Optimal circulant graphs as low-latency network topologies
Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for high-performance computing clusters, we optimize the diameters, mean path lengths, and bisection widths of circulant topologies. We obtain a series o...
Saved in:
| Published in | The Journal of supercomputing Vol. 78; no. 11; pp. 13491 - 13510 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.07.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-8542 1573-0484 1573-0484 |
| DOI | 10.1007/s11227-022-04396-5 |
Cover
| Abstract | Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for high-performance computing clusters, we optimize the diameters, mean path lengths, and bisection widths of circulant topologies. We obtain a series of optimal circulant topologies of size
2
5
through
2
10
and compare them with torus and hypercube of the same sizes and degrees. We further benchmark on a broad variety of applications including effective bandwidth, FFTE, Graph 500 and NAS parallel benchmarks to compare the optimal circulant topologies and Cartesian products of optimal circulant topologies and fully connected topologies with corresponding torus and hypercube. Simulation results demonstrate superior potentials of the optimal circulant topologies for communication-intensive applications. We also find the strengths of the Cartesian products in exploiting global communication with data traffic patterns of specific applications or internal algorithms. |
|---|---|
| AbstractList | Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for high-performance computing clusters, we optimize the diameters, mean path lengths, and bisection widths of circulant topologies. We obtain a series of optimal circulant topologies of size
2
5
through
2
10
and compare them with torus and hypercube of the same sizes and degrees. We further benchmark on a broad variety of applications including effective bandwidth, FFTE, Graph 500 and NAS parallel benchmarks to compare the optimal circulant topologies and Cartesian products of optimal circulant topologies and fully connected topologies with corresponding torus and hypercube. Simulation results demonstrate superior potentials of the optimal circulant topologies for communication-intensive applications. We also find the strengths of the Cartesian products in exploiting global communication with data traffic patterns of specific applications or internal algorithms. Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for high-performance computing clusters, we optimize the diameters, mean path lengths, and bisection widths of circulant topologies. We obtain a series of optimal circulant topologies of size 25 through 210 and compare them with torus and hypercube of the same sizes and degrees. We further benchmark on a broad variety of applications including effective bandwidth, FFTE, Graph 500 and NAS parallel benchmarks to compare the optimal circulant topologies and Cartesian products of optimal circulant topologies and fully connected topologies with corresponding torus and hypercube. Simulation results demonstrate superior potentials of the optimal circulant topologies for communication-intensive applications. We also find the strengths of the Cartesian products in exploiting global communication with data traffic patterns of specific applications or internal algorithms. |
| Author | Deng, Yuefan F. Ramos, Alexandre Huang, Xiaolong |
| Author_xml | – sequence: 1 givenname: Xiaolong orcidid: 0000-0002-1174-7148 surname: Huang fullname: Huang, Xiaolong organization: Department of Applied Mathematics and Statistics, Stony Brook University – sequence: 2 givenname: Alexandre orcidid: 0000-0003-4681-3069 surname: F. Ramos fullname: F. Ramos, Alexandre organization: Escola de Artes, Ciências e Humanidades, Universidade de São Paulo – sequence: 3 givenname: Yuefan orcidid: 0000-0002-5224-3958 surname: Deng fullname: Deng, Yuefan email: yuefan.deng@stonybrook.edu organization: Department of Applied Mathematics and Statistics, Stony Brook University, Mathematics, Division of Science, New York University Abu Dhabi |
| BookMark | eNqNj01LAzEURYNUsK3-AVcDrkfzOZO4k-IXFLrRdcikmTo1JmOSofTfG52C4KK4ejw49717ZmDivDMAXCJ4jSCsbyJCGNclxLiElIiqZCdgilhN8srpBEyhwLDkjOIzMItxC2HGajIFt6s-dR_KFroLerDKpWITVP8WCxUL63elVck4vS-cSTsf3ovke2_9pjPxHJy2ykZzcZhz8Ppw_7J4Kperx-fF3bLUpCKpXFNsKoHWmBiIGCG4bpuWi4a3kIhG0EbRljNUG50pJDSjzbrFlW6pFho1nMwBGe8Orlf7nbJW9iF3DnuJoPzWl6O-zPryR1-ynLoaU33wn4OJSW79EFwuKnHFKeMCMZEpPlI6-BiDaaXukkqddymozh5_gP9E_9Xq4BIz7DYm_LY6kvoCIpWM-Q |
| CitedBy_id | crossref_primary_10_3390_mi14010141 crossref_primary_10_1007_s11227_023_05699_x crossref_primary_10_1109_TNSE_2022_3211985 crossref_primary_10_1134_S1995080223070132 crossref_primary_10_1134_S1995080223080425 crossref_primary_10_3390_sym16010127 crossref_primary_10_26907_2541_7746_2023_3_282_293 crossref_primary_10_3390_bdcc7020080 crossref_primary_10_1016_j_comnet_2025_111178 crossref_primary_10_1134_S199047892204010X crossref_primary_10_1134_S1995080223120351 crossref_primary_10_3390_a16010010 crossref_primary_10_1016_j_parco_2022_102983 crossref_primary_10_1109_ACCESS_2023_3279494 |
| Cites_doi | 10.26493/1855-3974.969.659 10.1016/j.jsc.2013.09.003 10.1007/s11227-020-03216-y 10.1109/tpds.2014.2315201 10.1109/tpds.2018.2864286 10.1147/rd.521.0199 10.1109/5.48826 10.3390/math7121214 10.1002/net.3230040405 10.1109/snpd.2012.19 10.1109/ipdps.2015.93 10.1109/snpd.2013.43 10.1201/b16132 10.1109/ipdpsw.2016.146 10.1177/1094342005051521 10.1142/s0129183118500481 10.1002/net.20076 10.1109/isca.2008.19 10.1016/j.endm.2014.08.031 10.1145/2063384.2063419 10.1109/icnp.2011.6089084 10.1016/j.aml.2012.05.013 10.1109/mc.2003.1193227 10.1016/j.jpdc.2014.06.008 10.1007/s11432-016-5588-7 10.1109/ipdps.2001.925208 10.1155/2011/189434 10.1109/tpds.2012.93 10.1109/ipdps.2012.91 10.1109/tc.1985.6312192 10.1023/a:1008160021085 10.1109/12.477250 10.1007/978-3-642-38527-8_16 10.1016/s0304-3975(01)00341-3 10.3390/sym12010002 10.1109/opcs.2019.8880247 10.1016/j.disc.2018.05.024 10.1201/b10959 10.1109/tpds.2010.89 10.1109/sc.2012.39 10.1109/12.53599 10.1109/mc.2009.370 10.1109/cluster.2018.00090 10.1016/j.parco.2021.102805 10.1109/sc41405.2020.00039 10.1109/jproc.2011.2182009 10.1109/tcs.1985.1085667 10.1109/access.2021.3131635 10.1142/s021797921250169x 10.1109/mm.2006.65 10.1109/hoti.2010.23 10.1006/jpdc.1995.1002 10.1002/jgt.3190080406 10.1177/109434209100500306 10.1016/j.tcs.2007.04.002 10.1109/tc.1980.1675651 10.1109/12.53600 10.1109/tpds.2016.2613043 10.1142/s1793830912500024 10.1109/71.536939 10.1109/12.93744 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION JQ2 ADTOC UNPAY |
| DOI | 10.1007/s11227-022-04396-5 |
| DatabaseName | CrossRef ProQuest Computer Science Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 13510 |
| ExternalDocumentID | 003106740 10_1007_s11227_022_04396_5 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 ABJCF ADTOC BGLVJ CCPQU K7- M7S PHGZM PHGZT PQGLB PTHSS UNPAY |
| ID | FETCH-LOGICAL-c363t-d42e691d23e0153327fbf89b8f039b94ba4f8517ec69119c54bdf26cf4c9c1b83 |
| IEDL.DBID | UNPAY |
| ISSN | 0920-8542 1573-0484 |
| IngestDate | Sun Oct 26 04:09:11 EDT 2025 Thu Sep 25 00:53:37 EDT 2025 Wed Oct 01 03:43:52 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Fri Feb 21 02:46:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Circulant graph Benchmarks Network topology Optimization Latency |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-d42e691d23e0153327fbf89b8f039b94ba4f8517ec69119c54bdf26cf4c9c1b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4681-3069 0000-0002-1174-7148 0000-0002-5224-3958 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1007/s11227-022-04396-5 |
| PQID | 2684589159 |
| PQPubID | 2043774 |
| PageCount | 20 |
| ParticipantIDs | unpaywall_primary_10_1007_s11227_022_04396_5 proquest_journals_2684589159 crossref_citationtrail_10_1007_s11227_022_04396_5 crossref_primary_10_1007_s11227_022_04396_5 springer_journals_10_1007_s11227_022_04396_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | YasudoRKoibuchiMNakanoKDesigning high-performance interconnection networks with host-switch graphsIEEE Trans Parallel Distrib Syst201930231533010.1109/tpds.2018.2864286 LewisRRThe degree-diameter problem for circulant graphs of degrees 10 and 11Discret Math2018341925532566382876610.1016/j.disc.2018.05.0241392.05027 HammackRHImrichWKlavžarSHandbook of product graphs2011Boca RatonCRC Press10.1201/b10959 Effective Bandwidth (b_eff) Benchmark (2021) https://fs.hlrs.de/projects/par/mpi/b_eff Ruskey F (2003) Combinatorial generation. Preliminary working draft University of Victoria, Victoria, BC, Canada 11:20 ZhangYHuangXXuZA structured table of graphs with symmetries and other special propertiesSymmetry2019121210.3390/sym12010002 ZhangPPowellRDengYInterlacing bypass rings to torus networks for more efficient networksIEEE Trans Parallel Distrib Syst201122228729510.1109/tpds.2010.89 MonakhovOGMonakhovaEARomanovAYAdaptive dynamic shortest path search algorithm in networks-on-chip based on circulant topologiesIEEE Access2021916083616084610.1109/access.2021.3131635 AjimaYSumimotoSShimizuTTofu: a 6D mesh/torus interconnect for exascale computersComputer20094211364010.1109/mc.2009.370 Kim J, Dally WJ, Scott S, (2008) Technology-driven, highly-scalable dragonfly topology. In: (2008) International Symposium on Computer Architecture. IEEE, Beijing, China. https://doi.org/10.1109/isca.2008.19 NakaoMSakaiMHanadaYGraph optimization algorithm for low-latency interconnection networksParallel Comput2021106102805430101910.1016/j.parco.2021.102805 DallyWTowlesBPrinciples and practices of interconnection networks2003AmsterdamElsevier Science & Technology Feng R, Zhang P, Deng Y (2013) Deadlock-free routing algorithms for 6d mesh/iBT interconnection networks. In: 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE, Honolulu, HI, USA, https://doi.org/10.1109/snpd.2013.43 HwangFA survey on multi-loop networksTheor Comput Sci20032991–3107121197314810.1016/s0304-3975(01)00341-31038.68004 DandamudiSEagerDHierarchical interconnection networks for multicomputer systemsIEEE Trans Comput199039678679710.1109/12.53600 DengYRamosAFHornosJEMSymmetry insights for design of supercomputer network topologies: roots and weights latticesInt J Mod Phys B20122631125016910.1142/s021797921250169x BermondJComellasFHsuDDistributed loop computer-networks: a surveyJ Parallel Distrib Comput199524121010.1006/jpdc.1995.1002 FuHLiaoJYangJThe sunway TaihuLight supercomputer: system and applicationsSci China Inf Sci201610.1007/s11432-016-5588-7 FFTE : A fast fourier transform package (2021) http://www.ffte.jp Top 500 supercomputer site (2021) http://www.top500.org TruongNTFujiwaraIKoibuchiMDistributed shortcut networks: low-latency low-degree non-random topologies targeting the diameter and cable length trade-offIEEE Trans Parallel Distrib Syst2017284989100110.1109/tpds.2016.2613043 MooreGECramming more components onto integrated circuitsElectronics1965388114117 Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future. Proc IEEE 100(Special Centennial Issue):1411–1430. https://doi.org/10.1109/jproc.2011.2182009 Alverson R, Roweth D, Kaplan L (2010) The gemini system interconnect. In: (2010) 18th IEEE Symposium on High Performance Interconnects. IEEE, Mountain View, CA, USA,. https://doi.org/10.1109/hoti.2010.23 ZhangPDengYDesign and analysis of pipelined broadcast algorithms for the all-port interlaced bypass torus networksIEEE Trans Parallel Distrib Syst201223122245225310.1109/tpds.2012.93 Monakhov O, Monakhova E, (2019) A comparative analysis of bioinspired algorithms for solving the problem of optimization of circulant and hypercirculant networks. In: (2019) 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS), IEEE. https://doi.org/10.1109/opcs.2019.8880247 SabinoAUVasconcelosMFSDengYSymmetry-guided design of topologies for supercomputer networksInt J Mod Phys C201829071850048383530610.1142/s0129183118500481 Abd-El-BarrMAl-SomaniTFTopological properties of hierarchical interconnection networks: a review and comparisonJ Electr Comput Eng2011201111210.1155/2011/189434 Feng R, Zhang P, Deng Y (2012) Simulated performance evaluation of a 6d mesh/iBT interconnect. In: 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE, Kyoto, Japan, https://doi.org/10.1109/snpd.2012.19 Ma T, Bosilca G, Bouteiller A (2012) HierKNEM: an adaptive framework for kernel-assisted and topology-aware collective communications on many-core clusters. In: (2012) IEEE 26th International Parallel and Distributed Processing Symposium, IEEE. https://doi.org/10.1109/ipdps.2012.91 ThakurRRabenseifnerRGroppWOptimization of collective communication operations in MPICHInt J High Perform Comput Appl2005191496610.1177/1094342005051521 BoeschFTindellRCirculants and their connectivitiesJ Graph Theory19848448749976649810.1002/jgt.31900804060549.05048 BrightwellRPedrettiKUnderwoodKSeaStar interconnect: balanced bandwidth for scalable performanceIEEE Micro2006263415710.1109/mm.2006.65 GómezDGutierrezJIbeasÁOptimal routing in double loop networksTheor Comput Sci20073811–36885234739410.1016/j.tcs.2007.04.0021188.68213 Deveci M, Kaya K, Ucar B (2015) Fast and high quality topology-aware task mapping. In: (2015) IEEE International Parallel and Distributed Processing Symposium. IEEE. https://doi.org/10.1109/ipdps.2015.93 Ajima Y, Kawashima T, Okamoto T et al (2018) The tofu interconnect d. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, Belfast, UK, https://doi.org/10.1109/cluster.2018.00090 ZhangPDengYAn analysis of the topological properties of the interlaced bypass torus (iBT) networksAppl Math Lett2012251221472155296780710.1016/j.aml.2012.05.0131259.68014 Bevan D, Erskine G, Lewis R (2017) Large circulant graphs of fixed diameter and arbitrary degree. Ars Math Contemp 13(2):275–291. https://doi.org/10.26493/1855-3974.969.659 XuZHuangXJimenezFA new record of graph enumeration enabled by parallel processingMathematics2019712121410.3390/math7121214 ObradoviçNPetersJRužićGReliable broadcasting in double loop networksNetworks20054628897215470610.1002/net.200761077.68524 Mirsadeghi SH, Afsahi A (2016) PTRAM: a parallel topology-and routing-aware mapping framework for large-scale HPC systems. In: (2016) IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE. https://doi.org/10.1109/ipdpsw.2016.146 WolfWA decade of hardware/ software codesignComputer2003364384310.1109/mc.2003.1193227 Parsonage E, Nguyen HX, Bowden R et al (2011) Generalized graph products for network design and analysis. In: 2011 19th IEEE International Conference on Network Protocols. IEEE, https://doi.org/10.1109/icnp.2011.6089084 Sanders P, Schulz C (2013) Think locally, act globally: highly balanced graph partitioning. In: Experimental Algorithms. Lecture notes in computer science, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 164–175, https://doi.org/10.1007/978-3-642-38527-8_16 BaileyDBarszczEBartonJThe NAS parallel benchmarksInt J Supercomput Appl199153637310.1177/109434209100500306 McKayBDPipernoAPractical graph isomorphism, IIJ Symb Comput20146094112313138110.1016/j.jsc.2013.09.0031394.05079 Graph 500 (2021) http://graph500.org Koniges A, Rabenseifner R, Solchenbach K (2001) Benchmark design for characterization of balanced high-performance architectures. In: Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001. IEEE Comput. Soc, San Francisco, CA, USA. https://doi.org/10.1109/ipdps.2001.925208 NPB: NAS parallel benchmarks (2021) http://www.nas.nasa.gov/publications/npb.html LauFChenGOptimal layouts of midimew networksIEEE Trans Parallel Distrib Syst19967995496110.1109/71.536939 MurphyRCWheelerKBBarrettBWIntroducing the graph 500Cray Users Group (CUG)2010194574 DengYGuoMRamosAFOptimal low-latency network topologies for cluster performance enhancementJ Supercomput202076129558958410.1007/s11227-020-03216-y Feria-PurónRRyanJPérez-RosésHSearching for large multi-loop networksElectron Notes Discret Math201446233240351567010.1016/j.endm.2014.08.0311338.05252 BeivideRHerradaEBalcazarJOptimal distance networks of low degree for parallel computersIEEE Trans Comput1991401011091124113051610.1109/12.937441395.68024 ArndtJMatters computational: ideas, algorithms, source code2010BerlinSpringer Science & Business Media1210.68128 ZhangPDengYFengREvaluation of various networks configurated by adding bypass or torus linksIEEE Trans Parallel Distrib Syst201526498499610.1109/tpds.2014.2315201 GrossJLYellenJZhangPHandbook of graph theory2013Boca RatonCRC Press10.1201/b16132 MonakhovaEAA survey on undirected circulant graphsDiscret Math Algorithms Appl201204011250002291308810.1142/s17938309125000241247.05115 MukhopadhyayaKSinhaBFault-tolerant routing in distributed loop networksIEEE Trans Comput199544121452145610.1109/12.4772501048.68511 HayesJMudgeTHypercube supercomputersProc IEEE198977121829184110.1109/5.48826 WuCLFengTYOn a class of multistage interconnection networksIEEE Trans Comput C198029869470258213310.1109/tc.1980.16756510444.94048 CasanovaHGierschALegrandAVersatile, scalable, and accurate simulation of distributed applications and platformsJ Parallel Distrib Comput201474102899291710.1016/j.jpdc.2014.06.008 Faanes G, Bataineh A, Roweth D, (2012) Cray cascade: a scalable HPC system based on a dragonfly network. In: (2012) International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, Salt Lake City, UT, USA. https://doi.org/10.1109/sc.2012.39 LeisersonCEFat-trees: universal networks for hardware-efficient supercomputingIEEE Trans Comput C1985341089290110.1109/tc.1985.6312192 TakahashiDKanadaYHigh-performance radix-2, 3 and 5 parallel 1-D complex FFT algorithms for distributed-memory parallel computersJ Supercomput200015220722810.1023/a: J Bermond (4396_CR33) 1995; 24 EA Monakhova (4396_CR35) 2012; 04 RR Lewis (4396_CR45) 2018; 341 J Arndt (4396_CR48) 2010 W Wolf (4396_CR65) 2003; 36 OG Monakhov (4396_CR67) 2021; 9 D Takahashi (4396_CR57) 2000; 15 RH Hammack (4396_CR70) 2011 W Dally (4396_CR15) 1990; 39 Y Ajima (4396_CR9) 2009; 42 Y Deng (4396_CR27) 2020; 76 M Abd-El-Barr (4396_CR72) 2011; 2011 J Hayes (4396_CR11) 1989; 77 H Casanova (4396_CR53) 2014; 74 4396_CR49 P Zhang (4396_CR22) 2012; 23 4396_CR42 4396_CR44 F Lau (4396_CR38) 1996; 7 4396_CR1 CE Leiserson (4396_CR12) 1985; 34 JL Gross (4396_CR46) 2013 4396_CR7 M Nakao (4396_CR32) 2021; 106 4396_CR8 S Dandamudi (4396_CR71) 1990; 39 W Dally (4396_CR4) 2003 4396_CR50 R Thakur (4396_CR62) 2005; 19 4396_CR51 Z Xu (4396_CR26) 2019; 7 F Boesch (4396_CR36) 1985; 32 D Bailey (4396_CR61) 1991; 5 4396_CR58 4396_CR16 D Gómez (4396_CR40) 2007; 381 4396_CR10 4396_CR54 P Zhang (4396_CR23) 2015; 26 N Obradoviç (4396_CR41) 2005; 46 4396_CR56 4396_CR55 R Yasudo (4396_CR30) 2019; 30 4396_CR18 4396_CR17 P Zhang (4396_CR21) 2012; 25 Y Zhang (4396_CR28) 2019; 12 Y Deng (4396_CR3) 2012; 26 R Feria-Purón (4396_CR43) 2014; 46 R Beivide (4396_CR37) 1991; 40 IBM Blue Gene Team (4396_CR6) 2008; 52 H Fu (4396_CR13) 2016 P Zhang (4396_CR20) 2011; 22 4396_CR60 4396_CR63 CL Wu (4396_CR14) 1980; 29 VG Cerf (4396_CR19) 1974; 4 R Brightwell (4396_CR5) 2006; 26 NT Truong (4396_CR29) 2017; 28 4396_CR25 4396_CR69 4396_CR24 K Mukhopadhyaya (4396_CR39) 1995; 44 4396_CR68 BD McKay (4396_CR52) 2014; 60 RC Murphy (4396_CR59) 2010; 19 4396_CR64 F Boesch (4396_CR47) 1984; 8 4396_CR66 AU Sabino (4396_CR31) 2018; 29 GE Moore (4396_CR2) 1965; 38 F Hwang (4396_CR34) 2003; 299 |
| References_xml | – reference: BeivideRHerradaEBalcazarJOptimal distance networks of low degree for parallel computersIEEE Trans Comput1991401011091124113051610.1109/12.937441395.68024 – reference: TruongNTFujiwaraIKoibuchiMDistributed shortcut networks: low-latency low-degree non-random topologies targeting the diameter and cable length trade-offIEEE Trans Parallel Distrib Syst2017284989100110.1109/tpds.2016.2613043 – reference: TakahashiDKanadaYHigh-performance radix-2, 3 and 5 parallel 1-D complex FFT algorithms for distributed-memory parallel computersJ Supercomput200015220722810.1023/a:10081600210850953.68514 – reference: NPB: NAS parallel benchmarks (2021) http://www.nas.nasa.gov/publications/npb.html – reference: Top 500 supercomputer site (2021) http://www.top500.org – reference: MonakhovaEAA survey on undirected circulant graphsDiscret Math Algorithms Appl201204011250002291308810.1142/s17938309125000241247.05115 – reference: Ajima Y, Kawashima T, Okamoto T et al (2018) The tofu interconnect d. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, Belfast, UK, https://doi.org/10.1109/cluster.2018.00090 – reference: GrossJLYellenJZhangPHandbook of graph theory2013Boca RatonCRC Press10.1201/b16132 – reference: HammackRHImrichWKlavžarSHandbook of product graphs2011Boca RatonCRC Press10.1201/b10959 – reference: Ruskey F (2003) Combinatorial generation. Preliminary working draft University of Victoria, Victoria, BC, Canada 11:20 – reference: Sanders P, Schulz C (2013) Think locally, act globally: highly balanced graph partitioning. In: Experimental Algorithms. Lecture notes in computer science, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 164–175, https://doi.org/10.1007/978-3-642-38527-8_16 – reference: Faanes G, Bataineh A, Roweth D, (2012) Cray cascade: a scalable HPC system based on a dragonfly network. In: (2012) International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, Salt Lake City, UT, USA. https://doi.org/10.1109/sc.2012.39 – reference: Deveci M, Kaya K, Ucar B (2015) Fast and high quality topology-aware task mapping. In: (2015) IEEE International Parallel and Distributed Processing Symposium. IEEE. https://doi.org/10.1109/ipdps.2015.93 – reference: BaileyDBarszczEBartonJThe NAS parallel benchmarksInt J Supercomput Appl199153637310.1177/109434209100500306 – reference: Sensi DD, Girolamo SD, McMahon KH et al (2020) An in-depth analysis of the slingshot interconnect. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, Atlanta, GA, USA, https://doi.org/10.1109/sc41405.2020.00039 – reference: MonakhovOGMonakhovaEARomanovAYAdaptive dynamic shortest path search algorithm in networks-on-chip based on circulant topologiesIEEE Access2021916083616084610.1109/access.2021.3131635 – reference: CerfVGCowanDDMullinRCA lower bound on the average shortest path length in regular graphsNetworks19744433534237927510.1002/net.32300404050317.90054 – reference: SabinoAUVasconcelosMFSDengYSymmetry-guided design of topologies for supercomputer networksInt J Mod Phys C201829071850048383530610.1142/s0129183118500481 – reference: ZhangPDengYDesign and analysis of pipelined broadcast algorithms for the all-port interlaced bypass torus networksIEEE Trans Parallel Distrib Syst201223122245225310.1109/tpds.2012.93 – reference: Feng R, Zhang P, Deng Y (2013) Deadlock-free routing algorithms for 6d mesh/iBT interconnection networks. In: 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE, Honolulu, HI, USA, https://doi.org/10.1109/snpd.2013.43 – reference: DengYGuoMRamosAFOptimal low-latency network topologies for cluster performance enhancementJ Supercomput202076129558958410.1007/s11227-020-03216-y – reference: HwangFA survey on multi-loop networksTheor Comput Sci20032991–3107121197314810.1016/s0304-3975(01)00341-31038.68004 – reference: ThakurRRabenseifnerRGroppWOptimization of collective communication operations in MPICHInt J High Perform Comput Appl2005191496610.1177/1094342005051521 – reference: Ma T, Bosilca G, Bouteiller A (2012) HierKNEM: an adaptive framework for kernel-assisted and topology-aware collective communications on many-core clusters. In: (2012) IEEE 26th International Parallel and Distributed Processing Symposium, IEEE. https://doi.org/10.1109/ipdps.2012.91 – reference: MooreGECramming more components onto integrated circuitsElectronics1965388114117 – reference: GómezDGutierrezJIbeasÁOptimal routing in double loop networksTheor Comput Sci20073811–36885234739410.1016/j.tcs.2007.04.0021188.68213 – reference: FFTE : A fast fourier transform package (2021) http://www.ffte.jp/ – reference: MurphyRCWheelerKBBarrettBWIntroducing the graph 500Cray Users Group (CUG)2010194574 – reference: Fxt: a library of algorithms (2021) https://www.jjj.de/fxt/ – reference: Alverson R, Roweth D, Kaplan L (2010) The gemini system interconnect. In: (2010) 18th IEEE Symposium on High Performance Interconnects. IEEE, Mountain View, CA, USA,. https://doi.org/10.1109/hoti.2010.23 – reference: Bevan D, Erskine G, Lewis R (2017) Large circulant graphs of fixed diameter and arbitrary degree. Ars Math Contemp 13(2):275–291. https://doi.org/10.26493/1855-3974.969.659, – reference: ObradoviçNPetersJRužićGReliable broadcasting in double loop networksNetworks20054628897215470610.1002/net.200761077.68524 – reference: CasanovaHGierschALegrandAVersatile, scalable, and accurate simulation of distributed applications and platformsJ Parallel Distrib Comput201474102899291710.1016/j.jpdc.2014.06.008 – reference: Monakhov O, Monakhova E, (2019) A comparative analysis of bioinspired algorithms for solving the problem of optimization of circulant and hypercirculant networks. In: (2019) 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS), IEEE. https://doi.org/10.1109/opcs.2019.8880247 – reference: DengYRamosAFHornosJEMSymmetry insights for design of supercomputer network topologies: roots and weights latticesInt J Mod Phys B20122631125016910.1142/s021797921250169x – reference: AjimaYSumimotoSShimizuTTofu: a 6D mesh/torus interconnect for exascale computersComputer20094211364010.1109/mc.2009.370 – reference: BoeschFTindellRCirculants and their connectivitiesJ Graph Theory19848448749976649810.1002/jgt.31900804060549.05048 – reference: Kim J, Dally WJ, Scott S, (2008) Technology-driven, highly-scalable dragonfly topology. In: (2008) International Symposium on Computer Architecture. IEEE, Beijing, China. https://doi.org/10.1109/isca.2008.19 – reference: ZhangYHuangXXuZA structured table of graphs with symmetries and other special propertiesSymmetry2019121210.3390/sym12010002 – reference: BrightwellRPedrettiKUnderwoodKSeaStar interconnect: balanced bandwidth for scalable performanceIEEE Micro2006263415710.1109/mm.2006.65 – reference: WolfWA decade of hardware/ software codesignComputer2003364384310.1109/mc.2003.1193227 – reference: XuZHuangXJimenezFA new record of graph enumeration enabled by parallel processingMathematics2019712121410.3390/math7121214 – reference: McKayBDPipernoAPractical graph isomorphism, IIJ Symb Comput20146094112313138110.1016/j.jsc.2013.09.0031394.05079 – reference: LewisRRThe degree-diameter problem for circulant graphs of degrees 10 and 11Discret Math2018341925532566382876610.1016/j.disc.2018.05.0241392.05027 – reference: YasudoRKoibuchiMNakanoKDesigning high-performance interconnection networks with host-switch graphsIEEE Trans Parallel Distrib Syst201930231533010.1109/tpds.2018.2864286 – reference: DandamudiSEagerDHierarchical interconnection networks for multicomputer systemsIEEE Trans Comput199039678679710.1109/12.53600 – reference: IBM Blue Gene TeamOverview of the IBM Blue Gene/P projectIBM J Res Dev2008521.219922010.1147/rd.521.0199 – reference: ZhangPDengYFengREvaluation of various networks configurated by adding bypass or torus linksIEEE Trans Parallel Distrib Syst201526498499610.1109/tpds.2014.2315201 – reference: LauFChenGOptimal layouts of midimew networksIEEE Trans Parallel Distrib Syst19967995496110.1109/71.536939 – reference: Chen D, Parker JJ, Eisley NA et al (2011) The IBM Blue Gene/Q interconnection network and message unit. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on - SC′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\prime }$$\end{document}11. ACM Press, Seattle, WA, USA, https://doi.org/10.1145/2063384.2063419 – reference: ZhangPDengYAn analysis of the topological properties of the interlaced bypass torus (iBT) networksAppl Math Lett2012251221472155296780710.1016/j.aml.2012.05.0131259.68014 – reference: Parsonage E, Nguyen HX, Bowden R et al (2011) Generalized graph products for network design and analysis. In: 2011 19th IEEE International Conference on Network Protocols. IEEE, https://doi.org/10.1109/icnp.2011.6089084, – reference: Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future. Proc IEEE 100(Special Centennial Issue):1411–1430. https://doi.org/10.1109/jproc.2011.2182009 – reference: HayesJMudgeTHypercube supercomputersProc IEEE198977121829184110.1109/5.48826 – reference: Abd-El-BarrMAl-SomaniTFTopological properties of hierarchical interconnection networks: a review and comparisonJ Electr Comput Eng2011201111210.1155/2011/189434 – reference: DallyWTowlesBPrinciples and practices of interconnection networks2003AmsterdamElsevier Science & Technology – reference: Effective Bandwidth (b_eff) Benchmark (2021) https://fs.hlrs.de/projects/par/mpi/b_eff/ – reference: Mirsadeghi SH, Afsahi A (2016) PTRAM: a parallel topology-and routing-aware mapping framework for large-scale HPC systems. In: (2016) IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE. https://doi.org/10.1109/ipdpsw.2016.146 – reference: LeisersonCEFat-trees: universal networks for hardware-efficient supercomputingIEEE Trans Comput C1985341089290110.1109/tc.1985.6312192 – reference: Feria-PurónRRyanJPérez-RosésHSearching for large multi-loop networksElectron Notes Discret Math201446233240351567010.1016/j.endm.2014.08.0311338.05252 – reference: ArndtJMatters computational: ideas, algorithms, source code2010BerlinSpringer Science & Business Media1210.68128 – reference: WuCLFengTYOn a class of multistage interconnection networksIEEE Trans Comput C198029869470258213310.1109/tc.1980.16756510444.94048 – reference: Graph 500 (2021) http://graph500.org/ – reference: ZhangPPowellRDengYInterlacing bypass rings to torus networks for more efficient networksIEEE Trans Parallel Distrib Syst201122228729510.1109/tpds.2010.89 – reference: NakaoMSakaiMHanadaYGraph optimization algorithm for low-latency interconnection networksParallel Comput2021106102805430101910.1016/j.parco.2021.102805 – reference: Feng R, Zhang P, Deng Y (2012) Simulated performance evaluation of a 6d mesh/iBT interconnect. In: 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE, Kyoto, Japan, https://doi.org/10.1109/snpd.2012.19 – reference: BoeschFWangJFReliable circulant networks with minimum transmission delayIEEE Trans Circuits Syst198532121286129181684610.1109/tcs.1985.10856670583.94018 – reference: BermondJComellasFHsuDDistributed loop computer-networks: a surveyJ Parallel Distrib Comput199524121010.1006/jpdc.1995.1002 – reference: Koniges A, Rabenseifner R, Solchenbach K (2001) Benchmark design for characterization of balanced high-performance architectures. In: Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001. IEEE Comput. Soc, San Francisco, CA, USA. https://doi.org/10.1109/ipdps.2001.925208 – reference: DallyWPerformance analysis of k-ary n-cube interconnection networksIEEE Trans Comput1990396775785283004910.1109/12.53599 – reference: FuHLiaoJYangJThe sunway TaihuLight supercomputer: system and applicationsSci China Inf Sci201610.1007/s11432-016-5588-7 – reference: MukhopadhyayaKSinhaBFault-tolerant routing in distributed loop networksIEEE Trans Comput199544121452145610.1109/12.4772501048.68511 – ident: 4396_CR44 doi: 10.26493/1855-3974.969.659 – volume: 60 start-page: 94 year: 2014 ident: 4396_CR52 publication-title: J Symb Comput doi: 10.1016/j.jsc.2013.09.003 – volume: 76 start-page: 9558 issue: 12 year: 2020 ident: 4396_CR27 publication-title: J Supercomput doi: 10.1007/s11227-020-03216-y – volume: 26 start-page: 984 issue: 4 year: 2015 ident: 4396_CR23 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/tpds.2014.2315201 – volume: 30 start-page: 315 issue: 2 year: 2019 ident: 4396_CR30 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/tpds.2018.2864286 – volume: 52 start-page: 199 issue: 1.2 year: 2008 ident: 4396_CR6 publication-title: IBM J Res Dev doi: 10.1147/rd.521.0199 – volume: 77 start-page: 1829 issue: 12 year: 1989 ident: 4396_CR11 publication-title: Proc IEEE doi: 10.1109/5.48826 – volume: 7 start-page: 1214 issue: 12 year: 2019 ident: 4396_CR26 publication-title: Mathematics doi: 10.3390/math7121214 – volume: 4 start-page: 335 issue: 4 year: 1974 ident: 4396_CR19 publication-title: Networks doi: 10.1002/net.3230040405 – ident: 4396_CR25 doi: 10.1109/snpd.2012.19 – ident: 4396_CR63 doi: 10.1109/ipdps.2015.93 – ident: 4396_CR24 doi: 10.1109/snpd.2013.43 – volume-title: Handbook of graph theory year: 2013 ident: 4396_CR46 doi: 10.1201/b16132 – ident: 4396_CR68 doi: 10.1109/ipdpsw.2016.146 – volume: 19 start-page: 49 issue: 1 year: 2005 ident: 4396_CR62 publication-title: Int J High Perform Comput Appl doi: 10.1177/1094342005051521 – volume: 29 start-page: 1850048 issue: 07 year: 2018 ident: 4396_CR31 publication-title: Int J Mod Phys C doi: 10.1142/s0129183118500481 – volume: 46 start-page: 88 issue: 2 year: 2005 ident: 4396_CR41 publication-title: Networks doi: 10.1002/net.20076 – ident: 4396_CR16 doi: 10.1109/isca.2008.19 – volume: 46 start-page: 233 year: 2014 ident: 4396_CR43 publication-title: Electron Notes Discret Math doi: 10.1016/j.endm.2014.08.031 – ident: 4396_CR8 doi: 10.1145/2063384.2063419 – ident: 4396_CR69 doi: 10.1109/icnp.2011.6089084 – volume: 25 start-page: 2147 issue: 12 year: 2012 ident: 4396_CR21 publication-title: Appl Math Lett doi: 10.1016/j.aml.2012.05.013 – volume: 36 start-page: 38 issue: 4 year: 2003 ident: 4396_CR65 publication-title: Computer doi: 10.1109/mc.2003.1193227 – volume: 74 start-page: 2899 issue: 10 year: 2014 ident: 4396_CR53 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2014.06.008 – year: 2016 ident: 4396_CR13 publication-title: Sci China Inf Sci doi: 10.1007/s11432-016-5588-7 – ident: 4396_CR55 doi: 10.1109/ipdps.2001.925208 – volume: 38 start-page: 114 issue: 8 year: 1965 ident: 4396_CR2 publication-title: Electronics – volume: 2011 start-page: 1 year: 2011 ident: 4396_CR72 publication-title: J Electr Comput Eng doi: 10.1155/2011/189434 – volume: 23 start-page: 2245 issue: 12 year: 2012 ident: 4396_CR22 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/tpds.2012.93 – ident: 4396_CR54 – ident: 4396_CR64 doi: 10.1109/ipdps.2012.91 – volume: 34 start-page: 892 issue: 10 year: 1985 ident: 4396_CR12 publication-title: IEEE Trans Comput C doi: 10.1109/tc.1985.6312192 – volume: 15 start-page: 207 issue: 2 year: 2000 ident: 4396_CR57 publication-title: J Supercomput doi: 10.1023/a:1008160021085 – ident: 4396_CR58 – volume: 44 start-page: 1452 issue: 12 year: 1995 ident: 4396_CR39 publication-title: IEEE Trans Comput doi: 10.1109/12.477250 – ident: 4396_CR51 doi: 10.1007/978-3-642-38527-8_16 – ident: 4396_CR50 – volume: 299 start-page: 107 issue: 1–3 year: 2003 ident: 4396_CR34 publication-title: Theor Comput Sci doi: 10.1016/s0304-3975(01)00341-3 – volume: 12 start-page: 2 issue: 1 year: 2019 ident: 4396_CR28 publication-title: Symmetry doi: 10.3390/sym12010002 – ident: 4396_CR42 doi: 10.1109/opcs.2019.8880247 – ident: 4396_CR60 – volume: 341 start-page: 2553 issue: 9 year: 2018 ident: 4396_CR45 publication-title: Discret Math doi: 10.1016/j.disc.2018.05.024 – volume-title: Handbook of product graphs year: 2011 ident: 4396_CR70 doi: 10.1201/b10959 – volume: 19 start-page: 45 year: 2010 ident: 4396_CR59 publication-title: Cray Users Group (CUG) – volume: 22 start-page: 287 issue: 2 year: 2011 ident: 4396_CR20 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/tpds.2010.89 – ident: 4396_CR17 doi: 10.1109/sc.2012.39 – volume: 39 start-page: 775 issue: 6 year: 1990 ident: 4396_CR15 publication-title: IEEE Trans Comput doi: 10.1109/12.53599 – volume: 42 start-page: 36 issue: 11 year: 2009 ident: 4396_CR9 publication-title: Computer doi: 10.1109/mc.2009.370 – ident: 4396_CR10 doi: 10.1109/cluster.2018.00090 – volume: 106 start-page: 805 issue: 102 year: 2021 ident: 4396_CR32 publication-title: Parallel Comput doi: 10.1016/j.parco.2021.102805 – ident: 4396_CR18 doi: 10.1109/sc41405.2020.00039 – volume-title: Principles and practices of interconnection networks year: 2003 ident: 4396_CR4 – ident: 4396_CR66 doi: 10.1109/jproc.2011.2182009 – volume: 32 start-page: 1286 issue: 12 year: 1985 ident: 4396_CR36 publication-title: IEEE Trans Circuits Syst doi: 10.1109/tcs.1985.1085667 – volume: 9 start-page: 160836 year: 2021 ident: 4396_CR67 publication-title: IEEE Access doi: 10.1109/access.2021.3131635 – volume: 26 start-page: 1250169 issue: 31 year: 2012 ident: 4396_CR3 publication-title: Int J Mod Phys B doi: 10.1142/s021797921250169x – volume: 26 start-page: 41 issue: 3 year: 2006 ident: 4396_CR5 publication-title: IEEE Micro doi: 10.1109/mm.2006.65 – ident: 4396_CR7 doi: 10.1109/hoti.2010.23 – volume: 24 start-page: 2 issue: 1 year: 1995 ident: 4396_CR33 publication-title: J Parallel Distrib Comput doi: 10.1006/jpdc.1995.1002 – volume: 8 start-page: 487 issue: 4 year: 1984 ident: 4396_CR47 publication-title: J Graph Theory doi: 10.1002/jgt.3190080406 – volume: 5 start-page: 63 issue: 3 year: 1991 ident: 4396_CR61 publication-title: Int J Supercomput Appl doi: 10.1177/109434209100500306 – volume: 381 start-page: 68 issue: 1–3 year: 2007 ident: 4396_CR40 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2007.04.002 – ident: 4396_CR56 – ident: 4396_CR1 – volume: 29 start-page: 694 issue: 8 year: 1980 ident: 4396_CR14 publication-title: IEEE Trans Comput C doi: 10.1109/tc.1980.1675651 – volume: 39 start-page: 786 issue: 6 year: 1990 ident: 4396_CR71 publication-title: IEEE Trans Comput doi: 10.1109/12.53600 – volume: 28 start-page: 989 issue: 4 year: 2017 ident: 4396_CR29 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/tpds.2016.2613043 – ident: 4396_CR49 – volume: 04 start-page: 1250002 issue: 01 year: 2012 ident: 4396_CR35 publication-title: Discret Math Algorithms Appl doi: 10.1142/s1793830912500024 – volume: 7 start-page: 954 issue: 9 year: 1996 ident: 4396_CR38 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/71.536939 – volume: 40 start-page: 1109 issue: 10 year: 1991 ident: 4396_CR37 publication-title: IEEE Trans Comput doi: 10.1109/12.93744 – volume-title: Matters computational: ideas, algorithms, source code year: 2010 ident: 4396_CR48 |
| SSID | ssj0004373 |
| Score | 2.404775 |
| Snippet | Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13491 |
| SubjectTerms | Algorithms Benchmarks Cartesian coordinates Clusters Communications traffic Compilers Computer Science Data communication Hypercubes Interpreters Network latency Network topologies Optimization Processor Architectures Programming Languages Toruses |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDb7FaZQ_e7EKzjyTrrYilCOrFQm9hd7MBIaalSSn99-7m0SiI6HknE5jH7gzz-ABujT2wz4DECVMxZnHogNxpgF3VMQxUHIclSsTziz-esKcpn9ZDYXnT7d6UJMubuh128wgJsOs-d-OcPubbsMPdOi9rxRMybKchaVVXFjYxCjkj9ajMzzy-P0dtjLkpi-7D7jKby_VKpumXl2d0BAd1yIiGlY6PYctkJ3DYwDGg2jtP4f7Vuv-HpdTvC9ddmhWoXEedI5mjdLbCqXQB8hplVes3KiqABJsrn8Fk9Pj2MMY1NALW1KcFjhkxvvBiQs3ARWwkSFQSChUmVsZKMCVZYmOpwGhL5QnNrSYS4uuEaaE9FdJz6GSzzFwAYsJTAx3zgBqbi3AVcsMCX1KjhE1fpemC10go0vXecAdfkUbtxmMn1chKNSqlGvEu3G2-mVdbM36l7jWCj2oPyiO3hcYhHnLRhX6jjPb4N279jcL-8PPL_3G_gj1Smo9r2O1Bp1gszbUNSwp1U1rhJ2Ah1V4 priority: 102 providerName: Springer Nature |
| Title | Optimal circulant graphs as low-latency network topologies |
| URI | https://link.springer.com/article/10.1007/s11227-022-04396-5 https://www.proquest.com/docview/2684589159 http://dx.doi.org/10.1007/s11227-022-04396-5 |
| UnpaywallVersion | submittedVersion |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VdgAG3ohCqTKwUQNJ7MRhK4iCQBQGKsEUxY4jIUJatamq8us559GCeAimDL4kyt05_k4-fx_AgcIBXAYCElEREhpyLeRuu0TvOnJXhCHPVCJuu85Vj14_sscKtH7cwT8eISKwXKK7zvUxToewBag5DJF3FWq97n37KaPTwyqIs0wrx2SujaacFmdkvn_I53VoDi5n-6HLsDhOBsF0EsTxhyWnswq35cGdvNPk5WiciiP59pXH8U9fswYrBfY02nmyrENFJRuwWuo6GMU034TTO_yPvKKlfB7qNtUkNTJe65ERjIy4PyFxoJH21EjyHnIjzZUWsOjegl7n4uH8ihQaC0Tajp2SkFrK8czQstWJhn6WG4mIe4JHGCzhURHQCEGZqyRamZ5kGNLIcmREpSdNwe1tqCb9RO2AQT1TnMgQva-wqGGCM0VdJ7CV8LAODlQdzNLjviwIyLUORuzPqZO1c3x0jp85x2d1OJzdM8jpN361bpSB9IupOPI1nY2WTmReHVplcOfDvz2tNUuAP7x893_me7BkZVmgO38bUE2HY7WP-CYVTai1O2dnXX29fLq5aMJCz2o3i2R_B1Pr7s0 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAHxlMMBvTADYJomrQNtwltDAbjwqRxqpo0lRClm7ZO0_j1JH2sgNAE57huazuJLT8-gDOpFtQ14KOQ8ACRwNVA7paDdNbRdXgQuClKxGPP7vTJ_YAO8qawSVHtXqQk05O6bHYzMXaQrj7X7Zw2oqtQJSpAwRWoNm9fuq2yH9LKMstMhUYuJThvlvmdy_cLqfQyF4nRDVibxiN_PvOj6Mvd065Bv_jqrOTk7XKa8Evx8WOg439_aws2c2fUaGbWsw0rMt6BWgH0YOT7fheun9TB8q4oxetY163GiZEOup4Y_sSIhjMU-dr1nhtxVlRuJBn0gorC96Dfbj3fdFAOuoCEZVsJCgiWNjMDbMkr7QtiJ-Shy7gbKu1xRrhPQuWlOVIoKpMJqnQcYluERDBhctfah0o8jOUBGISZ_EoE1LGkinIod6kkju1bkjMVGPuyDmYheU_kE8k1MEbklbOUtXA8JRwvFY5H63C-eGaUzeNYSt0oFOrle3Pi6fk2GkuRsjpcFDopl5dxu1gYwh9efvg_7qew1nl-fPAe7nrdI1jHqUXosuAGVJLxVB4r5yfhJ7mtfwK-s_U- |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSDwOvBHj2QM3FrGmSdtwm4BpvAYHJu1WNWkiIZVu2jpN-_ckfaxDQhOc46aSncS2bH8fwJXUC9oNhEgRHiES-YbI3fGQqTr6Ho8iP2OJeO26nR556tP-whR_1u1eliTzmQaD0pSkN8NI3VSDbzbGHjKd6Ga000V0FdaIAUrQJ7qHW9VkpJPXmJlOknxKcDE28_seP11TFW_OS6RbsDFJhuFsGsbxghdq78J2ET5ardzee7Aik33YKakZrOKmHsDtm34KvrSk-ByZTtMktTJo6rEVjq14MEVxaILlmZXkbeBWmpMl6Lz5EHrth4-7DipoEpBwXCdFEcHSZXaEHdk00Rv2FFc-477S-uaM8JAoHVd5UmgpmwmqraKwKxQRTNjcd46glgwSeQwWYTZvioh6jtR5CeU-lcRzQ0dyplPZUNbBLjUUiAJD3FBZxEGFfmy0GmitBplWA1qH6_k3wxxBY6n0Wan4oLhN48Ag0hj2Q8rq0CiNUS0v260xN9gffn7yv90vYf39vh28PHafT2ETZyfJ9PGeQS0dTeS5jlZSfpEdyG9bzNyG |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHyirKphy4UReS2InDDSEqhMRyoFI5RbbjSIiQVm2qqnw94ywtCKjK2RNHmRnHb-TxewCnGgdwGxAkpjIiNOJGyN31iTl15L6MIp6rRNw_eLcdetdl3SVo_nmCfz5EROD4xHSdm2ucHmHLsOIxRN41WOk8PF295HR6WAVxlmvl2Mx30ZTT8o7M75N834dm4HJ6HroOq6O0LyZjkSRftpx2He6riztFp8lba5TJlvr4yeO40NdswkaJPa2rIlm2YEmn21CvdB2scpnvwOUj_kfe0VK9DkybappZOa_10BJDK-mNSSIM0p5YadFDbmWF0gIW3bvQad88X9-SUmOBKNdzMxJRR3uBHTmuvjDQz_FjGfNA8hiDJQMqBY0RlPlaoZUdKIYhjR1PxVQFypbc3YNa2kv1Plg0sOWFitD7GosaJjnT1PeEq2WAdbDQDbArj4eqJCA3OhhJOKNONs4J0Tlh7pyQNeBs-ky_oN-Ya31UBTIsl-IwNHQ2RjqRBQ1oVsGdDc-brTlNgAVefvA_80NYc_IsMJ2_R1DLBiN9jPgmkydlWn8C_tTq1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+circulant+graphs+as+low-latency+network+topologies&rft.jtitle=The+Journal+of+supercomputing&rft.au=Huang%2C+Xiaolong&rft.au=F+Ramos+Alexandre&rft.au=Deng+Yuefan&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=11&rft.spage=13491&rft.epage=13510&rft_id=info:doi/10.1007%2Fs11227-022-04396-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |