Optimal circulant graphs as low-latency network topologies

Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for high-performance computing clusters, we optimize the diameters, mean path lengths, and bisection widths of circulant topologies. We obtain a series o...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 78; no. 11; pp. 13491 - 13510
Main Authors Huang, Xiaolong, F. Ramos, Alexandre, Deng, Yuefan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
1573-0484
DOI10.1007/s11227-022-04396-5

Cover

Abstract Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for high-performance computing clusters, we optimize the diameters, mean path lengths, and bisection widths of circulant topologies. We obtain a series of optimal circulant topologies of size 2 5 through 2 10 and compare them with torus and hypercube of the same sizes and degrees. We further benchmark on a broad variety of applications including effective bandwidth, FFTE, Graph 500 and NAS parallel benchmarks to compare the optimal circulant topologies and Cartesian products of optimal circulant topologies and fully connected topologies with corresponding torus and hypercube. Simulation results demonstrate superior potentials of the optimal circulant topologies for communication-intensive applications. We also find the strengths of the Cartesian products in exploiting global communication with data traffic patterns of specific applications or internal algorithms.
AbstractList Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for high-performance computing clusters, we optimize the diameters, mean path lengths, and bisection widths of circulant topologies. We obtain a series of optimal circulant topologies of size 2 5 through 2 10 and compare them with torus and hypercube of the same sizes and degrees. We further benchmark on a broad variety of applications including effective bandwidth, FFTE, Graph 500 and NAS parallel benchmarks to compare the optimal circulant topologies and Cartesian products of optimal circulant topologies and fully connected topologies with corresponding torus and hypercube. Simulation results demonstrate superior potentials of the optimal circulant topologies for communication-intensive applications. We also find the strengths of the Cartesian products in exploiting global communication with data traffic patterns of specific applications or internal algorithms.
Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for high-performance computing clusters, we optimize the diameters, mean path lengths, and bisection widths of circulant topologies. We obtain a series of optimal circulant topologies of size 25 through 210 and compare them with torus and hypercube of the same sizes and degrees. We further benchmark on a broad variety of applications including effective bandwidth, FFTE, Graph 500 and NAS parallel benchmarks to compare the optimal circulant topologies and Cartesian products of optimal circulant topologies and fully connected topologies with corresponding torus and hypercube. Simulation results demonstrate superior potentials of the optimal circulant topologies for communication-intensive applications. We also find the strengths of the Cartesian products in exploiting global communication with data traffic patterns of specific applications or internal algorithms.
Author Deng, Yuefan
F. Ramos, Alexandre
Huang, Xiaolong
Author_xml – sequence: 1
  givenname: Xiaolong
  orcidid: 0000-0002-1174-7148
  surname: Huang
  fullname: Huang, Xiaolong
  organization: Department of Applied Mathematics and Statistics, Stony Brook University
– sequence: 2
  givenname: Alexandre
  orcidid: 0000-0003-4681-3069
  surname: F. Ramos
  fullname: F. Ramos, Alexandre
  organization: Escola de Artes, Ciências e Humanidades, Universidade de São Paulo
– sequence: 3
  givenname: Yuefan
  orcidid: 0000-0002-5224-3958
  surname: Deng
  fullname: Deng, Yuefan
  email: yuefan.deng@stonybrook.edu
  organization: Department of Applied Mathematics and Statistics, Stony Brook University, Mathematics, Division of Science, New York University Abu Dhabi
BookMark eNqNj01LAzEURYNUsK3-AVcDrkfzOZO4k-IXFLrRdcikmTo1JmOSofTfG52C4KK4ejw49717ZmDivDMAXCJ4jSCsbyJCGNclxLiElIiqZCdgilhN8srpBEyhwLDkjOIzMItxC2HGajIFt6s-dR_KFroLerDKpWITVP8WCxUL63elVck4vS-cSTsf3ovke2_9pjPxHJy2ykZzcZhz8Ppw_7J4Kperx-fF3bLUpCKpXFNsKoHWmBiIGCG4bpuWi4a3kIhG0EbRljNUG50pJDSjzbrFlW6pFho1nMwBGe8Orlf7nbJW9iF3DnuJoPzWl6O-zPryR1-ynLoaU33wn4OJSW79EFwuKnHFKeMCMZEpPlI6-BiDaaXukkqddymozh5_gP9E_9Xq4BIz7DYm_LY6kvoCIpWM-Q
CitedBy_id crossref_primary_10_3390_mi14010141
crossref_primary_10_1007_s11227_023_05699_x
crossref_primary_10_1109_TNSE_2022_3211985
crossref_primary_10_1134_S1995080223070132
crossref_primary_10_1134_S1995080223080425
crossref_primary_10_3390_sym16010127
crossref_primary_10_26907_2541_7746_2023_3_282_293
crossref_primary_10_3390_bdcc7020080
crossref_primary_10_1016_j_comnet_2025_111178
crossref_primary_10_1134_S199047892204010X
crossref_primary_10_1134_S1995080223120351
crossref_primary_10_3390_a16010010
crossref_primary_10_1016_j_parco_2022_102983
crossref_primary_10_1109_ACCESS_2023_3279494
Cites_doi 10.26493/1855-3974.969.659
10.1016/j.jsc.2013.09.003
10.1007/s11227-020-03216-y
10.1109/tpds.2014.2315201
10.1109/tpds.2018.2864286
10.1147/rd.521.0199
10.1109/5.48826
10.3390/math7121214
10.1002/net.3230040405
10.1109/snpd.2012.19
10.1109/ipdps.2015.93
10.1109/snpd.2013.43
10.1201/b16132
10.1109/ipdpsw.2016.146
10.1177/1094342005051521
10.1142/s0129183118500481
10.1002/net.20076
10.1109/isca.2008.19
10.1016/j.endm.2014.08.031
10.1145/2063384.2063419
10.1109/icnp.2011.6089084
10.1016/j.aml.2012.05.013
10.1109/mc.2003.1193227
10.1016/j.jpdc.2014.06.008
10.1007/s11432-016-5588-7
10.1109/ipdps.2001.925208
10.1155/2011/189434
10.1109/tpds.2012.93
10.1109/ipdps.2012.91
10.1109/tc.1985.6312192
10.1023/a:1008160021085
10.1109/12.477250
10.1007/978-3-642-38527-8_16
10.1016/s0304-3975(01)00341-3
10.3390/sym12010002
10.1109/opcs.2019.8880247
10.1016/j.disc.2018.05.024
10.1201/b10959
10.1109/tpds.2010.89
10.1109/sc.2012.39
10.1109/12.53599
10.1109/mc.2009.370
10.1109/cluster.2018.00090
10.1016/j.parco.2021.102805
10.1109/sc41405.2020.00039
10.1109/jproc.2011.2182009
10.1109/tcs.1985.1085667
10.1109/access.2021.3131635
10.1142/s021797921250169x
10.1109/mm.2006.65
10.1109/hoti.2010.23
10.1006/jpdc.1995.1002
10.1002/jgt.3190080406
10.1177/109434209100500306
10.1016/j.tcs.2007.04.002
10.1109/tc.1980.1675651
10.1109/12.53600
10.1109/tpds.2016.2613043
10.1142/s1793830912500024
10.1109/71.536939
10.1109/12.93744
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
ADTOC
UNPAY
DOI 10.1007/s11227-022-04396-5
DatabaseName CrossRef
ProQuest Computer Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 13510
ExternalDocumentID 003106740
10_1007_s11227_022_04396_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ABJCF
ADTOC
BGLVJ
CCPQU
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
UNPAY
ID FETCH-LOGICAL-c363t-d42e691d23e0153327fbf89b8f039b94ba4f8517ec69119c54bdf26cf4c9c1b83
IEDL.DBID UNPAY
ISSN 0920-8542
1573-0484
IngestDate Sun Oct 26 04:09:11 EDT 2025
Thu Sep 25 00:53:37 EDT 2025
Wed Oct 01 03:43:52 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Fri Feb 21 02:46:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Circulant graph
Benchmarks
Network topology
Optimization
Latency
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d42e691d23e0153327fbf89b8f039b94ba4f8517ec69119c54bdf26cf4c9c1b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4681-3069
0000-0002-1174-7148
0000-0002-5224-3958
OpenAccessLink https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1007/s11227-022-04396-5
PQID 2684589159
PQPubID 2043774
PageCount 20
ParticipantIDs unpaywall_primary_10_1007_s11227_022_04396_5
proquest_journals_2684589159
crossref_citationtrail_10_1007_s11227_022_04396_5
crossref_primary_10_1007_s11227_022_04396_5
springer_journals_10_1007_s11227_022_04396_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References YasudoRKoibuchiMNakanoKDesigning high-performance interconnection networks with host-switch graphsIEEE Trans Parallel Distrib Syst201930231533010.1109/tpds.2018.2864286
LewisRRThe degree-diameter problem for circulant graphs of degrees 10 and 11Discret Math2018341925532566382876610.1016/j.disc.2018.05.0241392.05027
HammackRHImrichWKlavžarSHandbook of product graphs2011Boca RatonCRC Press10.1201/b10959
Effective Bandwidth (b_eff) Benchmark (2021) https://fs.hlrs.de/projects/par/mpi/b_eff
Ruskey F (2003) Combinatorial generation. Preliminary working draft University of Victoria, Victoria, BC, Canada 11:20
ZhangYHuangXXuZA structured table of graphs with symmetries and other special propertiesSymmetry2019121210.3390/sym12010002
ZhangPPowellRDengYInterlacing bypass rings to torus networks for more efficient networksIEEE Trans Parallel Distrib Syst201122228729510.1109/tpds.2010.89
MonakhovOGMonakhovaEARomanovAYAdaptive dynamic shortest path search algorithm in networks-on-chip based on circulant topologiesIEEE Access2021916083616084610.1109/access.2021.3131635
AjimaYSumimotoSShimizuTTofu: a 6D mesh/torus interconnect for exascale computersComputer20094211364010.1109/mc.2009.370
Kim J, Dally WJ, Scott S, (2008) Technology-driven, highly-scalable dragonfly topology. In: (2008) International Symposium on Computer Architecture. IEEE, Beijing, China. https://doi.org/10.1109/isca.2008.19
NakaoMSakaiMHanadaYGraph optimization algorithm for low-latency interconnection networksParallel Comput2021106102805430101910.1016/j.parco.2021.102805
DallyWTowlesBPrinciples and practices of interconnection networks2003AmsterdamElsevier Science & Technology
Feng R, Zhang P, Deng Y (2013) Deadlock-free routing algorithms for 6d mesh/iBT interconnection networks. In: 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE, Honolulu, HI, USA, https://doi.org/10.1109/snpd.2013.43
HwangFA survey on multi-loop networksTheor Comput Sci20032991–3107121197314810.1016/s0304-3975(01)00341-31038.68004
DandamudiSEagerDHierarchical interconnection networks for multicomputer systemsIEEE Trans Comput199039678679710.1109/12.53600
DengYRamosAFHornosJEMSymmetry insights for design of supercomputer network topologies: roots and weights latticesInt J Mod Phys B20122631125016910.1142/s021797921250169x
BermondJComellasFHsuDDistributed loop computer-networks: a surveyJ Parallel Distrib Comput199524121010.1006/jpdc.1995.1002
FuHLiaoJYangJThe sunway TaihuLight supercomputer: system and applicationsSci China Inf Sci201610.1007/s11432-016-5588-7
FFTE : A fast fourier transform package (2021) http://www.ffte.jp
Top 500 supercomputer site (2021) http://www.top500.org
TruongNTFujiwaraIKoibuchiMDistributed shortcut networks: low-latency low-degree non-random topologies targeting the diameter and cable length trade-offIEEE Trans Parallel Distrib Syst2017284989100110.1109/tpds.2016.2613043
MooreGECramming more components onto integrated circuitsElectronics1965388114117
Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future. Proc IEEE 100(Special Centennial Issue):1411–1430. https://doi.org/10.1109/jproc.2011.2182009
Alverson R, Roweth D, Kaplan L (2010) The gemini system interconnect. In: (2010) 18th IEEE Symposium on High Performance Interconnects. IEEE, Mountain View, CA, USA,. https://doi.org/10.1109/hoti.2010.23
ZhangPDengYDesign and analysis of pipelined broadcast algorithms for the all-port interlaced bypass torus networksIEEE Trans Parallel Distrib Syst201223122245225310.1109/tpds.2012.93
Monakhov O, Monakhova E, (2019) A comparative analysis of bioinspired algorithms for solving the problem of optimization of circulant and hypercirculant networks. In: (2019) 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS), IEEE. https://doi.org/10.1109/opcs.2019.8880247
SabinoAUVasconcelosMFSDengYSymmetry-guided design of topologies for supercomputer networksInt J Mod Phys C201829071850048383530610.1142/s0129183118500481
Abd-El-BarrMAl-SomaniTFTopological properties of hierarchical interconnection networks: a review and comparisonJ Electr Comput Eng2011201111210.1155/2011/189434
Feng R, Zhang P, Deng Y (2012) Simulated performance evaluation of a 6d mesh/iBT interconnect. In: 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE, Kyoto, Japan, https://doi.org/10.1109/snpd.2012.19
Ma T, Bosilca G, Bouteiller A (2012) HierKNEM: an adaptive framework for kernel-assisted and topology-aware collective communications on many-core clusters. In: (2012) IEEE 26th International Parallel and Distributed Processing Symposium, IEEE. https://doi.org/10.1109/ipdps.2012.91
ThakurRRabenseifnerRGroppWOptimization of collective communication operations in MPICHInt J High Perform Comput Appl2005191496610.1177/1094342005051521
BoeschFTindellRCirculants and their connectivitiesJ Graph Theory19848448749976649810.1002/jgt.31900804060549.05048
BrightwellRPedrettiKUnderwoodKSeaStar interconnect: balanced bandwidth for scalable performanceIEEE Micro2006263415710.1109/mm.2006.65
GómezDGutierrezJIbeasÁOptimal routing in double loop networksTheor Comput Sci20073811–36885234739410.1016/j.tcs.2007.04.0021188.68213
Deveci M, Kaya K, Ucar B (2015) Fast and high quality topology-aware task mapping. In: (2015) IEEE International Parallel and Distributed Processing Symposium. IEEE. https://doi.org/10.1109/ipdps.2015.93
Ajima Y, Kawashima T, Okamoto T et al (2018) The tofu interconnect d. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, Belfast, UK, https://doi.org/10.1109/cluster.2018.00090
ZhangPDengYAn analysis of the topological properties of the interlaced bypass torus (iBT) networksAppl Math Lett2012251221472155296780710.1016/j.aml.2012.05.0131259.68014
Bevan D, Erskine G, Lewis R (2017) Large circulant graphs of fixed diameter and arbitrary degree. Ars Math Contemp 13(2):275–291. https://doi.org/10.26493/1855-3974.969.659
XuZHuangXJimenezFA new record of graph enumeration enabled by parallel processingMathematics2019712121410.3390/math7121214
ObradoviçNPetersJRužićGReliable broadcasting in double loop networksNetworks20054628897215470610.1002/net.200761077.68524
Mirsadeghi SH, Afsahi A (2016) PTRAM: a parallel topology-and routing-aware mapping framework for large-scale HPC systems. In: (2016) IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE. https://doi.org/10.1109/ipdpsw.2016.146
WolfWA decade of hardware/ software codesignComputer2003364384310.1109/mc.2003.1193227
Parsonage E, Nguyen HX, Bowden R et al (2011) Generalized graph products for network design and analysis. In: 2011 19th IEEE International Conference on Network Protocols. IEEE, https://doi.org/10.1109/icnp.2011.6089084
Sanders P, Schulz C (2013) Think locally, act globally: highly balanced graph partitioning. In: Experimental Algorithms. Lecture notes in computer science, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 164–175, https://doi.org/10.1007/978-3-642-38527-8_16
BaileyDBarszczEBartonJThe NAS parallel benchmarksInt J Supercomput Appl199153637310.1177/109434209100500306
McKayBDPipernoAPractical graph isomorphism, IIJ Symb Comput20146094112313138110.1016/j.jsc.2013.09.0031394.05079
Graph 500 (2021) http://graph500.org
Koniges A, Rabenseifner R, Solchenbach K (2001) Benchmark design for characterization of balanced high-performance architectures. In: Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001. IEEE Comput. Soc, San Francisco, CA, USA. https://doi.org/10.1109/ipdps.2001.925208
NPB: NAS parallel benchmarks (2021) http://www.nas.nasa.gov/publications/npb.html
LauFChenGOptimal layouts of midimew networksIEEE Trans Parallel Distrib Syst19967995496110.1109/71.536939
MurphyRCWheelerKBBarrettBWIntroducing the graph 500Cray Users Group (CUG)2010194574
DengYGuoMRamosAFOptimal low-latency network topologies for cluster performance enhancementJ Supercomput202076129558958410.1007/s11227-020-03216-y
Feria-PurónRRyanJPérez-RosésHSearching for large multi-loop networksElectron Notes Discret Math201446233240351567010.1016/j.endm.2014.08.0311338.05252
BeivideRHerradaEBalcazarJOptimal distance networks of low degree for parallel computersIEEE Trans Comput1991401011091124113051610.1109/12.937441395.68024
ArndtJMatters computational: ideas, algorithms, source code2010BerlinSpringer Science & Business Media1210.68128
ZhangPDengYFengREvaluation of various networks configurated by adding bypass or torus linksIEEE Trans Parallel Distrib Syst201526498499610.1109/tpds.2014.2315201
GrossJLYellenJZhangPHandbook of graph theory2013Boca RatonCRC Press10.1201/b16132
MonakhovaEAA survey on undirected circulant graphsDiscret Math Algorithms Appl201204011250002291308810.1142/s17938309125000241247.05115
MukhopadhyayaKSinhaBFault-tolerant routing in distributed loop networksIEEE Trans Comput199544121452145610.1109/12.4772501048.68511
HayesJMudgeTHypercube supercomputersProc IEEE198977121829184110.1109/5.48826
WuCLFengTYOn a class of multistage interconnection networksIEEE Trans Comput C198029869470258213310.1109/tc.1980.16756510444.94048
CasanovaHGierschALegrandAVersatile, scalable, and accurate simulation of distributed applications and platformsJ Parallel Distrib Comput201474102899291710.1016/j.jpdc.2014.06.008
Faanes G, Bataineh A, Roweth D, (2012) Cray cascade: a scalable HPC system based on a dragonfly network. In: (2012) International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, Salt Lake City, UT, USA. https://doi.org/10.1109/sc.2012.39
LeisersonCEFat-trees: universal networks for hardware-efficient supercomputingIEEE Trans Comput C1985341089290110.1109/tc.1985.6312192
TakahashiDKanadaYHigh-performance radix-2, 3 and 5 parallel 1-D complex FFT algorithms for distributed-memory parallel computersJ Supercomput200015220722810.1023/a:
J Bermond (4396_CR33) 1995; 24
EA Monakhova (4396_CR35) 2012; 04
RR Lewis (4396_CR45) 2018; 341
J Arndt (4396_CR48) 2010
W Wolf (4396_CR65) 2003; 36
OG Monakhov (4396_CR67) 2021; 9
D Takahashi (4396_CR57) 2000; 15
RH Hammack (4396_CR70) 2011
W Dally (4396_CR15) 1990; 39
Y Ajima (4396_CR9) 2009; 42
Y Deng (4396_CR27) 2020; 76
M Abd-El-Barr (4396_CR72) 2011; 2011
J Hayes (4396_CR11) 1989; 77
H Casanova (4396_CR53) 2014; 74
4396_CR49
P Zhang (4396_CR22) 2012; 23
4396_CR42
4396_CR44
F Lau (4396_CR38) 1996; 7
4396_CR1
CE Leiserson (4396_CR12) 1985; 34
JL Gross (4396_CR46) 2013
4396_CR7
M Nakao (4396_CR32) 2021; 106
4396_CR8
S Dandamudi (4396_CR71) 1990; 39
W Dally (4396_CR4) 2003
4396_CR50
R Thakur (4396_CR62) 2005; 19
4396_CR51
Z Xu (4396_CR26) 2019; 7
F Boesch (4396_CR36) 1985; 32
D Bailey (4396_CR61) 1991; 5
4396_CR58
4396_CR16
D Gómez (4396_CR40) 2007; 381
4396_CR10
4396_CR54
P Zhang (4396_CR23) 2015; 26
N Obradoviç (4396_CR41) 2005; 46
4396_CR56
4396_CR55
R Yasudo (4396_CR30) 2019; 30
4396_CR18
4396_CR17
P Zhang (4396_CR21) 2012; 25
Y Zhang (4396_CR28) 2019; 12
Y Deng (4396_CR3) 2012; 26
R Feria-Purón (4396_CR43) 2014; 46
R Beivide (4396_CR37) 1991; 40
IBM Blue Gene Team (4396_CR6) 2008; 52
H Fu (4396_CR13) 2016
P Zhang (4396_CR20) 2011; 22
4396_CR60
4396_CR63
CL Wu (4396_CR14) 1980; 29
VG Cerf (4396_CR19) 1974; 4
R Brightwell (4396_CR5) 2006; 26
NT Truong (4396_CR29) 2017; 28
4396_CR25
4396_CR69
4396_CR24
K Mukhopadhyaya (4396_CR39) 1995; 44
4396_CR68
BD McKay (4396_CR52) 2014; 60
RC Murphy (4396_CR59) 2010; 19
4396_CR64
F Boesch (4396_CR47) 1984; 8
4396_CR66
AU Sabino (4396_CR31) 2018; 29
GE Moore (4396_CR2) 1965; 38
F Hwang (4396_CR34) 2003; 299
References_xml – reference: BeivideRHerradaEBalcazarJOptimal distance networks of low degree for parallel computersIEEE Trans Comput1991401011091124113051610.1109/12.937441395.68024
– reference: TruongNTFujiwaraIKoibuchiMDistributed shortcut networks: low-latency low-degree non-random topologies targeting the diameter and cable length trade-offIEEE Trans Parallel Distrib Syst2017284989100110.1109/tpds.2016.2613043
– reference: TakahashiDKanadaYHigh-performance radix-2, 3 and 5 parallel 1-D complex FFT algorithms for distributed-memory parallel computersJ Supercomput200015220722810.1023/a:10081600210850953.68514
– reference: NPB: NAS parallel benchmarks (2021) http://www.nas.nasa.gov/publications/npb.html
– reference: Top 500 supercomputer site (2021) http://www.top500.org
– reference: MonakhovaEAA survey on undirected circulant graphsDiscret Math Algorithms Appl201204011250002291308810.1142/s17938309125000241247.05115
– reference: Ajima Y, Kawashima T, Okamoto T et al (2018) The tofu interconnect d. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, Belfast, UK, https://doi.org/10.1109/cluster.2018.00090
– reference: GrossJLYellenJZhangPHandbook of graph theory2013Boca RatonCRC Press10.1201/b16132
– reference: HammackRHImrichWKlavžarSHandbook of product graphs2011Boca RatonCRC Press10.1201/b10959
– reference: Ruskey F (2003) Combinatorial generation. Preliminary working draft University of Victoria, Victoria, BC, Canada 11:20
– reference: Sanders P, Schulz C (2013) Think locally, act globally: highly balanced graph partitioning. In: Experimental Algorithms. Lecture notes in computer science, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 164–175, https://doi.org/10.1007/978-3-642-38527-8_16
– reference: Faanes G, Bataineh A, Roweth D, (2012) Cray cascade: a scalable HPC system based on a dragonfly network. In: (2012) International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, Salt Lake City, UT, USA. https://doi.org/10.1109/sc.2012.39
– reference: Deveci M, Kaya K, Ucar B (2015) Fast and high quality topology-aware task mapping. In: (2015) IEEE International Parallel and Distributed Processing Symposium. IEEE. https://doi.org/10.1109/ipdps.2015.93
– reference: BaileyDBarszczEBartonJThe NAS parallel benchmarksInt J Supercomput Appl199153637310.1177/109434209100500306
– reference: Sensi DD, Girolamo SD, McMahon KH et al (2020) An in-depth analysis of the slingshot interconnect. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, Atlanta, GA, USA, https://doi.org/10.1109/sc41405.2020.00039
– reference: MonakhovOGMonakhovaEARomanovAYAdaptive dynamic shortest path search algorithm in networks-on-chip based on circulant topologiesIEEE Access2021916083616084610.1109/access.2021.3131635
– reference: CerfVGCowanDDMullinRCA lower bound on the average shortest path length in regular graphsNetworks19744433534237927510.1002/net.32300404050317.90054
– reference: SabinoAUVasconcelosMFSDengYSymmetry-guided design of topologies for supercomputer networksInt J Mod Phys C201829071850048383530610.1142/s0129183118500481
– reference: ZhangPDengYDesign and analysis of pipelined broadcast algorithms for the all-port interlaced bypass torus networksIEEE Trans Parallel Distrib Syst201223122245225310.1109/tpds.2012.93
– reference: Feng R, Zhang P, Deng Y (2013) Deadlock-free routing algorithms for 6d mesh/iBT interconnection networks. In: 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE, Honolulu, HI, USA, https://doi.org/10.1109/snpd.2013.43
– reference: DengYGuoMRamosAFOptimal low-latency network topologies for cluster performance enhancementJ Supercomput202076129558958410.1007/s11227-020-03216-y
– reference: HwangFA survey on multi-loop networksTheor Comput Sci20032991–3107121197314810.1016/s0304-3975(01)00341-31038.68004
– reference: ThakurRRabenseifnerRGroppWOptimization of collective communication operations in MPICHInt J High Perform Comput Appl2005191496610.1177/1094342005051521
– reference: Ma T, Bosilca G, Bouteiller A (2012) HierKNEM: an adaptive framework for kernel-assisted and topology-aware collective communications on many-core clusters. In: (2012) IEEE 26th International Parallel and Distributed Processing Symposium, IEEE. https://doi.org/10.1109/ipdps.2012.91
– reference: MooreGECramming more components onto integrated circuitsElectronics1965388114117
– reference: GómezDGutierrezJIbeasÁOptimal routing in double loop networksTheor Comput Sci20073811–36885234739410.1016/j.tcs.2007.04.0021188.68213
– reference: FFTE : A fast fourier transform package (2021) http://www.ffte.jp/
– reference: MurphyRCWheelerKBBarrettBWIntroducing the graph 500Cray Users Group (CUG)2010194574
– reference: Fxt: a library of algorithms (2021) https://www.jjj.de/fxt/
– reference: Alverson R, Roweth D, Kaplan L (2010) The gemini system interconnect. In: (2010) 18th IEEE Symposium on High Performance Interconnects. IEEE, Mountain View, CA, USA,. https://doi.org/10.1109/hoti.2010.23
– reference: Bevan D, Erskine G, Lewis R (2017) Large circulant graphs of fixed diameter and arbitrary degree. Ars Math Contemp 13(2):275–291. https://doi.org/10.26493/1855-3974.969.659,
– reference: ObradoviçNPetersJRužićGReliable broadcasting in double loop networksNetworks20054628897215470610.1002/net.200761077.68524
– reference: CasanovaHGierschALegrandAVersatile, scalable, and accurate simulation of distributed applications and platformsJ Parallel Distrib Comput201474102899291710.1016/j.jpdc.2014.06.008
– reference: Monakhov O, Monakhova E, (2019) A comparative analysis of bioinspired algorithms for solving the problem of optimization of circulant and hypercirculant networks. In: (2019) 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS), IEEE. https://doi.org/10.1109/opcs.2019.8880247
– reference: DengYRamosAFHornosJEMSymmetry insights for design of supercomputer network topologies: roots and weights latticesInt J Mod Phys B20122631125016910.1142/s021797921250169x
– reference: AjimaYSumimotoSShimizuTTofu: a 6D mesh/torus interconnect for exascale computersComputer20094211364010.1109/mc.2009.370
– reference: BoeschFTindellRCirculants and their connectivitiesJ Graph Theory19848448749976649810.1002/jgt.31900804060549.05048
– reference: Kim J, Dally WJ, Scott S, (2008) Technology-driven, highly-scalable dragonfly topology. In: (2008) International Symposium on Computer Architecture. IEEE, Beijing, China. https://doi.org/10.1109/isca.2008.19
– reference: ZhangYHuangXXuZA structured table of graphs with symmetries and other special propertiesSymmetry2019121210.3390/sym12010002
– reference: BrightwellRPedrettiKUnderwoodKSeaStar interconnect: balanced bandwidth for scalable performanceIEEE Micro2006263415710.1109/mm.2006.65
– reference: WolfWA decade of hardware/ software codesignComputer2003364384310.1109/mc.2003.1193227
– reference: XuZHuangXJimenezFA new record of graph enumeration enabled by parallel processingMathematics2019712121410.3390/math7121214
– reference: McKayBDPipernoAPractical graph isomorphism, IIJ Symb Comput20146094112313138110.1016/j.jsc.2013.09.0031394.05079
– reference: LewisRRThe degree-diameter problem for circulant graphs of degrees 10 and 11Discret Math2018341925532566382876610.1016/j.disc.2018.05.0241392.05027
– reference: YasudoRKoibuchiMNakanoKDesigning high-performance interconnection networks with host-switch graphsIEEE Trans Parallel Distrib Syst201930231533010.1109/tpds.2018.2864286
– reference: DandamudiSEagerDHierarchical interconnection networks for multicomputer systemsIEEE Trans Comput199039678679710.1109/12.53600
– reference: IBM Blue Gene TeamOverview of the IBM Blue Gene/P projectIBM J Res Dev2008521.219922010.1147/rd.521.0199
– reference: ZhangPDengYFengREvaluation of various networks configurated by adding bypass or torus linksIEEE Trans Parallel Distrib Syst201526498499610.1109/tpds.2014.2315201
– reference: LauFChenGOptimal layouts of midimew networksIEEE Trans Parallel Distrib Syst19967995496110.1109/71.536939
– reference: Chen D, Parker JJ, Eisley NA et al (2011) The IBM Blue Gene/Q interconnection network and message unit. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on - SC′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\prime }$$\end{document}11. ACM Press, Seattle, WA, USA, https://doi.org/10.1145/2063384.2063419
– reference: ZhangPDengYAn analysis of the topological properties of the interlaced bypass torus (iBT) networksAppl Math Lett2012251221472155296780710.1016/j.aml.2012.05.0131259.68014
– reference: Parsonage E, Nguyen HX, Bowden R et al (2011) Generalized graph products for network design and analysis. In: 2011 19th IEEE International Conference on Network Protocols. IEEE, https://doi.org/10.1109/icnp.2011.6089084,
– reference: Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future. Proc IEEE 100(Special Centennial Issue):1411–1430. https://doi.org/10.1109/jproc.2011.2182009
– reference: HayesJMudgeTHypercube supercomputersProc IEEE198977121829184110.1109/5.48826
– reference: Abd-El-BarrMAl-SomaniTFTopological properties of hierarchical interconnection networks: a review and comparisonJ Electr Comput Eng2011201111210.1155/2011/189434
– reference: DallyWTowlesBPrinciples and practices of interconnection networks2003AmsterdamElsevier Science & Technology
– reference: Effective Bandwidth (b_eff) Benchmark (2021) https://fs.hlrs.de/projects/par/mpi/b_eff/
– reference: Mirsadeghi SH, Afsahi A (2016) PTRAM: a parallel topology-and routing-aware mapping framework for large-scale HPC systems. In: (2016) IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE. https://doi.org/10.1109/ipdpsw.2016.146
– reference: LeisersonCEFat-trees: universal networks for hardware-efficient supercomputingIEEE Trans Comput C1985341089290110.1109/tc.1985.6312192
– reference: Feria-PurónRRyanJPérez-RosésHSearching for large multi-loop networksElectron Notes Discret Math201446233240351567010.1016/j.endm.2014.08.0311338.05252
– reference: ArndtJMatters computational: ideas, algorithms, source code2010BerlinSpringer Science & Business Media1210.68128
– reference: WuCLFengTYOn a class of multistage interconnection networksIEEE Trans Comput C198029869470258213310.1109/tc.1980.16756510444.94048
– reference: Graph 500 (2021) http://graph500.org/
– reference: ZhangPPowellRDengYInterlacing bypass rings to torus networks for more efficient networksIEEE Trans Parallel Distrib Syst201122228729510.1109/tpds.2010.89
– reference: NakaoMSakaiMHanadaYGraph optimization algorithm for low-latency interconnection networksParallel Comput2021106102805430101910.1016/j.parco.2021.102805
– reference: Feng R, Zhang P, Deng Y (2012) Simulated performance evaluation of a 6d mesh/iBT interconnect. In: 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE, Kyoto, Japan, https://doi.org/10.1109/snpd.2012.19
– reference: BoeschFWangJFReliable circulant networks with minimum transmission delayIEEE Trans Circuits Syst198532121286129181684610.1109/tcs.1985.10856670583.94018
– reference: BermondJComellasFHsuDDistributed loop computer-networks: a surveyJ Parallel Distrib Comput199524121010.1006/jpdc.1995.1002
– reference: Koniges A, Rabenseifner R, Solchenbach K (2001) Benchmark design for characterization of balanced high-performance architectures. In: Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001. IEEE Comput. Soc, San Francisco, CA, USA. https://doi.org/10.1109/ipdps.2001.925208
– reference: DallyWPerformance analysis of k-ary n-cube interconnection networksIEEE Trans Comput1990396775785283004910.1109/12.53599
– reference: FuHLiaoJYangJThe sunway TaihuLight supercomputer: system and applicationsSci China Inf Sci201610.1007/s11432-016-5588-7
– reference: MukhopadhyayaKSinhaBFault-tolerant routing in distributed loop networksIEEE Trans Comput199544121452145610.1109/12.4772501048.68511
– ident: 4396_CR44
  doi: 10.26493/1855-3974.969.659
– volume: 60
  start-page: 94
  year: 2014
  ident: 4396_CR52
  publication-title: J Symb Comput
  doi: 10.1016/j.jsc.2013.09.003
– volume: 76
  start-page: 9558
  issue: 12
  year: 2020
  ident: 4396_CR27
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03216-y
– volume: 26
  start-page: 984
  issue: 4
  year: 2015
  ident: 4396_CR23
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/tpds.2014.2315201
– volume: 30
  start-page: 315
  issue: 2
  year: 2019
  ident: 4396_CR30
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/tpds.2018.2864286
– volume: 52
  start-page: 199
  issue: 1.2
  year: 2008
  ident: 4396_CR6
  publication-title: IBM J Res Dev
  doi: 10.1147/rd.521.0199
– volume: 77
  start-page: 1829
  issue: 12
  year: 1989
  ident: 4396_CR11
  publication-title: Proc IEEE
  doi: 10.1109/5.48826
– volume: 7
  start-page: 1214
  issue: 12
  year: 2019
  ident: 4396_CR26
  publication-title: Mathematics
  doi: 10.3390/math7121214
– volume: 4
  start-page: 335
  issue: 4
  year: 1974
  ident: 4396_CR19
  publication-title: Networks
  doi: 10.1002/net.3230040405
– ident: 4396_CR25
  doi: 10.1109/snpd.2012.19
– ident: 4396_CR63
  doi: 10.1109/ipdps.2015.93
– ident: 4396_CR24
  doi: 10.1109/snpd.2013.43
– volume-title: Handbook of graph theory
  year: 2013
  ident: 4396_CR46
  doi: 10.1201/b16132
– ident: 4396_CR68
  doi: 10.1109/ipdpsw.2016.146
– volume: 19
  start-page: 49
  issue: 1
  year: 2005
  ident: 4396_CR62
  publication-title: Int J High Perform Comput Appl
  doi: 10.1177/1094342005051521
– volume: 29
  start-page: 1850048
  issue: 07
  year: 2018
  ident: 4396_CR31
  publication-title: Int J Mod Phys C
  doi: 10.1142/s0129183118500481
– volume: 46
  start-page: 88
  issue: 2
  year: 2005
  ident: 4396_CR41
  publication-title: Networks
  doi: 10.1002/net.20076
– ident: 4396_CR16
  doi: 10.1109/isca.2008.19
– volume: 46
  start-page: 233
  year: 2014
  ident: 4396_CR43
  publication-title: Electron Notes Discret Math
  doi: 10.1016/j.endm.2014.08.031
– ident: 4396_CR8
  doi: 10.1145/2063384.2063419
– ident: 4396_CR69
  doi: 10.1109/icnp.2011.6089084
– volume: 25
  start-page: 2147
  issue: 12
  year: 2012
  ident: 4396_CR21
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2012.05.013
– volume: 36
  start-page: 38
  issue: 4
  year: 2003
  ident: 4396_CR65
  publication-title: Computer
  doi: 10.1109/mc.2003.1193227
– volume: 74
  start-page: 2899
  issue: 10
  year: 2014
  ident: 4396_CR53
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2014.06.008
– year: 2016
  ident: 4396_CR13
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-016-5588-7
– ident: 4396_CR55
  doi: 10.1109/ipdps.2001.925208
– volume: 38
  start-page: 114
  issue: 8
  year: 1965
  ident: 4396_CR2
  publication-title: Electronics
– volume: 2011
  start-page: 1
  year: 2011
  ident: 4396_CR72
  publication-title: J Electr Comput Eng
  doi: 10.1155/2011/189434
– volume: 23
  start-page: 2245
  issue: 12
  year: 2012
  ident: 4396_CR22
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/tpds.2012.93
– ident: 4396_CR54
– ident: 4396_CR64
  doi: 10.1109/ipdps.2012.91
– volume: 34
  start-page: 892
  issue: 10
  year: 1985
  ident: 4396_CR12
  publication-title: IEEE Trans Comput C
  doi: 10.1109/tc.1985.6312192
– volume: 15
  start-page: 207
  issue: 2
  year: 2000
  ident: 4396_CR57
  publication-title: J Supercomput
  doi: 10.1023/a:1008160021085
– ident: 4396_CR58
– volume: 44
  start-page: 1452
  issue: 12
  year: 1995
  ident: 4396_CR39
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.477250
– ident: 4396_CR51
  doi: 10.1007/978-3-642-38527-8_16
– ident: 4396_CR50
– volume: 299
  start-page: 107
  issue: 1–3
  year: 2003
  ident: 4396_CR34
  publication-title: Theor Comput Sci
  doi: 10.1016/s0304-3975(01)00341-3
– volume: 12
  start-page: 2
  issue: 1
  year: 2019
  ident: 4396_CR28
  publication-title: Symmetry
  doi: 10.3390/sym12010002
– ident: 4396_CR42
  doi: 10.1109/opcs.2019.8880247
– ident: 4396_CR60
– volume: 341
  start-page: 2553
  issue: 9
  year: 2018
  ident: 4396_CR45
  publication-title: Discret Math
  doi: 10.1016/j.disc.2018.05.024
– volume-title: Handbook of product graphs
  year: 2011
  ident: 4396_CR70
  doi: 10.1201/b10959
– volume: 19
  start-page: 45
  year: 2010
  ident: 4396_CR59
  publication-title: Cray Users Group (CUG)
– volume: 22
  start-page: 287
  issue: 2
  year: 2011
  ident: 4396_CR20
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/tpds.2010.89
– ident: 4396_CR17
  doi: 10.1109/sc.2012.39
– volume: 39
  start-page: 775
  issue: 6
  year: 1990
  ident: 4396_CR15
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.53599
– volume: 42
  start-page: 36
  issue: 11
  year: 2009
  ident: 4396_CR9
  publication-title: Computer
  doi: 10.1109/mc.2009.370
– ident: 4396_CR10
  doi: 10.1109/cluster.2018.00090
– volume: 106
  start-page: 805
  issue: 102
  year: 2021
  ident: 4396_CR32
  publication-title: Parallel Comput
  doi: 10.1016/j.parco.2021.102805
– ident: 4396_CR18
  doi: 10.1109/sc41405.2020.00039
– volume-title: Principles and practices of interconnection networks
  year: 2003
  ident: 4396_CR4
– ident: 4396_CR66
  doi: 10.1109/jproc.2011.2182009
– volume: 32
  start-page: 1286
  issue: 12
  year: 1985
  ident: 4396_CR36
  publication-title: IEEE Trans Circuits Syst
  doi: 10.1109/tcs.1985.1085667
– volume: 9
  start-page: 160836
  year: 2021
  ident: 4396_CR67
  publication-title: IEEE Access
  doi: 10.1109/access.2021.3131635
– volume: 26
  start-page: 1250169
  issue: 31
  year: 2012
  ident: 4396_CR3
  publication-title: Int J Mod Phys B
  doi: 10.1142/s021797921250169x
– volume: 26
  start-page: 41
  issue: 3
  year: 2006
  ident: 4396_CR5
  publication-title: IEEE Micro
  doi: 10.1109/mm.2006.65
– ident: 4396_CR7
  doi: 10.1109/hoti.2010.23
– volume: 24
  start-page: 2
  issue: 1
  year: 1995
  ident: 4396_CR33
  publication-title: J Parallel Distrib Comput
  doi: 10.1006/jpdc.1995.1002
– volume: 8
  start-page: 487
  issue: 4
  year: 1984
  ident: 4396_CR47
  publication-title: J Graph Theory
  doi: 10.1002/jgt.3190080406
– volume: 5
  start-page: 63
  issue: 3
  year: 1991
  ident: 4396_CR61
  publication-title: Int J Supercomput Appl
  doi: 10.1177/109434209100500306
– volume: 381
  start-page: 68
  issue: 1–3
  year: 2007
  ident: 4396_CR40
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2007.04.002
– ident: 4396_CR56
– ident: 4396_CR1
– volume: 29
  start-page: 694
  issue: 8
  year: 1980
  ident: 4396_CR14
  publication-title: IEEE Trans Comput C
  doi: 10.1109/tc.1980.1675651
– volume: 39
  start-page: 786
  issue: 6
  year: 1990
  ident: 4396_CR71
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.53600
– volume: 28
  start-page: 989
  issue: 4
  year: 2017
  ident: 4396_CR29
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/tpds.2016.2613043
– ident: 4396_CR49
– volume: 04
  start-page: 1250002
  issue: 01
  year: 2012
  ident: 4396_CR35
  publication-title: Discret Math Algorithms Appl
  doi: 10.1142/s1793830912500024
– volume: 7
  start-page: 954
  issue: 9
  year: 1996
  ident: 4396_CR38
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/71.536939
– volume: 40
  start-page: 1109
  issue: 10
  year: 1991
  ident: 4396_CR37
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.93744
– volume-title: Matters computational: ideas, algorithms, source code
  year: 2010
  ident: 4396_CR48
SSID ssj0004373
Score 2.404775
Snippet Communication latency has become one of the determining factors for the performance of parallel clusters. To design low-latency network topologies for...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13491
SubjectTerms Algorithms
Benchmarks
Cartesian coordinates
Clusters
Communications traffic
Compilers
Computer Science
Data communication
Hypercubes
Interpreters
Network latency
Network topologies
Optimization
Processor Architectures
Programming Languages
Toruses
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDb7FaZQ_e7EKzjyTrrYilCOrFQm9hd7MBIaalSSn99-7m0SiI6HknE5jH7gzz-ABujT2wz4DECVMxZnHogNxpgF3VMQxUHIclSsTziz-esKcpn9ZDYXnT7d6UJMubuh128wgJsOs-d-OcPubbsMPdOi9rxRMybKchaVVXFjYxCjkj9ajMzzy-P0dtjLkpi-7D7jKby_VKpumXl2d0BAd1yIiGlY6PYctkJ3DYwDGg2jtP4f7Vuv-HpdTvC9ddmhWoXEedI5mjdLbCqXQB8hplVes3KiqABJsrn8Fk9Pj2MMY1NALW1KcFjhkxvvBiQs3ARWwkSFQSChUmVsZKMCVZYmOpwGhL5QnNrSYS4uuEaaE9FdJz6GSzzFwAYsJTAx3zgBqbi3AVcsMCX1KjhE1fpemC10go0vXecAdfkUbtxmMn1chKNSqlGvEu3G2-mVdbM36l7jWCj2oPyiO3hcYhHnLRhX6jjPb4N279jcL-8PPL_3G_gj1Smo9r2O1Bp1gszbUNSwp1U1rhJ2Ah1V4
  priority: 102
  providerName: Springer Nature
Title Optimal circulant graphs as low-latency network topologies
URI https://link.springer.com/article/10.1007/s11227-022-04396-5
https://www.proquest.com/docview/2684589159
http://dx.doi.org/10.1007/s11227-022-04396-5
UnpaywallVersion submittedVersion
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VdgAG3ohCqTKwUQNJ7MRhK4iCQBQGKsEUxY4jIUJatamq8us559GCeAimDL4kyt05_k4-fx_AgcIBXAYCElEREhpyLeRuu0TvOnJXhCHPVCJuu85Vj14_sscKtH7cwT8eISKwXKK7zvUxToewBag5DJF3FWq97n37KaPTwyqIs0wrx2SujaacFmdkvn_I53VoDi5n-6HLsDhOBsF0EsTxhyWnswq35cGdvNPk5WiciiP59pXH8U9fswYrBfY02nmyrENFJRuwWuo6GMU034TTO_yPvKKlfB7qNtUkNTJe65ERjIy4PyFxoJH21EjyHnIjzZUWsOjegl7n4uH8ihQaC0Tajp2SkFrK8czQstWJhn6WG4mIe4JHGCzhURHQCEGZqyRamZ5kGNLIcmREpSdNwe1tqCb9RO2AQT1TnMgQva-wqGGCM0VdJ7CV8LAODlQdzNLjviwIyLUORuzPqZO1c3x0jp85x2d1OJzdM8jpN361bpSB9IupOPI1nY2WTmReHVplcOfDvz2tNUuAP7x893_me7BkZVmgO38bUE2HY7WP-CYVTai1O2dnXX29fLq5aMJCz2o3i2R_B1Pr7s0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAHxlMMBvTADYJomrQNtwltDAbjwqRxqpo0lRClm7ZO0_j1JH2sgNAE57huazuJLT8-gDOpFtQ14KOQ8ACRwNVA7paDdNbRdXgQuClKxGPP7vTJ_YAO8qawSVHtXqQk05O6bHYzMXaQrj7X7Zw2oqtQJSpAwRWoNm9fuq2yH9LKMstMhUYuJThvlvmdy_cLqfQyF4nRDVibxiN_PvOj6Mvd065Bv_jqrOTk7XKa8Evx8WOg439_aws2c2fUaGbWsw0rMt6BWgH0YOT7fheun9TB8q4oxetY163GiZEOup4Y_sSIhjMU-dr1nhtxVlRuJBn0gorC96Dfbj3fdFAOuoCEZVsJCgiWNjMDbMkr7QtiJ-Shy7gbKu1xRrhPQuWlOVIoKpMJqnQcYluERDBhctfah0o8jOUBGISZ_EoE1LGkinIod6kkju1bkjMVGPuyDmYheU_kE8k1MEbklbOUtXA8JRwvFY5H63C-eGaUzeNYSt0oFOrle3Pi6fk2GkuRsjpcFDopl5dxu1gYwh9efvg_7qew1nl-fPAe7nrdI1jHqUXosuAGVJLxVB4r5yfhJ7mtfwK-s_U-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSDwOvBHj2QM3FrGmSdtwm4BpvAYHJu1WNWkiIZVu2jpN-_ckfaxDQhOc46aSncS2bH8fwJXUC9oNhEgRHiES-YbI3fGQqTr6Ho8iP2OJeO26nR556tP-whR_1u1eliTzmQaD0pSkN8NI3VSDbzbGHjKd6Ga000V0FdaIAUrQJ7qHW9VkpJPXmJlOknxKcDE28_seP11TFW_OS6RbsDFJhuFsGsbxghdq78J2ET5ardzee7Aik33YKakZrOKmHsDtm34KvrSk-ByZTtMktTJo6rEVjq14MEVxaILlmZXkbeBWmpMl6Lz5EHrth4-7DipoEpBwXCdFEcHSZXaEHdk00Rv2FFc-477S-uaM8JAoHVd5UmgpmwmqraKwKxQRTNjcd46glgwSeQwWYTZvioh6jtR5CeU-lcRzQ0dyplPZUNbBLjUUiAJD3FBZxEGFfmy0GmitBplWA1qH6_k3wxxBY6n0Wan4oLhN48Ag0hj2Q8rq0CiNUS0v260xN9gffn7yv90vYf39vh28PHafT2ETZyfJ9PGeQS0dTeS5jlZSfpEdyG9bzNyG
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHyirKphy4UReS2InDDSEqhMRyoFI5RbbjSIiQVm2qqnw94ywtCKjK2RNHmRnHb-TxewCnGgdwGxAkpjIiNOJGyN31iTl15L6MIp6rRNw_eLcdetdl3SVo_nmCfz5EROD4xHSdm2ucHmHLsOIxRN41WOk8PF295HR6WAVxlmvl2Mx30ZTT8o7M75N834dm4HJ6HroOq6O0LyZjkSRftpx2He6riztFp8lba5TJlvr4yeO40NdswkaJPa2rIlm2YEmn21CvdB2scpnvwOUj_kfe0VK9DkybappZOa_10BJDK-mNSSIM0p5YadFDbmWF0gIW3bvQad88X9-SUmOBKNdzMxJRR3uBHTmuvjDQz_FjGfNA8hiDJQMqBY0RlPlaoZUdKIYhjR1PxVQFypbc3YNa2kv1Plg0sOWFitD7GosaJjnT1PeEq2WAdbDQDbArj4eqJCA3OhhJOKNONs4J0Tlh7pyQNeBs-ky_oN-Ya31UBTIsl-IwNHQ2RjqRBQ1oVsGdDc-brTlNgAVefvA_80NYc_IsMJ2_R1DLBiN9jPgmkydlWn8C_tTq1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+circulant+graphs+as+low-latency+network+topologies&rft.jtitle=The+Journal+of+supercomputing&rft.au=Huang%2C+Xiaolong&rft.au=F+Ramos+Alexandre&rft.au=Deng+Yuefan&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=11&rft.spage=13491&rft.epage=13510&rft_id=info:doi/10.1007%2Fs11227-022-04396-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon