Simulating the anchor lifting maneuver of ships using contact detection techniques and continuous contact force models
Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure that the anchor does not jam up during the lifting process and the position adopted by the anchor on the hull is acceptable when it is complete...
        Saved in:
      
    
          | Published in | Multibody system dynamics Vol. 46; no. 2; pp. 147 - 179 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.06.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1384-5640 1573-272X 1573-272X  | 
| DOI | 10.1007/s11044-019-09670-8 | 
Cover
| Abstract | Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure that the anchor does not jam up during the lifting process and the position adopted by the anchor on the hull is acceptable when it is completely stowed. Some years ago, the design process was based on wooden scale models of the hull, anchor and chain links, which are expensive, their building process is time consuming and they do not offer the required precision. As a result of this research, a computational tool to simulate the anchor maneuver of generic ships given by CAD models was developed, and it is proving to be very helpful for the naval engineers.
In this work, all the theory developed to simulate anchor maneuvers is thoroughly described, taking into account both the behavior of the anchor and the chain. To consider the contact forces between all the elements involved in the maneuver, a general contact algorithm for rigid bodies of arbitrary shapes and a particular contact algorithm for the chain links have been developed. In addition to the contact problem, aspects like the dynamic formulation of the equations of motion or the static equilibrium position problem are also covered in this work. To test the theory, a simulation of the anchor lifting maneuver of a ship is included as a case study.
In spite of the motivation to develop the theory, the algorithms derived in this work are general and usable in any other multibody simulation with contacts, under the scope of validity of the models proposed. To illustrate this, the simulation of a valve rocker arm and cam system is accomplished, too.
The computational and contact detection algorithms derived have been implemented in MBSLIM, a library for the dynamic simulation of multibody systems, and MBS model, a library for the contact detection and 3D rendering of multibody systems. | 
    
|---|---|
| AbstractList | Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure that the anchor does not jam up during the lifting process and the position adopted by the anchor on the hull is acceptable when it is completely stowed. Some years ago, the design process was based on wooden scale models of the hull, anchor and chain links, which are expensive, their building process is time consuming and they do not offer the required precision. As a result of this research, a computational tool to simulate the anchor maneuver of generic ships given by CAD models was developed, and it is proving to be very helpful for the naval engineers.
In this work, all the theory developed to simulate anchor maneuvers is thoroughly described, taking into account both the behavior of the anchor and the chain. To consider the contact forces between all the elements involved in the maneuver, a general contact algorithm for rigid bodies of arbitrary shapes and a particular contact algorithm for the chain links have been developed. In addition to the contact problem, aspects like the dynamic formulation of the equations of motion or the static equilibrium position problem are also covered in this work. To test the theory, a simulation of the anchor lifting maneuver of a ship is included as a case study.
In spite of the motivation to develop the theory, the algorithms derived in this work are general and usable in any other multibody simulation with contacts, under the scope of validity of the models proposed. To illustrate this, the simulation of a valve rocker arm and cam system is accomplished, too.
The computational and contact detection algorithms derived have been implemented in MBSLIM, a library for the dynamic simulation of multibody systems, and MBS model, a library for the contact detection and 3D rendering of multibody systems. Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure that the anchor does not jam up during the lifting process and the position adopted by the anchor on the hull is acceptable when it is completely stowed. Some years ago, the design process was based on wooden scale models of the hull, anchor and chain links, which are expensive, their building process is time consuming and they do not offer the required precision. As a result of this research, a computational tool to simulate the anchor maneuver of generic ships given by CAD models was developed, and it is proving to be very helpful for the naval engineers.In this work, all the theory developed to simulate anchor maneuvers is thoroughly described, taking into account both the behavior of the anchor and the chain. To consider the contact forces between all the elements involved in the maneuver, a general contact algorithm for rigid bodies of arbitrary shapes and a particular contact algorithm for the chain links have been developed. In addition to the contact problem, aspects like the dynamic formulation of the equations of motion or the static equilibrium position problem are also covered in this work. To test the theory, a simulation of the anchor lifting maneuver of a ship is included as a case study.In spite of the motivation to develop the theory, the algorithms derived in this work are general and usable in any other multibody simulation with contacts, under the scope of validity of the models proposed. To illustrate this, the simulation of a valve rocker arm and cam system is accomplished, too.The computational and contact detection algorithms derived have been implemented in MBSLIM, a library for the dynamic simulation of multibody systems, and MBS model, a library for the contact detection and 3D rendering of multibody systems.  | 
    
| Author | Dopico, Daniel Luaces, Alberto Saura, Mariano Cuadrado, Javier Vilela, David  | 
    
| Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-4326-6488 surname: Dopico fullname: Dopico, Daniel email: ddopico@udc.es organization: Laboratorio de Ingeniería Mecánica, Universidade da Coruña – sequence: 2 givenname: Alberto surname: Luaces fullname: Luaces, Alberto organization: Laboratorio de Ingeniería Mecánica, Universidade da Coruña – sequence: 3 givenname: Mariano surname: Saura fullname: Saura, Mariano organization: Departamento de Ingeniería Mecánica, Universidad Politécnica de Cartagena – sequence: 4 givenname: Javier surname: Cuadrado fullname: Cuadrado, Javier organization: Laboratorio de Ingeniería Mecánica, Universidade da Coruña – sequence: 5 givenname: David surname: Vilela fullname: Vilela, David organization: Laboratorio de Ingeniería Mecánica, Universidade da Coruña  | 
    
| BookMark | eNqNkEtLAzEUhYMo2Fb_gKuA69G85pGlFF9QcKGCu5BmMp2UmaQmmUr_vekDBRfF1b1czrn33G8MTq2zGoArjG4wQuVtwBgxliHMM8SLEmXVCRjhvKQZKcnHaeppxbK8YOgcjENYIkRwzvgIrF9NP3QyGruAsdVQWtU6DzvT7Ea9tHpYaw9dA0NrVgEOYTtXzkapIqx11CoaZ2GqrTWfgw5pR70TGDu4IfxoG-eVhr2rdRcuwFkju6AvD3UC3h_u36ZP2ezl8Xl6N8sULWjMNFY1IYqWdSEJr4qGMEoV5_M5nrMcMVzlDFPMcU60lFpSUqiqbCrGk0vmDZ0Aut872JXcfMmuEytveuk3AiOxRSf26ERCJ3boRJVc13vXyrvtR1Es3eBtCioIIZiTnJQoqaq9SnkXgteNUCbKLYzopemOHyB_rP9KdfglJLFdaP-b6ojrG19do14 | 
    
| CitedBy_id | crossref_primary_10_3390_s24103042 crossref_primary_10_1016_j_mechmachtheory_2019_103601 crossref_primary_10_1007_s11044_021_09803_y crossref_primary_10_1007_s11044_024_09971_7 crossref_primary_10_3389_fbioe_2024_1347720 crossref_primary_10_1007_s11044_023_09928_2 crossref_primary_10_3390_s21155241  | 
    
| Cites_doi | 10.1115/1.2900803 10.1115/1.2912617 10.1016/j.mechmachtheory.2012.02.010 10.1007/s11044-010-9237-4 10.1115/1.4005453 10.1115/1.4027671 10.1007/s11831-016-9164-5 10.1115/1.3260781 10.1023/B:MUBO.0000044421.04658.de 10.1007/BF01833296 10.1016/S0094-114X(02)00045-9 10.1115/1.3267392 10.1002/nme.191 10.1023/A:1009824327480 10.1115/1.3423596 10.1023/B:MUBO.0000025413.13130.2b 10.1061/JMCEA3.0000098 10.1007/s11044-009-9173-3 10.1023/B:MUBO.0000029392.21648.bc 10.1115/1.3439270 10.1016/0045-7825(88)90085-0 10.1007/978-1-4612-2600-0 10.1007/s11044-010-9209-8 10.1007/978-1-4020-5684-0_3 10.1007/978-3-319-30897-5 10.1007/s11044-010-9230-y 10.1007/s11044-010-9220-0 10.1007/978-3-319-28664-8 10.1016/j.mechmachtheory.2014.12.010 10.1007/s11071-012-0413-3 10.1007/BF00045676 10.1007/b98874 10.1007/s11044-016-9527-6  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature B.V. 2019 Copyright Springer Nature B.V. 2019  | 
    
| Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Copyright Springer Nature B.V. 2019  | 
    
| DBID | AAYXX CITATION JQ2 ADTOC UNPAY  | 
    
| DOI | 10.1007/s11044-019-09670-8 | 
    
| DatabaseName | CrossRef ProQuest Computer Science Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1573-272X | 
    
| EndPage | 179 | 
    
| ExternalDocumentID | oai:repositorio.upct.es:10317/13165 10_1007_s11044_019_09670_8  | 
    
| GroupedDBID | -5B -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADRFC AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CAG CITATION COF H13 N2Q O9- OVD RNI RZC RZE RZK S1Z TEORI JQ2 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c363t-e1cd22c37d6a2986f2433c99bb1b450418541319152eaaea326c87f84922ca5f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1384-5640 1573-272X  | 
    
| IngestDate | Sun Oct 26 04:17:03 EDT 2025 Thu Oct 02 15:02:52 EDT 2025 Thu Apr 24 22:59:26 EDT 2025 Wed Oct 01 02:11:16 EDT 2025 Fri Feb 21 02:37:24 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Anchor maneuver Multibody dynamics Contact forces Ship Simulation Contact detection  | 
    
| Language | English | 
    
| License | cc-by-nc-nd | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-e1cd22c37d6a2986f2433c99bb1b450418541319152eaaea326c87f84922ca5f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4326-6488 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10317/13165 | 
    
| PQID | 2221925270 | 
    
| PQPubID | 2043839 | 
    
| PageCount | 33 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11044_019_09670_8 proquest_journals_2221925270 crossref_citationtrail_10_1007_s11044_019_09670_8 crossref_primary_10_1007_s11044_019_09670_8 springer_journals_10_1007_s11044_019_09670_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-06-01 | 
    
| PublicationDateYYYYMMDD | 2019-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationTitle | Multibody system dynamics | 
    
| PublicationTitleAbbrev | Multibody Syst Dyn | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning in dynamic analysis of mechanical systems. Tech. rep., University of Iowa (1981) CuadradoJ.GutierrezR.NayaM.GonzalezM.Experimental validation of a flexible mbs dynamic formulation through comparison between measured and calculated stresses on a prototype carMultibody Syst. Dyn.2004111471661143.7035910.1023/B:MUBO.0000025413.13130.2b LankaraniH.NikraveshP.Continuous contact force models for impact analysis in multibody systemsNonlinear Dyn.199452193207 GonthierY.McPheeJ.LangeC.PiedboeufJ.-C.A regularized contact model with asymmetric damping and dwell-time dependent frictionMultibody Syst. Dyn.20041132092331143.7434410.1023/B:MUBO.0000029392.21648.bc BayoE.García de JalonJ.SernaM.A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systemsComput. Methods Appl. Mech. Eng.1988711831959692160666.7002110.1016/0045-7825(88)90085-0 FloresP.AmbrosioJ.On the contact detection for contact–impact analysis in multibody systemsMultibody Syst. Dyn.20102410312226514261375.7002110.1007/s11044-010-9209-8 DopicoD.LuacesA.GonzalezM.CuadradoJ.Dealing with multiple contacts in a human-in-the-loop applicationMultibody Syst. Dyn.2011252167183275447910.1007/s11044-010-9230-y BanerjeeA.ChandaA.DasR.Historical origin and recent development on normal directional impact models for rigid body contact simulation: a critical reviewArch. Comput. Methods Eng.20172439742236151181364.7406710.1007/s11831-016-9164-5 Garcia OrdenJ.DopicoD.On the stabilizing properties of energy-momentum integrators and coordinate projections for constrained mechanical systemsMultibody Dynamics: Computational Methods and Applications2007DordrechtSpringer496810.1007/978-1-4020-5684-0_3 CuadradoJ.DopicoD.NayaM.GonzalezM.Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integratorsMultibody Syst. Dyn.20041221171321174.7030010.1023/B:MUBO.0000044421.04658.de DopicoD.GonzálezF.CuadradoJ.KovecsesJ.Determination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projectionsJ. Comput. Nonlinear Dyn.2014910.1115/1.4027671 HuntK.CrossleyF.Coefficient of restitution interpreted as damping in vibroimpactJ. Appl. Mech.197542244044510.1115/1.3423596 LopesD.SilvaM.AmbrosioJ.FloresP.A mathematical framework for rigid contact detection between quadric and superquadric surfacesMultibody Syst. Dyn.20102425528027266201376.7001210.1007/s11044-010-9220-0 BayoE.LedesmaR.Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dyn.19969113130139400410.1007/BF01833296 CuadradoJ.CardenalJ.MorerP.BayoE.Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environmentsMultibody Syst. Dyn.2000455730963.7000310.1023/A:1009824327480 FloresP.LankaraniH.M.Contact Force Models for Multibody Dynamics2016ChamSpringer1383.7000110.1007/978-3-319-30897-5 KhuliefY.A.ShabanaA.A.Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motionJ. Mech. Transm. Autom. Des.198410.1115/1.3260781 CuadradoJ.GutierrezR.NayaM.MorerP.A comparison in terms of accuracy and efficiency between a MBS dynamic formulation with stress analysis and a non-linear FEA codeInt. J. Numer. Methods Eng.200151103310521023.7404410.1002/nme.191 Van Den BergenG.Collision Detection in Interactive 3D Environments2004AmsterdamElsevier0928.68116 Garcia de JalonJ.BayoE.Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge1994New YorkSpringer10.1007/978-1-4612-2600-0 BlumentalsA.BrogliatoB.Bertails-DescoubesF.The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorialMultibody Syst. Dyn.201638437635236691372.7004410.1007/s11044-016-9527-6 FloresP.LeineR.GlockerC.Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systemsNonlinear Dyn.201269421172133294554510.1007/s11071-012-0413-3 PfeifferF.GlockerC.Multibody Dynamics with Unilateral Contacts2000ViennaSpringer0960.00025CISM International Centre for Mechanical Sciences BrogliatoB.Nonsmooth Mechanics: Models, Dynamics and Control20163BerlinSpringer1333.7400210.1007/978-3-319-28664-8 BedahA.A.UickerJ.Contact prediction between moving objects bounded by curved surfacesJ. Comput. Inf. Sci. Eng.201112110.1115/1.4005453 GoldsmithW.Impact, the Theory and Physical Behaviour of Colliding Solids1960LondonEdward Arnold Ltd.0122.42501 GreenwoodD.T.Principles of Dynamics1965New YorkPrentice-Hall NewmarkN.A method of computation for structural dynamicsJ. Eng. Mech. Div.19598536794 GilardiG.SharfI.Literature survey of contact dynamics modellingMech. Mach. Theory200237101213123919551151062.7055310.1016/S0094-114X(02)00045-9 ChungJ.HulbertG.A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha methodJ. Appl. Mech.19936037137512239710775.7333710.1115/1.2900803 NocedalJ.WrightS.Numerical Optimization1999New YorkSpringer0930.6506710.1007/b98874 ChoiJ.RyuH.S.KimC.W.ChoiJ.H.An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometryMultibody Syst. Dyn.201023991201192.7000510.1007/s11044-009-9173-3 LankaraniH.NikraveshP.Contact force model with hysteresis damping for impact analysis of multibody systemsJ. Mech. Des.1990112336937610.1115/1.2912617 GonthierY.LangeC.McPheeJ.A volumetric contact model implemented using polynomial geometryECCOMAS Thematic Conference Multibody Dynamics 20092009144145no. CD, paper 223 GéradinM.CardonaA.Flexible Multibody Dynamics. A Finite Element Approach2001ChichesterWiley FloresP.MachadoM.SilvaM.MartinsJ.On the continuous contact force models for soft materials in multibody dynamicsMultibody Syst. Dyn.2011253573751263.7000710.1007/s11044-010-9237-4 HerbertR.McWhannellD.Shape and frequency composition of pulses from an impact pairJ. Eng. Ind.197799351351810.1115/1.3439270 EricsonC.Real-Time Collision Detection2005AmsterdamElsevier MachadoM.MoreiraP.FloresP.LankaraniH.Compliant contact force models in multibody dynamics: evolution of the Hertz contact theoryMech. Mach. Theory2012539912110.1016/j.mechmachtheory.2012.02.010 NarwalA.K.VazA.GuptaK.Bond graph modeling of dynamics of soft contact interaction of a non-circular rigid body rolling on a soft materialMech. Mach. Theory20158626528010.1016/j.mechmachtheory.2014.12.010 LeeT.W.WangA.On the dynamics of intermittent-motion mechanisms. Part 1: dynamic model and response. Part 2: Geneva mechanisms, ratchets, and escapementsJ. Mech. Transm. Autom. Des.1983105353455110.1115/1.3267392 9670_CR6 H. Lankarani (9670_CR8) 1990; 112 M. Machado (9670_CR10) 2012; 53 P. Flores (9670_CR1) 2016 E. Bayo (9670_CR24) 1996; 9 Y. Gonthier (9670_CR36) 2004; 11 J. Nocedal (9670_CR40) 1999 J. Cuadrado (9670_CR28) 2000; 4 P. Flores (9670_CR9) 2010; 24 T.W. Lee (9670_CR35) 1983; 105 Y. Gonthier (9670_CR18) 2009 J. Cuadrado (9670_CR21) 2001; 51 J. Garcia Orden (9670_CR30) 2007 J. Choi (9670_CR17) 2010; 23 J. Chung (9670_CR25) 1993; 60 K. Hunt (9670_CR31) 1975; 42 H. Lankarani (9670_CR33) 1994; 5 D.T. Greenwood (9670_CR5) 1965 J. Garcia de Jalon (9670_CR19) 1994 B. Brogliato (9670_CR12) 2016 Y.A. Khulief (9670_CR7) 1984 A. Blumentals (9670_CR41) 2016; 38 D. Dopico (9670_CR14) 2011; 25 G. Den Bergen Van (9670_CR38) 2004 M. Géradin (9670_CR26) 2001 N. Newmark (9670_CR29) 1959; 85 A. Banerjee (9670_CR3) 2017; 24 D. Lopes (9670_CR15) 2010; 24 R. Herbert (9670_CR34) 1977; 99 A.K. Narwal (9670_CR2) 2015; 86 D. Dopico (9670_CR23) 2014; 9 P. Flores (9670_CR13) 2012; 69 G. Gilardi (9670_CR4) 2002; 37 E. Bayo (9670_CR20) 1988; 71 F. Pfeiffer (9670_CR11) 2000 J. Cuadrado (9670_CR27) 2004; 12 J. Cuadrado (9670_CR22) 2004; 11 P. Flores (9670_CR32) 2011; 25 W. Goldsmith (9670_CR37) 1960 A.A. Bedah (9670_CR16) 2011; 12 C. Ericson (9670_CR39) 2005  | 
    
| References_xml | – reference: KhuliefY.A.ShabanaA.A.Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motionJ. Mech. Transm. Autom. Des.198410.1115/1.3260781 – reference: DopicoD.GonzálezF.CuadradoJ.KovecsesJ.Determination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projectionsJ. Comput. Nonlinear Dyn.2014910.1115/1.4027671 – reference: LankaraniH.NikraveshP.Contact force model with hysteresis damping for impact analysis of multibody systemsJ. Mech. Des.1990112336937610.1115/1.2912617 – reference: BayoE.LedesmaR.Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dyn.19969113130139400410.1007/BF01833296 – reference: FloresP.LankaraniH.M.Contact Force Models for Multibody Dynamics2016ChamSpringer1383.7000110.1007/978-3-319-30897-5 – reference: HerbertR.McWhannellD.Shape and frequency composition of pulses from an impact pairJ. Eng. Ind.197799351351810.1115/1.3439270 – reference: LopesD.SilvaM.AmbrosioJ.FloresP.A mathematical framework for rigid contact detection between quadric and superquadric surfacesMultibody Syst. Dyn.20102425528027266201376.7001210.1007/s11044-010-9220-0 – reference: GonthierY.LangeC.McPheeJ.A volumetric contact model implemented using polynomial geometryECCOMAS Thematic Conference Multibody Dynamics 20092009144145no. CD, paper 223 – reference: GoldsmithW.Impact, the Theory and Physical Behaviour of Colliding Solids1960LondonEdward Arnold Ltd.0122.42501 – reference: CuadradoJ.GutierrezR.NayaM.MorerP.A comparison in terms of accuracy and efficiency between a MBS dynamic formulation with stress analysis and a non-linear FEA codeInt. J. Numer. Methods Eng.200151103310521023.7404410.1002/nme.191 – reference: ChungJ.HulbertG.A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha methodJ. Appl. Mech.19936037137512239710775.7333710.1115/1.2900803 – reference: BedahA.A.UickerJ.Contact prediction between moving objects bounded by curved surfacesJ. Comput. Inf. Sci. Eng.201112110.1115/1.4005453 – reference: FloresP.AmbrosioJ.On the contact detection for contact–impact analysis in multibody systemsMultibody Syst. Dyn.20102410312226514261375.7002110.1007/s11044-010-9209-8 – reference: ChoiJ.RyuH.S.KimC.W.ChoiJ.H.An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometryMultibody Syst. Dyn.201023991201192.7000510.1007/s11044-009-9173-3 – reference: MachadoM.MoreiraP.FloresP.LankaraniH.Compliant contact force models in multibody dynamics: evolution of the Hertz contact theoryMech. Mach. Theory2012539912110.1016/j.mechmachtheory.2012.02.010 – reference: FloresP.MachadoM.SilvaM.MartinsJ.On the continuous contact force models for soft materials in multibody dynamicsMultibody Syst. Dyn.2011253573751263.7000710.1007/s11044-010-9237-4 – reference: Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning in dynamic analysis of mechanical systems. Tech. rep., University of Iowa (1981) – reference: DopicoD.LuacesA.GonzalezM.CuadradoJ.Dealing with multiple contacts in a human-in-the-loop applicationMultibody Syst. Dyn.2011252167183275447910.1007/s11044-010-9230-y – reference: EricsonC.Real-Time Collision Detection2005AmsterdamElsevier – reference: HuntK.CrossleyF.Coefficient of restitution interpreted as damping in vibroimpactJ. Appl. Mech.197542244044510.1115/1.3423596 – reference: BayoE.García de JalonJ.SernaM.A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systemsComput. Methods Appl. Mech. Eng.1988711831959692160666.7002110.1016/0045-7825(88)90085-0 – reference: LankaraniH.NikraveshP.Continuous contact force models for impact analysis in multibody systemsNonlinear Dyn.199452193207 – reference: NocedalJ.WrightS.Numerical Optimization1999New YorkSpringer0930.6506710.1007/b98874 – reference: Van Den BergenG.Collision Detection in Interactive 3D Environments2004AmsterdamElsevier0928.68116 – reference: CuadradoJ.CardenalJ.MorerP.BayoE.Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environmentsMultibody Syst. Dyn.2000455730963.7000310.1023/A:1009824327480 – reference: BlumentalsA.BrogliatoB.Bertails-DescoubesF.The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorialMultibody Syst. Dyn.201638437635236691372.7004410.1007/s11044-016-9527-6 – reference: Garcia OrdenJ.DopicoD.On the stabilizing properties of energy-momentum integrators and coordinate projections for constrained mechanical systemsMultibody Dynamics: Computational Methods and Applications2007DordrechtSpringer496810.1007/978-1-4020-5684-0_3 – reference: GreenwoodD.T.Principles of Dynamics1965New YorkPrentice-Hall – reference: CuadradoJ.GutierrezR.NayaM.GonzalezM.Experimental validation of a flexible mbs dynamic formulation through comparison between measured and calculated stresses on a prototype carMultibody Syst. Dyn.2004111471661143.7035910.1023/B:MUBO.0000025413.13130.2b – reference: CuadradoJ.DopicoD.NayaM.GonzalezM.Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integratorsMultibody Syst. Dyn.20041221171321174.7030010.1023/B:MUBO.0000044421.04658.de – reference: LeeT.W.WangA.On the dynamics of intermittent-motion mechanisms. Part 1: dynamic model and response. Part 2: Geneva mechanisms, ratchets, and escapementsJ. Mech. Transm. Autom. Des.1983105353455110.1115/1.3267392 – reference: GonthierY.McPheeJ.LangeC.PiedboeufJ.-C.A regularized contact model with asymmetric damping and dwell-time dependent frictionMultibody Syst. Dyn.20041132092331143.7434410.1023/B:MUBO.0000029392.21648.bc – reference: NarwalA.K.VazA.GuptaK.Bond graph modeling of dynamics of soft contact interaction of a non-circular rigid body rolling on a soft materialMech. Mach. Theory20158626528010.1016/j.mechmachtheory.2014.12.010 – reference: PfeifferF.GlockerC.Multibody Dynamics with Unilateral Contacts2000ViennaSpringer0960.00025CISM International Centre for Mechanical Sciences – reference: BanerjeeA.ChandaA.DasR.Historical origin and recent development on normal directional impact models for rigid body contact simulation: a critical reviewArch. Comput. Methods Eng.20172439742236151181364.7406710.1007/s11831-016-9164-5 – reference: Garcia de JalonJ.BayoE.Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge1994New YorkSpringer10.1007/978-1-4612-2600-0 – reference: NewmarkN.A method of computation for structural dynamicsJ. Eng. Mech. Div.19598536794 – reference: FloresP.LeineR.GlockerC.Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systemsNonlinear Dyn.201269421172133294554510.1007/s11071-012-0413-3 – reference: GéradinM.CardonaA.Flexible Multibody Dynamics. A Finite Element Approach2001ChichesterWiley – reference: GilardiG.SharfI.Literature survey of contact dynamics modellingMech. Mach. Theory200237101213123919551151062.7055310.1016/S0094-114X(02)00045-9 – reference: BrogliatoB.Nonsmooth Mechanics: Models, Dynamics and Control20163BerlinSpringer1333.7400210.1007/978-3-319-28664-8 – volume-title: Flexible Multibody Dynamics. A Finite Element Approach year: 2001 ident: 9670_CR26 – volume: 60 start-page: 371 year: 1993 ident: 9670_CR25 publication-title: J. Appl. Mech. doi: 10.1115/1.2900803 – volume: 112 start-page: 369 issue: 3 year: 1990 ident: 9670_CR8 publication-title: J. Mech. Des. doi: 10.1115/1.2912617 – volume: 53 start-page: 99 year: 2012 ident: 9670_CR10 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2012.02.010 – volume: 25 start-page: 357 year: 2011 ident: 9670_CR32 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-010-9237-4 – volume: 12 issue: 1 year: 2011 ident: 9670_CR16 publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4005453 – volume: 9 year: 2014 ident: 9670_CR23 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4027671 – volume: 24 start-page: 397 year: 2017 ident: 9670_CR3 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-016-9164-5 – year: 1984 ident: 9670_CR7 publication-title: J. Mech. Transm. Autom. Des. doi: 10.1115/1.3260781 – volume: 12 start-page: 117 issue: 2 year: 2004 ident: 9670_CR27 publication-title: Multibody Syst. Dyn. doi: 10.1023/B:MUBO.0000044421.04658.de – ident: 9670_CR6 – volume: 9 start-page: 113 year: 1996 ident: 9670_CR24 publication-title: Nonlinear Dyn. doi: 10.1007/BF01833296 – volume-title: Real-Time Collision Detection year: 2005 ident: 9670_CR39 – volume: 37 start-page: 1213 issue: 10 year: 2002 ident: 9670_CR4 publication-title: Mech. Mach. Theory doi: 10.1016/S0094-114X(02)00045-9 – volume: 105 start-page: 534 issue: 3 year: 1983 ident: 9670_CR35 publication-title: J. Mech. Transm. Autom. Des. doi: 10.1115/1.3267392 – volume: 51 start-page: 1033 year: 2001 ident: 9670_CR21 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.191 – volume: 4 start-page: 55 year: 2000 ident: 9670_CR28 publication-title: Multibody Syst. Dyn. doi: 10.1023/A:1009824327480 – volume-title: Principles of Dynamics year: 1965 ident: 9670_CR5 – volume: 42 start-page: 440 issue: 2 year: 1975 ident: 9670_CR31 publication-title: J. Appl. Mech. doi: 10.1115/1.3423596 – volume: 11 start-page: 147 year: 2004 ident: 9670_CR22 publication-title: Multibody Syst. Dyn. doi: 10.1023/B:MUBO.0000025413.13130.2b – volume: 85 start-page: 67 issue: 3 year: 1959 ident: 9670_CR29 publication-title: J. Eng. Mech. Div. doi: 10.1061/JMCEA3.0000098 – volume: 23 start-page: 99 year: 2010 ident: 9670_CR17 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-009-9173-3 – volume-title: Collision Detection in Interactive 3D Environments year: 2004 ident: 9670_CR38 – volume: 11 start-page: 209 issue: 3 year: 2004 ident: 9670_CR36 publication-title: Multibody Syst. Dyn. doi: 10.1023/B:MUBO.0000029392.21648.bc – start-page: 144 volume-title: ECCOMAS Thematic Conference Multibody Dynamics 2009 year: 2009 ident: 9670_CR18 – volume-title: Impact, the Theory and Physical Behaviour of Colliding Solids year: 1960 ident: 9670_CR37 – volume: 99 start-page: 513 issue: 3 year: 1977 ident: 9670_CR34 publication-title: J. Eng. Ind. doi: 10.1115/1.3439270 – volume: 71 start-page: 183 year: 1988 ident: 9670_CR20 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90085-0 – volume-title: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge year: 1994 ident: 9670_CR19 doi: 10.1007/978-1-4612-2600-0 – volume: 24 start-page: 103 year: 2010 ident: 9670_CR9 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-010-9209-8 – start-page: 49 volume-title: Multibody Dynamics: Computational Methods and Applications year: 2007 ident: 9670_CR30 doi: 10.1007/978-1-4020-5684-0_3 – volume-title: Contact Force Models for Multibody Dynamics year: 2016 ident: 9670_CR1 doi: 10.1007/978-3-319-30897-5 – volume: 25 start-page: 167 issue: 2 year: 2011 ident: 9670_CR14 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-010-9230-y – volume: 24 start-page: 255 year: 2010 ident: 9670_CR15 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-010-9220-0 – volume-title: Nonsmooth Mechanics: Models, Dynamics and Control year: 2016 ident: 9670_CR12 doi: 10.1007/978-3-319-28664-8 – volume: 86 start-page: 265 year: 2015 ident: 9670_CR2 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2014.12.010 – volume: 69 start-page: 2117 issue: 4 year: 2012 ident: 9670_CR13 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0413-3 – volume: 5 start-page: 193 issue: 2 year: 1994 ident: 9670_CR33 publication-title: Nonlinear Dyn. doi: 10.1007/BF00045676 – volume-title: Multibody Dynamics with Unilateral Contacts year: 2000 ident: 9670_CR11 – volume-title: Numerical Optimization year: 1999 ident: 9670_CR40 doi: 10.1007/b98874 – volume: 38 start-page: 43 year: 2016 ident: 9670_CR41 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-016-9527-6  | 
    
| SSID | ssj0021549 | 
    
| Score | 2.2414548 | 
    
| Snippet | Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 147 | 
    
| SubjectTerms | Algorithms Anchors Automotive Engineering Case studies Chains Computation Computer simulation Contact force Control Dynamical Systems Electrical Engineering Engineering Engineers Equations of motion Hoisting Maneuvers Mechanical Engineering Multibody systems Naval engineering Optimization Rigid structures Scale models Ship hulls Ships Simulation Software Static equilibrium Vibration  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HHQPvsX1RQ7eNNBN0jY9iijiwYsu7K0kaaoLa1dsq_jvnWTbroIsem2TKfSbZmaaL98AnGlc4xSGCZpZbqhIAk51zAzNE54xzo3ItGf53ke3Q3E3CkfNobCyZbu3W5J-pZ4fdsPKwTEmHMUnigMql2E1dHJe6MVDdtmVWU50zJdZUtAwEkFzVOZ3Gz_D0TzH7LZFe7BWF6_q80NNJt8iz80WbDQpI7mcYbwNS7bYgc0mfSTNx1nuQO-btuAuvD-MX3xrruKJYJJHEN3n6RuZjHN_6UUVtkY3JtOcOMJWSRwD_ok46royFcls5UlaBelUXku0kfkB46Ke1mU3FvNeY4nvqVPuwfDm-vHqljZNFqjhEa-oHZiMMcPjLFIskVHOBEKUJFoPtAgDp22DcQ6rupBZpazCdM_IOJciwVkqzPk-rBTTwh4AcYuBlmogrLIiE0YGkZIM7Zsg0SJWfRi07zo1jQK5a4QxSefayQ6fFPFJPT6p7MN5N-d1pr-xcPRxC2HafItlihkQeknI4qAPFy2s89uLrF100P_h4Yf_s34E68w7ovujcwwr1VttTzDBqfSp9-cvtlDwWQ priority: 102 providerName: Springer Nature  | 
    
| Title | Simulating the anchor lifting maneuver of ships using contact detection techniques and continuous contact force models | 
    
| URI | https://link.springer.com/article/10.1007/s11044-019-09670-8 https://www.proquest.com/docview/2221925270 http://hdl.handle.net/10317/13165  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 46 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-272X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021549 issn: 1573-272X databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-272X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021549 issn: 1573-272X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-272X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021549 issn: 1573-272X databaseCode: U2A dateStart: 19970301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61uwfgQHmKhbLygRt1SfxKclyhlgqkCglW2p4i23HKim22ahKq8usZO9ksD1HBNRk7imbs-Zx88w3AK4N7nMY0QQvHLRVZxKlJmKVlxgvGuRWFCSzfU3UyF-8XcrEDm_6Ev8kL-B4EyZuYx0ruwlhJhNsjGM9PP87OwkEqFVSqruhRJpyyhC36wpiuPA7PGp5j4UlBKolo-mvy2SLK4SfoPbjTVpf65lqvVj_lmeO9bbVORy_5etg25tB-_1O88e-v8ADu9yiTzLqweAg7rnoEez3iJP16rh_Dt0_Li9C_qzoniAQJhsCX9RVZLctw6UJXrsVYJ-uSeFZXTTxN_px4fru2DSlcE5hcFRmkYGucowgGy6pdt_Vgi-DYOhIa79RPYH589PntCe07MVDLFW-oi23BmOVJoTTLUlUygX7MMmNiI2TkBXAwGeLRTzKntdOICW2alKnIcJSWJX8Ko2pduWdA_I5hUh0Lp50ohE0jpVOG89soMyLRE4g3LsptL1Puu2Ws8q3Asndrjm7Ng1vzdAKvhzGXnUjHrdb7G8_n_YKtc4RJiHUlS6IJHGyiYXv7ttkOhoj5h4c__z_zF3CXhfj1n332YdRcte4loqDGTGE8e3f24WgKu3M2m_ar4gf85wCp | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RU9QwEN7R4wF5EEUdD0Hz4JuE6SVpmz4yDnAK8iI3g0-dJE3hxqPH0FZGfj2bXNpDx2HktU22bbKb_bb5sgvwUeMap9BN0MJyQ0UWcapTZmiZ8YJxbkShPcv3JBlPxNez-CwcCqs7tnu3JelX6uVhN4wcHGPCUXySNKLyKawIDFDYAFb2Dn8c7feBlks75gMtKWiciCgclvm3lD8d0hJl9huja7DaVlfq942aze75noN1mHRvvaCc_NxtG71rbv9K6PjYz3oBzwMYJXsL7XkJT2y1AesBmJJg9vUGrN3LWvgKfn2fXvqiX9U5QfhIUG8u5tdkNi39pUtV2RYNhMxL4qhgNXHc-nPiSPHKNKSwjad_VaTPH1ujjMI3mFbtvK37toiojSW-Wk_9GiYH-6efxzSUb6CGJ7yhdmQKxgxPi0SxTCYlEzj5Wab1SIs4cllz0INivBgzq5RVCCSNTEspMuyl4pK_gUE1r-xbIG6Z0VKNhFVWFMLIKFGSoXwTZVqkagijbg5zE3KbuxIbs3yZldkNc47DnPthzuUQPvV9rhaZPR5svdWpRh6svM4RWyFAjlkaDWGnm93l7Yek7fQq9R8P33yc9A-wOj79dpwffzk5egfPmNct999oCwbNdWu3EUY1-n2wmjvKPBBO | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21VGrLASht1S3Q-tBbscjaTuIcEbCiH0JI7UrcIn-FrrR4VyRp1X_fsTeb3UoIwTWxJ5Lf2PMczzwDfNK4xikME9Q6bqgoEk51zgytCm4Z50ZYHbN8L7Lzsfh6lV6tVfHHbPflkeSipiGoNPnmaG6ro1XhG-4iQvZESPfJ8oTKp_BMBKEE9OgxO-63XEGALG65pKBpJpKubOZuG_-HphXf7I9IN-FF6-fq7x81na5FodEObHX0kRwv8H4FT5zfhe2OSpJuota7sLmmM_gafv-Y3MRruvw1QcJHEOlfs1synVTx0Y3yrkWXJrOKhOStmoRs-GsSxkSZhljXxIQtT3rF1xpt2Nhg4ttZW_dtkQMbR-L9OvUbGI_Ofp6c0-7CBWp4xhvqhsYyZnhuM8UKmVVMIFxFofVQizQJOjcY83CHlzKnlFNI_YzMKykK7KXSir-FDT_z7h2QsDBoqYbCKSesMDLJlGRo3ySFFrkawHA51qXp1MjDpRjTcqWjHPApEZ8y4lPKAXzu-8wXWhz3tt5fQlh287IukQ0hpU1ZngzgcAnr6vV91g576B_w8fePs_4Rnl-ejsrvXy6-7cFLFn0y_OjZh43mtnUHyHsa_SG69j8uTveB | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE4tDzF0hb5wI26JH7FOVaIquJQIcFKyymyHaes2GarJmkFv56xk83yUCu4JmNH0Yw9n5NvvgF4bXGPM5gmaOm5oyJPOLUZc7TKeck4d6K0keV7pk5n4sNczrdg3Z_wD3mB0IMge5vyVMl7sK0kwu0JbM_OPh5_iQcpLahUfdGjzDhlGZsPhTF9eRyeNQLHIpCCVJZQ_Xvy2SDK8SfoQ7jf1Zfm-41ZLn_JMye7m2qdnl7y7ahr7ZH78bd44-2v8Ah2BpRJjvuweAxbvn4CuwPiJMN6bp7C9afFRezfVZ8TRIIEQ-Dr6oosF1W8dGFq32Gsk1VFAqurIYEmf04Cv924lpS-jUyumoxSsA3OUUaDRd2tuma0RXDsPImNd5pnMDt5__ndKR06MVDHFW-pT13JmONZqQzLtaqYQD_mubWpFTIJAjiYDPHoJ5k3xhvEhE5nlRY5jjKy4s9hUq9q_wJI2DGsNqnwxotSOJ0ooxnO75LcisxMIV27qHCDTHnolrEsNgLLwa0FurWIbi30FN6MYy57kY47rffXni-GBdsUCJMQ60qWJVM4XEfD5vZdsx2OEfMPD3_5f-Z78IDF-A2fffZh0l51_gBRUGtfDevgJwkV_h0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+the+anchor+lifting+maneuver+of+ships+using+contact+detection+techniques+and+continuous+contact+force+models&rft.jtitle=Multibody+system+dynamics&rft.au=Dopico%2C+Daniel&rft.au=Luaces%2C+Alberto&rft.au=Saura%2C+Mariano&rft.au=Cuadrado%2C+Javier&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=46&rft.issue=2&rft.spage=147&rft.epage=179&rft_id=info:doi/10.1007%2Fs11044-019-09670-8&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon |