Prediction of rock mass class ahead of TBM excavation face by ML and DL algorithms with Bayesian TPE optimization and SHAP feature analysis
In this paper, field construction data from the Singapore Metro Line project were used to study the mapping relationship and establish the prediction model between TBM operation data and the ground condition ahead of the excavation face. The study presents a multi-classifier competition mechanism to...
        Saved in:
      
    
          | Published in | Acta geotechnica Vol. 18; no. 7; pp. 3825 - 3848 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.07.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1861-1125 1861-1133 1861-1133  | 
| DOI | 10.1007/s11440-022-01779-z | 
Cover
| Abstract | In this paper, field construction data from the Singapore Metro Line project were used to study the mapping relationship and establish the prediction model between TBM operation data and the ground condition ahead of the excavation face. The study presents a multi-classifier competition mechanism to construct ten separate classifiers, including logistic regression, support vector machine, random forest, extremely randomized trees, adaptive boosting machine, extreme gradient boosting (Xgboost), light gradient boosting (LightGBM), categorical boosting, long short-term memory and convolutional neural network. The acquired data were used to select 28 key TBM operating parameters by a correlation-based feature selection method, and the selected parameters in the stabilization phase after removing the outliers were calculated as the input to the classifier, and a relatively balanced training set was obtained by the synthetic minority oversampling technique. The hyperparameters of each classifier were optimized using tree Parzen estimator Bayesian optimization. The prediction results show that LightGBM presents the best results among ten different machine and deep learning algorithms with an accuracy of 96.22%, precision of 96.94%, recall of 97.33% and F1-score of 97.33%. In addition, the effect of the input parameters of the LightGBM model on the prediction accuracy of the model was analyzed using Shapley additive explanations, and the effect of sample imbalance on the prediction performance was discussed. | 
    
|---|---|
| AbstractList | In this paper, field construction data from the Singapore Metro Line project were used to study the mapping relationship and establish the prediction model between TBM operation data and the ground condition ahead of the excavation face. The study presents a multi-classifier competition mechanism to construct ten separate classifiers, including logistic regression, support vector machine, random forest, extremely randomized trees, adaptive boosting machine, extreme gradient boosting (Xgboost), light gradient boosting (LightGBM), categorical boosting, long short-term memory and convolutional neural network. The acquired data were used to select 28 key TBM operating parameters by a correlation-based feature selection method, and the selected parameters in the stabilization phase after removing the outliers were calculated as the input to the classifier, and a relatively balanced training set was obtained by the synthetic minority oversampling technique. The hyperparameters of each classifier were optimized using tree Parzen estimator Bayesian optimization. The prediction results show that LightGBM presents the best results among ten different machine and deep learning algorithms with an accuracy of 96.22%, precision of 96.94%, recall of 97.33% and F1-score of 97.33%. In addition, the effect of the input parameters of the LightGBM model on the prediction accuracy of the model was analyzed using Shapley additive explanations, and the effect of sample imbalance on the prediction performance was discussed. | 
    
| Author | Seo, Hyungjoon Chen, Cheng  | 
    
| Author_xml | – sequence: 1 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: Department of Civil Engineering, Xi’an Jiaotong-Liverpool University – sequence: 2 givenname: Hyungjoon orcidid: 0000-0001-7002-2908 surname: Seo fullname: Seo, Hyungjoon email: hyungjoon.seo@liverpool.ac.uk organization: Department of Civil Engineering and Industrial Design, University of Liverpool  | 
    
| BookMark | eNqNUE1v1DAUtFCR-gF_oCdLnAP-SLLJsS2lrbQVK7GcrWf7uXXJxoudpc3-Bf50vZsKJA4VF8-TPfM8M8fkoA89EnLK2UfO2OxT4rwsWcGEKBifzdpi-4Yc8abmBedSHvyZRXVIjlN6YKyWoqyPyO9FROvN4ENPg6MxmB90BSlR0-1OuEewu4fl-S3FJwO_YE91YJDqkd7OKfSWfs7Q3YXoh_tVoo8Z6DmMmDz0dLm4pGE9-JXfTtqd4Nv12YI6hGETMV9ANyaf3pG3DrqE71_whHz_crm8uC7mX69uLs7mhZG1HApkGpA1prUtVo1srUBWC2wkg0rrpqyMdVbYHK_kIk-zymqntebgdNs6J0-InPZu-jWMj9B1ah39CuKoOFO7PtXUp8p9qn2faptVHybVOoafG0yDegibmK0nJRrJc7e1kJnVTCwTQ0oRnTJ-2OceIvju9Q_EP9L_cvWSJWVyf4fxr6tXVM_C3arp | 
    
| CitedBy_id | crossref_primary_10_1016_j_tust_2024_106128 crossref_primary_10_1007_s00603_024_03903_9 crossref_primary_10_3390_rs15174268 crossref_primary_10_1007_s13349_024_00901_x crossref_primary_10_1016_j_autcon_2024_105425 crossref_primary_10_1038_s41598_024_73742_9 crossref_primary_10_3390_buildings13041051 crossref_primary_10_1016_j_aei_2023_102130 crossref_primary_10_48084_etasr_8947 crossref_primary_10_3390_s24020464 crossref_primary_10_1007_s11440_023_02203_w crossref_primary_10_1016_j_tust_2024_105643 crossref_primary_10_1016_j_jenvman_2024_120335 crossref_primary_10_1007_s00603_025_04501_z crossref_primary_10_1016_j_ecoinf_2024_102661 crossref_primary_10_3390_rs16111948 crossref_primary_10_1016_j_compgeo_2024_106155 crossref_primary_10_1016_j_geoai_2025_100003 crossref_primary_10_3389_feart_2024_1488504 crossref_primary_10_1007_s00603_024_04189_7 crossref_primary_10_1016_j_measurement_2024_115373 crossref_primary_10_3390_agriculture14091453 crossref_primary_10_1016_j_undsp_2024_06_002 crossref_primary_10_1016_j_trgeo_2024_101470 crossref_primary_10_3390_agronomy14123039 crossref_primary_10_3390_fractalfract8120677 crossref_primary_10_1007_s11440_024_02271_6 crossref_primary_10_1016_j_asej_2024_102630 crossref_primary_10_1016_j_ecolind_2024_112865  | 
    
| Cites_doi | 10.1016/j.autcon.2018.12.022 10.1016/j.autcon.2021.103647 10.1088/1749-4699/8/1/014008 10.1016/j.jenvman.2021.114367 10.1016/j.tust.2017.03.002 10.1016/j.tust.2021.104196 10.1016/j.jafrearsci.2016.02.019 10.1080/10298436.2021.1888092 10.1007/s10064-016-0950-y 10.1016/j.apenergy.2020.114683 10.1016/j.jrmge.2021.05.004 10.3390/rs14010106 10.1007/s11749-016-0481-7 10.1016/j.matdes.2020.109326 10.1016/j.tust.2019.103103 10.1016/j.envsoft.2021.105250 10.1109/TBME.2018.2872652 10.1007/s12205-019-1460-9 10.1016/j.tust.2018.10.001 10.1016/j.chemolab.2020.104196 10.1016/j.artint.2022.103667 10.1016/j.autcon.2022.104331 10.3390/app11031060 10.1016/j.procs.2020.01.072 10.1016/j.tust.2020.103595 10.1016/j.jclepro.2018.08.207 10.1016/j.cose.2017.06.005 10.1016/j.porgcoat.2019.105459 10.1007/s100640050031 10.1007/s00500-019-03957-w 10.1016/j.tust.2007.04.011 10.1007/s10115-013-0679-x 10.3390/s22155781 10.1016/j.gsf.2020.09.020 10.1080/01431161.2021.2009589 10.1016/j.asoc.2021.107302 10.3390/math8050765 10.1016/j.autcon.2021.104109 10.1038/nbt1206-1565 10.1016/j.tust.2022.104448 10.1016/j.measurement.2021.109545 10.1016/j.eswa.2018.05.024 10.1007/s00603-004-0032-5 10.1016/0148-9062(72)90001-0 10.1007/978-3-642-41136-6_5 10.32614/CRAN.package.xgboost 10.1080/10298436.2021.1945056 10.1016/j.undsp.2020.02.003  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U ADTOC UNPAY  | 
    
| DOI | 10.1007/s11440-022-01779-z | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Collection Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Science Database (NC LIVE) ProQuest Engineering Database (NC LIVE) ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1861-1133 | 
    
| EndPage | 3848 | 
    
| ExternalDocumentID | 10.1007/s11440-022-01779-z 10_1007_s11440_022_01779_z  | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V LK5 LLZTM M2P M4Y M7R M7S MA- MM- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PCBAR PF0 PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TN 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQUKI Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c363t-e0bae08c9d9e5839d2e062e830a5bb845cdfd2d246412fd275dbfbbb1afb99ff3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1861-1125 1861-1133  | 
    
| IngestDate | Tue Aug 19 19:24:17 EDT 2025 Wed Aug 13 08:50:10 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Wed Oct 01 02:59:27 EDT 2025 Fri Feb 21 02:43:08 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Keywords | Rock mass prediction SHAP Xgboost Bayesian optimization Ground condition prediction TBM  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-e0bae08c9d9e5839d2e062e830a5bb845cdfd2d246412fd275dbfbbb1afb99ff3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-7002-2908 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11440-022-01779-z.pdf | 
    
| PQID | 2831112623 | 
    
| PQPubID | 54451 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11440_022_01779_z proquest_journals_2831112623 crossref_citationtrail_10_1007_s11440_022_01779_z crossref_primary_10_1007_s11440_022_01779_z springer_journals_10_1007_s11440_022_01779_z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230700 2023-07-00 20230701  | 
    
| PublicationDateYYYYMMDD | 2023-07-01 | 
    
| PublicationDate_xml | – month: 7 year: 2023 text: 20230700  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht  | 
    
| PublicationTitle | Acta geotechnica | 
    
| PublicationTitleAbbrev | Acta Geotech | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Diao, Yan, Gao (CR16) 2021; 198 Noble (CR43) 2006; 24 Baptista, Goebel, Henriques (CR4) 2022; 306 CR33 Liu, Wang, Huang, Yin (CR38) 2020; 106 Hakim, Rezaie, Nur, Panahi, Khosravi, Lee (CR20) 2022; 305 CR32 CR31 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (CR44) 2011; 12 Algamal, Qasim, Lee, Ali (CR2) 2021; 208 Kalita, Singh (CR26) 2020; 24 Zhang, Liu, Tan (CR56) 2019; 100 Newcomer, Hunt (CR42) 2022; 147 Ke, Meng, Finley, Wang, Chen, Ma (CR27) 2017; 30 Liang, Luo, Zhao, Wu (CR35) 2020; 8 Bergstra, Komer, Eliasmith, Yamins, Cox (CR6) 2015; 8 Colkesen, Sahin, Kavzoglu (CR15) 2016; 118 Phan, Andreotti, Cooray, Chén, De Vos (CR45) 2018; 66 Štrumbelj, Kononenko (CR49) 2014; 41 Zhou, Qiu, Armaghani, Zhang, Li, Zhu (CR57) 2021; 12 CR5 Chen, Seo, Jun, Zhao (CR12) 2022; 23 Chen, Chandra, Han, Seo (CR9) 2022; 14 CR47 Yagiz (CR53) 2008; 23 CR46 Hou, Liu, Yang (CR22) 2021; 14 CR41 Bahad, Saxena, Kamal (CR3) 2019; 165 Khammassi, Krichen (CR28) 2017; 70 Yu, Tao, Qin, Xiao, Sun, Liu (CR54) 2021; 179 Zare Naghadehi, Ramezanzadeh (CR55) 2017; 76 Kim, Kwon, Pham, Oh, Choi (CR29) 2022; 140 CR18 Bo, Liu, Huang, Pan (CR8) 2022; 124 Chen, Chandra, Seo (CR10) 2022; 22 CR17 Liu, Liu, Pan, Kong, Hong (CR37) 2017; 65 CR13 Fu, Tang, Cai, Zuo, Tang, Zhao (CR19) 2020; 139 Kim, Pham, Oh, Lee, Choi (CR30) 2022; 135 CR11 Jing, Li, Yang, Chen, Zhang, Peng (CR24) 2019; 83 Sebbeh-Newton, Ayawah, Azure, Kaba, Ahmad, Zainol (CR48) 2021; 11 CR52 Jung, Chung, Kwon, Lee (CR25) 2019; 23 Liu, Li, Fang, Qi, Shen, Zhou (CR36) 2021; 125 Wang, Zhu, Zhu, Zhang, Ju (CR51) 2021; 118 Li, Xue, Zhang (CR34) 2021; 106 Ahmad, Reynolds, Rezgui (CR1) 2018; 203 Lujan-Moreno, Howard, Rojas, Montgomery (CR40) 2018; 109 Wang, Hong, Piette (CR50) 2020; 263 Biau, Scornet (CR7) 2016; 25 Liu, Wang, Zhao, Guo, Wang, Li (CR39) 2020; 95 Chen, Zheng, Luo, Chen, Bao, Liu (CR14) 2022; 43 Hoek, Marinos, Benissi (CR21) 1998; 57 Hou, Liu, Yang (CR23) 2022; 14 1779_CR47 1779_CR46 L-J Jing (1779_CR24) 2019; 83 MW Newcomer (1779_CR42) 2022; 147 1779_CR41 C Chen (1779_CR10) 2022; 22 GA Lujan-Moreno (1779_CR40) 2018; 109 Q Zhang (1779_CR56) 2019; 100 F Pedregosa (1779_CR44) 2011; 12 1779_CR18 B Liu (1779_CR39) 2020; 95 1779_CR17 Q Liu (1779_CR37) 2017; 65 D Kim (1779_CR30) 2022; 135 1779_CR13 1779_CR11 C Chen (1779_CR12) 2022; 23 1779_CR52 M Zare Naghadehi (1779_CR55) 2017; 76 C Khammassi (1779_CR28) 2017; 70 Y Diao (1779_CR16) 2021; 198 J-H Jung (1779_CR25) 2019; 23 S Hou (1779_CR23) 2022; 14 T Fu (1779_CR19) 2020; 139 J Zhou (1779_CR57) 2021; 12 Z Liu (1779_CR36) 2021; 125 S Sebbeh-Newton (1779_CR48) 2021; 11 B Chen (1779_CR14) 2022; 43 WS Noble (1779_CR43) 2006; 24 X Wang (1779_CR51) 2021; 118 1779_CR5 A-D Li (1779_CR34) 2021; 106 C Chen (1779_CR9) 2022; 14 Z Wang (1779_CR50) 2020; 263 WL Hakim (1779_CR20) 2022; 305 ML Baptista (1779_CR4) 2022; 306 W Liang (1779_CR35) 2020; 8 S Yagiz (1779_CR53) 2008; 23 MW Ahmad (1779_CR1) 2018; 203 H Yu (1779_CR54) 2021; 179 ZY Algamal (1779_CR2) 2021; 208 E Hoek (1779_CR21) 1998; 57 H Phan (1779_CR45) 2018; 66 1779_CR33 Y Bo (1779_CR8) 2022; 124 I Colkesen (1779_CR15) 2016; 118 1779_CR32 1779_CR31 G Biau (1779_CR7) 2016; 25 J Bergstra (1779_CR6) 2015; 8 S Hou (1779_CR22) 2021; 14 Q Liu (1779_CR38) 2020; 106 D Kim (1779_CR29) 2022; 140 DJ Kalita (1779_CR26) 2020; 24 P Bahad (1779_CR3) 2019; 165 G Ke (1779_CR27) 2017; 30 E Štrumbelj (1779_CR49) 2014; 41  | 
    
| References_xml | – volume: 100 start-page: 73 year: 2019 end-page: 83 ident: CR56 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom Constr doi: 10.1016/j.autcon.2018.12.022 – volume: 125 start-page: 103647 year: 2021 ident: CR36 article-title: Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network publication-title: Autom Constr doi: 10.1016/j.autcon.2021.103647 – volume: 8 start-page: 014008 issue: 1 year: 2015 ident: CR6 article-title: Hyperopt: a python library for model selection and hyperparameter optimization publication-title: Comput Sci Discov doi: 10.1088/1749-4699/8/1/014008 – volume: 305 start-page: 114367 year: 2022 ident: CR20 article-title: Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon South Korea publication-title: J Environ Manag doi: 10.1016/j.jenvman.2021.114367 – volume: 65 start-page: 140 year: 2017 end-page: 154 ident: CR37 article-title: A case study of TBM performance prediction using a Chinese rock mass classification system–Hydropower Classification (HC) method publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2017.03.002 – volume: 118 start-page: 104196 year: 2021 ident: CR51 article-title: An integrated parameter prediction framework for intelligent TBM excavation in hard rock publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2021.104196 – volume: 118 start-page: 53 year: 2016 end-page: 64 ident: CR15 article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression publication-title: J Afr Earth Sc doi: 10.1016/j.jafrearsci.2016.02.019 – volume: 23 start-page: 3274 issue: 9 year: 2022 end-page: 3283 ident: CR12 article-title: Pavement crack detection and classification based on fusion feature of LBP and PCA with SVM publication-title: Int J Pavement Eng doi: 10.1080/10298436.2021.1888092 – volume: 76 start-page: 1627 issue: 4 year: 2017 end-page: 1641 ident: CR55 article-title: Models for estimation of TBM performance in granitic and mica gneiss hard rocks in a hydropower tunnel publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-016-0950-y – volume: 263 start-page: 114683 year: 2020 ident: CR50 article-title: Building thermal load prediction through shallow machine learning and deep learning publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114683 – volume: 14 start-page: 123 issue: 1 year: 2022 end-page: 143 ident: CR23 article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.05.004 – volume: 14 start-page: 106 issue: 1 year: 2022 ident: CR9 article-title: Deep learning-based thermal image analysis for pavement defect detection and classification considering complex pavement conditions publication-title: Remote Sens doi: 10.3390/rs14010106 – volume: 25 start-page: 197 issue: 2 year: 2016 end-page: 227 ident: CR7 article-title: A random forest guided tour publication-title: TEST doi: 10.1007/s11749-016-0481-7 – volume: 198 start-page: 109326 year: 2021 ident: CR16 article-title: Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features publication-title: Mater Des doi: 10.1016/j.matdes.2020.109326 – volume: 95 start-page: 103103 year: 2020 ident: CR39 article-title: Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.103103 – ident: CR46 – volume: 14 start-page: 123 issue: 1 year: 2021 end-page: 143 ident: CR22 article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.05.004 – volume: 147 start-page: 105250 year: 2022 ident: CR42 article-title: NWTOPT–a hyperparameter optimization approach for selection of environmental model solver settings publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2021.105250 – volume: 66 start-page: 1285 issue: 5 year: 2018 end-page: 1296 ident: CR45 article-title: Joint classification and prediction CNN framework for automatic sleep stage classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2872652 – volume: 23 start-page: 3200 issue: 7 year: 2019 end-page: 3206 ident: CR25 article-title: An ANN to predict ground condition ahead of tunnel face using TBM operational data publication-title: KSCE J Civ Eng doi: 10.1007/s12205-019-1460-9 – volume: 83 start-page: 364 year: 2019 end-page: 372 ident: CR24 article-title: A case study of TBM performance prediction using field tunnelling tests in limestone strata publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.10.001 – volume: 208 start-page: 104196 year: 2021 ident: CR2 article-title: Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2020.104196 – volume: 306 start-page: 103667 year: 2022 ident: CR4 article-title: Relation between prognostics predictor evaluation metrics and local interpretability SHAP values publication-title: Artif Intell doi: 10.1016/j.artint.2022.103667 – ident: CR11 – volume: 140 start-page: 104331 year: 2022 ident: CR29 article-title: Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization publication-title: Autom Constr doi: 10.1016/j.autcon.2022.104331 – ident: CR32 – volume: 11 start-page: 1060 issue: 3 year: 2021 ident: CR48 article-title: Towards TBM automation: on-the-fly characterization and classification of ground conditions ahead of a TBM using data-driven approach publication-title: Appl Sci doi: 10.3390/app11031060 – volume: 165 start-page: 74 year: 2019 end-page: 82 ident: CR3 article-title: Fake news detection using bi-directional LSTM-recurrent neural network publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.01.072 – volume: 106 start-page: 103595 year: 2020 ident: CR38 article-title: Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103595 – ident: CR5 – volume: 203 start-page: 810 year: 2018 end-page: 821 ident: CR1 article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.08.207 – volume: 70 start-page: 255 year: 2017 end-page: 277 ident: CR28 article-title: A GA-LR wrapper approach for feature selection in network intrusion detection publication-title: Comput Secur doi: 10.1016/j.cose.2017.06.005 – volume: 139 start-page: 105459 year: 2020 ident: CR19 article-title: Correlation research of phase angle variation and coating performance by means of Pearson’s correlation coefficient publication-title: Prog Org Coat doi: 10.1016/j.porgcoat.2019.105459 – volume: 57 start-page: 151 issue: 2 year: 1998 end-page: 160 ident: CR21 article-title: Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation publication-title: Bull Eng Geol Environ doi: 10.1007/s100640050031 – volume: 24 start-page: 1225 issue: 2 year: 2020 end-page: 1241 ident: CR26 article-title: SVM hyper-parameters optimization using quantized multi-PSO in dynamic environment publication-title: Soft Comput doi: 10.1007/s00500-019-03957-w – volume: 23 start-page: 326 issue: 3 year: 2008 end-page: 339 ident: CR53 article-title: Utilizing rock mass properties for predicting TBM performance in hard rock condition publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2007.04.011 – ident: CR18 – ident: CR47 – volume: 41 start-page: 647 issue: 3 year: 2014 end-page: 665 ident: CR49 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl Inf Syst doi: 10.1007/s10115-013-0679-x – volume: 22 start-page: 5781 issue: 15 year: 2022 ident: CR10 article-title: Automatic pavement defect detection and classification using RGB-thermal images based on hierarchical residual attention network publication-title: Sensors doi: 10.3390/s22155781 – volume: 30 start-page: 3146 year: 2017 end-page: 3154 ident: CR27 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Adv Neural Inf Process Syst – ident: CR33 – volume: 12 start-page: 101091 issue: 3 year: 2021 ident: CR57 article-title: Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques publication-title: Geosci Front doi: 10.1016/j.gsf.2020.09.020 – volume: 43 start-page: 778 issue: 3 year: 2022 end-page: 811 ident: CR14 article-title: Adaptive estimation of multi-regional soil salinization using extreme gradient boosting with Bayesian TPE optimization publication-title: Int J Remote Sens doi: 10.1080/01431161.2021.2009589 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR44 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 106 start-page: 107302 year: 2021 ident: CR34 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107302 – volume: 8 start-page: 765 issue: 5 year: 2020 ident: CR35 article-title: Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms publication-title: Mathematics doi: 10.3390/math8050765 – volume: 135 start-page: 104109 year: 2022 ident: CR30 article-title: Classification of surface settlement levels induced by TBM driving in urban areas using random forest with data-driven feature selection publication-title: Autom Constr doi: 10.1016/j.autcon.2021.104109 – volume: 24 start-page: 1565 issue: 12 year: 2006 end-page: 1567 ident: CR43 article-title: What is a support vector machine? publication-title: Nat Biotechnol doi: 10.1038/nbt1206-1565 – ident: CR52 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 124 start-page: 104448 year: 2022 ident: CR8 article-title: Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2022.104448 – volume: 179 start-page: 109545 year: 2021 ident: CR54 article-title: Rock mass type prediction for tunnel boring machine using a novel semi-supervised method publication-title: Measurement doi: 10.1016/j.measurement.2021.109545 – volume: 109 start-page: 195 year: 2018 end-page: 205 ident: CR40 article-title: Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.05.024 – ident: CR41 – volume: 57 start-page: 151 issue: 2 year: 1998 ident: 1779_CR21 publication-title: Bull Eng Geol Environ doi: 10.1007/s100640050031 – volume: 95 start-page: 103103 year: 2020 ident: 1779_CR39 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.103103 – volume: 12 start-page: 2825 year: 2011 ident: 1779_CR44 publication-title: J Mach Learn Res – volume: 22 start-page: 5781 issue: 15 year: 2022 ident: 1779_CR10 publication-title: Sensors doi: 10.3390/s22155781 – volume: 139 start-page: 105459 year: 2020 ident: 1779_CR19 publication-title: Prog Org Coat doi: 10.1016/j.porgcoat.2019.105459 – volume: 109 start-page: 195 year: 2018 ident: 1779_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.05.024 – ident: 1779_CR46 doi: 10.1007/s00603-004-0032-5 – ident: 1779_CR18 doi: 10.1016/0148-9062(72)90001-0 – volume: 14 start-page: 106 issue: 1 year: 2022 ident: 1779_CR9 publication-title: Remote Sens doi: 10.3390/rs14010106 – volume: 23 start-page: 3274 issue: 9 year: 2022 ident: 1779_CR12 publication-title: Int J Pavement Eng doi: 10.1080/10298436.2021.1888092 – volume: 23 start-page: 3200 issue: 7 year: 2019 ident: 1779_CR25 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-019-1460-9 – volume: 66 start-page: 1285 issue: 5 year: 2018 ident: 1779_CR45 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2872652 – ident: 1779_CR47 doi: 10.1007/978-3-642-41136-6_5 – volume: 14 start-page: 123 issue: 1 year: 2022 ident: 1779_CR23 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.05.004 – ident: 1779_CR33 – ident: 1779_CR32 – volume: 179 start-page: 109545 year: 2021 ident: 1779_CR54 publication-title: Measurement doi: 10.1016/j.measurement.2021.109545 – ident: 1779_CR11 doi: 10.32614/CRAN.package.xgboost – volume: 11 start-page: 1060 issue: 3 year: 2021 ident: 1779_CR48 publication-title: Appl Sci doi: 10.3390/app11031060 – ident: 1779_CR13 doi: 10.1080/10298436.2021.1945056 – volume: 106 start-page: 107302 year: 2021 ident: 1779_CR34 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107302 – volume: 23 start-page: 326 issue: 3 year: 2008 ident: 1779_CR53 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2007.04.011 – volume: 135 start-page: 104109 year: 2022 ident: 1779_CR30 publication-title: Autom Constr doi: 10.1016/j.autcon.2021.104109 – volume: 43 start-page: 778 issue: 3 year: 2022 ident: 1779_CR14 publication-title: Int J Remote Sens doi: 10.1080/01431161.2021.2009589 – volume: 147 start-page: 105250 year: 2022 ident: 1779_CR42 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2021.105250 – volume: 8 start-page: 765 issue: 5 year: 2020 ident: 1779_CR35 publication-title: Mathematics doi: 10.3390/math8050765 – volume: 83 start-page: 364 year: 2019 ident: 1779_CR24 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.10.001 – volume: 118 start-page: 104196 year: 2021 ident: 1779_CR51 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2021.104196 – volume: 208 start-page: 104196 year: 2021 ident: 1779_CR2 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2020.104196 – ident: 1779_CR31 – volume: 306 start-page: 103667 year: 2022 ident: 1779_CR4 publication-title: Artif Intell doi: 10.1016/j.artint.2022.103667 – volume: 263 start-page: 114683 year: 2020 ident: 1779_CR50 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114683 – volume: 30 start-page: 3146 year: 2017 ident: 1779_CR27 publication-title: Adv Neural Inf Process Syst – volume: 140 start-page: 104331 year: 2022 ident: 1779_CR29 publication-title: Autom Constr doi: 10.1016/j.autcon.2022.104331 – volume: 12 start-page: 101091 issue: 3 year: 2021 ident: 1779_CR57 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.09.020 – volume: 125 start-page: 103647 year: 2021 ident: 1779_CR36 publication-title: Autom Constr doi: 10.1016/j.autcon.2021.103647 – volume: 305 start-page: 114367 year: 2022 ident: 1779_CR20 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2021.114367 – volume: 100 start-page: 73 year: 2019 ident: 1779_CR56 publication-title: Autom Constr doi: 10.1016/j.autcon.2018.12.022 – volume: 124 start-page: 104448 year: 2022 ident: 1779_CR8 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2022.104448 – volume: 65 start-page: 140 year: 2017 ident: 1779_CR37 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2017.03.002 – ident: 1779_CR41 – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 1779_CR43 publication-title: Nat Biotechnol doi: 10.1038/nbt1206-1565 – volume: 70 start-page: 255 year: 2017 ident: 1779_CR28 publication-title: Comput Secur doi: 10.1016/j.cose.2017.06.005 – volume: 24 start-page: 1225 issue: 2 year: 2020 ident: 1779_CR26 publication-title: Soft Comput doi: 10.1007/s00500-019-03957-w – volume: 165 start-page: 74 year: 2019 ident: 1779_CR3 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.01.072 – volume: 14 start-page: 123 issue: 1 year: 2021 ident: 1779_CR22 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.05.004 – ident: 1779_CR5 – volume: 106 start-page: 103595 year: 2020 ident: 1779_CR38 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103595 – volume: 8 start-page: 014008 issue: 1 year: 2015 ident: 1779_CR6 publication-title: Comput Sci Discov doi: 10.1088/1749-4699/8/1/014008 – volume: 76 start-page: 1627 issue: 4 year: 2017 ident: 1779_CR55 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-016-0950-y – volume: 25 start-page: 197 issue: 2 year: 2016 ident: 1779_CR7 publication-title: TEST doi: 10.1007/s11749-016-0481-7 – volume: 118 start-page: 53 year: 2016 ident: 1779_CR15 publication-title: J Afr Earth Sc doi: 10.1016/j.jafrearsci.2016.02.019 – volume: 203 start-page: 810 year: 2018 ident: 1779_CR1 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.08.207 – volume: 41 start-page: 647 issue: 3 year: 2014 ident: 1779_CR49 publication-title: Knowl Inf Syst doi: 10.1007/s10115-013-0679-x – ident: 1779_CR52 doi: 10.1016/j.undsp.2020.02.003 – volume: 198 start-page: 109326 year: 2021 ident: 1779_CR16 publication-title: Mater Des doi: 10.1016/j.matdes.2020.109326 – ident: 1779_CR17  | 
    
| SSID | ssj0063246 | 
    
| Score | 2.518643 | 
    
| Snippet | In this paper, field construction data from the Singapore Metro Line project were used to study the mapping relationship and establish the prediction model... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3825 | 
    
| SubjectTerms | Accuracy Additives Algorithms Artificial neural networks Bayesian analysis Bayesian theory Classifiers Complex Fluids and Microfluidics Data acquisition Decision trees Deep learning Dredging Engineering Excavation Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Long short-term memory Machine learning Mathematical models Model accuracy Neural networks Optimization Outliers (landforms) Outliers (statistics) Parameters Prediction models Probability theory Research Paper Soft and Granular Matter Soil Science & Conservation Solid Mechanics Support vector machines  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central Collection dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9AA9IJ4iUNAcuNEVu96X94BQA6kiRKIIUqm3lZ8gkWxCmwrSv8CfZmYfSblEnHa1XtuSP3s88vj7BuC1jorcZ8YFoXM6SLyjJZWLJBA29LKQMss9E5zHk2x0nny6SC8OYNJxYfhaZWcTa0Ntl4bPyN_SNhgx3UXE71c_A84axdHVLoWGalMr2He1xNgdOBSsjNWDw8FwMv3S2WbWJq_5RjKLAmotbWk0DZmujnPy7XaapXkR3Py7Ve38z23I9AjuXlcrtfml5vNbu9LZA7jfupN42uD_EA5c9QiObokMPoY_00sOxjAAuPRIG9YPXJDLjIYdZ1RkjS0XzAZjdL-Nas5o0SvjUG9w_BlVZfEjPebfaEDW3xdXyKe3OFAbxxRMnE2HuCTTs2g5nXWFr6PTKXpX64bSh0b65Amcnw1nH0ZBm4IhMHEWrwMXauVCaQpbuJR8KStcmAkn41ClWsskNdZbYWlUk0jQW55a7bXWkfK6KLyPn0KvWlbuGSD5eZmQSpPVSLmedl7bTBSp0bmVRvYh6ka7NK0-OafJmJc7ZWVGqCSEyhqh8qYPb7Z1Vo06x96_jzsQy3alXpW7edWHkw7YXfG-1k624P9H58_3d_4C7nEi--Yi8DH01pfX7iW5O2v9qp3DfwFsKvu6 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYGOwAHtDEQZWx6B24QkTiJ4xyBgappnSpRJG6RfzwDok1RWwTlX9g_zXOStmxCiJ0SxbEt-bPf--Tn95mxPR3lmRMGgxBRB4lDWlIZTwJuQydzKUXmfIJz57doXyQ_L9PLRibH58L8E78_HEdV9NGfOae5k-XB0xL7SE5KVIFZcTKzul51vMokkiIKiEOkTYLM62387YQWzHIeDF1jK_flnZo-qH7_hb85-8TWG6IIRzWyn9kHLDfY2gv5wC_sT3fkwyx-aGHogFzRLQyIDIPxlBgU2VnrC3rHHcBHo-rdV3DKIOgpdH6BKi38oEf_aji6mVwPxuD3ZeFYTdEnV0KvewpDMiqDJluzqnDePuqCw0oRlD7Uoiab7OLstHfSDprLFQITi3gSYKgVhtLkNseUWJLlGAqOMg5VqrVMUmOd5ZZGNYk4vWWp1U5rHSmn89y5eIstl8MStxkQgxNcKk32IPX1NDptBc9TozMrjWyxaDbahWmUx_0FGP1ioZnsESoIoaJCqHhqsf15nbtad-PNv3dnIBbNGhwXRJwinyDF4xY7mAG7KH6rtYM5-O_ofOf_Wv_KVv2V9fWR3122PBnd4zciNhP9vZrRz3vm7po priority: 102 providerName: Springer Nature  | 
    
| Title | Prediction of rock mass class ahead of TBM excavation face by ML and DL algorithms with Bayesian TPE optimization and SHAP feature analysis | 
    
| URI | https://link.springer.com/article/10.1007/s11440-022-01779-z https://www.proquest.com/docview/2831112623 https://link.springer.com/content/pdf/10.1007/s11440-022-01779-z.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-1133 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063246 issn: 1861-1125 databaseCode: AFBBN dateStart: 20060501 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1861-1133 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0063246 issn: 1861-1125 databaseCode: BENPR dateStart: 20060501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1861-1133 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0063246 issn: 1861-1125 databaseCode: 8FG dateStart: 20060501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-1133 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063246 issn: 1861-1125 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-1133 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063246 issn: 1861-1125 databaseCode: U2A dateStart: 20060501 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLa29gHtgTuiaFR-4I2lS5zEcR7brl0FtIqglbanyFdAa9OqSwXtX-BPc5xLOxCaQLzEkW-R7ePjLz7-jhF6I7w4MlRqx9VaOIHRMKUiEjhEuYbFjNHIWILzeEJHs-DdVXh1hC5qLkxx2r02SZacBuulKcvPV8qcH4hvhU3SnkQHiYpiZ9eB5GPUpCEg8gZqziZJ99r-azHqOQApwsO771fcmT9X9Ov6dACdezvpCXqwyVZ8-43P53eWouEjpOtGlCdQbjqbXHTk7jf_jv_bysfoYYVVcbcUrifoSGdP0ckdD4bP0I9kbS09dnTx0mBYDW_wAvA4lhaVYw6qXtmEaW-M9XfJyw1gbLjUWGzx-APmmcIXEMw_L9df8y-LW2y3hnGPb7Xld-JpMsBL0GuLijBaFPg06ibY6MIpKUSUflWeo9lwMO2PnOp-B0f61M8d7QquXSZjFesQgJoi2qVEM9_loRAsCKUyiigS0MAj8BaFShghhMeNiGNj_BeokS0z_RJhAJGUMC5AJYW2nNBGKEriUIpIMclayKtHNZWV83N7B8c8Pbhttp2dQmenRWenuxZ6uy-zKl1_3Jv7tBaWtFIDtylgN89ytIjfQmf1eB-S76vtbC9kf_HxV_-W_RQ18vVGvwY4lYs2OmbDyzZqdi-v3w8g7A0myUeI7dM-PGek267m00_8wx9B | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QDzVQClzgBO1sNev9aFCTZsqpUkUQSr1ZvYJEnnRpCrpX-A_8duY9SMpl4hLT7a83l3L3-7M7M5-MwBvZZClNlHG842RXmQNTamURR7TvuUZ50lqHcG520vaF9Gny_hyA_7UXBh3rLKWiYWg1hPl9sg_kBoMHN2FhR-nPz2XNcp5V-sUGqJKraAPixBjFbHj3CxuaAk3Ozw7IbzfMXbaGhy3vSrLgKfCJJx7xpfC-FxlOjMxmQuaGT9hhoe-iKXkUay01UyzKIkCRndprKWVUgbCyiyzNqR2H8BWFEYZLf62mq1e_3OtC1ws9ILfxJPAo6-PK9pOSd4r_KruND3NijTzbv9VjSt7d-mi3YHt6_FULG7EcHhHC54-hkeV-YpH5Xh7Ahtm_BR27gQ1fAa_-1fO-eMAx4lFUpA_cEQmOipnqKMg6a9dwaDZRfNLiXJPGK1QBuUCux0UY40ndBl-IwDm30czdLvF2BQL4yifOOi3cEKiblRxSIsKX9pHfbSmiFNKD8pQK8_h4l7AeAGb48nY7AKSXZkwLiRJqdjVk8ZKnbAsVjLVXPEGBPXfzlUVD92l5Rjmq0jODqGcEMoLhPLbBrxf1pmW0UDWvr1Xg5hXkmGWr8ZxAw5qYFfF61o7WIL_H52_XN_5G9huD7qdvHPWO38FDxmZbuUh5D3YnF9dm9dkas3lfjWeEb7e9xT6CxsgOyk | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IJ5q2gJ7gBO1aq9f6wNCLWlIaVNFIpV6M_ssEokTmlQl_Qv8I34dM34k5RJx6cmW17tr7Tc7M97ZbxbgrQqy1CXaer61youcxSmV8sjjxnciEyJJHRGce6dJ9yz6ch6fr8GfhgtD2yobnVgqajPWtEa-h2YwILoLD_dcvS2i3-58nPz06AQpirQ2x2lUInJs59f4-zb9cNRGrN9x3jkcfOp69QkDng6TcOZZX0nrC52ZzMboKhhu_YRbEfoyVkpEsTbOcMOjJAo43qWxUU4pFUinssy5ENu9B_dTyuJOLPXO58YKUBb0ktkkksDD745rwk5F2ysjqrSPHudDmnk3_xrFpae7CM5uwMOrYiLn13I4vGX_Ok_gce24sv1K0p7Cmi2ewcatdIbP4Xf_ksI-BDUbO4am8QcboXPONLnoTKLeN1QwOOgx-0vLajWYOaktU3PWO2GyMKyNl-EFDvfs-2jKaJ2YHci5JbInG_QP2RiV3Khmj5YVvnb3-8zZMkMpPqiSrLyAszuB4iWsF-PCbgJDjzLhQirUTzHVU9Ypk_As1io1QosWBM1o57rOhE4HcgzzZQ5nQihHhPISofymBe8XdSZVHpCVb-80IOa1TpjmSwluwW4D7LJ4VWu7C_D_o_Ot1Z2_gQc4cfKTo9PjbXjE0Werdh_vwPrs8sq-Qh9rpl6Xwszg213Pnr96xjjD | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPawzZuWtGYzgNvLF3iJI7z2LFNFaJTJVppPEW-AlqbVl0q1v4F_jR2Ls1AaALxFCu-RLaP7S8-_j4DvBVBmhgqtedrLbzIaDukEhJ5RPmGpYzRxDiC8_CaDibRh5v4ZgcuGi5Medq9cUlWnAan0pQXZwtlzlriW-mTdCfRrUUlqbfp2egnsEtji8g7sDu5HvU_u38tRgPPQoq4DYdhzZ35c0G_rk8t6Nz6Sffg6Spf8PV3Pp0-WIquDkA3lahOoNz2VoXoyc1v-o7_W8tD2K-xKvYr43oGOzp_DnsPFAxfwI_R0nl6XO_i3KBdDW9xZvE4SofKkdupXrmI8fkQ9b3k1QYwGi41ijUOPyLPFV7Yx_TLfPmt-Dq7Q7c1jOd8rR2_E8ejS5zbeW1WE0bLDJ8G_REaXYqS2heVrspLmFxdjt8PvPp-B0-GNCw87QuufSZTlerYAjVFtE-JZqHPYyFYFEtlFFEkolFAbCiJlTBCiIAbkabGhK-gk89zfQRoQSQljAs7JcUun9BGKErSWIpEMcm6EDS9msla_NzdwTHNWtlm19iZbeysbOxs04V32zyLSvrj0dTHjbFk9TRwl1nsFjiOFgm7cNr0dxv9WGmnWyP7i4-__rfkx9Apliv9xsKpQpzUo-UnROYZZw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+rock+mass+class+ahead+of+TBM+excavation+face+by+ML+and+DL+algorithms+with+Bayesian+TPE+optimization+and+SHAP+feature+analysis&rft.jtitle=Acta+geotechnica&rft.au=Chen%2C+Cheng&rft.au=Seo%2C+Hyungjoon&rft.date=2023-07-01&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=18&rft.issue=7&rft.spage=3825&rft.epage=3848&rft_id=info:doi/10.1007%2Fs11440-022-01779-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11440_022_01779_z | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon |