Low complexity bit-parallel polynomial basis multipliers over binary fields for special irreducible pentanomials

Finite field GF(2m) arithmetic is becoming increasingly important for a variety of different applications including cryptography, error coding theory and computer algebra. Among finite field arithmetic operations, GF(2m) multiplication is of special interest because it is considered the most importa...

Full description

Saved in:
Bibliographic Details
Published inIntegration (Amsterdam) Vol. 46; no. 2; pp. 197 - 210
Main Authors Imaña, José L., Hermida, Román, Tirado, Francisco
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0167-9260
1872-7522
DOI10.1016/j.vlsi.2011.12.006

Cover

Abstract Finite field GF(2m) arithmetic is becoming increasingly important for a variety of different applications including cryptography, error coding theory and computer algebra. Among finite field arithmetic operations, GF(2m) multiplication is of special interest because it is considered the most important building block. GF(2m) multipliers present reduced space and time complexities when the field is generated by some special irreducible polynomials. Among these, irreducible pentanomials of degree m are specially important because they are abundant and there are several eligible candidates for a given m. In this paper, we consider bit-parallel polynomial basis multipliers over the finite field GF(2m) generated using type 2 irreducible pentanomials, for which explicit formulas and algorithms for the computation of the products are given. In this contribution, two new subclasses of type 2 irreducible pentanomials are also introduced. The theoretical complexity analysis proves that the bit-parallel multipliers here presented have the lowest number of XOR gates known to date for similar polynomial basis multipliers based on this type of irreducible pentanomials, while the number of AND gates and the time complexity match the best known results found in the literature.
AbstractList Finite field GF (2 m) arithmetic is becoming increasingly important for a variety of different applications including cryptography, error coding theory and computer algebra. Among finite field arithmetic operations, GF (2 m) multiplication is of special interest because it is considered the most important building block. GF (2 m) multipliers present reduced space and time complexities when the field is generated by some special irreducible polynomials. Among these, irreducible pentanomials of degree m are specially important because they are abundant and there are several eligible candidates for a given m. In this paper, we consider bit-parallel polynomial basis multipliers over the finite field GF (2 m) generated using type 2 irreducible pentanomials, for which explicit formulas and algorithms for the computation of the products are given. In this contribution, two new subclasses of type 2 irreducible pentanomials are also introduced. The theoretical complexity analysis proves that the bit-parallel multipliers here presented have the lowest number of XOR gates known to date for similar polynomial basis multipliers based on this type of irreducible pentanomials, while the number of AND gates and the time complexity match the best known results found in the literature.
Finite field GF(2m) arithmetic is becoming increasingly important for a variety of different applications including cryptography, error coding theory and computer algebra. Among finite field arithmetic operations, GF(2m) multiplication is of special interest because it is considered the most important building block. GF(2m) multipliers present reduced space and time complexities when the field is generated by some special irreducible polynomials. Among these, irreducible pentanomials of degree m are specially important because they are abundant and there are several eligible candidates for a given m. In this paper, we consider bit-parallel polynomial basis multipliers over the finite field GF(2m) generated using type 2 irreducible pentanomials, for which explicit formulas and algorithms for the computation of the products are given. In this contribution, two new subclasses of type 2 irreducible pentanomials are also introduced. The theoretical complexity analysis proves that the bit-parallel multipliers here presented have the lowest number of XOR gates known to date for similar polynomial basis multipliers based on this type of irreducible pentanomials, while the number of AND gates and the time complexity match the best known results found in the literature.
Author Imaña, José L.
Hermida, Román
Tirado, Francisco
Author_xml – sequence: 1
  givenname: José L.
  surname: Imaña
  fullname: Imaña, José L.
  email: jluimana@dacya.ucm.es
– sequence: 2
  givenname: Román
  surname: Hermida
  fullname: Hermida, Román
  email: rhermida@dacya.ucm.es
– sequence: 3
  givenname: Francisco
  surname: Tirado
  fullname: Tirado, Francisco
  email: ptirado@dacya.ucm.es
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26917631$$DView record in Pascal Francis
BookMark eNp9kcFq3DAQhkVJIJs0L5CTLoVe7EryWrKhlxKatrCQS3oWsjyGWWRJlbTb7ttXy4YeeshpQHzfjGb-W3LlgwdCHjhrOePy0749uoytYJy3XLSMyXdkwwclGtULcUU2FVLNKCS7Ibc57xljfKv6DYm78JvasEYHf7Cc6ISliSYZ58DRGNzJhxWNo5PJmOl6cAWjQ0iZhiOkinuTTnRBcHOmS0g0R7BnAVOC-WBxckAj-GIujfJ7cr3UAvev9Y78fPr68vi92T1_-_H4ZdfYTnalmce-Y4Yv3QT1YRql6utSQo6mH-2kJqnYyJdedEz2_XYLYh7FrLgybBqUVXN3Rz5e-sYUfh0gF71ituCc8RAOWXMxdFKq7ThU9MMrarI1bknGW8w6JlzrcroO5Up2vHLiwtkUck6w_EM40-cY9F6fY9DnGOoAXX9cpeE_yWIxBYMvyaB7W_18UaHe6ViPrrNF8BZmTGCLngO-pf8FuganQA
CODEN IVJODL
CitedBy_id crossref_primary_10_1109_TCSI_2015_2388842
crossref_primary_10_1007_s41635_019_00087_5
crossref_primary_10_1016_j_vlsi_2013_03_001
crossref_primary_10_1007_s13389_018_0197_6
crossref_primary_10_1109_TC_2017_2778730
crossref_primary_10_1049_el_2016_0577
crossref_primary_10_1109_TCSI_2015_2495758
crossref_primary_10_1109_TCSI_2015_2500419
Cites_doi 10.1109/TVLSI.2006.887835
10.1109/TVLSI.2008.2006080
10.1016/0890-5401(89)90045-X
10.1109/12.729800
10.1109/TC.2006.10
10.1109/81.735445
10.1109/12.859542
10.1109/12.936239
10.1109/TC.2006.69
10.1109/12.660172
10.1109/12.769434
10.1109/12.565591
10.1109/TC.2003.1252850
10.1109/TC.2002.1017695
10.1109/12.485570
10.1109/TC.2004.47
10.1109/31.135751
10.1007/3-540-51083-4_67
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
8FD
L7M
DOI 10.1016/j.vlsi.2011.12.006
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1872-7522
EndPage 210
ExternalDocumentID 26917631
10_1016_j_vlsi_2011_12_006
S016792601100112X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SP
8FD
L7M
ID FETCH-LOGICAL-c363t-d9530a1f3bec36b9675006269a59cb7b67091f523065544e2d92d717a0b87c7d3
IEDL.DBID .~1
ISSN 0167-9260
IngestDate Wed Oct 01 14:01:41 EDT 2025
Mon Jul 21 09:10:51 EDT 2025
Thu Oct 02 04:38:43 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Fri Feb 23 02:22:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords GF(2m)
Bit-parallel multipliers
Finite field arithmetic
Matrix decomposition
Polynomial basis
Irreducible pentanomials
Complexity
Finite field
Arithmetic circuit
XOR circuit
Logic gate
)
Space time
Algorithm
Field experiment
Logic circuit
Coding
Integrated circuit
Arithmetic operation
Cryptography
Computer algebra
Time complexity
Multiplying circuits
GF
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d9530a1f3bec36b9675006269a59cb7b67091f523065544e2d92d717a0b87c7d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1283667498
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1283667498
pascalfrancis_primary_26917631
crossref_primary_10_1016_j_vlsi_2011_12_006
crossref_citationtrail_10_1016_j_vlsi_2011_12_006
elsevier_sciencedirect_doi_10_1016_j_vlsi_2011_12_006
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Integration (Amsterdam)
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kobayashi, Takagi (bib9) 2008; 55
National Institute of Standards and Technology, Digital Signature Standard, FIPS Publication 182-6, January 2000.
Meher (bib17) 2009; 17
Reyhani-Masoleh (bib23) 2006; 55
C. Paar, Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields, Ph.D. Thesis, Institute for Experimental Mathematics, University of Essen, Germany, June 1994.
Reyhani-Masoleh, Hasan (bib24) 2004; 53
Halbutogullari, Koç (bib3) 2000; 49
Imaña, Hermida, Tirado (bib6) 2006; 14
Kobayashi, Takagi (bib10) 2009; 56
Sunar, Koç (bib27) 1999; 48
Lin, Sha, Wang, Li (bib14) 2010; 57
E.D. Mastrovito, VLSI Architectures for Multiplication Over Finite Fields
Parhi (bib22) 1999
Imaña (bib7) 2011; 58
Zhang, Parhi (bib31) 2001; 50
Wang, Lin (bib28) 1991; 38
Itoh, Tsujii (bib8) 1989; 83
Wu (bib29) 2002; 51
Rodríguez-Henríquez, Koç (bib25) 2003; 52
Lidl, Niederreiter (bib12) 1994
Imaña, Sánchez, Tirado (bib5) 2006; 55
Lin, Sha, Wang, Li (bib13) 2010; 57
Meher (bib16) 2008; 55
(bib18) 1993
G. Seroussi, Table of Low-Weight Binary Irreducible Polynomials, Hewlett-Packard, HPL-98-135, August 1998.
Wu, Hasan (bib30) 1997; 46
J. Omura, J. Massey, Computational Method and Apparatus for Finite Field Arithmetic, U.S. Patent Number 4,587,627, May 1986.
Koç, Sunar (bib11) 1998; 47
Guo, Wang (bib2) 1998; 47
Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, in: Proceedings of Sixth International Conference on AAECC-6, New York: Springer-Verlag, Rome, pp. 297–309, July 1988.
Fenn, Benaissa, Taylor (bib1) 1996; 45
Hasan, Ebtedaei (bib4) 1998; 45
10.1016/j.vlsi.2011.12.006_bib19
Kobayashi (10.1016/j.vlsi.2011.12.006_bib9) 2008; 55
Meher (10.1016/j.vlsi.2011.12.006_bib16) 2008; 55
Wang (10.1016/j.vlsi.2011.12.006_bib28) 1991; 38
Zhang (10.1016/j.vlsi.2011.12.006_bib31) 2001; 50
10.1016/j.vlsi.2011.12.006_bib15
Wu (10.1016/j.vlsi.2011.12.006_bib30) 1997; 46
Sunar (10.1016/j.vlsi.2011.12.006_bib27) 1999; 48
Lin (10.1016/j.vlsi.2011.12.006_bib13) 2010; 57
Wu (10.1016/j.vlsi.2011.12.006_bib29) 2002; 51
Hasan (10.1016/j.vlsi.2011.12.006_bib4) 1998; 45
Imaña (10.1016/j.vlsi.2011.12.006_bib6) 2006; 14
Reyhani-Masoleh (10.1016/j.vlsi.2011.12.006_bib24) 2004; 53
Reyhani-Masoleh (10.1016/j.vlsi.2011.12.006_bib23) 2006; 55
Fenn (10.1016/j.vlsi.2011.12.006_bib1) 1996; 45
Kobayashi (10.1016/j.vlsi.2011.12.006_bib10) 2009; 56
Meher (10.1016/j.vlsi.2011.12.006_bib17) 2009; 17
10.1016/j.vlsi.2011.12.006_bib20
10.1016/j.vlsi.2011.12.006_bib21
Koç (10.1016/j.vlsi.2011.12.006_bib11) 1998; 47
Halbutogullari (10.1016/j.vlsi.2011.12.006_bib3) 2000; 49
Imaña (10.1016/j.vlsi.2011.12.006_bib5) 2006; 55
Itoh (10.1016/j.vlsi.2011.12.006_bib8) 1989; 83
10.1016/j.vlsi.2011.12.006_bib26
Parhi (10.1016/j.vlsi.2011.12.006_bib22) 1999
Lidl (10.1016/j.vlsi.2011.12.006_bib12) 1994
Imaña (10.1016/j.vlsi.2011.12.006_bib7) 2011; 58
(10.1016/j.vlsi.2011.12.006_bib18) 1993
Lin (10.1016/j.vlsi.2011.12.006_bib14) 2010; 57
Rodríguez-Henríquez (10.1016/j.vlsi.2011.12.006_bib25) 2003; 52
Guo (10.1016/j.vlsi.2011.12.006_bib2) 1998; 47
References_xml – volume: 52
  start-page: 1535
  year: 2003
  end-page: 1542
  ident: bib25
  article-title: Parallel multipliers based on special irreducible pentanomials
  publication-title: IEEE Transactions on Computers
– volume: 47
  start-page: 353
  year: 1998
  end-page: 356
  ident: bib11
  article-title: Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a class of Finite Fields
  publication-title: IEEE Transactions on Computers
– volume: 57
  start-page: 1071
  year: 2010
  end-page: 1082
  ident: bib14
  article-title: Efficient Decoder Design for Nonbinary Quasicyclic LDPC Codes
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– reference: G. Seroussi, Table of Low-Weight Binary Irreducible Polynomials, Hewlett-Packard, HPL-98-135, August 1998.
– reference: J. Omura, J. Massey, Computational Method and Apparatus for Finite Field Arithmetic, U.S. Patent Number 4,587,627, May 1986.
– volume: 55
  start-page: 1031
  year: 2008
  end-page: 1040
  ident: bib16
  article-title: Systolic and super-systolic multipliers for finite field
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– volume: 48
  start-page: 522
  year: 1999
  end-page: 527
  ident: bib27
  article-title: Mastrovito Multiplier for All Trinomials
  publication-title: IEEE Transactions on Computers
– volume: 55
  start-page: 520
  year: 2006
  end-page: 533
  ident: bib5
  article-title: Bit-parallel finite field multipliers for irreducible trinomials
  publication-title: IEEE Transactions on Computers
– volume: 56
  start-page: 644
  year: 2009
  end-page: 648
  ident: bib10
  article-title: Fast hardware algorithm for division in
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 55
  start-page: 1144
  year: 2008
  end-page: 1148
  ident: bib9
  article-title: A combined circuit for multiplication and inversion in
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– reference: , Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, in: Proceedings of Sixth International Conference on AAECC-6, New York: Springer-Verlag, Rome, pp. 297–309, July 1988.
– volume: 17
  start-page: 747
  year: 2009
  end-page: 757
  ident: bib17
  article-title: Systolic and Non-systolic Scalable Modular Designs of Finite Field Multipliers for Reed-Solomon Codec
  publication-title: IEEE Transactions on VLSI Systems
– volume: 45
  start-page: 1205
  year: 1998
  end-page: 1211
  ident: bib4
  article-title: Efficient architectures for computations over variable dimensional Galois fields
  publication-title: IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications
– reference: C. Paar, Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields, Ph.D. Thesis, Institute for Experimental Mathematics, University of Essen, Germany, June 1994.
– year: 1999
  ident: bib22
  article-title: VLSI Digital Signal Processing Systems: Design and Implementation
– volume: 55
  start-page: 34
  year: 2006
  end-page: 47
  ident: bib23
  article-title: Efficient algorithms and architectures for field multiplication using gaussian normal bases
  publication-title: IEEE Transactions on Computers
– volume: 51
  start-page: 750
  year: 2002
  end-page: 758
  ident: bib29
  article-title: Bit-parallel finite field multiplier and squarer using polynomial basis
  publication-title: IEEE Transactions on Computers
– volume: 47
  start-page: 1161
  year: 1998
  end-page: 1167
  ident: bib2
  article-title: Systolic array implementation of euclid's algorithm for inversion and division in
  publication-title: IEEE Transactions on Computers
– volume: 83
  start-page: 21
  year: 1989
  end-page: 40
  ident: bib8
  article-title: Structure of parallel multipliers for a class of finite fields
  publication-title: Information and Computation
– volume: 50
  start-page: 734
  year: 2001
  end-page: 749
  ident: bib31
  article-title: Systematic design of original and modified Mastrovito multipliers for general irreducible polynomials
  publication-title: IEEE Transactions on Computers
– volume: 45
  start-page: 319
  year: 1996
  end-page: 327
  ident: bib1
  article-title: multiplication and division over the dual basis
  publication-title: IEEE Transactions on Computers
– volume: 58
  start-page: 935
  year: 2011
  end-page: 946
  ident: bib7
  article-title: Low latency GF(2
  publication-title: Regular Papers
– volume: 14
  start-page: 1388
  year: 2006
  end-page: 1393
  ident: bib6
  article-title: Low complexity bit-parallel multipliers based on a class of irreducible pentanomials
  publication-title: IEEE Transactions on VLSI Systems
– volume: 57
  start-page: 51
  year: 2010
  end-page: 55
  ident: bib13
  article-title: An Efficient VLSI Architecture for Nonbinary LDPC Decoders
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– reference: E.D. Mastrovito, VLSI Architectures for Multiplication Over Finite Fields
– volume: 46
  start-page: 162
  year: 1997
  end-page: 172
  ident: bib30
  article-title: Efficient exponentiation of a primitive root in
  publication-title: IEEE Transactions on Computers
– year: 1993
  ident: bib18
  publication-title: Applications of Finite Fields
– volume: 53
  start-page: 945
  year: 2004
  end-page: 959
  ident: bib24
  article-title: Low complexity bit parallel architectures for polynomial basis multiplication over
  publication-title: IEEE Transactions on Computers
– year: 1994
  ident: bib12
  article-title: Introduction to Finite Fields and Their Applications
– reference: National Institute of Standards and Technology, Digital Signature Standard, FIPS Publication 182-6, January 2000.
– volume: 38
  start-page: 796
  year: 1991
  end-page: 800
  ident: bib28
  article-title: Systolic array implementation of multipliers for finite fields
  publication-title: IEEE Transactions on Circuits and Systems
– volume: 49
  start-page: 503
  year: 2000
  end-page: 518
  ident: bib3
  article-title: Mastrovito multiplier for general irreducible polynomials
  publication-title: IEEE Transactions on Computers
– volume: 55
  start-page: 1031
  issue: 4
  year: 2008
  ident: 10.1016/j.vlsi.2011.12.006_bib16
  article-title: Systolic and super-systolic multipliers for finite field GF(2m) based on irreducible trinomials
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– volume: 56
  start-page: 644
  issue: 8
  year: 2009
  ident: 10.1016/j.vlsi.2011.12.006_bib10
  article-title: Fast hardware algorithm for division in GF(2m) based on the extended Euclid's algorithm with parallelization of modular reductions
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 58
  start-page: 935
  issue: 5
  year: 2011
  ident: 10.1016/j.vlsi.2011.12.006_bib7
  article-title: Low latency GF(2m) polynomial basis multiplier, IEEE Transactions on Circuits and Systems I
  publication-title: Regular Papers
– volume: 57
  start-page: 51
  issue: 1
  year: 2010
  ident: 10.1016/j.vlsi.2011.12.006_bib13
  article-title: An Efficient VLSI Architecture for Nonbinary LDPC Decoders
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 14
  start-page: 1388
  issue: 12
  year: 2006
  ident: 10.1016/j.vlsi.2011.12.006_bib6
  article-title: Low complexity bit-parallel multipliers based on a class of irreducible pentanomials
  publication-title: IEEE Transactions on VLSI Systems
  doi: 10.1109/TVLSI.2006.887835
– volume: 17
  start-page: 747
  issue: 6
  year: 2009
  ident: 10.1016/j.vlsi.2011.12.006_bib17
  article-title: Systolic and Non-systolic Scalable Modular Designs of Finite Field Multipliers for Reed-Solomon Codec
  publication-title: IEEE Transactions on VLSI Systems
  doi: 10.1109/TVLSI.2008.2006080
– year: 1993
  ident: 10.1016/j.vlsi.2011.12.006_bib18
– year: 1999
  ident: 10.1016/j.vlsi.2011.12.006_bib22
– volume: 55
  start-page: 1144
  issue: 11
  year: 2008
  ident: 10.1016/j.vlsi.2011.12.006_bib9
  article-title: A combined circuit for multiplication and inversion in GF(2m)
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 83
  start-page: 21
  year: 1989
  ident: 10.1016/j.vlsi.2011.12.006_bib8
  article-title: Structure of parallel multipliers for a class of finite fields GF(2m)
  publication-title: Information and Computation
  doi: 10.1016/0890-5401(89)90045-X
– volume: 47
  start-page: 1161
  issue: 10
  year: 1998
  ident: 10.1016/j.vlsi.2011.12.006_bib2
  article-title: Systolic array implementation of euclid's algorithm for inversion and division in GF(2m)
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.729800
– ident: 10.1016/j.vlsi.2011.12.006_bib21
– year: 1994
  ident: 10.1016/j.vlsi.2011.12.006_bib12
– volume: 55
  start-page: 34
  issue: 1
  year: 2006
  ident: 10.1016/j.vlsi.2011.12.006_bib23
  article-title: Efficient algorithms and architectures for field multiplication using gaussian normal bases
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.2006.10
– volume: 45
  start-page: 1205
  issue: 11
  year: 1998
  ident: 10.1016/j.vlsi.2011.12.006_bib4
  article-title: Efficient architectures for computations over variable dimensional Galois fields
  publication-title: IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications
  doi: 10.1109/81.735445
– ident: 10.1016/j.vlsi.2011.12.006_bib19
– volume: 49
  start-page: 503
  issue: 5
  year: 2000
  ident: 10.1016/j.vlsi.2011.12.006_bib3
  article-title: Mastrovito multiplier for general irreducible polynomials
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.859542
– volume: 50
  start-page: 734
  issue: 7
  year: 2001
  ident: 10.1016/j.vlsi.2011.12.006_bib31
  article-title: Systematic design of original and modified Mastrovito multipliers for general irreducible polynomials
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.936239
– volume: 55
  start-page: 520
  issue: 5
  year: 2006
  ident: 10.1016/j.vlsi.2011.12.006_bib5
  article-title: Bit-parallel finite field multipliers for irreducible trinomials
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.2006.69
– volume: 47
  start-page: 353
  issue: 3
  year: 1998
  ident: 10.1016/j.vlsi.2011.12.006_bib11
  article-title: Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a class of Finite Fields
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.660172
– volume: 48
  start-page: 522
  issue: 5
  year: 1999
  ident: 10.1016/j.vlsi.2011.12.006_bib27
  article-title: Mastrovito Multiplier for All Trinomials
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.769434
– ident: 10.1016/j.vlsi.2011.12.006_bib26
– volume: 46
  start-page: 162
  issue: 2
  year: 1997
  ident: 10.1016/j.vlsi.2011.12.006_bib30
  article-title: Efficient exponentiation of a primitive root in GF(2m)
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.565591
– volume: 52
  start-page: 1535
  issue: 12
  year: 2003
  ident: 10.1016/j.vlsi.2011.12.006_bib25
  article-title: Parallel multipliers based on special irreducible pentanomials
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.2003.1252850
– volume: 51
  start-page: 750
  issue: 7
  year: 2002
  ident: 10.1016/j.vlsi.2011.12.006_bib29
  article-title: Bit-parallel finite field multiplier and squarer using polynomial basis
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.2002.1017695
– volume: 45
  start-page: 319
  issue: 3
  year: 1996
  ident: 10.1016/j.vlsi.2011.12.006_bib1
  article-title: GF(2m) multiplication and division over the dual basis
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.485570
– volume: 53
  start-page: 945
  issue: 8
  year: 2004
  ident: 10.1016/j.vlsi.2011.12.006_bib24
  article-title: Low complexity bit parallel architectures for polynomial basis multiplication over GF(2m)
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.2004.47
– volume: 38
  start-page: 796
  issue: 7
  year: 1991
  ident: 10.1016/j.vlsi.2011.12.006_bib28
  article-title: Systolic array implementation of multipliers for finite fields GF(2m)
  publication-title: IEEE Transactions on Circuits and Systems
  doi: 10.1109/31.135751
– volume: 57
  start-page: 1071
  issue: 5
  year: 2010
  ident: 10.1016/j.vlsi.2011.12.006_bib14
  article-title: Efficient Decoder Design for Nonbinary Quasicyclic LDPC Codes
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– ident: 10.1016/j.vlsi.2011.12.006_bib15
  doi: 10.1007/3-540-51083-4_67
– ident: 10.1016/j.vlsi.2011.12.006_bib20
SSID ssj0001475
Score 1.9734142
Snippet Finite field GF(2m) arithmetic is becoming increasingly important for a variety of different applications including cryptography, error coding theory and...
Finite field GF (2 m) arithmetic is becoming increasingly important for a variety of different applications including cryptography, error coding theory and...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 197
SubjectTerms Algorithms
Applied sciences
Arithmetic
Bit-parallel multipliers
Blocking
Circuit properties
Complexity
Cryptography
Design. Technologies. Operation analysis. Testing
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Finite field arithmetic
formula omitted
Gates
Integrated circuits
Irreducible pentanomials
Mathematical analysis
Matrix decomposition
Multipliers
Polynomial basis
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Title Low complexity bit-parallel polynomial basis multipliers over binary fields for special irreducible pentanomials
URI https://dx.doi.org/10.1016/j.vlsi.2011.12.006
https://www.proquest.com/docview/1283667498
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001475
  issn: 0167-9260
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1872-7522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001475
  issn: 0167-9260
  databaseCode: ACRLP
  dateStart: 19950601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001475
  issn: 0167-9260
  databaseCode: AIKHN
  dateStart: 19950601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001475
  issn: 0167-9260
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvSSU0CYN3TRdFOgtuLuy5IeOy9KwbR6UpIG9CcmSwcGszdrbNpf89sz4kWRp2UNOBqMXGnk0kr_5PkK-cKZjacECzvKxJ2zKPR1z44nA6JBZl4bNhf7lVTi7FT_mwXyLTPtcGIRVdr6_9emNt-7ejLrZHJVZNrpBAL1ERiykEWL-HDPYRYQqBl8fnmEeTERBz--NpbvEmRbj9TuvspbGE68EUfXo_5vT21JXMGVpq3Xxj9tu9qKzd2SvCyLppB3ne7LlFvtk9wW14AEpL4o_tMGLu78QaFOT1R7SfOe5y2lZ5PeYjgxtwC6WVbSDFaIsNkVMJxTHNF3a4NsqCoEtrVqhepotl8j2mpnc0RKB521D1Qdye_bt13TmdeoKXsJDXntWBnysWcrBijw0Ek4OmFAZSh3IxEQGid1YGjTS8oEQzrfSt3D402MTR0lk-SHZXhQL95HQ2FkILIRMTZKKxLpYaMdsLIyNkhSOSAPC-mlVSUc9jgoYueoxZncKTaHQFIr5CgYyIKdPdcqWeGNj6aC3llpbPgp2ho31hmumfeoK5oGB62UDctLbWsGHh39T9MIVqwoaiHkYRkLGR6_s_BPZ8RtxDUS0HZPterlynyHEqc2wWcND8mYyvb74ic_v57OrR5Tj_6Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgCEUClUXR7FlXpDYdexncTHqqLawrYXWmlvlh07UqpoN9psgV7625nJow-BeuAaObY148zD-eYbgAPBbaY9aiB4MYmkL0RkM-EiqZxNuA9F0l7on54l0wv5ba7mG3A01MIQrLK3_Z1Nb611_2TcS3Ncl-X4BwHoNTFiEY0Qj-dP4KlUcUoZ2JebO5wHl6kaCL5peF8504G8flZN2fF40p0gtT36t3d6WdsGZVZ0zS7-stutMzregld9FMkOu42-ho2w2IYX97gF30A9W_5iLWA8_MZIm7lyHRHPd1WFitXL6prqkXEOdGNlw3pcIfXFZgTqxOFUp8tagFvDMLJlTdepnpWrFdG9lq4KrCbkeTdR8xYujr-eH02jvr1ClItErCOvlZhYXghUo0icxtSBKioTbZXOXeqI2Y0Xqu0tr6QMsdexx-zPTlyW5qkXO7C5WC7CLrAseIwspC5cXsjch0zawH0mnU_zAnOkEfBBrCbvucepBUZlBpDZpSFVGFKF4bHBjYzg8-07dce88ehoNWjLPDg_Bl3Do-_tPVDt7VIoB462l49gf9C1wS-PfqfYRVheNThBJpIklTp795-Lf4Jn0_PTmZmdnH1_D8_jttMGwds-wOZ6dRU-Yryzdnvtef4Dcrz_pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+complexity+bit-parallel+polynomial+basis+multipliers+over+binary+fields+for+special+irreducible+pentanomials&rft.jtitle=Integration+%28Amsterdam%29&rft.au=Imana%2C+Jose+L&rft.au=Hermida%2C+Roman&rft.au=Tirado%2C+Francisco&rft.date=2013-03-01&rft.issn=0167-9260&rft.volume=46&rft.issue=2&rft.spage=197&rft.epage=210&rft_id=info:doi/10.1016%2Fj.vlsi.2011.12.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9260&client=summon