Prediction of rock mass class ahead of TBM excavation face by ML and DL algorithms with Bayesian TPE optimization and SHAP feature analysis

In this paper, field construction data from the Singapore Metro Line project were used to study the mapping relationship and establish the prediction model between TBM operation data and the ground condition ahead of the excavation face. The study presents a multi-classifier competition mechanism to...

Full description

Saved in:
Bibliographic Details
Published inActa geotechnica Vol. 18; no. 7; pp. 3825 - 3848
Main Authors Chen, Cheng, Seo, Hyungjoon
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-1125
1861-1133
1861-1133
DOI10.1007/s11440-022-01779-z

Cover

Abstract In this paper, field construction data from the Singapore Metro Line project were used to study the mapping relationship and establish the prediction model between TBM operation data and the ground condition ahead of the excavation face. The study presents a multi-classifier competition mechanism to construct ten separate classifiers, including logistic regression, support vector machine, random forest, extremely randomized trees, adaptive boosting machine, extreme gradient boosting (Xgboost), light gradient boosting (LightGBM), categorical boosting, long short-term memory and convolutional neural network. The acquired data were used to select 28 key TBM operating parameters by a correlation-based feature selection method, and the selected parameters in the stabilization phase after removing the outliers were calculated as the input to the classifier, and a relatively balanced training set was obtained by the synthetic minority oversampling technique. The hyperparameters of each classifier were optimized using tree Parzen estimator Bayesian optimization. The prediction results show that LightGBM presents the best results among ten different machine and deep learning algorithms with an accuracy of 96.22%, precision of 96.94%, recall of 97.33% and F1-score of 97.33%. In addition, the effect of the input parameters of the LightGBM model on the prediction accuracy of the model was analyzed using Shapley additive explanations, and the effect of sample imbalance on the prediction performance was discussed.
AbstractList In this paper, field construction data from the Singapore Metro Line project were used to study the mapping relationship and establish the prediction model between TBM operation data and the ground condition ahead of the excavation face. The study presents a multi-classifier competition mechanism to construct ten separate classifiers, including logistic regression, support vector machine, random forest, extremely randomized trees, adaptive boosting machine, extreme gradient boosting (Xgboost), light gradient boosting (LightGBM), categorical boosting, long short-term memory and convolutional neural network. The acquired data were used to select 28 key TBM operating parameters by a correlation-based feature selection method, and the selected parameters in the stabilization phase after removing the outliers were calculated as the input to the classifier, and a relatively balanced training set was obtained by the synthetic minority oversampling technique. The hyperparameters of each classifier were optimized using tree Parzen estimator Bayesian optimization. The prediction results show that LightGBM presents the best results among ten different machine and deep learning algorithms with an accuracy of 96.22%, precision of 96.94%, recall of 97.33% and F1-score of 97.33%. In addition, the effect of the input parameters of the LightGBM model on the prediction accuracy of the model was analyzed using Shapley additive explanations, and the effect of sample imbalance on the prediction performance was discussed.
Author Seo, Hyungjoon
Chen, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: Department of Civil Engineering, Xi’an Jiaotong-Liverpool University
– sequence: 2
  givenname: Hyungjoon
  orcidid: 0000-0001-7002-2908
  surname: Seo
  fullname: Seo, Hyungjoon
  email: hyungjoon.seo@liverpool.ac.uk
  organization: Department of Civil Engineering and Industrial Design, University of Liverpool
BookMark eNqNUE1v1DAUtFCR-gF_oCdLnAP-SLLJsS2lrbQVK7GcrWf7uXXJxoudpc3-Bf50vZsKJA4VF8-TPfM8M8fkoA89EnLK2UfO2OxT4rwsWcGEKBifzdpi-4Yc8abmBedSHvyZRXVIjlN6YKyWoqyPyO9FROvN4ENPg6MxmB90BSlR0-1OuEewu4fl-S3FJwO_YE91YJDqkd7OKfSWfs7Q3YXoh_tVoo8Z6DmMmDz0dLm4pGE9-JXfTtqd4Nv12YI6hGETMV9ANyaf3pG3DrqE71_whHz_crm8uC7mX69uLs7mhZG1HApkGpA1prUtVo1srUBWC2wkg0rrpqyMdVbYHK_kIk-zymqntebgdNs6J0-InPZu-jWMj9B1ah39CuKoOFO7PtXUp8p9qn2faptVHybVOoafG0yDegibmK0nJRrJc7e1kJnVTCwTQ0oRnTJ-2OceIvju9Q_EP9L_cvWSJWVyf4fxr6tXVM_C3arp
CitedBy_id crossref_primary_10_1016_j_tust_2024_106128
crossref_primary_10_1007_s00603_024_03903_9
crossref_primary_10_3390_rs15174268
crossref_primary_10_1007_s13349_024_00901_x
crossref_primary_10_1016_j_autcon_2024_105425
crossref_primary_10_1038_s41598_024_73742_9
crossref_primary_10_3390_buildings13041051
crossref_primary_10_1016_j_aei_2023_102130
crossref_primary_10_48084_etasr_8947
crossref_primary_10_3390_s24020464
crossref_primary_10_1007_s11440_023_02203_w
crossref_primary_10_1016_j_tust_2024_105643
crossref_primary_10_1016_j_jenvman_2024_120335
crossref_primary_10_1007_s00603_025_04501_z
crossref_primary_10_1016_j_ecoinf_2024_102661
crossref_primary_10_3390_rs16111948
crossref_primary_10_1016_j_compgeo_2024_106155
crossref_primary_10_1016_j_geoai_2025_100003
crossref_primary_10_3389_feart_2024_1488504
crossref_primary_10_1007_s00603_024_04189_7
crossref_primary_10_1016_j_measurement_2024_115373
crossref_primary_10_3390_agriculture14091453
crossref_primary_10_1016_j_undsp_2024_06_002
crossref_primary_10_1016_j_trgeo_2024_101470
crossref_primary_10_3390_agronomy14123039
crossref_primary_10_3390_fractalfract8120677
crossref_primary_10_1007_s11440_024_02271_6
crossref_primary_10_1016_j_asej_2024_102630
crossref_primary_10_1016_j_ecolind_2024_112865
Cites_doi 10.1016/j.autcon.2018.12.022
10.1016/j.autcon.2021.103647
10.1088/1749-4699/8/1/014008
10.1016/j.jenvman.2021.114367
10.1016/j.tust.2017.03.002
10.1016/j.tust.2021.104196
10.1016/j.jafrearsci.2016.02.019
10.1080/10298436.2021.1888092
10.1007/s10064-016-0950-y
10.1016/j.apenergy.2020.114683
10.1016/j.jrmge.2021.05.004
10.3390/rs14010106
10.1007/s11749-016-0481-7
10.1016/j.matdes.2020.109326
10.1016/j.tust.2019.103103
10.1016/j.envsoft.2021.105250
10.1109/TBME.2018.2872652
10.1007/s12205-019-1460-9
10.1016/j.tust.2018.10.001
10.1016/j.chemolab.2020.104196
10.1016/j.artint.2022.103667
10.1016/j.autcon.2022.104331
10.3390/app11031060
10.1016/j.procs.2020.01.072
10.1016/j.tust.2020.103595
10.1016/j.jclepro.2018.08.207
10.1016/j.cose.2017.06.005
10.1016/j.porgcoat.2019.105459
10.1007/s100640050031
10.1007/s00500-019-03957-w
10.1016/j.tust.2007.04.011
10.1007/s10115-013-0679-x
10.3390/s22155781
10.1016/j.gsf.2020.09.020
10.1080/01431161.2021.2009589
10.1016/j.asoc.2021.107302
10.3390/math8050765
10.1016/j.autcon.2021.104109
10.1038/nbt1206-1565
10.1016/j.tust.2022.104448
10.1016/j.measurement.2021.109545
10.1016/j.eswa.2018.05.024
10.1007/s00603-004-0032-5
10.1016/0148-9062(72)90001-0
10.1007/978-3-642-41136-6_5
10.32614/CRAN.package.xgboost
10.1080/10298436.2021.1945056
10.1016/j.undsp.2020.02.003
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
ADTOC
UNPAY
DOI 10.1007/s11440-022-01779-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Collection
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Science Database (NC LIVE)
ProQuest Engineering Database (NC LIVE)
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1861-1133
EndPage 3848
ExternalDocumentID 10.1007/s11440-022-01779-z
10_1007_s11440_022_01779_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MM-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-e0bae08c9d9e5839d2e062e830a5bb845cdfd2d246412fd275dbfbbb1afb99ff3
IEDL.DBID UNPAY
ISSN 1861-1125
1861-1133
IngestDate Tue Aug 19 19:24:17 EDT 2025
Wed Aug 13 08:50:10 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Wed Oct 01 02:59:27 EDT 2025
Fri Feb 21 02:43:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Rock mass prediction
SHAP
Xgboost
Bayesian optimization
Ground condition prediction
TBM
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-e0bae08c9d9e5839d2e062e830a5bb845cdfd2d246412fd275dbfbbb1afb99ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7002-2908
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11440-022-01779-z.pdf
PQID 2831112623
PQPubID 54451
PageCount 24
ParticipantIDs unpaywall_primary_10_1007_s11440_022_01779_z
proquest_journals_2831112623
crossref_citationtrail_10_1007_s11440_022_01779_z
crossref_primary_10_1007_s11440_022_01779_z
springer_journals_10_1007_s11440_022_01779_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Acta geotechnica
PublicationTitleAbbrev Acta Geotech
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Diao, Yan, Gao (CR16) 2021; 198
Noble (CR43) 2006; 24
Baptista, Goebel, Henriques (CR4) 2022; 306
CR33
Liu, Wang, Huang, Yin (CR38) 2020; 106
Hakim, Rezaie, Nur, Panahi, Khosravi, Lee (CR20) 2022; 305
CR32
CR31
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (CR44) 2011; 12
Algamal, Qasim, Lee, Ali (CR2) 2021; 208
Kalita, Singh (CR26) 2020; 24
Zhang, Liu, Tan (CR56) 2019; 100
Newcomer, Hunt (CR42) 2022; 147
Ke, Meng, Finley, Wang, Chen, Ma (CR27) 2017; 30
Liang, Luo, Zhao, Wu (CR35) 2020; 8
Bergstra, Komer, Eliasmith, Yamins, Cox (CR6) 2015; 8
Colkesen, Sahin, Kavzoglu (CR15) 2016; 118
Phan, Andreotti, Cooray, Chén, De Vos (CR45) 2018; 66
Štrumbelj, Kononenko (CR49) 2014; 41
Zhou, Qiu, Armaghani, Zhang, Li, Zhu (CR57) 2021; 12
CR5
Chen, Seo, Jun, Zhao (CR12) 2022; 23
Chen, Chandra, Han, Seo (CR9) 2022; 14
CR47
Yagiz (CR53) 2008; 23
CR46
Hou, Liu, Yang (CR22) 2021; 14
CR41
Bahad, Saxena, Kamal (CR3) 2019; 165
Khammassi, Krichen (CR28) 2017; 70
Yu, Tao, Qin, Xiao, Sun, Liu (CR54) 2021; 179
Zare Naghadehi, Ramezanzadeh (CR55) 2017; 76
Kim, Kwon, Pham, Oh, Choi (CR29) 2022; 140
CR18
Bo, Liu, Huang, Pan (CR8) 2022; 124
Chen, Chandra, Seo (CR10) 2022; 22
CR17
Liu, Liu, Pan, Kong, Hong (CR37) 2017; 65
CR13
Fu, Tang, Cai, Zuo, Tang, Zhao (CR19) 2020; 139
Kim, Pham, Oh, Lee, Choi (CR30) 2022; 135
CR11
Jing, Li, Yang, Chen, Zhang, Peng (CR24) 2019; 83
Sebbeh-Newton, Ayawah, Azure, Kaba, Ahmad, Zainol (CR48) 2021; 11
CR52
Jung, Chung, Kwon, Lee (CR25) 2019; 23
Liu, Li, Fang, Qi, Shen, Zhou (CR36) 2021; 125
Wang, Zhu, Zhu, Zhang, Ju (CR51) 2021; 118
Li, Xue, Zhang (CR34) 2021; 106
Ahmad, Reynolds, Rezgui (CR1) 2018; 203
Lujan-Moreno, Howard, Rojas, Montgomery (CR40) 2018; 109
Wang, Hong, Piette (CR50) 2020; 263
Biau, Scornet (CR7) 2016; 25
Liu, Wang, Zhao, Guo, Wang, Li (CR39) 2020; 95
Chen, Zheng, Luo, Chen, Bao, Liu (CR14) 2022; 43
Hoek, Marinos, Benissi (CR21) 1998; 57
Hou, Liu, Yang (CR23) 2022; 14
1779_CR47
1779_CR46
L-J Jing (1779_CR24) 2019; 83
MW Newcomer (1779_CR42) 2022; 147
1779_CR41
C Chen (1779_CR10) 2022; 22
GA Lujan-Moreno (1779_CR40) 2018; 109
Q Zhang (1779_CR56) 2019; 100
F Pedregosa (1779_CR44) 2011; 12
1779_CR18
B Liu (1779_CR39) 2020; 95
1779_CR17
Q Liu (1779_CR37) 2017; 65
D Kim (1779_CR30) 2022; 135
1779_CR13
1779_CR11
C Chen (1779_CR12) 2022; 23
1779_CR52
M Zare Naghadehi (1779_CR55) 2017; 76
C Khammassi (1779_CR28) 2017; 70
Y Diao (1779_CR16) 2021; 198
J-H Jung (1779_CR25) 2019; 23
S Hou (1779_CR23) 2022; 14
T Fu (1779_CR19) 2020; 139
J Zhou (1779_CR57) 2021; 12
Z Liu (1779_CR36) 2021; 125
S Sebbeh-Newton (1779_CR48) 2021; 11
B Chen (1779_CR14) 2022; 43
WS Noble (1779_CR43) 2006; 24
X Wang (1779_CR51) 2021; 118
1779_CR5
A-D Li (1779_CR34) 2021; 106
C Chen (1779_CR9) 2022; 14
Z Wang (1779_CR50) 2020; 263
WL Hakim (1779_CR20) 2022; 305
ML Baptista (1779_CR4) 2022; 306
W Liang (1779_CR35) 2020; 8
S Yagiz (1779_CR53) 2008; 23
MW Ahmad (1779_CR1) 2018; 203
H Yu (1779_CR54) 2021; 179
ZY Algamal (1779_CR2) 2021; 208
E Hoek (1779_CR21) 1998; 57
H Phan (1779_CR45) 2018; 66
1779_CR33
Y Bo (1779_CR8) 2022; 124
I Colkesen (1779_CR15) 2016; 118
1779_CR32
1779_CR31
G Biau (1779_CR7) 2016; 25
J Bergstra (1779_CR6) 2015; 8
S Hou (1779_CR22) 2021; 14
Q Liu (1779_CR38) 2020; 106
D Kim (1779_CR29) 2022; 140
DJ Kalita (1779_CR26) 2020; 24
P Bahad (1779_CR3) 2019; 165
G Ke (1779_CR27) 2017; 30
E Štrumbelj (1779_CR49) 2014; 41
References_xml – volume: 100
  start-page: 73
  year: 2019
  end-page: 83
  ident: CR56
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.12.022
– volume: 125
  start-page: 103647
  year: 2021
  ident: CR36
  article-title: Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2021.103647
– volume: 8
  start-page: 014008
  issue: 1
  year: 2015
  ident: CR6
  article-title: Hyperopt: a python library for model selection and hyperparameter optimization
  publication-title: Comput Sci Discov
  doi: 10.1088/1749-4699/8/1/014008
– volume: 305
  start-page: 114367
  year: 2022
  ident: CR20
  article-title: Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon South Korea
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2021.114367
– volume: 65
  start-page: 140
  year: 2017
  end-page: 154
  ident: CR37
  article-title: A case study of TBM performance prediction using a Chinese rock mass classification system–Hydropower Classification (HC) method
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2017.03.002
– volume: 118
  start-page: 104196
  year: 2021
  ident: CR51
  article-title: An integrated parameter prediction framework for intelligent TBM excavation in hard rock
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2021.104196
– volume: 118
  start-page: 53
  year: 2016
  end-page: 64
  ident: CR15
  article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression
  publication-title: J Afr Earth Sc
  doi: 10.1016/j.jafrearsci.2016.02.019
– volume: 23
  start-page: 3274
  issue: 9
  year: 2022
  end-page: 3283
  ident: CR12
  article-title: Pavement crack detection and classification based on fusion feature of LBP and PCA with SVM
  publication-title: Int J Pavement Eng
  doi: 10.1080/10298436.2021.1888092
– volume: 76
  start-page: 1627
  issue: 4
  year: 2017
  end-page: 1641
  ident: CR55
  article-title: Models for estimation of TBM performance in granitic and mica gneiss hard rocks in a hydropower tunnel
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-016-0950-y
– volume: 263
  start-page: 114683
  year: 2020
  ident: CR50
  article-title: Building thermal load prediction through shallow machine learning and deep learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114683
– volume: 14
  start-page: 123
  issue: 1
  year: 2022
  end-page: 143
  ident: CR23
  article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.05.004
– volume: 14
  start-page: 106
  issue: 1
  year: 2022
  ident: CR9
  article-title: Deep learning-based thermal image analysis for pavement defect detection and classification considering complex pavement conditions
  publication-title: Remote Sens
  doi: 10.3390/rs14010106
– volume: 25
  start-page: 197
  issue: 2
  year: 2016
  end-page: 227
  ident: CR7
  article-title: A random forest guided tour
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
– volume: 198
  start-page: 109326
  year: 2021
  ident: CR16
  article-title: Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.109326
– volume: 95
  start-page: 103103
  year: 2020
  ident: CR39
  article-title: Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.103103
– ident: CR46
– volume: 14
  start-page: 123
  issue: 1
  year: 2021
  end-page: 143
  ident: CR22
  article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.05.004
– volume: 147
  start-page: 105250
  year: 2022
  ident: CR42
  article-title: NWTOPT–a hyperparameter optimization approach for selection of environmental model solver settings
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2021.105250
– volume: 66
  start-page: 1285
  issue: 5
  year: 2018
  end-page: 1296
  ident: CR45
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2872652
– volume: 23
  start-page: 3200
  issue: 7
  year: 2019
  end-page: 3206
  ident: CR25
  article-title: An ANN to predict ground condition ahead of tunnel face using TBM operational data
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-019-1460-9
– volume: 83
  start-page: 364
  year: 2019
  end-page: 372
  ident: CR24
  article-title: A case study of TBM performance prediction using field tunnelling tests in limestone strata
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.10.001
– volume: 208
  start-page: 104196
  year: 2021
  ident: CR2
  article-title: Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2020.104196
– volume: 306
  start-page: 103667
  year: 2022
  ident: CR4
  article-title: Relation between prognostics predictor evaluation metrics and local interpretability SHAP values
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2022.103667
– ident: CR11
– volume: 140
  start-page: 104331
  year: 2022
  ident: CR29
  article-title: Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2022.104331
– ident: CR32
– volume: 11
  start-page: 1060
  issue: 3
  year: 2021
  ident: CR48
  article-title: Towards TBM automation: on-the-fly characterization and classification of ground conditions ahead of a TBM using data-driven approach
  publication-title: Appl Sci
  doi: 10.3390/app11031060
– volume: 165
  start-page: 74
  year: 2019
  end-page: 82
  ident: CR3
  article-title: Fake news detection using bi-directional LSTM-recurrent neural network
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.01.072
– volume: 106
  start-page: 103595
  year: 2020
  ident: CR38
  article-title: Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103595
– ident: CR5
– volume: 203
  start-page: 810
  year: 2018
  end-page: 821
  ident: CR1
  article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.08.207
– volume: 70
  start-page: 255
  year: 2017
  end-page: 277
  ident: CR28
  article-title: A GA-LR wrapper approach for feature selection in network intrusion detection
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2017.06.005
– volume: 139
  start-page: 105459
  year: 2020
  ident: CR19
  article-title: Correlation research of phase angle variation and coating performance by means of Pearson’s correlation coefficient
  publication-title: Prog Org Coat
  doi: 10.1016/j.porgcoat.2019.105459
– volume: 57
  start-page: 151
  issue: 2
  year: 1998
  end-page: 160
  ident: CR21
  article-title: Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s100640050031
– volume: 24
  start-page: 1225
  issue: 2
  year: 2020
  end-page: 1241
  ident: CR26
  article-title: SVM hyper-parameters optimization using quantized multi-PSO in dynamic environment
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03957-w
– volume: 23
  start-page: 326
  issue: 3
  year: 2008
  end-page: 339
  ident: CR53
  article-title: Utilizing rock mass properties for predicting TBM performance in hard rock condition
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2007.04.011
– ident: CR18
– ident: CR47
– volume: 41
  start-page: 647
  issue: 3
  year: 2014
  end-page: 665
  ident: CR49
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-013-0679-x
– volume: 22
  start-page: 5781
  issue: 15
  year: 2022
  ident: CR10
  article-title: Automatic pavement defect detection and classification using RGB-thermal images based on hierarchical residual attention network
  publication-title: Sensors
  doi: 10.3390/s22155781
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: CR27
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv Neural Inf Process Syst
– ident: CR33
– volume: 12
  start-page: 101091
  issue: 3
  year: 2021
  ident: CR57
  article-title: Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.09.020
– volume: 43
  start-page: 778
  issue: 3
  year: 2022
  end-page: 811
  ident: CR14
  article-title: Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2021.2009589
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR44
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 106
  start-page: 107302
  year: 2021
  ident: CR34
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107302
– volume: 8
  start-page: 765
  issue: 5
  year: 2020
  ident: CR35
  article-title: Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms
  publication-title: Mathematics
  doi: 10.3390/math8050765
– volume: 135
  start-page: 104109
  year: 2022
  ident: CR30
  article-title: Classification of surface settlement levels induced by TBM driving in urban areas using random forest with data-driven feature selection
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2021.104109
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  end-page: 1567
  ident: CR43
  article-title: What is a support vector machine?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1206-1565
– ident: CR52
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 124
  start-page: 104448
  year: 2022
  ident: CR8
  article-title: Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2022.104448
– volume: 179
  start-page: 109545
  year: 2021
  ident: CR54
  article-title: Rock mass type prediction for tunnel boring machine using a novel semi-supervised method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109545
– volume: 109
  start-page: 195
  year: 2018
  end-page: 205
  ident: CR40
  article-title: Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.05.024
– ident: CR41
– volume: 57
  start-page: 151
  issue: 2
  year: 1998
  ident: 1779_CR21
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s100640050031
– volume: 95
  start-page: 103103
  year: 2020
  ident: 1779_CR39
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.103103
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1779_CR44
  publication-title: J Mach Learn Res
– volume: 22
  start-page: 5781
  issue: 15
  year: 2022
  ident: 1779_CR10
  publication-title: Sensors
  doi: 10.3390/s22155781
– volume: 139
  start-page: 105459
  year: 2020
  ident: 1779_CR19
  publication-title: Prog Org Coat
  doi: 10.1016/j.porgcoat.2019.105459
– volume: 109
  start-page: 195
  year: 2018
  ident: 1779_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.05.024
– ident: 1779_CR46
  doi: 10.1007/s00603-004-0032-5
– ident: 1779_CR18
  doi: 10.1016/0148-9062(72)90001-0
– volume: 14
  start-page: 106
  issue: 1
  year: 2022
  ident: 1779_CR9
  publication-title: Remote Sens
  doi: 10.3390/rs14010106
– volume: 23
  start-page: 3274
  issue: 9
  year: 2022
  ident: 1779_CR12
  publication-title: Int J Pavement Eng
  doi: 10.1080/10298436.2021.1888092
– volume: 23
  start-page: 3200
  issue: 7
  year: 2019
  ident: 1779_CR25
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-019-1460-9
– volume: 66
  start-page: 1285
  issue: 5
  year: 2018
  ident: 1779_CR45
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2872652
– ident: 1779_CR47
  doi: 10.1007/978-3-642-41136-6_5
– volume: 14
  start-page: 123
  issue: 1
  year: 2022
  ident: 1779_CR23
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.05.004
– ident: 1779_CR33
– ident: 1779_CR32
– volume: 179
  start-page: 109545
  year: 2021
  ident: 1779_CR54
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109545
– ident: 1779_CR11
  doi: 10.32614/CRAN.package.xgboost
– volume: 11
  start-page: 1060
  issue: 3
  year: 2021
  ident: 1779_CR48
  publication-title: Appl Sci
  doi: 10.3390/app11031060
– ident: 1779_CR13
  doi: 10.1080/10298436.2021.1945056
– volume: 106
  start-page: 107302
  year: 2021
  ident: 1779_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107302
– volume: 23
  start-page: 326
  issue: 3
  year: 2008
  ident: 1779_CR53
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2007.04.011
– volume: 135
  start-page: 104109
  year: 2022
  ident: 1779_CR30
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2021.104109
– volume: 43
  start-page: 778
  issue: 3
  year: 2022
  ident: 1779_CR14
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2021.2009589
– volume: 147
  start-page: 105250
  year: 2022
  ident: 1779_CR42
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2021.105250
– volume: 8
  start-page: 765
  issue: 5
  year: 2020
  ident: 1779_CR35
  publication-title: Mathematics
  doi: 10.3390/math8050765
– volume: 83
  start-page: 364
  year: 2019
  ident: 1779_CR24
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.10.001
– volume: 118
  start-page: 104196
  year: 2021
  ident: 1779_CR51
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2021.104196
– volume: 208
  start-page: 104196
  year: 2021
  ident: 1779_CR2
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2020.104196
– ident: 1779_CR31
– volume: 306
  start-page: 103667
  year: 2022
  ident: 1779_CR4
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2022.103667
– volume: 263
  start-page: 114683
  year: 2020
  ident: 1779_CR50
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114683
– volume: 30
  start-page: 3146
  year: 2017
  ident: 1779_CR27
  publication-title: Adv Neural Inf Process Syst
– volume: 140
  start-page: 104331
  year: 2022
  ident: 1779_CR29
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2022.104331
– volume: 12
  start-page: 101091
  issue: 3
  year: 2021
  ident: 1779_CR57
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.09.020
– volume: 125
  start-page: 103647
  year: 2021
  ident: 1779_CR36
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2021.103647
– volume: 305
  start-page: 114367
  year: 2022
  ident: 1779_CR20
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2021.114367
– volume: 100
  start-page: 73
  year: 2019
  ident: 1779_CR56
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.12.022
– volume: 124
  start-page: 104448
  year: 2022
  ident: 1779_CR8
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2022.104448
– volume: 65
  start-page: 140
  year: 2017
  ident: 1779_CR37
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2017.03.002
– ident: 1779_CR41
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  ident: 1779_CR43
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1206-1565
– volume: 70
  start-page: 255
  year: 2017
  ident: 1779_CR28
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2017.06.005
– volume: 24
  start-page: 1225
  issue: 2
  year: 2020
  ident: 1779_CR26
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03957-w
– volume: 165
  start-page: 74
  year: 2019
  ident: 1779_CR3
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.01.072
– volume: 14
  start-page: 123
  issue: 1
  year: 2021
  ident: 1779_CR22
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.05.004
– ident: 1779_CR5
– volume: 106
  start-page: 103595
  year: 2020
  ident: 1779_CR38
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103595
– volume: 8
  start-page: 014008
  issue: 1
  year: 2015
  ident: 1779_CR6
  publication-title: Comput Sci Discov
  doi: 10.1088/1749-4699/8/1/014008
– volume: 76
  start-page: 1627
  issue: 4
  year: 2017
  ident: 1779_CR55
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-016-0950-y
– volume: 25
  start-page: 197
  issue: 2
  year: 2016
  ident: 1779_CR7
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
– volume: 118
  start-page: 53
  year: 2016
  ident: 1779_CR15
  publication-title: J Afr Earth Sc
  doi: 10.1016/j.jafrearsci.2016.02.019
– volume: 203
  start-page: 810
  year: 2018
  ident: 1779_CR1
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.08.207
– volume: 41
  start-page: 647
  issue: 3
  year: 2014
  ident: 1779_CR49
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-013-0679-x
– ident: 1779_CR52
  doi: 10.1016/j.undsp.2020.02.003
– volume: 198
  start-page: 109326
  year: 2021
  ident: 1779_CR16
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.109326
– ident: 1779_CR17
SSID ssj0063246
Score 2.518643
Snippet In this paper, field construction data from the Singapore Metro Line project were used to study the mapping relationship and establish the prediction model...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3825
SubjectTerms Accuracy
Additives
Algorithms
Artificial neural networks
Bayesian analysis
Bayesian theory
Classifiers
Complex Fluids and Microfluidics
Data acquisition
Decision trees
Deep learning
Dredging
Engineering
Excavation
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Long short-term memory
Machine learning
Mathematical models
Model accuracy
Neural networks
Optimization
Outliers (landforms)
Outliers (statistics)
Parameters
Prediction models
Probability theory
Research Paper
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central Collection
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9AA9IJ4iUNAcuNEVu96X94BQA6kiRKIIUqm3lZ8gkWxCmwrSv8CfZmYfSblEnHa1XtuSP3s88vj7BuC1jorcZ8YFoXM6SLyjJZWLJBA29LKQMss9E5zHk2x0nny6SC8OYNJxYfhaZWcTa0Ntl4bPyN_SNhgx3UXE71c_A84axdHVLoWGalMr2He1xNgdOBSsjNWDw8FwMv3S2WbWJq_5RjKLAmotbWk0DZmujnPy7XaapXkR3Py7Ve38z23I9AjuXlcrtfml5vNbu9LZA7jfupN42uD_EA5c9QiObokMPoY_00sOxjAAuPRIG9YPXJDLjIYdZ1RkjS0XzAZjdL-Nas5o0SvjUG9w_BlVZfEjPebfaEDW3xdXyKe3OFAbxxRMnE2HuCTTs2g5nXWFr6PTKXpX64bSh0b65Amcnw1nH0ZBm4IhMHEWrwMXauVCaQpbuJR8KStcmAkn41ClWsskNdZbYWlUk0jQW55a7bXWkfK6KLyPn0KvWlbuGSD5eZmQSpPVSLmedl7bTBSp0bmVRvYh6ka7NK0-OafJmJc7ZWVGqCSEyhqh8qYPb7Z1Vo06x96_jzsQy3alXpW7edWHkw7YXfG-1k624P9H58_3d_4C7nEi--Yi8DH01pfX7iW5O2v9qp3DfwFsKvu6
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYGOwAHtDEQZWx6B24QkTiJ4xyBgappnSpRJG6RfzwDok1RWwTlX9g_zXOStmxCiJ0SxbEt-bPf--Tn95mxPR3lmRMGgxBRB4lDWlIZTwJuQydzKUXmfIJz57doXyQ_L9PLRibH58L8E78_HEdV9NGfOae5k-XB0xL7SE5KVIFZcTKzul51vMokkiIKiEOkTYLM62387YQWzHIeDF1jK_flnZo-qH7_hb85-8TWG6IIRzWyn9kHLDfY2gv5wC_sT3fkwyx-aGHogFzRLQyIDIPxlBgU2VnrC3rHHcBHo-rdV3DKIOgpdH6BKi38oEf_aji6mVwPxuD3ZeFYTdEnV0KvewpDMiqDJluzqnDePuqCw0oRlD7Uoiab7OLstHfSDprLFQITi3gSYKgVhtLkNseUWJLlGAqOMg5VqrVMUmOd5ZZGNYk4vWWp1U5rHSmn89y5eIstl8MStxkQgxNcKk32IPX1NDptBc9TozMrjWyxaDbahWmUx_0FGP1ioZnsESoIoaJCqHhqsf15nbtad-PNv3dnIBbNGhwXRJwinyDF4xY7mAG7KH6rtYM5-O_ofOf_Wv_KVv2V9fWR3122PBnd4zciNhP9vZrRz3vm7po
  priority: 102
  providerName: Springer Nature
Title Prediction of rock mass class ahead of TBM excavation face by ML and DL algorithms with Bayesian TPE optimization and SHAP feature analysis
URI https://link.springer.com/article/10.1007/s11440-022-01779-z
https://www.proquest.com/docview/2831112623
https://link.springer.com/content/pdf/10.1007/s11440-022-01779-z.pdf
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-1133
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: AFBBN
  dateStart: 20060501
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1861-1133
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: BENPR
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1861-1133
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: 8FG
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-1133
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-1133
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: U2A
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLa29gHtgTuiaFR-4I2lS5zEcR7brl0FtIqglbanyFdAa9OqSwXtX-BPc5xLOxCaQLzEkW-R7ePjLz7-jhF6I7w4MlRqx9VaOIHRMKUiEjhEuYbFjNHIWILzeEJHs-DdVXh1hC5qLkxx2r02SZacBuulKcvPV8qcH4hvhU3SnkQHiYpiZ9eB5GPUpCEg8gZqziZJ99r-azHqOQApwsO771fcmT9X9Ov6dACdezvpCXqwyVZ8-43P53eWouEjpOtGlCdQbjqbXHTk7jf_jv_bysfoYYVVcbcUrifoSGdP0ckdD4bP0I9kbS09dnTx0mBYDW_wAvA4lhaVYw6qXtmEaW-M9XfJyw1gbLjUWGzx-APmmcIXEMw_L9df8y-LW2y3hnGPb7Xld-JpMsBL0GuLijBaFPg06ibY6MIpKUSUflWeo9lwMO2PnOp-B0f61M8d7QquXSZjFesQgJoi2qVEM9_loRAsCKUyiigS0MAj8BaFShghhMeNiGNj_BeokS0z_RJhAJGUMC5AJYW2nNBGKEriUIpIMclayKtHNZWV83N7B8c8Pbhttp2dQmenRWenuxZ6uy-zKl1_3Jv7tBaWtFIDtylgN89ytIjfQmf1eB-S76vtbC9kf_HxV_-W_RQ18vVGvwY4lYs2OmbDyzZqdi-v3w8g7A0myUeI7dM-PGek267m00_8wx9B
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QDzVQClzgBO1sNev9aFCTZsqpUkUQSr1ZvYJEnnRpCrpX-A_8duY9SMpl4hLT7a83l3L3-7M7M5-MwBvZZClNlHG842RXmQNTamURR7TvuUZ50lqHcG520vaF9Gny_hyA_7UXBh3rLKWiYWg1hPl9sg_kBoMHN2FhR-nPz2XNcp5V-sUGqJKraAPixBjFbHj3CxuaAk3Ozw7IbzfMXbaGhy3vSrLgKfCJJx7xpfC-FxlOjMxmQuaGT9hhoe-iKXkUay01UyzKIkCRndprKWVUgbCyiyzNqR2H8BWFEYZLf62mq1e_3OtC1ws9ILfxJPAo6-PK9pOSd4r_KruND3NijTzbv9VjSt7d-mi3YHt6_FULG7EcHhHC54-hkeV-YpH5Xh7Ahtm_BR27gQ1fAa_-1fO-eMAx4lFUpA_cEQmOipnqKMg6a9dwaDZRfNLiXJPGK1QBuUCux0UY40ndBl-IwDm30czdLvF2BQL4yifOOi3cEKiblRxSIsKX9pHfbSmiFNKD8pQK8_h4l7AeAGb48nY7AKSXZkwLiRJqdjVk8ZKnbAsVjLVXPEGBPXfzlUVD92l5Rjmq0jODqGcEMoLhPLbBrxf1pmW0UDWvr1Xg5hXkmGWr8ZxAw5qYFfF61o7WIL_H52_XN_5G9huD7qdvHPWO38FDxmZbuUh5D3YnF9dm9dkas3lfjWeEb7e9xT6CxsgOyk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IJ5q2gJ7gBO1aq9f6wNCLWlIaVNFIpV6M_ssEokTmlQl_Qv8I34dM34k5RJx6cmW17tr7Tc7M97ZbxbgrQqy1CXaer61youcxSmV8sjjxnciEyJJHRGce6dJ9yz6ch6fr8GfhgtD2yobnVgqajPWtEa-h2YwILoLD_dcvS2i3-58nPz06AQpirQ2x2lUInJs59f4-zb9cNRGrN9x3jkcfOp69QkDng6TcOZZX0nrC52ZzMboKhhu_YRbEfoyVkpEsTbOcMOjJAo43qWxUU4pFUinssy5ENu9B_dTyuJOLPXO58YKUBb0ktkkksDD745rwk5F2ysjqrSPHudDmnk3_xrFpae7CM5uwMOrYiLn13I4vGX_Ok_gce24sv1K0p7Cmi2ewcatdIbP4Xf_ksI-BDUbO4am8QcboXPONLnoTKLeN1QwOOgx-0vLajWYOaktU3PWO2GyMKyNl-EFDvfs-2jKaJ2YHci5JbInG_QP2RiV3Khmj5YVvnb3-8zZMkMpPqiSrLyAszuB4iWsF-PCbgJDjzLhQirUTzHVU9Ypk_As1io1QosWBM1o57rOhE4HcgzzZQ5nQihHhPISofymBe8XdSZVHpCVb-80IOa1TpjmSwluwW4D7LJ4VWu7C_D_o_Ot1Z2_gQc4cfKTo9PjbXjE0Werdh_vwPrs8sq-Qh9rpl6Xwszg213Pnr96xjjD
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPawzZuWtGYzgNvLF3iJI7z2LFNFaJTJVppPEW-AlqbVl0q1v4F_jR2Ls1AaALxFCu-RLaP7S8-_j4DvBVBmhgqtedrLbzIaDukEhJ5RPmGpYzRxDiC8_CaDibRh5v4ZgcuGi5Medq9cUlWnAan0pQXZwtlzlriW-mTdCfRrUUlqbfp2egnsEtji8g7sDu5HvU_u38tRgPPQoq4DYdhzZ35c0G_rk8t6Nz6Sffg6Spf8PV3Pp0-WIquDkA3lahOoNz2VoXoyc1v-o7_W8tD2K-xKvYr43oGOzp_DnsPFAxfwI_R0nl6XO_i3KBdDW9xZvE4SofKkdupXrmI8fkQ9b3k1QYwGi41ijUOPyLPFV7Yx_TLfPmt-Dq7Q7c1jOd8rR2_E8ejS5zbeW1WE0bLDJ8G_REaXYqS2heVrspLmFxdjt8PvPp-B0-GNCw87QuufSZTlerYAjVFtE-JZqHPYyFYFEtlFFEkolFAbCiJlTBCiIAbkabGhK-gk89zfQRoQSQljAs7JcUun9BGKErSWIpEMcm6EDS9msla_NzdwTHNWtlm19iZbeysbOxs04V32zyLSvrj0dTHjbFk9TRwl1nsFjiOFgm7cNr0dxv9WGmnWyP7i4-__rfkx9Apliv9xsKpQpzUo-UnROYZZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+rock+mass+class+ahead+of+TBM+excavation+face+by+ML+and+DL+algorithms+with+Bayesian+TPE+optimization+and+SHAP+feature+analysis&rft.jtitle=Acta+geotechnica&rft.au=Chen%2C+Cheng&rft.au=Seo%2C+Hyungjoon&rft.date=2023-07-01&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=18&rft.issue=7&rft.spage=3825&rft.epage=3848&rft_id=info:doi/10.1007%2Fs11440-022-01779-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11440_022_01779_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon