Prediction of Disk Failure Based on Classification Intensity Resampling
With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as disk faults occur frequently, causing serious system availability issues. In this context, hardware fault prediction based on AI and big data...
Saved in:
| Published in | Information (Basel) Vol. 15; no. 6; p. 322 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2078-2489 2078-2489 |
| DOI | 10.3390/info15060322 |
Cover
| Abstract | With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as disk faults occur frequently, causing serious system availability issues. In this context, hardware fault prediction based on AI and big data technologies has become a research hotspot, aiming to guide operation and maintenance personnel to implement preventive replacement through accurate prediction to reduce hardware failure rates. However, existing methods still have weaknesses in terms of accuracy due to the impacts of data quality issues such as the sample imbalance. This article proposes a disk fault prediction method based on classification intensity resampling, which fills the gap between the degree of data imbalance and the actual classification intensity of the task by introducing a base classifier to calculate the classification intensity, thus better preserving the data features of the original dataset. In addition, using ensemble learning methods such as random forests, combined with resampling, an integrated classifier for imbalanced data is developed to further improve the prediction accuracy. Experimental verification shows that compared with traditional methods, the F1-score of disk fault prediction is improved by 6%, and the model training time is also greatly reduced. The fault prediction method proposed in this paper has been applied to approximately 80 disk drives and nearly 40,000 disks in the production environment of a large bank’s data center to guide preventive replacements. Compared to traditional methods, the number of preventive replacements based on our method has decreased by approximately 21%, while the overall disk failure rate remains unchanged, thus demonstrating the effectiveness of our method. |
|---|---|
| AbstractList | With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as disk faults occur frequently, causing serious system availability issues. In this context, hardware fault prediction based on AI and big data technologies has become a research hotspot, aiming to guide operation and maintenance personnel to implement preventive replacement through accurate prediction to reduce hardware failure rates. However, existing methods still have weaknesses in terms of accuracy due to the impacts of data quality issues such as the sample imbalance. This article proposes a disk fault prediction method based on classification intensity resampling, which fills the gap between the degree of data imbalance and the actual classification intensity of the task by introducing a base classifier to calculate the classification intensity, thus better preserving the data features of the original dataset. In addition, using ensemble learning methods such as random forests, combined with resampling, an integrated classifier for imbalanced data is developed to further improve the prediction accuracy. Experimental verification shows that compared with traditional methods, the F1-score of disk fault prediction is improved by 6%, and the model training time is also greatly reduced. The fault prediction method proposed in this paper has been applied to approximately 80 disk drives and nearly 40,000 disks in the production environment of a large bank’s data center to guide preventive replacements. Compared to traditional methods, the number of preventive replacements based on our method has decreased by approximately 21%, while the overall disk failure rate remains unchanged, thus demonstrating the effectiveness of our method. |
| Audience | Academic |
| Author | Wu, Sheng Guan, Jihong |
| Author_xml | – sequence: 1 givenname: Sheng orcidid: 0009-0001-2355-2727 surname: Wu fullname: Wu, Sheng – sequence: 2 givenname: Jihong surname: Guan fullname: Guan, Jihong |
| BookMark | eNp9kUtvGyEUhVHlSk0c7_oDRsq24_KaGVi6TuNaitSoStajy8vCHYMDY0X-98WZqsqqsABdvns4HK7RLMRgEfpM8JIxib_64CJpcIsZpR_QFcWdqCkXcvZu_wktct7jMrpOcEGu0OYxWeP16GOooqvufP5d3YMfTslW3yBbU5WD9QA5e-c1vHHbMNqQ_XiuftkMh-Pgw-4GfXQwZLv4u87R8_33p_WP-uHnZrtePdSatWysrcMdVsoAUwo7jiXntuFUE64kQGMoY1gTwh20mjgplbAWhDKYam1MI9kcbSddE2HfH5M_QDr3EXz_Vohp10MavR5szzBztHHglDRca1CCN0440gjalphM0aonrVM4wvkVhuGfIMH9JdT-faiFv534Y4ovJ5vHfh9PKZTnlrs6yhrcyYvD5UTtoJi4CIwJdJnGHrwuf-Z8qa8K2jLCRVcavkwNOsWck3X_d_EHnJKW6w |
| Cites_doi | 10.1109/MSST.2013.6558427 10.1109/SMARTCOMP58114.2023.00069 10.1109/TNNLS.2017.2736643 10.1007/978-3-642-01307-2_43 10.1631/FITEE.2200488 10.1109/ICDM.2006.158 10.1613/jair.953 10.1109/ICMLA.2017.00-92 10.1145/2939672.2939699 10.1109/TC.2022.3160365 10.1016/j.future.2023.05.020 10.1007/11538059_91 10.1007/978-3-031-43430-3_5 10.1109/IJCNN.2018.8489097 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/info15060322 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2078-2489 |
| ExternalDocumentID | oai_doaj_org_article_303f25fafb9d4ccab845f8f15826060d 10.3390/info15060322 A799631487 10_3390_info15060322 |
| GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC XH6 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS PUEGO Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c363t-ef070bbda3bb0f40944e542c14b9aa5d2330c114fa6c1f99b8eea8bd02ccdd593 |
| IEDL.DBID | UNPAY |
| ISSN | 2078-2489 |
| IngestDate | Fri Oct 03 12:53:09 EDT 2025 Sun Oct 26 04:11:19 EDT 2025 Sun Sep 07 03:28:19 EDT 2025 Mon Oct 20 16:58:34 EDT 2025 Thu Oct 16 04:26:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-ef070bbda3bb0f40944e542c14b9aa5d2330c114fa6c1f99b8eea8bd02ccdd593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-2355-2727 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2078-2489/15/6/322/pdf?version=1717148551 |
| PQID | 3072350799 |
| PQPubID | 2032384 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_303f25fafb9d4ccab845f8f15826060d unpaywall_primary_10_3390_info15060322 proquest_journals_3072350799 gale_infotracacademiconefile_A799631487 crossref_primary_10_3390_info15060322 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Information (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Liu (ref_7) 2023; 148 ref_14 ref_13 Liu (ref_22) 2023; 35 ref_11 ref_10 ref_20 Pozzolo (ref_21) 2018; 29 ref_1 ref_3 ref_2 ref_19 ref_18 ref_17 ref_16 ref_15 Han (ref_9) 2023; 72 ref_5 ref_4 Chawla (ref_12) 2002; 16 Guan (ref_8) 2023; 24 ref_6 |
| References_xml | – ident: ref_2 doi: 10.1109/MSST.2013.6558427 – ident: ref_6 doi: 10.1109/SMARTCOMP58114.2023.00069 – volume: 29 start-page: 3784 year: 2018 ident: ref_21 article-title: Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2736643 – ident: ref_4 – ident: ref_18 doi: 10.1007/978-3-642-01307-2_43 – volume: 24 start-page: 964 year: 2023 ident: ref_8 article-title: A disk failure prediction model for multiple issues publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.2200488 – ident: ref_16 doi: 10.1109/ICDM.2006.158 – volume: 16 start-page: 321 year: 2002 ident: ref_12 article-title: SMOTE: Synthetic Minority Over-sampling Technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – ident: ref_3 doi: 10.1109/ICMLA.2017.00-92 – ident: ref_5 doi: 10.1145/2939672.2939699 – ident: ref_10 – volume: 72 start-page: 520 year: 2023 ident: ref_9 article-title: A General Stream Mining Framework for Adaptive Disk Failure Prediction publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2022.3160365 – volume: 148 start-page: 460 year: 2023 ident: ref_7 article-title: SPAE: Lifelong disk failure prediction via end-to-end GAN-based anomaly detection with ensemble update publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2023.05.020 – ident: ref_15 – volume: 35 start-page: 2272 year: 2023 ident: ref_22 article-title: Automated Feature Selection: A Reinforcement Learning Perspective publication-title: IEEE Trans. Knowl. Data Eng. – ident: ref_13 – ident: ref_14 – ident: ref_19 – ident: ref_17 doi: 10.1007/11538059_91 – ident: ref_20 – ident: ref_11 doi: 10.1007/978-3-031-43430-3_5 – ident: ref_1 doi: 10.1109/IJCNN.2018.8489097 |
| SSID | ssj0000778481 |
| Score | 2.2907715 |
| Snippet | With the rapid growth of the data scale in data centers, the high reliability of storage is facing various challenges. Specifically, hardware failures such as... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 322 |
| SubjectTerms | Accuracy Algorithms Big Data bucket undersampling Classification classification intensity Classifiers Data centers Datasets Decision trees Disk drives Disks Ensemble learning Failure Failure rates Fault diagnosis Feature selection Hard disks Hardware imbalanced data Information systems Machine learning Neural networks Resampling Research methodology secondary screening SMOTE oversampling Support vector machines |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS9xAFH6Il-qhtNXStKvModZTMJv5kZnjbutWCkoRBW9hfhapRNnNUvzvfS-JEhHaS69JmDzel3nzfeTNNwCfo5ah8krlxqSQi1CE3HgucsmNVlWSqKBpo_DpmTq5FD-u5NXoqC_qCevtgfvEHWGJTaVMNjkTBL7OaSGTTlOJvLhQRaDqW2gzElNdDa4q8onvO9056vojwqtz0-Nl-WwN6qz6XxbkbXi1bu7s_R97czNacRZv4PVAFdmsD_EtbMTmHWyPDAR34PvPJf1ooeSy28S-Xa9-s4W9plZzNsf1KTC80Z17SR1BHQhsaFpv79l5XFlqKG9-7cLl4vji60k-HI2Qe654m8eEU9W5YLlzRSKNJqIUpZ8KZ6yVoeS88Ch1klV-moxxOkarXShK70OQhr-Hzea2iR-AcStJ1YWknRXIbpwNlY7GRKRyCglEBgePyarvegeMGpUDJbUeJzWDOWXy6Rnyre4uIJr1gGb9LzQzOCQcuoHbpfV22CSAoZJPVT2rUJ9xlHBVBpNHqOph2q1w-KrkyHCNyeDLE3x_Dfvj_wj7E2yVSHb6FrIJbLbLddxDstK6_e67fABGF-cV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB5S59DmEJo-qJoHe-jjJCLvQ9IeQojbuKFQE0IDuYl9htAgu7ZCyL_PjCw5LoVcJbEsM7M7862-_QbgUyiVL1yep1pHn0qf-VQ7IVMldJkXUSGCpovCvyb52aX8eaWuNmDS34UhWmW_J7YbtZ86OiM_xFjkAosXrY9nf1PqGkV_V_sWGqZrreCPWomxF7DJSRlrAJuj08n5xerUJSsK0o9fMuAF4v1D8mOrsic4_yc3tRL-_2_UW_Dyrp6Zh3tze7uWicavYbsrIdnJ0uc7sBHqN7C1Jiz4Fn6cz-kHDBmdTSP7frP4w8bmhijobIR5yzN80fbDJKZQ6xzWkdmbB3YRFoaI5vX1O7gcn_7-dpZ2LRNSJ3LRpCHiErbWG2FtFgm7yaAkd0NptTHKcyEyhxAomtwNo9a2DMGU1mfcOe-VFu9hUE_r8AGYMIrQno-lNRKrHmt8UQatA5Z4ORYWCXzujVXNlsoYFSIKMmq1btQERmTJ1TekZ90-mM6vq255VJhII1fRRKu9xKCypVSxjEOF6AeH8Ql8JT-0Azdz40x3eQCnSvpV1QnGRS4Q2hUJ7PWuqrrluKiegieBLyv3PTvtj8-PswuvOJY3S9LYHgya-V3Yx_KksQddzD0CtpDkpg priority: 102 providerName: ProQuest |
| Title | Prediction of Disk Failure Based on Classification Intensity Resampling |
| URI | https://www.proquest.com/docview/3072350799 https://www.mdpi.com/2078-2489/15/6/322/pdf?version=1717148551 https://doaj.org/article/303f25fafb9d4ccab845f8f15826060d |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: ABDBF dateStart: 20111201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: ADMLS dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: 8FG dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BcoAeeFcYSuQDj5ObeB_27gkltGmFaBQVIpWTtc8qauVEiQMqv55Z26kCSAhxsmSvV2t_45351t_OALx2gtvcZFkipbcJswObSENZwqkUWe45MuiwUfhskp3O2McLftEuuK1bWSVS8Xk9SRP0XwlhQvZT3s_6aHv9pfXvv7UrSWkeqncLHnZQdzOOsXgHurPJdPg1VJTb3tuo3Sly-37ArM6oRwn5xQ_V6fr_nJT34N6mXKqb7-r6esfrjB9CsR1vIza5OtxU-tD8-C2V4_8_0CN40Aak8bCxoMdwx5VPYG8nTeFTOJmuwu-cAGG88PHRfH0Vj9U8CNrjEXpBG-OFurpm0B3VUMetNL66ic_dWgXZenn5DGbj4y8fTpO2AENiaEarxHmcELS2imo98IEJMscZMSnTUiluCaUDg4TKq8ykXkotnFNC2wExxlou6T50ykXpnkNMFQ_c0XqhFcMYSiubCyelw4Axw7cSwZstHMWyybNRID8JsBW7sEUwCljdtgnZsesTi9Vl0X5sBbplT7hXXkvL0ES1YNwLn3LkUtiNjeBdQLruuFopo9qtCDjUkA2rGObIAikikUdwsDWGov2419h9TijG0VJG8PbWQP467Bf_2vAl3CcYNjVitAPoVKuNe4VhT6V7cFeMT3rQHR6dffqMx9HxZHreqxcReq3d_wT8fQE1 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hOFAOVZ-qC219KO3JwtmH7T2gihTSUCBCCCRu7j4RAjkhCUL5c_1tnXHsNFUlblxta7Wa-XZnvvXsNwCffSFdbrMsUSq4RLjUJcpykUiuiiwPEhk0XRQ-GWT9C_HzUl6uwO_2LgyVVbZ7Yr1Ru6GlM_IdxCLjmLwo9W10l1DXKPq72rbQ0E1rBbdbS4w1FzuO_OwBKdxk93Af_b3NWO_g_Hs_aboMJJZnfJr4gKg3xmluTBqI7ggvBbMdYZTW0jFk_BZZQ9CZ7QSlTOG9LoxLmbXOSRJjwhCwJrhQSP7WugeD07PFKU-a56RXP6-451ylO4SbWtWPM_ZPLKxbBvwfGDZg_b4a6dmDvr1diny9F_C8SVnjvTnGXsKKr17BxpKQ4Wv4cTqmHz7k5HgY4v3ryU3c09dU8h53MU66GF_U_TepMqkGQ9wUz09n8ZmfaCpsr67ewMWTGO8trFbDyr-DmGtJ7NKFwmiBWZbRLi-8Uh5TygwTmQi2W2OVo7kSR4kMhoxaLhs1gi5ZcvEN6WfXD4bjq7JZjiUG7sBk0MEoJxDEphAyFKEjkW3hMC6Cr-SHeuDpWFvdXFbAqZJeVrmHOMw4Usk8gq3WVWWz_CflX7BG8GXhvken_f7xcT7Bev_85Lg8PhwcbcIzhqnVvGBtC1an43v_AVOjqfnY4C-GX08N-T_MzCN1 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQJ6QDzV0AI-UDhFu2vHSXxAqGVJWwpVhajUW_Czqqiy291U1f41fh0zeSyLkHrrNYksa-azZz5n_A3AW59Ll9k0jZUKLk7c0MXKiiSWQuVpFiQyaLoo_O04PThNvpzJszX43d-FobLKfk9sNmo3sXRGPkAscoHJi1KD0JVFnIyLj9OrmDpI0Z_Wvp1GC5Ejv7hB-jb_cDhGX-9wXnz-8ekg7joMxFakoo59QMQb47QwZhiI6iReJtyOEqO0lo4j27fIGIJO7SgoZXLvdW7ckFvrnCQhJtz-72Wk4k631Iv95fnOMMtIqb6ttRdCDQeEmEbPT3D-TxRsmgX8HxI24MF1NdWLG315uRLzisfwqEtW2W6Lriew5qunsLEiYfgM9k9m9KuH3MsmgY0v5r9YoS-o2J3tYYR0DF80nTepJqmBAevK5usF--7nmkraq_PncHonpnsB69Wk8pvAhJbEK13IjU4wvzLaZblXymMymWIKE8FOb6xy2mpwlMhdyKjlqlEj2CNLLr8h5ezmwWR2XnYLscSQHbgMOhjlEoSvyRMZ8jCSyLNwGBfBe_JDM3A901Z31xRwqqSUVe4iAlOBJDKLYLt3Vdkt_Hn5F6YRvFu679Zpv7x9nDdwH4Fefj08PtqChxxzqrZSbRvW69m1f4U5UW1eN-Bj8POu0f4H4TkhDw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6h7QF64I0IFJQDj1OajV-xT2gLLBUSVYVYqZwiP6tVq-xqNwsqv55x4q0WkBDimjiWk2_smc_5PAPwwkvuaitEoVRwBXNjVyhLWcGpkqIOHBl0PCj86UQcz9jHM36WNtzWSVaJVHzeL9IE_VdBmFRlxUtRou2VSxfefEs7SVUdq3dLHk9Q7wmOsfgI9mYnp5OvsaLc9tlB7U6R25cRsz6jHiXkFz_Up-v_c1Heh5ubdqmvvuvLyx2vM70DzXa8g9jk4nDTmUP747dUjv__QnfhdgpI88lgQffghm_vw_5OmsIH8OF0FX_nRAjzRcjfzdcX-VTPo6A9P0Iv6HK80VfXjLqjHuo8SeO7q_yzX-soW2_PH8Js-v7L2-MiFWAoLBW0K3zABcEYp6kx4xCZIPOcEVsxo7TmjlA6tkiogha2CkoZ6b2Wxo2Jtc5xRR_BqF20_jHkVPPIHV2QRjOMoYx2tfRKeQwYBX6VDF5u4WiWQ56NBvlJhK3ZhS2Do4jVdZuYHbu_sFidN2myNeiWA-FBB6McQxM1kvEgQ8WRS2E3LoPXEem-426lrU5HEXCoMRtWM6mRBVJEos7gYGsMTZrca-y-JhTjaKUyeHVtIH8d9pN_bfgUbhEMmwYx2gGMutXGP8OwpzPPk23_BCwZ_B0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Disk+Failure+Based+on+Classification+Intensity+Resampling&rft.jtitle=Information+%28Basel%29&rft.au=Wu%2C+Sheng&rft.au=Guan%2C+Jihong&rft.date=2024-06-01&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=15&rft.issue=6&rft.spage=322&rft_id=info:doi/10.3390%2Finfo15060322&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_info15060322 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |