 16 04:26:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-ef070bbda3bb0f40944e542c14b9aa5d2330c114fa6c1f99b8eea8bd02ccdd593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-2355-2727
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2078-2489/15/6/322/pdf?version=1717148551
PQID 3072350799
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_303f25fafb9d4ccab845f8f15826060d
unpaywall_primary_10_3390_info15060322
proquest_journals_3072350799
gale_infotracacademiconefile_A799631487
crossref_primary_10_3390_info15060322
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_7) 2023; 148
ref_14
ref_13
Liu (ref_22) 2023; 35
ref_11
ref_10
ref_20
Pozzolo (ref_21) 2018; 29
ref_1
ref_3
ref_2
ref_19
ref_18
ref_17
ref_16
ref_15
Han (ref_9) 2023; 72
ref_5
ref_4
Chawla (ref_12) 2002; 16
Guan (ref_8) 2023; 24
ref_6
References_xml – ident: ref_2
  doi: 10.1109/MSST.2013.6558427
– ident: ref_6
  doi: 10.1109/SMARTCOMP58114.2023.00069
– volume: 29
  start-page: 3784
  year: 2018
  ident: ref_21
  article-title: Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2736643
– ident: ref_4
– ident: ref_18
  doi: 10.1007/978-3-642-01307-2_43
– volume: 24
  start-page: 964
  year: 2023
  ident: ref_8
  article-title: A disk failure prediction model for multiple issues
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.2200488
– ident: ref_16
  doi: 10.1109/ICDM.2006.158
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_12
  article-title: SMOTE: Synthetic Minority Over-sampling Technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– ident: ref_3
  doi: 10.1109/ICMLA.2017.00-92
– ident: ref_5
  doi: 10.1145/2939672.2939699
– ident: ref_10
– volume: 72
  start-page: 520
  year: 2023
  ident: ref_9
  article-title: A General Stream Mining Framework for Adaptive Disk Failure Prediction
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2022.3160365
– volume: 148
  start-page: 460
  year: 2023
  ident: ref_7
  article-title: SPAE: Lifelong disk failure prediction via end-to-end GAN-based anomaly detection with ensemble update
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2023.05.020
– ident: ref_15
– volume: 35
  start-page: 2272
  year: 2023
  ident: ref_22
  article-title: Automated Feature Selection: A Reinforcement Learning Perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: ref_13
– ident: ref_14
– ident: ref_19
– ident: ref_17
  doi: 10.1007/11538059_91
– ident: ref_20
– ident: ref_11
  doi: 10.1007/978-3-031-43430-3_5
– ident: ref_1
  doi: 10.1109/IJCNN.2018.8489097
SSID ssj0000778481
Score 2.2907715
Snippet With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 322
SubjectTerms Accuracy
Algorithms
Big Data
bucket undersampling
Classification
classification intensity
Classifiers
Data centers
Datasets
Decision trees
Disk drives
Disks
Ensemble learning
Failure
Failure rates
Fault diagnosis
Feature selection
Hard disks
Hardware
imbalanced data
Information systems
Machine learning
Neural networks
Resampling
Research methodology
secondary screening
SMOTE oversampling
Support vector machines
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS9xAFH6Il-qhtNXStKvModZTMJv5kZnjbutWCkoRBW9hfhapRNnNUvzvfS-JEhHaS69JmDzel3nzfeTNNwCfo5ah8krlxqSQi1CE3HgucsmNVlWSqKBpo_DpmTq5FD-u5NXoqC_qCevtgfvEHWGJTaVMNjkTBL7OaSGTTlOJvLhQRaDqW2gzElNdDa4q8onvO9056vojwqtz0-Nl-WwN6qz6XxbkbXi1bu7s_R97czNacRZv4PVAFdmsD_EtbMTmHWyPDAR34PvPJf1ooeSy28S-Xa9-s4W9plZzNsf1KTC80Z17SR1BHQhsaFpv79l5XFlqKG9-7cLl4vji60k-HI2Qe654m8eEU9W5YLlzRSKNJqIUpZ8KZ6yVoeS88Ch1klV-moxxOkarXShK70OQhr-Hzea2iR-AcStJ1YWknRXIbpwNlY7GRKRyCglEBgePyarvegeMGpUDJbUeJzWDOWXy6Rnyre4uIJr1gGb9LzQzOCQcuoHbpfV22CSAoZJPVT2rUJ9xlHBVBpNHqOph2q1w-KrkyHCNyeDLE3x_Dfvj_wj7E2yVSHb6FrIJbLbLddxDstK6_e67fABGF-cV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB5S59DmEJo-qJoHe-jjJCLvQ9IeQojbuKFQE0IDuYl9htAgu7ZCyL_PjCw5LoVcJbEsM7M7862-_QbgUyiVL1yep1pHn0qf-VQ7IVMldJkXUSGCpovCvyb52aX8eaWuNmDS34UhWmW_J7YbtZ86OiM_xFjkAosXrY9nf1PqGkV_V_sWGqZrreCPWomxF7DJSRlrAJuj08n5xerUJSsK0o9fMuAF4v1D8mOrsic4_yc3tRL-_2_UW_Dyrp6Zh3tze7uWicavYbsrIdnJ0uc7sBHqN7C1Jiz4Fn6cz-kHDBmdTSP7frP4w8bmhijobIR5yzN80fbDJKZQ6xzWkdmbB3YRFoaI5vX1O7gcn_7-dpZ2LRNSJ3LRpCHiErbWG2FtFgm7yaAkd0NptTHKcyEyhxAomtwNo9a2DMGU1mfcOe-VFu9hUE_r8AGYMIrQno-lNRKrHmt8UQatA5Z4ORYWCXzujVXNlsoYFSIKMmq1btQERmTJ1TekZ90-mM6vq255VJhII1fRRKu9xKCypVSxjEOF6AeH8Ql8JT-0Azdz40x3eQCnSvpV1QnGRS4Q2hUJ7PWuqrrluKiegieBLyv3PTvtj8-PswuvOJY3S9LYHgya-V3Yx_KksQddzD0CtpDkpg
  priority: 102
  providerName: ProQuest
Title Prediction of Disk Failure Based on Classification Intensity Resampling
URI https://www.proquest.com/docview/3072350799
https://www.mdpi.com/2078-2489/15/6/322/pdf?version=1717148551
https://doaj.org/article/303f25fafb9d4ccab845f8f15826060d
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: ABDBF
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: ADMLS
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: 8FG
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BcoAeeFcYSuQDj5ObeB_27gkltGmFaBQVIpWTtc8qauVEiQMqv55Z26kCSAhxsmSvV2t_45351t_OALx2gtvcZFkipbcJswObSENZwqkUWe45MuiwUfhskp3O2McLftEuuK1bWSVS8Xk9SRP0XwlhQvZT3s_6aHv9pfXvv7UrSWkeqncLHnZQdzOOsXgHurPJdPg1VJTb3tuo3Sly-37ArM6oRwn5xQ_V6fr_nJT34N6mXKqb7-r6esfrjB9CsR1vIza5OtxU-tD8-C2V4_8_0CN40Aak8bCxoMdwx5VPYG8nTeFTOJmuwu-cAGG88PHRfH0Vj9U8CNrjEXpBG-OFurpm0B3VUMetNL66ic_dWgXZenn5DGbj4y8fTpO2AENiaEarxHmcELS2imo98IEJMscZMSnTUiluCaUDg4TKq8ykXkotnFNC2wExxlou6T50ykXpnkNMFQ_c0XqhFcMYSiubCyelw4Axw7cSwZstHMWyybNRID8JsBW7sEUwCljdtgnZsesTi9Vl0X5sBbplT7hXXkvL0ES1YNwLn3LkUtiNjeBdQLruuFopo9qtCDjUkA2rGObIAikikUdwsDWGov2419h9TijG0VJG8PbWQP467Bf_2vAl3CcYNjVitAPoVKuNe4VhT6V7cFeMT3rQHR6dffqMx9HxZHreqxcReq3d_wT8fQE1
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hOFAOVZ-qC219KO3JwtmH7T2gihTSUCBCCCRu7j4RAjkhCUL5c_1tnXHsNFUlblxta7Wa-XZnvvXsNwCffSFdbrMsUSq4RLjUJcpykUiuiiwPEhk0XRQ-GWT9C_HzUl6uwO_2LgyVVbZ7Yr1Ru6GlM_IdxCLjmLwo9W10l1DXKPq72rbQ0E1rBbdbS4w1FzuO_OwBKdxk93Af_b3NWO_g_Hs_aboMJJZnfJr4gKg3xmluTBqI7ggvBbMdYZTW0jFk_BZZQ9CZ7QSlTOG9LoxLmbXOSRJjwhCwJrhQSP7WugeD07PFKU-a56RXP6-451ylO4SbWtWPM_ZPLKxbBvwfGDZg_b4a6dmDvr1diny9F_C8SVnjvTnGXsKKr17BxpKQ4Wv4cTqmHz7k5HgY4v3ryU3c09dU8h53MU66GF_U_TepMqkGQ9wUz09n8ZmfaCpsr67ewMWTGO8trFbDyr-DmGtJ7NKFwmiBWZbRLi-8Uh5TygwTmQi2W2OVo7kSR4kMhoxaLhs1gi5ZcvEN6WfXD4bjq7JZjiUG7sBk0MEoJxDEphAyFKEjkW3hMC6Cr-SHeuDpWFvdXFbAqZJeVrmHOMw4Usk8gq3WVWWz_CflX7BG8GXhvken_f7xcT7Bev_85Lg8PhwcbcIzhqnVvGBtC1an43v_AVOjqfnY4C-GX08N-T_MzCN1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQJ6QDzV0AI-UDhFu2vHSXxAqGVJWwpVhajUW_Czqqiy291U1f41fh0zeSyLkHrrNYksa-azZz5n_A3AW59Ll9k0jZUKLk7c0MXKiiSWQuVpFiQyaLoo_O04PThNvpzJszX43d-FobLKfk9sNmo3sXRGPkAscoHJi1KD0JVFnIyLj9OrmDpI0Z_Wvp1GC5Ejv7hB-jb_cDhGX-9wXnz-8ekg7joMxFakoo59QMQb47QwZhiI6iReJtyOEqO0lo4j27fIGIJO7SgoZXLvdW7ckFvrnCQhJtz-72Wk4k631Iv95fnOMMtIqb6ttRdCDQeEmEbPT3D-TxRsmgX8HxI24MF1NdWLG315uRLzisfwqEtW2W6Lriew5qunsLEiYfgM9k9m9KuH3MsmgY0v5r9YoS-o2J3tYYR0DF80nTepJqmBAevK5usF--7nmkraq_PncHonpnsB69Wk8pvAhJbEK13IjU4wvzLaZblXymMymWIKE8FOb6xy2mpwlMhdyKjlqlEj2CNLLr8h5ezmwWR2XnYLscSQHbgMOhjlEoSvyRMZ8jCSyLNwGBfBe_JDM3A901Z31xRwqqSUVe4iAlOBJDKLYLt3Vdkt_Hn5F6YRvFu679Zpv7x9nDdwH4Fefj08PtqChxxzqrZSbRvW69m1f4U5UW1eN-Bj8POu0f4H4TkhDw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6h7QF64I0IFJQDj1OajV-xT2gLLBUSVYVYqZwiP6tVq-xqNwsqv55x4q0WkBDimjiWk2_smc_5PAPwwkvuaitEoVRwBXNjVyhLWcGpkqIOHBl0PCj86UQcz9jHM36WNtzWSVaJVHzeL9IE_VdBmFRlxUtRou2VSxfefEs7SVUdq3dLHk9Q7wmOsfgI9mYnp5OvsaLc9tlB7U6R25cRsz6jHiXkFz_Up-v_c1Heh5ubdqmvvuvLyx2vM70DzXa8g9jk4nDTmUP747dUjv__QnfhdgpI88lgQffghm_vw_5OmsIH8OF0FX_nRAjzRcjfzdcX-VTPo6A9P0Iv6HK80VfXjLqjHuo8SeO7q_yzX-soW2_PH8Js-v7L2-MiFWAoLBW0K3zABcEYp6kx4xCZIPOcEVsxo7TmjlA6tkiogha2CkoZ6b2Wxo2Jtc5xRR_BqF20_jHkVPPIHV2QRjOMoYx2tfRKeQwYBX6VDF5u4WiWQ56NBvlJhK3ZhS2Do4jVdZuYHbu_sFidN2myNeiWA-FBB6McQxM1kvEgQ8WRS2E3LoPXEem-426lrU5HEXCoMRtWM6mRBVJEos7gYGsMTZrca-y-JhTjaKUyeHVtIH8d9pN_bfgUbhEMmwYx2gGMutXGP8OwpzPPk23_BCwZ_B0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Disk+Failure+Based+on+Classification+Intensity+Resampling&rft.jtitle=Information+%28Basel%29&rft.au=Wu%2C+Sheng&rft.au=Guan%2C+Jihong&rft.date=2024-06-01&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=15&rft.issue=6&rft.spage=322&rft_id=info:doi/10.3390%2Finfo15060322&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_info15060322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon