Effects of ultraviolet light on silver nanoparticle mobility and dissolution
Nanomaterials are subject to various physical, chemical, and biological transformations, necessitating a better understanding of the impact of “aging” processes on nanoparticle fate and transport in engineered and natural porous media. The objective of this study was to evaluate the mobility and dis...
Saved in:
Published in | Environmental science. Nano Vol. 2; no. 6; pp. 683 - 691 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2051-8153 2051-8161 |
DOI | 10.1039/C5EN00145E |
Cover
Abstract | Nanomaterials are subject to various physical, chemical, and biological transformations, necessitating a better understanding of the impact of “aging” processes on nanoparticle fate and transport in engineered and natural porous media. The objective of this study was to evaluate the mobility and dissolution of citrate-coated silver nanoparticles (nAg, 11 nm diameter) in water-saturated sand following ultraviolet (UV) irradiation with UVA (320–400 nm) or UVB (280–320 nm) light. A 3-day UV exposure resulted in up to a 5-fold increase in mean diameter, a 10 to 15 mV increase in zeta potential (
i.e.
, less negative), red shifts in surface plasmon resonance, and up to a 25-fold increase in Ag
+
release. The addition of a reactive oxygen species (OH˙) scavenger,
tert
-butyl alcohol, reduced aggregation and dissolution of nAg exposed to UV light up to 50%, indicating that free radical activity plays a central role in aging. Transport experiments conducted in columns packed with 40–50 mesh Ottawa sand revealed that 25 to 50% more UVA- and UVB-aged nAg were retained compared to freshly prepared (un-aged) nAg. Additionally, 35 to 50% of the applied UV-aged nAg mass eluted as Ag
+
, compared to less than 1% in experiments with fresh nAg. UVB exposure resulted in up to 4-fold greater Ag
+
release and greater nAg retention compared with UVA exposure, consistent with the less negative zeta potential of UVB- compared to UVA-aged nAg (−31
vs.
−37 mV). These findings demonstrate that exposure to UV light significantly enhances nAg retention and dissolution in porous media, and thus, oxidative aging of nAg is likely to enhance Ag
+
release. |
---|---|
AbstractList | Nanomaterials are subject to various physical, chemical, and biological transformations, necessitating a better understanding of the impact of "aging" processes on nanoparticle fate and transport in engineered and natural porous media. The objective of this study was to evaluate the mobility and dissolution of citrate-coated silver nanoparticles (nAg, 11 nm diameter) in water-saturated sand following ultraviolet (UV) irradiation with UVA (320-400 nm) or UVB (280-320 nm) light. A 3-day UV exposure resulted in up to a 5-fold increase in mean diameter, a 10 to 15 mV increase in zeta potential (i.e., less negative), red shifts in surface plasmon resonance, and up to a 25-fold increase in Ag super(+) release. The addition of a reactive oxygen species (OH&z.rad; ) scavenger, tert-butyl alcohol, reduced aggregation and dissolution of nAg exposed to UV light up to 50%, indicating that free radical activity plays a central role in aging. Transport experiments conducted in columns packed with 40-50 mesh Ottawa sand revealed that 25 to 50% more UVA- and UVB-aged nAg were retained compared to freshly prepared (un-aged) nAg. Additionally, 35 to 50% of the applied UV-aged nAg mass eluted as Ag super(+), compared to less than 1% in experiments with fresh nAg. UVB exposure resulted in up to 4-fold greater Ag super(+) release and greater nAg retention compared with UVA exposure, consistent with the less negative zeta potential of UVB- compared to UVA-aged nAg (-31 vs.-37 mV). These findings demonstrate that exposure to UV light significantly enhances nAg retention and dissolution in porous media, and thus, oxidative aging of nAg is likely to enhance Ag super(+) release. Nanomaterials are subject to various physical, chemical, and biological transformations, necessitating a better understanding of the impact of “aging” processes on nanoparticle fate and transport in engineered and natural porous media. The objective of this study was to evaluate the mobility and dissolution of citrate-coated silver nanoparticles (nAg, 11 nm diameter) in water-saturated sand following ultraviolet (UV) irradiation with UVA (320–400 nm) or UVB (280–320 nm) light. A 3-day UV exposure resulted in up to a 5-fold increase in mean diameter, a 10 to 15 mV increase in zeta potential ( i.e. , less negative), red shifts in surface plasmon resonance, and up to a 25-fold increase in Ag + release. The addition of a reactive oxygen species (OH˙) scavenger, tert -butyl alcohol, reduced aggregation and dissolution of nAg exposed to UV light up to 50%, indicating that free radical activity plays a central role in aging. Transport experiments conducted in columns packed with 40–50 mesh Ottawa sand revealed that 25 to 50% more UVA- and UVB-aged nAg were retained compared to freshly prepared (un-aged) nAg. Additionally, 35 to 50% of the applied UV-aged nAg mass eluted as Ag + , compared to less than 1% in experiments with fresh nAg. UVB exposure resulted in up to 4-fold greater Ag + release and greater nAg retention compared with UVA exposure, consistent with the less negative zeta potential of UVB- compared to UVA-aged nAg (−31 vs. −37 mV). These findings demonstrate that exposure to UV light significantly enhances nAg retention and dissolution in porous media, and thus, oxidative aging of nAg is likely to enhance Ag + release. |
Author | Pennell, Kurt D. Mittelman, Anjuliee M. Fortner, John D. |
Author_xml | – sequence: 1 givenname: Anjuliee M. surname: Mittelman fullname: Mittelman, Anjuliee M. organization: Department of Civil and Environmental Engineering, Tufts University, Medford, USA – sequence: 2 givenname: John D. surname: Fortner fullname: Fortner, John D. organization: Department of Energy, Environmental, and Chemical Engineering, Washington University at St. Louis, St. Louis, USA – sequence: 3 givenname: Kurt D. surname: Pennell fullname: Pennell, Kurt D. organization: Department of Civil and Environmental Engineering, Tufts University, Medford, USA |
BookMark | eNqF0E1LxDAQBuAgK7iue_EX5ChCNR9N2hxlqR-w6EXPJU0TjWSTNUkX9t_bsqIggsxh5vDMMLynYOaD1wCcY3SFERXXK9Y8IoRL1hyBOUEMFzXmePY9M3oClim9oxFhwiiv5mDdGKNVTjAYOLgc5c4GpzN09vUtw-Bhsm6nI_TSh62M2Sqn4SZ01tm8h9L3sLcpBTdkG_wZODbSJb386gvwcts8r-6L9dPdw-pmXSjKaS50WQnTE1z3iphu_KZmRCPOtRbKCIY5kR2vSoN7akosSMdLo3DFqFACK9TTBbg43N3G8DHolNuNTUo7J70OQ2pxjcbiiLH_aVVXYsRkopcHqmJIKWrTbqPdyLhvMWqngNufgEeMfmFls5xCGDO07q-VTw3Tfo8 |
CitedBy_id | crossref_primary_10_1016_j_envpol_2017_04_006 crossref_primary_10_1016_j_envres_2022_113140 crossref_primary_10_1021_acs_est_1c03576 crossref_primary_10_1002_adma_202405388 crossref_primary_10_1002_adfm_201901875 crossref_primary_10_1016_j_mimet_2019_05_011 crossref_primary_10_1021_acs_est_4c03328 crossref_primary_10_1021_acsomega_2c02872 crossref_primary_10_1088_1361_6528_ab9f75 crossref_primary_10_1021_acs_analchem_7b04066 crossref_primary_10_3390_ma13010001 crossref_primary_10_3390_ma17030713 crossref_primary_10_3390_molecules26154585 crossref_primary_10_1007_s11356_016_8328_z crossref_primary_10_3390_ijms222011294 crossref_primary_10_1080_17518253_2022_2036376 crossref_primary_10_3390_nano12020296 crossref_primary_10_1007_s40034_021_00228_y crossref_primary_10_1016_j_surfcoat_2019_05_076 crossref_primary_10_1021_acs_est_6b04130 crossref_primary_10_1088_2515_7647_ab41aa crossref_primary_10_3390_cryst9110552 crossref_primary_10_3390_ma15051799 crossref_primary_10_3390_fermentation8100530 crossref_primary_10_1007_s11144_022_02266_y crossref_primary_10_1016_j_impact_2016_10_005 crossref_primary_10_1016_j_porgcoat_2021_106342 crossref_primary_10_1016_j_scitotenv_2019_136077 crossref_primary_10_1039_C7EN01240C crossref_primary_10_1021_acs_chemrestox_0c00354 crossref_primary_10_3390_coatings11080914 crossref_primary_10_1016_j_jcis_2016_10_037 crossref_primary_10_3390_ph17091134 crossref_primary_10_1002_pat_5223 crossref_primary_10_1016_j_isci_2022_104475 crossref_primary_10_1016_j_sjbs_2020_09_004 crossref_primary_10_3390_polym14214535 crossref_primary_10_1021_acs_est_2c07039 crossref_primary_10_3390_coatings12040486 crossref_primary_10_1002_admi_202001227 crossref_primary_10_1007_s41204_024_00403_7 |
Cites_doi | 10.1021/es204531y 10.1146/annurev.physchem.040808.090434 10.1021/es802978s 10.1021/es8023385 10.1021/es903757q 10.1016/j.cej.2012.02.074 10.1021/es00142a012 10.1007/s11051-012-1139-3 10.1021/es802465z 10.1021/la062072v 10.1016/j.envpol.2012.11.002 10.1021/ac60290a013 10.1021/nl034666d 10.1021/pr0504079 10.1016/j.envpol.2010.02.012 10.1021/es800128m 10.1016/j.jcis.2010.06.063 10.1021/es062066l 10.1021/jp0777418 10.1021/jp061134n 10.1021/es801305y 10.1126/science.1072086 10.1016/j.watres.2013.02.025 10.1016/j.watres.2007.03.030 10.2134/jeq2009.0423 10.1021/ac00150a020 10.1021/es204010g 10.1021/es0353210 10.1021/es902924h 10.1016/j.jcis.2011.04.111 10.1021/es9032265 10.1021/es8035972 10.1021/jp109789j 10.1021/la101768n 10.1021/es902240k 10.1021/es203851d 10.1021/es202417t 10.1016/j.watres.2012.11.019 10.1021/es9035557 10.1002/smll.200801202 10.1007/s11051-013-1765-4 10.1021/es801955n 10.1016/S0891-5849(01)00543-3 10.1016/j.toxlet.2010.10.003 10.1029/2006WR004948 10.1021/es200157h 10.1016/j.scitotenv.2012.01.027 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI 7SR 8BQ 8FD JG9 |
DOI | 10.1039/C5EN00145E |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 691 |
ExternalDocumentID | 10_1039_C5EN00145E |
GeographicLocations | Canada, Ontario, Ottawa |
GeographicLocations_xml | – name: Canada, Ontario, Ottawa |
GroupedDBID | 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AETIL AFLYV AFOGI AFRAH AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3G J3H J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY 7QH 7ST 7UA C1K F1W H97 L.G SOI 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c363t-e479fd218dc2fb000852e066ee9cf95162ab674f1d3f4192b64fc17539c91c0d3 |
ISSN | 2051-8153 |
IngestDate | Fri Jul 11 08:39:40 EDT 2025 Fri Jul 11 00:35:17 EDT 2025 Thu Apr 24 23:06:17 EDT 2025 Tue Jul 01 02:35:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-e479fd218dc2fb000852e066ee9cf95162ab674f1d3f4192b64fc17539c91c0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1787980825 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1808086055 proquest_miscellaneous_1787980825 crossref_primary_10_1039_C5EN00145E crossref_citationtrail_10_1039_C5EN00145E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2015 |
References | Virkutyte (C5EN00145E-(cit10)/*[position()=1]) 2012; 191 Gorham (C5EN00145E-(cit14)/*[position()=1]) 2012; 14 Mittelman (C5EN00145E-(cit24)/*[position()=1]) 2013; 15 Song (C5EN00145E-(cit21)/*[position()=1]) 2010; 199 Garoma (C5EN00145E-(cit28)/*[position()=1]) 2004; 38 Mahendra (C5EN00145E-(cit18)/*[position()=1]) 2008; 42 Li (C5EN00145E-(cit35)/*[position()=1]) 2010; 26 Gunawan (C5EN00145E-(cit53)/*[position()=1]) 2009; 5 Henglein (C5EN00145E-(cit34)/*[position()=1]) 1998; 2 Godinez (C5EN00145E-(cit47)/*[position()=1]) 2013; 174 Labille (C5EN00145E-(cit2)/*[position()=1]) 2010; 158 Reinsch (C5EN00145E-(cit9)/*[position()=1]) 2010; 44 Lee (C5EN00145E-(cit5)/*[position()=1]) 2007; 41 Hou (C5EN00145E-(cit15)/*[position()=1]) 2009; 43 Huynh (C5EN00145E-(cit3)/*[position()=1]) 2011; 45 Becker (C5EN00145E-(cit42)/*[position()=1]) 2015; 2 Hubaux (C5EN00145E-(cit32)/*[position()=1]) 1970; 42 Liu (C5EN00145E-(cit23)/*[position()=1]) 2010; 44 Li (C5EN00145E-(cit7)/*[position()=1]) 2012; 46 Lu (C5EN00145E-(cit39)/*[position()=1]) 2009; 60 Scheckel (C5EN00145E-(cit13)/*[position()=1]) 2010; 44 Cheng (C5EN00145E-(cit17)/*[position()=1]) 2011; 115 Auffan (C5EN00145E-(cit4)/*[position()=1]) 2010; 44 Kasel (C5EN00145E-(cit51)/*[position()=1]) 2013; 47 Joshi (C5EN00145E-(cit26)/*[position()=1]) 2001; 30 Li (C5EN00145E-(cit49)/*[position()=1]) 2008; 42 Hunter (C5EN00145E-(cit30)/*[position()=1]) 1981 Tang (C5EN00145E-(cit40)/*[position()=1]) 2002; 297 Coutris (C5EN00145E-(cit12)/*[position()=1]) 2012; 420 Maillard (C5EN00145E-(cit37)/*[position()=1]) 2003; 3 Ahern (C5EN00145E-(cit38)/*[position()=1]) 1987 Phenrat (C5EN00145E-(cit19)/*[position()=1]) 2009; 43 Kim (C5EN00145E-(cit22)/*[position()=1]) 2009; 43 Staehelld (C5EN00145E-(cit27)/*[position()=1]) 1985; 19 Jiang (C5EN00145E-(cit45)/*[position()=1]) 2010; 350 Chen (C5EN00145E-(cit33)/*[position()=1]) 2006; 117 Lee (C5EN00145E-(cit16)/*[position()=1]) 2009; 43 Lee (C5EN00145E-(cit6)/*[position()=1]) 2009 Mudunkotuwa (C5EN00145E-(cit11)/*[position()=1]) 2011; 46 Lok (C5EN00145E-(cit52)/*[position()=1]) 2006 Wang (C5EN00145E-(cit25)/*[position()=1]) 2008; 42 Lin (C5EN00145E-(cit1)/*[position()=1]) 2010; 39 Liang (C5EN00145E-(cit43)/*[position()=1]) 2013; 47 Bradford (C5EN00145E-(cit44)/*[position()=1]) 2007; 41 Chen (C5EN00145E-(cit31)/*[position()=1]) 2006; 110 El Badawy (C5EN00145E-(cit41)/*[position()=1]) 2010; 44 Xu (C5EN00145E-(cit48)/*[position()=1]) 2006; 42 Toride (C5EN00145E-(cit29)/*[position()=1]) 1995 Sarathy (C5EN00145E-(cit8)/*[position()=1]) 2008; 112 Schmidt (C5EN00145E-(cit36)/*[position()=1]) 2003; 91 Yang (C5EN00145E-(cit20)/*[position()=1]) 2011; 46 Chowdhury (C5EN00145E-(cit50)/*[position()=1]) 2011; 360 Chen (C5EN00145E-(cit46)/*[position()=1]) 2012; 46 |
References_xml | – volume: 46 start-page: 5378 year: 2012 ident: C5EN00145E-(cit7)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es204531y – volume: 60 start-page: 167 year: 2009 ident: C5EN00145E-(cit39)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.040808.090434 – volume: 43 start-page: 3824 year: 2009 ident: C5EN00145E-(cit22)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es802978s – volume: 2 start-page: 444 year: 1998 ident: C5EN00145E-(cit34)/*[position()=1] publication-title: Anal. Chem. – volume: 42 start-page: 9424 year: 2008 ident: C5EN00145E-(cit18)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es8023385 – volume: 44 start-page: 2689 year: 2010 ident: C5EN00145E-(cit4)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es903757q – volume: 191 start-page: 95 year: 2012 ident: C5EN00145E-(cit10)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.02.074 – volume: 19 start-page: 1206 year: 1985 ident: C5EN00145E-(cit27)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es00142a012 – volume: 14 start-page: 1139 year: 2012 ident: C5EN00145E-(cit14)/*[position()=1] publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-1139-3 – volume-title: Zeta potential in colloid science year: 1981 ident: C5EN00145E-(cit30)/*[position()=1] – volume: 43 start-page: 362 year: 2009 ident: C5EN00145E-(cit15)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es802465z – volume: 117 start-page: 10994 year: 2006 ident: C5EN00145E-(cit33)/*[position()=1] publication-title: Langmuir doi: 10.1021/la062072v – volume: 174 start-page: 106 year: 2013 ident: C5EN00145E-(cit47)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.11.002 – volume: 42 start-page: 849 year: 1970 ident: C5EN00145E-(cit32)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac60290a013 – volume: 3 start-page: 1611 year: 2003 ident: C5EN00145E-(cit37)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl034666d – volume: 2 start-page: 155 year: 2015 ident: C5EN00145E-(cit42)/*[position()=1] publication-title: Environ. Sci.: Nano – start-page: 916 year: 2006 ident: C5EN00145E-(cit52)/*[position()=1] publication-title: J. Proteome Res. doi: 10.1021/pr0504079 – volume: 158 start-page: 3482 year: 2010 ident: C5EN00145E-(cit2)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.02.012 – volume: 42 start-page: 3588 year: 2008 ident: C5EN00145E-(cit25)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es800128m – volume: 350 start-page: 427 year: 2010 ident: C5EN00145E-(cit45)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.06.063 – volume: 41 start-page: 2529 year: 2007 ident: C5EN00145E-(cit5)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es062066l – volume: 112 start-page: 2286 year: 2008 ident: C5EN00145E-(cit8)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp0777418 – volume-title: The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments; Ver. 2.0 year: 1995 ident: C5EN00145E-(cit29)/*[position()=1] – volume: 110 start-page: 11224 year: 2006 ident: C5EN00145E-(cit31)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp061134n – volume: 42 start-page: 7174 year: 2008 ident: C5EN00145E-(cit49)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es801305y – volume: 297 start-page: 237 year: 2002 ident: C5EN00145E-(cit40)/*[position()=1] publication-title: Science doi: 10.1126/science.1072086 – volume: 47 start-page: 2572 year: 2013 ident: C5EN00145E-(cit43)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2013.02.025 – start-page: 593 year: 2009 ident: C5EN00145E-(cit6)/*[position()=1] publication-title: Environ. Toxicol. – volume: 41 start-page: 3012 year: 2007 ident: C5EN00145E-(cit44)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2007.03.030 – volume: 39 start-page: 1896 year: 2010 ident: C5EN00145E-(cit1)/*[position()=1] publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0423 – start-page: 2813 year: 1987 ident: C5EN00145E-(cit38)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac00150a020 – volume: 46 start-page: 7142 year: 2012 ident: C5EN00145E-(cit46)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es204010g – volume: 38 start-page: 5246 year: 2004 ident: C5EN00145E-(cit28)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es0353210 – volume: 44 start-page: 3455 year: 2010 ident: C5EN00145E-(cit9)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es902924h – volume: 360 start-page: 548 year: 2011 ident: C5EN00145E-(cit50)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.04.111 – volume: 44 start-page: 1307 year: 2010 ident: C5EN00145E-(cit13)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es9032265 – volume: 43 start-page: 4878 year: 2009 ident: C5EN00145E-(cit16)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es8035972 – volume: 115 start-page: 4425 year: 2011 ident: C5EN00145E-(cit17)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp109789j – volume: 26 start-page: 16690 year: 2010 ident: C5EN00145E-(cit35)/*[position()=1] publication-title: Langmuir doi: 10.1021/la101768n – volume: 44 start-page: 1260 year: 2010 ident: C5EN00145E-(cit41)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es902240k – volume: 46 start-page: 7001 year: 2011 ident: C5EN00145E-(cit11)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es203851d – volume: 46 start-page: 1119 year: 2011 ident: C5EN00145E-(cit20)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es202417t – volume: 47 start-page: 933 year: 2013 ident: C5EN00145E-(cit51)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2012.11.019 – volume: 44 start-page: 2169 year: 2010 ident: C5EN00145E-(cit23)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es9035557 – volume: 91 start-page: 1 year: 2003 ident: C5EN00145E-(cit36)/*[position()=1] publication-title: Phys. Rev. Lett. – volume: 5 start-page: 341 year: 2009 ident: C5EN00145E-(cit53)/*[position()=1] publication-title: Small doi: 10.1002/smll.200801202 – volume: 15 start-page: 1765 year: 2013 ident: C5EN00145E-(cit24)/*[position()=1] publication-title: J. Nanopart. Res. doi: 10.1007/s11051-013-1765-4 – volume: 43 start-page: 195 year: 2009 ident: C5EN00145E-(cit19)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es801955n – volume: 30 start-page: 1390 year: 2001 ident: C5EN00145E-(cit26)/*[position()=1] publication-title: Free Radical Biol. Med. doi: 10.1016/S0891-5849(01)00543-3 – volume: 199 start-page: 389 year: 2010 ident: C5EN00145E-(cit21)/*[position()=1] publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.10.003 – volume: 42 year: 2006 ident: C5EN00145E-(cit48)/*[position()=1] publication-title: Water Resour. Res. doi: 10.1029/2006WR004948 – volume: 45 start-page: 5564 year: 2011 ident: C5EN00145E-(cit3)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es200157h – volume: 420 start-page: 327 year: 2012 ident: C5EN00145E-(cit12)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.01.027 |
SSID | ssj0001125367 |
Score | 2.2434237 |
Snippet | Nanomaterials are subject to various physical, chemical, and biological transformations, necessitating a better understanding of the impact of “aging”... Nanomaterials are subject to various physical, chemical, and biological transformations, necessitating a better understanding of the impact of "aging"... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 683 |
SubjectTerms | Dissolution Exposure Media Nanostructure Porous media Sand Ultraviolet Zeta potential |
Title | Effects of ultraviolet light on silver nanoparticle mobility and dissolution |
URI | https://www.proquest.com/docview/1787980825 https://www.proquest.com/docview/1808086055 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pi9QwFA46e_EiLiquqxLRiwwdp0naaY7LbpdFhxFkRsZTadMEVsZ0mU0v_vW-pGnTwUVWL6WkaSj50pfv_QxC7ykRCXHMjdXziKmaRBWvs6hOFjzjChh05aItVunVhn3aJttwSqfLLjHVTPy6M6_kf1CFNsDVZsn-A7LDoNAA94AvXAFhuN4L4zwEY7Q7sy-dl91Md1bhtl6A22sb9zzVpQbVuHt9-rNx4bBd2SXrjfdfeGCiD9lvfc6kkDMriZsBoGtj5M6bT8_0jxa4rAymVePzaFxgzkWQv0NUzed2b_wDb3OIk5HNwYkmAr9ylMVdmd-ZHLd1pdV72UpGS2gsJ9OMjrbctDuw6w9pPqe2GKpIpLaaXCLDntX76VdfisvNclms8-36IToiCyBQE3T09dtm-z2Y2oDEUXeW8PDdfaFayj-G4Q-pyeHO7OjG-gl67PUEfNahdoweSP0ULT3guFF4BDh2gONG4w5wPAYc94BjAByPAH-GNpf5-vwq8sdhRIKm1ESSLTj8S3FWC6I6skwkMEYpuVBAlFNSVumCqbimyvr2q5QpYQuxcsFjMa_pczTRjZYvEBaxymIhY-CjJeOSVBWTqZAsVaKkwIJP0Id-Jgrha8XbI0t2hYtZoLw4T_KVm7X8BL0b-t50FVLu7PW2n9ACBJj1SpVaNu1tEcOWwTNrqfhLH1v9NAPNO3l5j3FO0aOwaF-hidm38jVQR1O98UvjNxK2cyg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ultraviolet+light+on+silver+nanoparticle+mobility+and+dissolution&rft.jtitle=Environmental+science.+Nano&rft.au=Mittelman%2C+Anjuliee+M&rft.au=tner%2C+John+D&rft.au=Pennell%2C+Kurt+D&rft.date=2015-01-01&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=2&rft.issue=6&rft.spage=683&rft.epage=691&rft_id=info:doi/10.1039%2Fc5en00145e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |