Simulating the anchor lifting maneuver of ships using contact detection techniques and continuous contact force models

Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure that the anchor does not jam up during the lifting process and the position adopted by the anchor on the hull is acceptable when it is complete...

Full description

Saved in:
Bibliographic Details
Published inMultibody system dynamics Vol. 46; no. 2; pp. 147 - 179
Main Authors Dopico, Daniel, Luaces, Alberto, Saura, Mariano, Cuadrado, Javier, Vilela, David
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5640
1573-272X
1573-272X
DOI10.1007/s11044-019-09670-8

Cover

Abstract Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure that the anchor does not jam up during the lifting process and the position adopted by the anchor on the hull is acceptable when it is completely stowed. Some years ago, the design process was based on wooden scale models of the hull, anchor and chain links, which are expensive, their building process is time consuming and they do not offer the required precision. As a result of this research, a computational tool to simulate the anchor maneuver of generic ships given by CAD models was developed, and it is proving to be very helpful for the naval engineers. In this work, all the theory developed to simulate anchor maneuvers is thoroughly described, taking into account both the behavior of the anchor and the chain. To consider the contact forces between all the elements involved in the maneuver, a general contact algorithm for rigid bodies of arbitrary shapes and a particular contact algorithm for the chain links have been developed. In addition to the contact problem, aspects like the dynamic formulation of the equations of motion or the static equilibrium position problem are also covered in this work. To test the theory, a simulation of the anchor lifting maneuver of a ship is included as a case study. In spite of the motivation to develop the theory, the algorithms derived in this work are general and usable in any other multibody simulation with contacts, under the scope of validity of the models proposed. To illustrate this, the simulation of a valve rocker arm and cam system is accomplished, too. The computational and contact detection algorithms derived have been implemented in MBSLIM, a library for the dynamic simulation of multibody systems, and MBS model, a library for the contact detection and 3D rendering of multibody systems.
AbstractList Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure that the anchor does not jam up during the lifting process and the position adopted by the anchor on the hull is acceptable when it is completely stowed. Some years ago, the design process was based on wooden scale models of the hull, anchor and chain links, which are expensive, their building process is time consuming and they do not offer the required precision. As a result of this research, a computational tool to simulate the anchor maneuver of generic ships given by CAD models was developed, and it is proving to be very helpful for the naval engineers. In this work, all the theory developed to simulate anchor maneuvers is thoroughly described, taking into account both the behavior of the anchor and the chain. To consider the contact forces between all the elements involved in the maneuver, a general contact algorithm for rigid bodies of arbitrary shapes and a particular contact algorithm for the chain links have been developed. In addition to the contact problem, aspects like the dynamic formulation of the equations of motion or the static equilibrium position problem are also covered in this work. To test the theory, a simulation of the anchor lifting maneuver of a ship is included as a case study. In spite of the motivation to develop the theory, the algorithms derived in this work are general and usable in any other multibody simulation with contacts, under the scope of validity of the models proposed. To illustrate this, the simulation of a valve rocker arm and cam system is accomplished, too. The computational and contact detection algorithms derived have been implemented in MBSLIM, a library for the dynamic simulation of multibody systems, and MBS model, a library for the contact detection and 3D rendering of multibody systems.
Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure that the anchor does not jam up during the lifting process and the position adopted by the anchor on the hull is acceptable when it is completely stowed. Some years ago, the design process was based on wooden scale models of the hull, anchor and chain links, which are expensive, their building process is time consuming and they do not offer the required precision. As a result of this research, a computational tool to simulate the anchor maneuver of generic ships given by CAD models was developed, and it is proving to be very helpful for the naval engineers.In this work, all the theory developed to simulate anchor maneuvers is thoroughly described, taking into account both the behavior of the anchor and the chain. To consider the contact forces between all the elements involved in the maneuver, a general contact algorithm for rigid bodies of arbitrary shapes and a particular contact algorithm for the chain links have been developed. In addition to the contact problem, aspects like the dynamic formulation of the equations of motion or the static equilibrium position problem are also covered in this work. To test the theory, a simulation of the anchor lifting maneuver of a ship is included as a case study.In spite of the motivation to develop the theory, the algorithms derived in this work are general and usable in any other multibody simulation with contacts, under the scope of validity of the models proposed. To illustrate this, the simulation of a valve rocker arm and cam system is accomplished, too.The computational and contact detection algorithms derived have been implemented in MBSLIM, a library for the dynamic simulation of multibody systems, and MBS model, a library for the contact detection and 3D rendering of multibody systems.
Author Dopico, Daniel
Luaces, Alberto
Saura, Mariano
Cuadrado, Javier
Vilela, David
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-4326-6488
  surname: Dopico
  fullname: Dopico, Daniel
  email: ddopico@udc.es
  organization: Laboratorio de Ingeniería Mecánica, Universidade da Coruña
– sequence: 2
  givenname: Alberto
  surname: Luaces
  fullname: Luaces, Alberto
  organization: Laboratorio de Ingeniería Mecánica, Universidade da Coruña
– sequence: 3
  givenname: Mariano
  surname: Saura
  fullname: Saura, Mariano
  organization: Departamento de Ingeniería Mecánica, Universidad Politécnica de Cartagena
– sequence: 4
  givenname: Javier
  surname: Cuadrado
  fullname: Cuadrado, Javier
  organization: Laboratorio de Ingeniería Mecánica, Universidade da Coruña
– sequence: 5
  givenname: David
  surname: Vilela
  fullname: Vilela, David
  organization: Laboratorio de Ingeniería Mecánica, Universidade da Coruña
BookMark eNqNkEtLAzEUhYMo2Fb_gKuA69G85pGlFF9QcKGCu5BmMp2UmaQmmUr_vekDBRfF1b1czrn33G8MTq2zGoArjG4wQuVtwBgxliHMM8SLEmXVCRjhvKQZKcnHaeppxbK8YOgcjENYIkRwzvgIrF9NP3QyGruAsdVQWtU6DzvT7Ea9tHpYaw9dA0NrVgEOYTtXzkapIqx11CoaZ2GqrTWfgw5pR70TGDu4IfxoG-eVhr2rdRcuwFkju6AvD3UC3h_u36ZP2ezl8Xl6N8sULWjMNFY1IYqWdSEJr4qGMEoV5_M5nrMcMVzlDFPMcU60lFpSUqiqbCrGk0vmDZ0Aut872JXcfMmuEytveuk3AiOxRSf26ERCJ3boRJVc13vXyrvtR1Es3eBtCioIIZiTnJQoqaq9SnkXgteNUCbKLYzopemOHyB_rP9KdfglJLFdaP-b6ojrG19do14
CitedBy_id crossref_primary_10_3390_s24103042
crossref_primary_10_1016_j_mechmachtheory_2019_103601
crossref_primary_10_1007_s11044_021_09803_y
crossref_primary_10_1007_s11044_024_09971_7
crossref_primary_10_3389_fbioe_2024_1347720
crossref_primary_10_1007_s11044_023_09928_2
crossref_primary_10_3390_s21155241
Cites_doi 10.1115/1.2900803
10.1115/1.2912617
10.1016/j.mechmachtheory.2012.02.010
10.1007/s11044-010-9237-4
10.1115/1.4005453
10.1115/1.4027671
10.1007/s11831-016-9164-5
10.1115/1.3260781
10.1023/B:MUBO.0000044421.04658.de
10.1007/BF01833296
10.1016/S0094-114X(02)00045-9
10.1115/1.3267392
10.1002/nme.191
10.1023/A:1009824327480
10.1115/1.3423596
10.1023/B:MUBO.0000025413.13130.2b
10.1061/JMCEA3.0000098
10.1007/s11044-009-9173-3
10.1023/B:MUBO.0000029392.21648.bc
10.1115/1.3439270
10.1016/0045-7825(88)90085-0
10.1007/978-1-4612-2600-0
10.1007/s11044-010-9209-8
10.1007/978-1-4020-5684-0_3
10.1007/978-3-319-30897-5
10.1007/s11044-010-9230-y
10.1007/s11044-010-9220-0
10.1007/978-3-319-28664-8
10.1016/j.mechmachtheory.2014.12.010
10.1007/s11071-012-0413-3
10.1007/BF00045676
10.1007/b98874
10.1007/s11044-016-9527-6
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
ADTOC
UNPAY
DOI 10.1007/s11044-019-09670-8
DatabaseName CrossRef
ProQuest Computer Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-272X
EndPage 179
ExternalDocumentID oai:repositorio.upct.es:10317/13165
10_1007_s11044_019_09670_8
GroupedDBID -5B
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADRFC
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
H13
N2Q
O9-
OVD
RNI
RZC
RZE
RZK
S1Z
TEORI
JQ2
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-e1cd22c37d6a2986f2433c99bb1b450418541319152eaaea326c87f84922ca5f3
IEDL.DBID UNPAY
ISSN 1384-5640
1573-272X
IngestDate Sun Oct 26 04:17:03 EDT 2025
Thu Oct 02 15:02:52 EDT 2025
Thu Apr 24 22:59:26 EDT 2025
Wed Oct 01 02:11:16 EDT 2025
Fri Feb 21 02:37:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Anchor maneuver
Multibody dynamics
Contact forces
Ship
Simulation
Contact detection
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e1cd22c37d6a2986f2433c99bb1b450418541319152eaaea326c87f84922ca5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4326-6488
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10317/13165
PQID 2221925270
PQPubID 2043839
PageCount 33
ParticipantIDs unpaywall_primary_10_1007_s11044_019_09670_8
proquest_journals_2221925270
crossref_citationtrail_10_1007_s11044_019_09670_8
crossref_primary_10_1007_s11044_019_09670_8
springer_journals_10_1007_s11044_019_09670_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Multibody system dynamics
PublicationTitleAbbrev Multibody Syst Dyn
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning in dynamic analysis of mechanical systems. Tech. rep., University of Iowa (1981)
CuadradoJ.GutierrezR.NayaM.GonzalezM.Experimental validation of a flexible mbs dynamic formulation through comparison between measured and calculated stresses on a prototype carMultibody Syst. Dyn.2004111471661143.7035910.1023/B:MUBO.0000025413.13130.2b
LankaraniH.NikraveshP.Continuous contact force models for impact analysis in multibody systemsNonlinear Dyn.199452193207
GonthierY.McPheeJ.LangeC.PiedboeufJ.-C.A regularized contact model with asymmetric damping and dwell-time dependent frictionMultibody Syst. Dyn.20041132092331143.7434410.1023/B:MUBO.0000029392.21648.bc
BayoE.García de JalonJ.SernaM.A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systemsComput. Methods Appl. Mech. Eng.1988711831959692160666.7002110.1016/0045-7825(88)90085-0
FloresP.AmbrosioJ.On the contact detection for contact–impact analysis in multibody systemsMultibody Syst. Dyn.20102410312226514261375.7002110.1007/s11044-010-9209-8
DopicoD.LuacesA.GonzalezM.CuadradoJ.Dealing with multiple contacts in a human-in-the-loop applicationMultibody Syst. Dyn.2011252167183275447910.1007/s11044-010-9230-y
BanerjeeA.ChandaA.DasR.Historical origin and recent development on normal directional impact models for rigid body contact simulation: a critical reviewArch. Comput. Methods Eng.20172439742236151181364.7406710.1007/s11831-016-9164-5
Garcia OrdenJ.DopicoD.On the stabilizing properties of energy-momentum integrators and coordinate projections for constrained mechanical systemsMultibody Dynamics: Computational Methods and Applications2007DordrechtSpringer496810.1007/978-1-4020-5684-0_3
CuadradoJ.DopicoD.NayaM.GonzalezM.Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integratorsMultibody Syst. Dyn.20041221171321174.7030010.1023/B:MUBO.0000044421.04658.de
DopicoD.GonzálezF.CuadradoJ.KovecsesJ.Determination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projectionsJ. Comput. Nonlinear Dyn.2014910.1115/1.4027671
HuntK.CrossleyF.Coefficient of restitution interpreted as damping in vibroimpactJ. Appl. Mech.197542244044510.1115/1.3423596
LopesD.SilvaM.AmbrosioJ.FloresP.A mathematical framework for rigid contact detection between quadric and superquadric surfacesMultibody Syst. Dyn.20102425528027266201376.7001210.1007/s11044-010-9220-0
BayoE.LedesmaR.Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dyn.19969113130139400410.1007/BF01833296
CuadradoJ.CardenalJ.MorerP.BayoE.Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environmentsMultibody Syst. Dyn.2000455730963.7000310.1023/A:1009824327480
FloresP.LankaraniH.M.Contact Force Models for Multibody Dynamics2016ChamSpringer1383.7000110.1007/978-3-319-30897-5
KhuliefY.A.ShabanaA.A.Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motionJ. Mech. Transm. Autom. Des.198410.1115/1.3260781
CuadradoJ.GutierrezR.NayaM.MorerP.A comparison in terms of accuracy and efficiency between a MBS dynamic formulation with stress analysis and a non-linear FEA codeInt. J. Numer. Methods Eng.200151103310521023.7404410.1002/nme.191
Van Den BergenG.Collision Detection in Interactive 3D Environments2004AmsterdamElsevier0928.68116
Garcia de JalonJ.BayoE.Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge1994New YorkSpringer10.1007/978-1-4612-2600-0
BlumentalsA.BrogliatoB.Bertails-DescoubesF.The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorialMultibody Syst. Dyn.201638437635236691372.7004410.1007/s11044-016-9527-6
FloresP.LeineR.GlockerC.Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systemsNonlinear Dyn.201269421172133294554510.1007/s11071-012-0413-3
PfeifferF.GlockerC.Multibody Dynamics with Unilateral Contacts2000ViennaSpringer0960.00025CISM International Centre for Mechanical Sciences
BrogliatoB.Nonsmooth Mechanics: Models, Dynamics and Control20163BerlinSpringer1333.7400210.1007/978-3-319-28664-8
BedahA.A.UickerJ.Contact prediction between moving objects bounded by curved surfacesJ. Comput. Inf. Sci. Eng.201112110.1115/1.4005453
GoldsmithW.Impact, the Theory and Physical Behaviour of Colliding Solids1960LondonEdward Arnold Ltd.0122.42501
GreenwoodD.T.Principles of Dynamics1965New YorkPrentice-Hall
NewmarkN.A method of computation for structural dynamicsJ. Eng. Mech. Div.19598536794
GilardiG.SharfI.Literature survey of contact dynamics modellingMech. Mach. Theory200237101213123919551151062.7055310.1016/S0094-114X(02)00045-9
ChungJ.HulbertG.A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha methodJ. Appl. Mech.19936037137512239710775.7333710.1115/1.2900803
NocedalJ.WrightS.Numerical Optimization1999New YorkSpringer0930.6506710.1007/b98874
ChoiJ.RyuH.S.KimC.W.ChoiJ.H.An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometryMultibody Syst. Dyn.201023991201192.7000510.1007/s11044-009-9173-3
LankaraniH.NikraveshP.Contact force model with hysteresis damping for impact analysis of multibody systemsJ. Mech. Des.1990112336937610.1115/1.2912617
GonthierY.LangeC.McPheeJ.A volumetric contact model implemented using polynomial geometryECCOMAS Thematic Conference Multibody Dynamics 20092009144145no. CD, paper 223
GéradinM.CardonaA.Flexible Multibody Dynamics. A Finite Element Approach2001ChichesterWiley
FloresP.MachadoM.SilvaM.MartinsJ.On the continuous contact force models for soft materials in multibody dynamicsMultibody Syst. Dyn.2011253573751263.7000710.1007/s11044-010-9237-4
HerbertR.McWhannellD.Shape and frequency composition of pulses from an impact pairJ. Eng. Ind.197799351351810.1115/1.3439270
EricsonC.Real-Time Collision Detection2005AmsterdamElsevier
MachadoM.MoreiraP.FloresP.LankaraniH.Compliant contact force models in multibody dynamics: evolution of the Hertz contact theoryMech. Mach. Theory2012539912110.1016/j.mechmachtheory.2012.02.010
NarwalA.K.VazA.GuptaK.Bond graph modeling of dynamics of soft contact interaction of a non-circular rigid body rolling on a soft materialMech. Mach. Theory20158626528010.1016/j.mechmachtheory.2014.12.010
LeeT.W.WangA.On the dynamics of intermittent-motion mechanisms. Part 1: dynamic model and response. Part 2: Geneva mechanisms, ratchets, and escapementsJ. Mech. Transm. Autom. Des.1983105353455110.1115/1.3267392
9670_CR6
H. Lankarani (9670_CR8) 1990; 112
M. Machado (9670_CR10) 2012; 53
P. Flores (9670_CR1) 2016
E. Bayo (9670_CR24) 1996; 9
Y. Gonthier (9670_CR36) 2004; 11
J. Nocedal (9670_CR40) 1999
J. Cuadrado (9670_CR28) 2000; 4
P. Flores (9670_CR9) 2010; 24
T.W. Lee (9670_CR35) 1983; 105
Y. Gonthier (9670_CR18) 2009
J. Cuadrado (9670_CR21) 2001; 51
J. Garcia Orden (9670_CR30) 2007
J. Choi (9670_CR17) 2010; 23
J. Chung (9670_CR25) 1993; 60
K. Hunt (9670_CR31) 1975; 42
H. Lankarani (9670_CR33) 1994; 5
D.T. Greenwood (9670_CR5) 1965
J. Garcia de Jalon (9670_CR19) 1994
B. Brogliato (9670_CR12) 2016
Y.A. Khulief (9670_CR7) 1984
A. Blumentals (9670_CR41) 2016; 38
D. Dopico (9670_CR14) 2011; 25
G. Den Bergen Van (9670_CR38) 2004
M. Géradin (9670_CR26) 2001
N. Newmark (9670_CR29) 1959; 85
A. Banerjee (9670_CR3) 2017; 24
D. Lopes (9670_CR15) 2010; 24
R. Herbert (9670_CR34) 1977; 99
A.K. Narwal (9670_CR2) 2015; 86
D. Dopico (9670_CR23) 2014; 9
P. Flores (9670_CR13) 2012; 69
G. Gilardi (9670_CR4) 2002; 37
E. Bayo (9670_CR20) 1988; 71
F. Pfeiffer (9670_CR11) 2000
J. Cuadrado (9670_CR27) 2004; 12
J. Cuadrado (9670_CR22) 2004; 11
P. Flores (9670_CR32) 2011; 25
W. Goldsmith (9670_CR37) 1960
A.A. Bedah (9670_CR16) 2011; 12
C. Ericson (9670_CR39) 2005
References_xml – reference: KhuliefY.A.ShabanaA.A.Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motionJ. Mech. Transm. Autom. Des.198410.1115/1.3260781
– reference: DopicoD.GonzálezF.CuadradoJ.KovecsesJ.Determination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projectionsJ. Comput. Nonlinear Dyn.2014910.1115/1.4027671
– reference: LankaraniH.NikraveshP.Contact force model with hysteresis damping for impact analysis of multibody systemsJ. Mech. Des.1990112336937610.1115/1.2912617
– reference: BayoE.LedesmaR.Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dyn.19969113130139400410.1007/BF01833296
– reference: FloresP.LankaraniH.M.Contact Force Models for Multibody Dynamics2016ChamSpringer1383.7000110.1007/978-3-319-30897-5
– reference: HerbertR.McWhannellD.Shape and frequency composition of pulses from an impact pairJ. Eng. Ind.197799351351810.1115/1.3439270
– reference: LopesD.SilvaM.AmbrosioJ.FloresP.A mathematical framework for rigid contact detection between quadric and superquadric surfacesMultibody Syst. Dyn.20102425528027266201376.7001210.1007/s11044-010-9220-0
– reference: GonthierY.LangeC.McPheeJ.A volumetric contact model implemented using polynomial geometryECCOMAS Thematic Conference Multibody Dynamics 20092009144145no. CD, paper 223
– reference: GoldsmithW.Impact, the Theory and Physical Behaviour of Colliding Solids1960LondonEdward Arnold Ltd.0122.42501
– reference: CuadradoJ.GutierrezR.NayaM.MorerP.A comparison in terms of accuracy and efficiency between a MBS dynamic formulation with stress analysis and a non-linear FEA codeInt. J. Numer. Methods Eng.200151103310521023.7404410.1002/nme.191
– reference: ChungJ.HulbertG.A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha methodJ. Appl. Mech.19936037137512239710775.7333710.1115/1.2900803
– reference: BedahA.A.UickerJ.Contact prediction between moving objects bounded by curved surfacesJ. Comput. Inf. Sci. Eng.201112110.1115/1.4005453
– reference: FloresP.AmbrosioJ.On the contact detection for contact–impact analysis in multibody systemsMultibody Syst. Dyn.20102410312226514261375.7002110.1007/s11044-010-9209-8
– reference: ChoiJ.RyuH.S.KimC.W.ChoiJ.H.An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometryMultibody Syst. Dyn.201023991201192.7000510.1007/s11044-009-9173-3
– reference: MachadoM.MoreiraP.FloresP.LankaraniH.Compliant contact force models in multibody dynamics: evolution of the Hertz contact theoryMech. Mach. Theory2012539912110.1016/j.mechmachtheory.2012.02.010
– reference: FloresP.MachadoM.SilvaM.MartinsJ.On the continuous contact force models for soft materials in multibody dynamicsMultibody Syst. Dyn.2011253573751263.7000710.1007/s11044-010-9237-4
– reference: Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning in dynamic analysis of mechanical systems. Tech. rep., University of Iowa (1981)
– reference: DopicoD.LuacesA.GonzalezM.CuadradoJ.Dealing with multiple contacts in a human-in-the-loop applicationMultibody Syst. Dyn.2011252167183275447910.1007/s11044-010-9230-y
– reference: EricsonC.Real-Time Collision Detection2005AmsterdamElsevier
– reference: HuntK.CrossleyF.Coefficient of restitution interpreted as damping in vibroimpactJ. Appl. Mech.197542244044510.1115/1.3423596
– reference: BayoE.García de JalonJ.SernaM.A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systemsComput. Methods Appl. Mech. Eng.1988711831959692160666.7002110.1016/0045-7825(88)90085-0
– reference: LankaraniH.NikraveshP.Continuous contact force models for impact analysis in multibody systemsNonlinear Dyn.199452193207
– reference: NocedalJ.WrightS.Numerical Optimization1999New YorkSpringer0930.6506710.1007/b98874
– reference: Van Den BergenG.Collision Detection in Interactive 3D Environments2004AmsterdamElsevier0928.68116
– reference: CuadradoJ.CardenalJ.MorerP.BayoE.Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environmentsMultibody Syst. Dyn.2000455730963.7000310.1023/A:1009824327480
– reference: BlumentalsA.BrogliatoB.Bertails-DescoubesF.The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorialMultibody Syst. Dyn.201638437635236691372.7004410.1007/s11044-016-9527-6
– reference: Garcia OrdenJ.DopicoD.On the stabilizing properties of energy-momentum integrators and coordinate projections for constrained mechanical systemsMultibody Dynamics: Computational Methods and Applications2007DordrechtSpringer496810.1007/978-1-4020-5684-0_3
– reference: GreenwoodD.T.Principles of Dynamics1965New YorkPrentice-Hall
– reference: CuadradoJ.GutierrezR.NayaM.GonzalezM.Experimental validation of a flexible mbs dynamic formulation through comparison between measured and calculated stresses on a prototype carMultibody Syst. Dyn.2004111471661143.7035910.1023/B:MUBO.0000025413.13130.2b
– reference: CuadradoJ.DopicoD.NayaM.GonzalezM.Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integratorsMultibody Syst. Dyn.20041221171321174.7030010.1023/B:MUBO.0000044421.04658.de
– reference: LeeT.W.WangA.On the dynamics of intermittent-motion mechanisms. Part 1: dynamic model and response. Part 2: Geneva mechanisms, ratchets, and escapementsJ. Mech. Transm. Autom. Des.1983105353455110.1115/1.3267392
– reference: GonthierY.McPheeJ.LangeC.PiedboeufJ.-C.A regularized contact model with asymmetric damping and dwell-time dependent frictionMultibody Syst. Dyn.20041132092331143.7434410.1023/B:MUBO.0000029392.21648.bc
– reference: NarwalA.K.VazA.GuptaK.Bond graph modeling of dynamics of soft contact interaction of a non-circular rigid body rolling on a soft materialMech. Mach. Theory20158626528010.1016/j.mechmachtheory.2014.12.010
– reference: PfeifferF.GlockerC.Multibody Dynamics with Unilateral Contacts2000ViennaSpringer0960.00025CISM International Centre for Mechanical Sciences
– reference: BanerjeeA.ChandaA.DasR.Historical origin and recent development on normal directional impact models for rigid body contact simulation: a critical reviewArch. Comput. Methods Eng.20172439742236151181364.7406710.1007/s11831-016-9164-5
– reference: Garcia de JalonJ.BayoE.Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge1994New YorkSpringer10.1007/978-1-4612-2600-0
– reference: NewmarkN.A method of computation for structural dynamicsJ. Eng. Mech. Div.19598536794
– reference: FloresP.LeineR.GlockerC.Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systemsNonlinear Dyn.201269421172133294554510.1007/s11071-012-0413-3
– reference: GéradinM.CardonaA.Flexible Multibody Dynamics. A Finite Element Approach2001ChichesterWiley
– reference: GilardiG.SharfI.Literature survey of contact dynamics modellingMech. Mach. Theory200237101213123919551151062.7055310.1016/S0094-114X(02)00045-9
– reference: BrogliatoB.Nonsmooth Mechanics: Models, Dynamics and Control20163BerlinSpringer1333.7400210.1007/978-3-319-28664-8
– volume-title: Flexible Multibody Dynamics. A Finite Element Approach
  year: 2001
  ident: 9670_CR26
– volume: 60
  start-page: 371
  year: 1993
  ident: 9670_CR25
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900803
– volume: 112
  start-page: 369
  issue: 3
  year: 1990
  ident: 9670_CR8
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2912617
– volume: 53
  start-page: 99
  year: 2012
  ident: 9670_CR10
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2012.02.010
– volume: 25
  start-page: 357
  year: 2011
  ident: 9670_CR32
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-010-9237-4
– volume: 12
  issue: 1
  year: 2011
  ident: 9670_CR16
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4005453
– volume: 9
  year: 2014
  ident: 9670_CR23
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4027671
– volume: 24
  start-page: 397
  year: 2017
  ident: 9670_CR3
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-016-9164-5
– year: 1984
  ident: 9670_CR7
  publication-title: J. Mech. Transm. Autom. Des.
  doi: 10.1115/1.3260781
– volume: 12
  start-page: 117
  issue: 2
  year: 2004
  ident: 9670_CR27
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/B:MUBO.0000044421.04658.de
– ident: 9670_CR6
– volume: 9
  start-page: 113
  year: 1996
  ident: 9670_CR24
  publication-title: Nonlinear Dyn.
  doi: 10.1007/BF01833296
– volume-title: Real-Time Collision Detection
  year: 2005
  ident: 9670_CR39
– volume: 37
  start-page: 1213
  issue: 10
  year: 2002
  ident: 9670_CR4
  publication-title: Mech. Mach. Theory
  doi: 10.1016/S0094-114X(02)00045-9
– volume: 105
  start-page: 534
  issue: 3
  year: 1983
  ident: 9670_CR35
  publication-title: J. Mech. Transm. Autom. Des.
  doi: 10.1115/1.3267392
– volume: 51
  start-page: 1033
  year: 2001
  ident: 9670_CR21
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.191
– volume: 4
  start-page: 55
  year: 2000
  ident: 9670_CR28
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/A:1009824327480
– volume-title: Principles of Dynamics
  year: 1965
  ident: 9670_CR5
– volume: 42
  start-page: 440
  issue: 2
  year: 1975
  ident: 9670_CR31
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3423596
– volume: 11
  start-page: 147
  year: 2004
  ident: 9670_CR22
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/B:MUBO.0000025413.13130.2b
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  ident: 9670_CR29
  publication-title: J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0000098
– volume: 23
  start-page: 99
  year: 2010
  ident: 9670_CR17
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-009-9173-3
– volume-title: Collision Detection in Interactive 3D Environments
  year: 2004
  ident: 9670_CR38
– volume: 11
  start-page: 209
  issue: 3
  year: 2004
  ident: 9670_CR36
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/B:MUBO.0000029392.21648.bc
– start-page: 144
  volume-title: ECCOMAS Thematic Conference Multibody Dynamics 2009
  year: 2009
  ident: 9670_CR18
– volume-title: Impact, the Theory and Physical Behaviour of Colliding Solids
  year: 1960
  ident: 9670_CR37
– volume: 99
  start-page: 513
  issue: 3
  year: 1977
  ident: 9670_CR34
  publication-title: J. Eng. Ind.
  doi: 10.1115/1.3439270
– volume: 71
  start-page: 183
  year: 1988
  ident: 9670_CR20
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90085-0
– volume-title: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
  year: 1994
  ident: 9670_CR19
  doi: 10.1007/978-1-4612-2600-0
– volume: 24
  start-page: 103
  year: 2010
  ident: 9670_CR9
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-010-9209-8
– start-page: 49
  volume-title: Multibody Dynamics: Computational Methods and Applications
  year: 2007
  ident: 9670_CR30
  doi: 10.1007/978-1-4020-5684-0_3
– volume-title: Contact Force Models for Multibody Dynamics
  year: 2016
  ident: 9670_CR1
  doi: 10.1007/978-3-319-30897-5
– volume: 25
  start-page: 167
  issue: 2
  year: 2011
  ident: 9670_CR14
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-010-9230-y
– volume: 24
  start-page: 255
  year: 2010
  ident: 9670_CR15
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-010-9220-0
– volume-title: Nonsmooth Mechanics: Models, Dynamics and Control
  year: 2016
  ident: 9670_CR12
  doi: 10.1007/978-3-319-28664-8
– volume: 86
  start-page: 265
  year: 2015
  ident: 9670_CR2
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2014.12.010
– volume: 69
  start-page: 2117
  issue: 4
  year: 2012
  ident: 9670_CR13
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0413-3
– volume: 5
  start-page: 193
  issue: 2
  year: 1994
  ident: 9670_CR33
  publication-title: Nonlinear Dyn.
  doi: 10.1007/BF00045676
– volume-title: Multibody Dynamics with Unilateral Contacts
  year: 2000
  ident: 9670_CR11
– volume-title: Numerical Optimization
  year: 1999
  ident: 9670_CR40
  doi: 10.1007/b98874
– volume: 38
  start-page: 43
  year: 2016
  ident: 9670_CR41
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-016-9527-6
SSID ssj0021549
Score 2.2414548
Snippet Designing the geometry of a ship’s hull to guarantee a correct anchor maneuver is not an easy task. The engineer responsible for the design has to make sure...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms Algorithms
Anchors
Automotive Engineering
Case studies
Chains
Computation
Computer simulation
Contact force
Control
Dynamical Systems
Electrical Engineering
Engineering
Engineers
Equations of motion
Hoisting
Maneuvers
Mechanical Engineering
Multibody systems
Naval engineering
Optimization
Rigid structures
Scale models
Ship hulls
Ships
Simulation
Software
Static equilibrium
Vibration
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HHQPvsX1RQ7eNNBN0jY9iijiwYsu7K0kaaoLa1dsq_jvnWTbroIsem2TKfSbZmaaL98AnGlc4xSGCZpZbqhIAk51zAzNE54xzo3ItGf53ke3Q3E3CkfNobCyZbu3W5J-pZ4fdsPKwTEmHMUnigMql2E1dHJe6MVDdtmVWU50zJdZUtAwEkFzVOZ3Gz_D0TzH7LZFe7BWF6_q80NNJt8iz80WbDQpI7mcYbwNS7bYgc0mfSTNx1nuQO-btuAuvD-MX3xrruKJYJJHEN3n6RuZjHN_6UUVtkY3JtOcOMJWSRwD_ok46royFcls5UlaBelUXku0kfkB46Ke1mU3FvNeY4nvqVPuwfDm-vHqljZNFqjhEa-oHZiMMcPjLFIskVHOBEKUJFoPtAgDp22DcQ6rupBZpazCdM_IOJciwVkqzPk-rBTTwh4AcYuBlmogrLIiE0YGkZIM7Zsg0SJWfRi07zo1jQK5a4QxSefayQ6fFPFJPT6p7MN5N-d1pr-xcPRxC2HafItlihkQeknI4qAPFy2s89uLrF100P_h4Yf_s34E68w7ovujcwwr1VttTzDBqfSp9-cvtlDwWQ
  priority: 102
  providerName: Springer Nature
Title Simulating the anchor lifting maneuver of ships using contact detection techniques and continuous contact force models
URI https://link.springer.com/article/10.1007/s11044-019-09670-8
https://www.proquest.com/docview/2221925270
http://hdl.handle.net/10317/13165
UnpaywallVersion submittedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-272X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021549
  issn: 1573-272X
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-272X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021549
  issn: 1573-272X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-272X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021549
  issn: 1573-272X
  databaseCode: U2A
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61uwfgQHmKhbLygRt1SfxKclyhlgqkCglW2p4i23HKim22ahKq8usZO9ksD1HBNRk7imbs-Zx88w3AK4N7nMY0QQvHLRVZxKlJmKVlxgvGuRWFCSzfU3UyF-8XcrEDm_6Ev8kL-B4EyZuYx0ruwlhJhNsjGM9PP87OwkEqFVSqruhRJpyyhC36wpiuPA7PGp5j4UlBKolo-mvy2SLK4SfoPbjTVpf65lqvVj_lmeO9bbVORy_5etg25tB-_1O88e-v8ADu9yiTzLqweAg7rnoEez3iJP16rh_Dt0_Li9C_qzoniAQJhsCX9RVZLctw6UJXrsVYJ-uSeFZXTTxN_px4fru2DSlcE5hcFRmkYGucowgGy6pdt_Vgi-DYOhIa79RPYH589PntCe07MVDLFW-oi23BmOVJoTTLUlUygX7MMmNiI2TkBXAwGeLRTzKntdOICW2alKnIcJSWJX8Ko2pduWdA_I5hUh0Lp50ohE0jpVOG89soMyLRE4g3LsptL1Puu2Ws8q3Asndrjm7Ng1vzdAKvhzGXnUjHrdb7G8_n_YKtc4RJiHUlS6IJHGyiYXv7ttkOhoj5h4c__z_zF3CXhfj1n332YdRcte4loqDGTGE8e3f24WgKu3M2m_ar4gf85wCp
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RU9QwEN7R4wF5EEUdD0Hz4JuE6SVpmz4yDnAK8iI3g0-dJE3hxqPH0FZGfj2bXNpDx2HktU22bbKb_bb5sgvwUeMap9BN0MJyQ0UWcapTZmiZ8YJxbkShPcv3JBlPxNez-CwcCqs7tnu3JelX6uVhN4wcHGPCUXySNKLyKawIDFDYAFb2Dn8c7feBlks75gMtKWiciCgclvm3lD8d0hJl9huja7DaVlfq942aze75noN1mHRvvaCc_NxtG71rbv9K6PjYz3oBzwMYJXsL7XkJT2y1AesBmJJg9vUGrN3LWvgKfn2fXvqiX9U5QfhIUG8u5tdkNi39pUtV2RYNhMxL4qhgNXHc-nPiSPHKNKSwjad_VaTPH1ujjMI3mFbtvK37toiojSW-Wk_9GiYH-6efxzSUb6CGJ7yhdmQKxgxPi0SxTCYlEzj5Wab1SIs4cllz0INivBgzq5RVCCSNTEspMuyl4pK_gUE1r-xbIG6Z0VKNhFVWFMLIKFGSoXwTZVqkagijbg5zE3KbuxIbs3yZldkNc47DnPthzuUQPvV9rhaZPR5svdWpRh6svM4RWyFAjlkaDWGnm93l7Yek7fQq9R8P33yc9A-wOj79dpwffzk5egfPmNct999oCwbNdWu3EUY1-n2wmjvKPBBO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21VGrLASht1S3Q-tBbscjaTuIcEbCiH0JI7UrcIn-FrrR4VyRp1X_fsTeb3UoIwTWxJ5Lf2PMczzwDfNK4xikME9Q6bqgoEk51zgytCm4Z50ZYHbN8L7Lzsfh6lV6tVfHHbPflkeSipiGoNPnmaG6ro1XhG-4iQvZESPfJ8oTKp_BMBKEE9OgxO-63XEGALG65pKBpJpKubOZuG_-HphXf7I9IN-FF6-fq7x81na5FodEObHX0kRwv8H4FT5zfhe2OSpJuota7sLmmM_gafv-Y3MRruvw1QcJHEOlfs1synVTx0Y3yrkWXJrOKhOStmoRs-GsSxkSZhljXxIQtT3rF1xpt2Nhg4ttZW_dtkQMbR-L9OvUbGI_Ofp6c0-7CBWp4xhvqhsYyZnhuM8UKmVVMIFxFofVQizQJOjcY83CHlzKnlFNI_YzMKykK7KXSir-FDT_z7h2QsDBoqYbCKSesMDLJlGRo3ySFFrkawHA51qXp1MjDpRjTcqWjHPApEZ8y4lPKAXzu-8wXWhz3tt5fQlh287IukQ0hpU1ZngzgcAnr6vV91g576B_w8fePs_4Rnl-ejsrvXy6-7cFLFn0y_OjZh43mtnUHyHsa_SG69j8uTveB
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE4tDzF0hb5wI26JH7FOVaIquJQIcFKyymyHaes2GarJmkFv56xk83yUCu4JmNH0Yw9n5NvvgF4bXGPM5gmaOm5oyJPOLUZc7TKeck4d6K0keV7pk5n4sNczrdg3Z_wD3mB0IMge5vyVMl7sK0kwu0JbM_OPh5_iQcpLahUfdGjzDhlGZsPhTF9eRyeNQLHIpCCVJZQ_Xvy2SDK8SfoQ7jf1Zfm-41ZLn_JMye7m2qdnl7y7ahr7ZH78bd44-2v8Ah2BpRJjvuweAxbvn4CuwPiJMN6bp7C9afFRezfVZ8TRIIEQ-Dr6oosF1W8dGFq32Gsk1VFAqurIYEmf04Cv924lpS-jUyumoxSsA3OUUaDRd2tuma0RXDsPImNd5pnMDt5__ndKR06MVDHFW-pT13JmONZqQzLtaqYQD_mubWpFTIJAjiYDPHoJ5k3xhvEhE5nlRY5jjKy4s9hUq9q_wJI2DGsNqnwxotSOJ0ooxnO75LcisxMIV27qHCDTHnolrEsNgLLwa0FurWIbi30FN6MYy57kY47rffXni-GBdsUCJMQ60qWJVM4XEfD5vZdsx2OEfMPD3_5f-Z78IDF-A2fffZh0l51_gBRUGtfDevgJwkV_h0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+the+anchor+lifting+maneuver+of+ships+using+contact+detection+techniques+and+continuous+contact+force+models&rft.jtitle=Multibody+system+dynamics&rft.au=Dopico%2C+Daniel&rft.au=Luaces%2C+Alberto&rft.au=Saura%2C+Mariano&rft.au=Cuadrado%2C+Javier&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=46&rft.issue=2&rft.spage=147&rft.epage=179&rft_id=info:doi/10.1007%2Fs11044-019-09670-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon