Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models
•The hydrodynamics, mixing and mass transfer of two-phase processes are reviewed.•Bubble/droplet formation mechanism and scaling models are summarized.•The dynamic behavior during formation stage is highlighted.•The circulation topology and mixing inside both droplets and slugs are discussed.•The in...
        Saved in:
      
    
          | Published in | Chemical engineering science Vol. 229; p. 116017 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        16.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0009-2509 1873-4405  | 
| DOI | 10.1016/j.ces.2020.116017 | 
Cover
| Abstract | •The hydrodynamics, mixing and mass transfer of two-phase processes are reviewed.•Bubble/droplet formation mechanism and scaling models are summarized.•The dynamic behavior during formation stage is highlighted.•The circulation topology and mixing inside both droplets and slugs are discussed.•The interfacial mass transfer regimes and simulative models are presented.
Microreaction technology is preferential in process intensification and chemical synthesis, especially in multiphase applications. A thorough understanding of the hydrodynamics and mass transfer is the pre-requisite for implementing such applications. This review discusses the recent progress on the flow and mass transfer of two-phase systems in microchannels, in a multi-scale view from local mechanism to global behavior. The flow patterns, the formation of bubbles/droplets, and the manipulation of bubbles/droplets are presented and discussed in detail. The mass transfer aspects include the velocity profile and mixing inside droplets/slugs, as well as the interfacial mass transfer mechanism and simulative models. The aim of the review is to show directly the physical ingredients which determine the transport phenomena, help explain the observed behavior, and guide reactor design. To simplify the physical ingredients, the attention is focused on straight channels while phenomena in other channels (e.g., meandering channel) are neglected. | 
    
|---|---|
| AbstractList | •The hydrodynamics, mixing and mass transfer of two-phase processes are reviewed.•Bubble/droplet formation mechanism and scaling models are summarized.•The dynamic behavior during formation stage is highlighted.•The circulation topology and mixing inside both droplets and slugs are discussed.•The interfacial mass transfer regimes and simulative models are presented.
Microreaction technology is preferential in process intensification and chemical synthesis, especially in multiphase applications. A thorough understanding of the hydrodynamics and mass transfer is the pre-requisite for implementing such applications. This review discusses the recent progress on the flow and mass transfer of two-phase systems in microchannels, in a multi-scale view from local mechanism to global behavior. The flow patterns, the formation of bubbles/droplets, and the manipulation of bubbles/droplets are presented and discussed in detail. The mass transfer aspects include the velocity profile and mixing inside droplets/slugs, as well as the interfacial mass transfer mechanism and simulative models. The aim of the review is to show directly the physical ingredients which determine the transport phenomena, help explain the observed behavior, and guide reactor design. To simplify the physical ingredients, the attention is focused on straight channels while phenomena in other channels (e.g., meandering channel) are neglected. | 
    
| ArticleNumber | 116017 | 
    
| Author | Zhao, Yuchao Yao, Chaoqun Zhao, Qiankun Liu, Yanyan Chen, Guangwen Ma, Haiyun  | 
    
| Author_xml | – sequence: 1 givenname: Chaoqun surname: Yao fullname: Yao, Chaoqun organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 2 givenname: Yuchao orcidid: 0000-0001-7238-7265 surname: Zhao fullname: Zhao, Yuchao organization: Shandong Collaborative Innovation Center of Light Hydrocarbon Transformation and Utilization, College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China – sequence: 3 givenname: Haiyun surname: Ma fullname: Ma, Haiyun organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 4 givenname: Yanyan surname: Liu fullname: Liu, Yanyan organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 5 givenname: Qiankun surname: Zhao fullname: Zhao, Qiankun organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 6 givenname: Guangwen orcidid: 0000-0001-5290-7921 surname: Chen fullname: Chen, Guangwen email: gwchen@dicp.ac.cn organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China  | 
    
| BookMark | eNp9kE1OwzAQRi1UJNrCAdj5Agl2nMQxrKqKP6kSm7K2ps6Eukrsyo6ouD2OyopFV9Z45o3mewsyc94hIfec5Zzx-uGQG4x5wYpU85pxeUXmvJEiK0tWzcicMaayomLqhixiPKRSSs7mBLYnnx33EJF2vT9RcC0dIEY6BnCxw0Cto4M1wZs9OId9fKQrGvDb4ol2wQ-09wZ6OuDUt3Ggo6dfvd9Nf75N87fkuoM-4t3fuySfL8_b9Vu2-Xh9X682mRG1GLOWG8lFg4A7rJXk6W6FVdUUZZPiiMpAobisge1YKSrFedkx1YiiUgoAGxBLws97060xBuz0MdgBwo_mTE-O9EEnR3pypM-OEiP_McaOMFrvUnzbXySfzmRKOMkIOhqLzmBrA5pRt95eoH8B7IWCVg | 
    
| CitedBy_id | crossref_primary_10_1016_j_molliq_2022_119133 crossref_primary_10_1016_j_ces_2024_120494 crossref_primary_10_35848_1347_4065_adb6b0 crossref_primary_10_1016_j_aej_2021_07_011 crossref_primary_10_1016_j_jtice_2022_104602 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125186 crossref_primary_10_3390_fluids10020026 crossref_primary_10_1016_j_expthermflusci_2024_111391 crossref_primary_10_1016_j_rser_2023_113357 crossref_primary_10_1021_acs_iecr_1c00800 crossref_primary_10_1016_j_cep_2024_109859 crossref_primary_10_3390_sym14081661 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123334 crossref_primary_10_1021_acs_iecr_2c03066 crossref_primary_10_1063_5_0220101 crossref_primary_10_1016_j_ces_2025_121298 crossref_primary_10_1016_j_cjche_2023_06_006 crossref_primary_10_3390_mi12091113 crossref_primary_10_1016_j_cej_2022_136682 crossref_primary_10_1016_j_ijthermalsci_2023_108338 crossref_primary_10_1016_j_cej_2024_155348 crossref_primary_10_1016_j_ces_2023_119011 crossref_primary_10_1016_j_ces_2023_118969 crossref_primary_10_1063_5_0252466 crossref_primary_10_1016_j_ces_2021_116668 crossref_primary_10_1002_aic_18701 crossref_primary_10_1002_cjce_25020 crossref_primary_10_1016_j_applthermaleng_2023_120537 crossref_primary_10_1002_advs_202406325 crossref_primary_10_1016_j_cej_2021_130226 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125320 crossref_primary_10_1016_j_fuel_2023_128699 crossref_primary_10_58224_2619_0575_2024_7_2_43_52 crossref_primary_10_1016_j_cej_2022_140670 crossref_primary_10_1016_j_cej_2024_149285 crossref_primary_10_1016_j_anucene_2024_110494 crossref_primary_10_1016_j_biortech_2023_130154 crossref_primary_10_1063_5_0190747 crossref_primary_10_1021_acs_iecr_3c04121 crossref_primary_10_1021_acs_iecr_4c02694 crossref_primary_10_1016_j_energy_2023_127650 crossref_primary_10_1016_j_ces_2024_119777 crossref_primary_10_1016_j_ces_2024_119898 crossref_primary_10_1016_j_ces_2021_117375 crossref_primary_10_1515_tsd_2022_2482 crossref_primary_10_1134_S1810232821040093 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121344 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125665 crossref_primary_10_1007_s41981_021_00176_z crossref_primary_10_1021_acscatal_4c06638 crossref_primary_10_1103_PhysRevFluids_7_013604 crossref_primary_10_1615_InterfacPhenomHeatTransfer_2022046727 crossref_primary_10_3389_fceng_2022_779611 crossref_primary_10_1016_j_seppur_2025_131525 crossref_primary_10_1016_j_ces_2021_117285 crossref_primary_10_1016_j_ces_2021_117166 crossref_primary_10_1016_j_ces_2024_120969 crossref_primary_10_1016_j_flowmeasinst_2024_102548 crossref_primary_10_1140_epjp_s13360_023_03977_4 crossref_primary_10_1016_j_ces_2022_117609 crossref_primary_10_1063_5_0231939 crossref_primary_10_1016_j_ces_2025_121253 crossref_primary_10_1021_acs_iecr_3c03693 crossref_primary_10_1016_j_cej_2023_142228 crossref_primary_10_1016_j_jtice_2025_105985 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104005 crossref_primary_10_1088_1361_6501_ada1e8 crossref_primary_10_1002_aic_18508 crossref_primary_10_3390_en15176141 crossref_primary_10_1016_j_ces_2021_117037 crossref_primary_10_1002_pol_20230722 crossref_primary_10_1007_s41981_022_00228_y crossref_primary_10_3390_mi13101661 crossref_primary_10_1016_j_ces_2021_116926 crossref_primary_10_1002_aic_18221 crossref_primary_10_1007_s41981_021_00179_w crossref_primary_10_1016_j_cej_2023_142335 crossref_primary_10_1016_j_cej_2023_143426 crossref_primary_10_1016_j_cej_2020_127419 crossref_primary_10_3390_w15061033 crossref_primary_10_1016_j_cjche_2022_06_016 crossref_primary_10_1063_5_0151374 crossref_primary_10_1007_s12217_022_10026_9 crossref_primary_10_1021_acs_langmuir_3c01017 crossref_primary_10_1016_j_ces_2023_118510 crossref_primary_10_1063_5_0103497 crossref_primary_10_1016_j_ceja_2023_100518 crossref_primary_10_1016_j_ces_2020_116299 crossref_primary_10_3390_app10238739 crossref_primary_10_1016_j_ces_2024_120709 crossref_primary_10_1039_D4RE00223G crossref_primary_10_1007_s13202_023_01696_1 crossref_primary_10_1038_s41598_024_75356_7 crossref_primary_10_1007_s40430_023_04478_2 crossref_primary_10_1016_j_icheatmasstransfer_2022_106124 crossref_primary_10_1039_D3GC03360K crossref_primary_10_1016_j_cej_2023_144223 crossref_primary_10_1016_j_ces_2022_117509 crossref_primary_10_1016_j_cherd_2021_07_006 crossref_primary_10_1007_s10404_023_02633_8 crossref_primary_10_1002_ceat_202000396 crossref_primary_10_1016_j_cherd_2025_03_011 crossref_primary_10_20914_2310_1202_2024_3_274_281 crossref_primary_10_1021_acs_iecr_3c02941 crossref_primary_10_1016_j_ces_2023_118743 crossref_primary_10_1002_ceat_202200214 crossref_primary_10_1016_j_ces_2022_117752 crossref_primary_10_3390_en18040984 crossref_primary_10_1016_j_psep_2022_02_036 crossref_primary_10_1016_j_seppur_2023_123489 crossref_primary_10_1016_j_cej_2021_129045  | 
    
| Cites_doi | 10.1103/PhysRevE.86.026308 10.1016/j.ces.2018.02.018 10.1016/j.cej.2017.05.056 10.1002/aic.12367 10.1039/c001191f 10.1021/la8035852 10.1016/j.ces.2020.115734 10.1016/j.ces.2013.05.054 10.1039/c0lc00442a 10.1103/PhysRevLett.108.264502 10.1016/j.ces.2018.02.010 10.1007/s41981-019-00062-9 10.1016/j.ijmultiphaseflow.2009.07.006 10.1016/S0009-2509(97)00217-0 10.1021/acs.langmuir.6b00271 10.1016/j.ces.2005.01.037 10.1021/ac800088s 10.1016/j.ces.2004.03.010 10.1016/j.ces.2009.03.010 10.1063/1.870254 10.1039/B610888A 10.1002/aic.14704 10.1016/j.cej.2018.10.056 10.1002/ange.201403719 10.1039/b511976f 10.1039/c3lc50533b 10.1126/science.aan0745 10.1039/b510841a 10.1016/j.cep.2015.08.008 10.1039/C4LC01431F 10.1007/s10404-017-2011-7 10.1007/s10404-008-0306-4 10.1016/j.ces.2018.06.007 10.1002/aic.10924 10.1016/j.ces.2014.11.005 10.1016/S0009-2509(97)00114-0 10.1126/science.aaf1337 10.1016/j.ces.2010.08.038 10.1103/PhysRevLett.99.104502 10.1088/0957-0233/22/10/105401 10.1039/D0RA00913J 10.1063/1.1992514 10.1103/PhysRevLett.100.014502 10.1002/aic.16934 10.1007/s10404-009-0471-0 10.1017/S002211200700910X 10.1002/aic.15889 10.1016/j.ces.2013.02.013 10.1016/j.ces.2016.12.003 10.1016/j.ijheatfluidflow.2011.11.001 10.1016/j.cherd.2013.07.031 10.1016/j.ces.2013.03.046 10.1002/aic.14306 10.1002/aic.11029 10.1039/b906558j 10.1016/j.cej.2019.05.051 10.1016/j.ijmultiphaseflow.2011.06.004 10.1016/j.cej.2015.09.102 10.1103/PhysRevLett.103.214501 10.1103/PhysRevE.78.036317 10.1103/PhysRevE.78.016307 10.1063/1.3549266 10.1016/j.ces.2015.02.016 10.1016/j.cattod.2009.07.054 10.1016/j.ces.2011.06.003 10.1002/ceat.201200600 10.1007/s10404-007-0233-9 10.1016/j.cherd.2016.06.017 10.1021/la100029q 10.1103/PhysRevLett.86.4163 10.1021/la052682f 10.1039/C4RA00654B 10.1002/aic.11033 10.1039/C5LC00420A 10.1039/C2GC36652E 10.1016/j.ces.2010.03.012 10.1007/s10404-017-2019-z 10.1016/j.ces.2013.03.041 10.1039/C4LC00671B 10.1103/PhysRevLett.108.134501 10.1016/j.colsurfa.2008.09.033 10.1016/j.ces.2015.03.066 10.1017/S0022112095001455 10.1016/j.cej.2017.07.037 10.1007/s10404-017-1982-8 10.1103/PhysRevLett.100.024501 10.1016/j.ces.2016.01.004 10.1039/c3lc51222c 10.1021/acs.iecr.5b01991 10.1002/ange.200390172 10.1016/j.ces.2010.12.033 10.1134/S0869864315030014 10.1002/aic.13825 10.1016/j.ces.2019.115207 10.1039/b813325e 10.1017/jfm.2013.18 10.1063/1.2911716 10.1039/B818479H 10.1016/j.cej.2016.06.023 10.1016/j.ces.2019.07.046 10.1016/j.cep.2017.12.017 10.1016/j.ces.2012.08.039 10.1039/B806946H 10.1038/s41467-019-10505-5 10.1016/j.jiec.2018.04.038 10.1021/acs.iecr.5b04917 10.1021/ja075180s 10.1016/j.ijmultiphaseflow.2018.04.005 10.1016/j.cej.2018.03.119 10.1021/la204852w 10.1103/PhysRevE.93.022802 10.1103/PhysRevLett.94.184502 10.1103/PhysRevLett.100.034504 10.1016/j.ces.2011.10.048 10.1039/c1lc20348g 10.1088/1367-2630/11/7/075021 10.1021/ja411601a 10.1016/j.ces.2011.10.036 10.1016/j.cep.2019.02.014 10.1002/aic.14895 10.1039/c2lc21263c 10.1002/aic.15217 10.1002/apj.2393 10.1039/c1lc20534j 10.1021/ie102200j 10.1016/j.ces.2008.07.025 10.1017/S0022112003007213 10.1002/ceat.201100643 10.1103/PhysRevLett.94.164501 10.1103/PhysRevLett.92.054503 10.1063/1.1929547 10.1016/j.cherd.2016.09.001 10.1016/j.ces.2009.01.067 10.1016/j.ijmultiphaseflow.2006.02.014 10.1039/C7RE00082K 10.1002/aic.15547 10.1016/j.ces.2014.03.016 10.1002/aic.15026 10.1039/C1LC20639G 10.1002/anie.200600122 10.1021/acs.langmuir.8b00123 10.1088/0022-3727/12/9/009 10.1021/ie0490536 10.1016/j.ces.2017.03.007 10.1039/C6LC00186F 10.1007/s10404-006-0139-y 10.1016/j.ces.2013.01.049 10.1039/C8SM01144C 10.1103/PhysRevLett.99.094502 10.1016/j.ces.2016.02.013 10.1016/j.ces.2007.08.068 10.1039/b706549c 10.1134/S0040579516060166 10.1002/cssc.201200766 10.1016/j.cej.2007.07.037 10.1016/j.cej.2010.09.088 10.1039/B609851G 10.1016/j.ces.2011.05.015 10.1039/B617391H 10.1002/aic.12698  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2020 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ces.2020.116017 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-4405 | 
    
| ExternalDocumentID | 10_1016_j_ces_2020_116017 S0009250920305492  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 SEW T9H VH1 WUQ Y6R ZY4 ~HD  | 
    
| ID | FETCH-LOGICAL-c363t-d1c7138eaebe69714409e55824860135ca29176a0b04359114f09832599aae8a3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0009-2509 | 
    
| IngestDate | Wed Oct 01 05:19:59 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 Fri Feb 23 02:46:43 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Microreactor Transport Multiphase Viscous fluid Microfluidic  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-d1c7138eaebe69714409e55824860135ca29176a0b04359114f09832599aae8a3 | 
    
| ORCID | 0000-0001-5290-7921 0000-0001-7238-7265  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_ces_2020_116017 crossref_citationtrail_10_1016_j_ces_2020_116017 elsevier_sciencedirect_doi_10_1016_j_ces_2020_116017  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-16 | 
    
| PublicationDateYYYYMMDD | 2021-01-16 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-16 day: 16  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Chemical engineering science | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Cubaud, Mason (b0130) 2008; 20 Kashid MN, G.I., Goetz S., Franzke J., Acker JF., Platte F., Agar DW., Turek S., 2005. Internal circulation within the liquid slugs of a liquid− liquid slug-flow capillary microreactor. Ind. Eng. Chem. Res. 44, 5003–5010. Ma, Zhang, Fu, Zhu, Wang, Ma, Luo (b0450) 2018; 65 Liu, Chen, Yue (b0435) 2020; 10 Kinoshita, Kaneda, Fujii, Oshima (b0360) 2007; 7 Kashid, Renken, Kiwi-Minsker (b0345) 2011; 66 Kralj, Sahoo, Jensen (b0370) 2007; 7 Thulasidas, Abraham, Cerro (b0610) 1997; 52 Parthiban, Khan (b0495) 2012; 12 Yao, Dong, Zhao, Chen (b0755) 2014; 112 Yao, Ma, Zhao, Liu, Zhao, Chen (bib821) 2020; 223 Van der Graaf, Nisisako, Schroën, Van Der Sman, Boom (b0650) 2006; 22 Mi, Yao, Zhao, Chen (b0470) 2019; 137 Cabral, Hudson (b0080) 2006; 6 Scheiff, Mendorf, Agar, Reis, Mackley (b0530) 2011; 11 Li, Li, Yang, Kinoshita, Oishi, Oshima (b0410) 2012; 69 Ward, Faivre, Stone (b0705) 2010; 26 Garstecki, Fuerstman, Stone, Whitesides (b0235) 2006; 6 Di Miceli Raimondi, Prat, Gourdon, Cognet (b0140) 2008; 63 Hein, Moskopp, Seemann (b0285) 2015; 15 Voicu, Abolhasani, Choueiri, Lestari, Seiler, Menard, Greener, Guenther, Stephan, Kumacheva (b0675) 2014; 136 Wang, Zhu, Fu, Ma (b0700) 2015; 61 Deng, Sun, Wang, Ju, Xie, Chu (b0165) 2013; 13 Zhang, Liu, Zhao, Yao, Chen (b0805) 2019; 358 Ufer, Sudhoff, Mescher, Agar (b0630) 2011; 167 Mei, Hébrard, Dietrich, Loubière (b0465) 2020; 115717 Abolhasani, Kumacheva, Günther (b0020) 2015; 54 Fu, Ma, Funfschilling, Li (b0200) 2011; 66 Niu, X., Gulati, S., Edel, J.B., demello, A.J., 2008. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8, 1837-1841. Vandu, Liu, Krishna (b0670) 2005; 60 Guillot, Colin, Utada, Ajdari (b0260) 2007; 99 Fu, Funfschilling, Ma, Li (b0190) 2009; 8 Adamo, Beingessner, Behnam, Chen, Jamison, Jensen, Monbaliu, Myerson, Revalor, Snead (b0025) 2016; 352 Yao, Zhao, Chen (b0770) 2018; 189 Xu, Tostado, Xu, Lu, Luo (b0720) 2014; 14 Yue (b0790) 2017; 15 Zhao, Chen, Yuan (b0820) 2006; 52 Bai, Fu, Zhao, Cheng (b0045) 2016; 145 Yang, Dietrich, Hébrard, Loubière, Gourdon (b0730) 2017; 63 Hu, Pine, Leal (b0310) 2000; 12 Jakiela, Makulska, Korczyk, Garstecki (b0320) 2011; 11 Svetlov, Abiev (b0595) 2016; 50 Castro-Hernandez, Gundabala, Fernández-Nieves, Gordillo (b0095) 2009; 11 Jose, Cubaud (b0330) 2014; 4 Fu, Wu, Ma, Li (b0215) 2012; 84 Kececi, Wörner, Onea, Soyhan (b0350) 2009; 147 Utada, Fernandez-Nieves, Stone, Weitz (b0640) 2007; 99 Abate, Mary, van Steijn, Weitz (b0005) 2012; 12 Abiev, Butler, Cid, Lalanne, Billet (b0010) 2019; 207 Fu, Ma, Funfschilling, Zhu, Li (b0205) 2010; 65 Hodges, Jensen, Rallison (b0300) 2004; 501 Yao, Zhao, Zheng, Zhang, Chen (b0780) 2020; 66 Castell, Allender, Barrow (b0090) 2009; 9 Cole, Groh, Johnson, Burcham, Campbell, Diseroad, Heller, Howell, Kallman, Koenig (b0125) 2017; 356 Bremond, Thiam, Bibette (b0060) 2008; 100 Christopher, Noharuddin, Taylor, Anna (b0115) 2008; 78 Yao, Liu, Xu, Zhao, Chen (b0765) 2018; 64 Dong, Yao, Zhang, Chen, Xu, Yuan (b0155) 2016; 62 Zhang, Yao, Ma, Jin, Zhang, Lü, Zhao (b0800) 2018; 182 Kashid, Renken, Kiwi-Minsker (b0340) 2011; 50 Hoang, Portela, Kleijn, Kreutzer, Van Steijn (b0295) 2013; 717 Dong, Yao, Zhang, Xu, Chen, Zhao, Yuan (b0150) 2015; 15 Liu, Zhang, Zhu, Fu, Ma, Li (b0425) 2018; 125 Chinnov, E., Ron’Shin, F., Kabov, O.A., 2015. Regimes of two-phase flow in micro-and minichannels. Thermophys. Aeromech+ 22, 265-284. Steegmans, Schroën, Boom (b0555) 2009; 64 Dogan, Nas, Muradoglu (b0145) 2009; 35 Yagodnitsyna, Kovalev, Bilsky (b0725) 2016; 303 Zaloha, Kristal, Jiricny, Völkel, Xuereb, Aubin (b0795) 2012; 68 Aota, Nonaka, Hibara, Kitamori (b0035) 2007; 46 Tanner (b0600) 1979; 12 Waelchli, Rudolf von Rohr (b0680) 2006; 32 Zhao, Wang, Shao, Zhang, Jin, Cheng (b0815) 2013; 100 Hessel, Kralisch, Kockmann, Noel, Wang (b0290) 2013; 6 Li, Angeli (b0400) 2016; 143 Yao, Zheng, Zhao, Zhang, Chen (b0785) 2019; 373 Gunther, Jensen (b0265) 2006; 6 Yao, Zhao, Ye, Dangi, Dong, Chen (b0775) 2013; 95 Korczyk, van Steijn, Blonski, Zaremba, Beattie, Garstecki (b0365) 2019; 10 Sarrazin, Loubière, Prat, Gourdon, Bonometti, Magnaudet (b0520) 2006; 52 Afkhami, Leshansky, Renardy (b0030) 2011; 23 Scheiff, Holbach, Agar (b0525) 2013; 36 Tostado, Xu, Du, Luo (b0620) 2012; 28 Ghaini, Mescher, Agar (b0245) 2011; 66 Sarrazin, Bonometti, Prat, Gourdon, Magnaudet (b0515) 2007; 5 Baroud, Gallaire, Dangla (b0040) 2010; 10 Wang, Zhang, Zhang, Luo (b0695) 2016; 32 Tsaoulidis, Angeli (b0625) 2016; 62 Butler, Lalanne, Sandmann, Cid, Billet (b0070) 2018; 105 Burton, Waldrep, Taborek (b0075) 2005; 94 Lu, Fu, Zhu, Ma, Li (b0445) 2016; 93 Yao, Dong, Zhao, Chen (b0750) 2014; 60 Wong, Radke, Morris (b0270) 1995; 292 Eskin, Mostowfi (b0180) 2012; 33 van Steijn, Kreutzer, Kleijn (b0665) 2007; 62 Liu, Zhang, Pang, Wang, Li (b0440) 2017; 21 Steegmans, Schroën, Boom (b0560) 2009; 25 Li, Angeli (b0405) 2017; 328 Guillot, Colin, Ajdari (b0255) 2008; 78 Nirmal, Leary, Ramachandran (b0480) 2019; 15 Garstecki, Stone, Whitesides (b0240) 2005; 94 Yao, Dong, Zhang, Mi, Zhao, Chen (b0745) 2015; 61 Glawdel, Ren (b0250) 2012; 86 Soh, Yeoh, Timchenko (b0545) 2017; 21 Fu, Ma (b0195) 2015; 135 Pascaline, Vincent, Patrick (b0500) 2008; 80 Cao, Wu, Sundén (b0085) 2018; 344 Fu, Ma, Li (b0210) 2015; 97 Fuerstman, Lai, Thurlow, Shevkoplyas, Stone, Whitesides (b0225) 2007; 7 Horii, Fuchigami, Atobe (b0305) 2007; 129 De Menech, Garstecki, Jousse, Stone (b0160) 2008; 595 Du, Qi, Fan, Chen (b0175) 2020; 15 Lindken, Rossi, Grosse, Westerweel (b0415) 2009; 9 Tomotika (b0615) 1935; 150 Sun, Cubaud (b0585) 2011; 11 Oishi, Kinoshita, Fujii, Oshima (b0490) 2011; 22 Thorsen, Roberts, Arnold, Quake (b0605) 2001; 86 Ganapathy, Al-Hajri, Ohadi (b0230) 2013; 94 Beer, Rose, Kennedy (b0050) 2009; 9 Lam, Sorensen, Gavriilidis (b0380) 2013; 91 Sobieszuk, Aubin, Pohorecki (b0540) 2012; 35 Link, Anna, Weitz, Stone (b0420) 2004; 92 Shao, Gavriilidis, Angeli (b0535) 2009; 64 Yao, Dong, Zhao, Chen (b0760) 2015; 123 Hao, Jin, Wang, Zhou, Zhao, Zhang, Lü (b0280) 2020; 10 Stefan, Yu, Tapio (b0565) 2016; 113 Muradoglu, Stone (b0475) 2005; 17 Wang, Lu, Yang, Luo (b0690) 2013; 59 Butler, Cid, Billet (b0065) 2016; 115 Marín, Campo-Cortés, Gordillo (b0460) 2009; 344 Susanti, Winkelman, J.G.M., Schuur, B., Heeres, H.J., Yue, J., 2016. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors. Ind. Eng. Chem. Res. 55, 4691–4702. Wang, Li, Xie, Luo (b0685) 2017; 2 Zhao, Middelberg (b0120) 2011; 66 Leshansky, Afkhami, Jullien, Tabeling (b0395) 2012; 108 van Steijn, Kleijn, Kreutzer (b0655) 2009; 103 King, Walsh, Grimes (b0355) 2007; 3 Haase, Murzin, Salmi (b0275) 2016; 113 Chen, Zhao, Han, Ye, Dang, Chen (b0105) 2013; 15 Lan, Wang, Guo, Li, Luo (b0385) 2016; 62 Zhao, Riaud, Luo, Jin, Cheng (b0810) 2015; 131 Fu, Bai, Zhao, Zhang, Jin, Cheng (b0220) 2018; 181 Dietrich, Loubière, Jimenez, Hébrard, Gourdon (b0135) 2013; 100 Dollet, Van Hoeve, Raven, Marmottant, Versluis (b0170) 2008; 100 Bercic, Pintar (b0055) 1997; 52 Riaud, Zhang, Wang, Wang, Luo (b0510) 2018; 34 Xu, Li, Tan, Wang, Luo (b0715) 2006; 52 Stone, Stone (b0570) 2005; 17 Su, Zhao, Jiao, Chen, Yuan (b0580) 2011; 57 Riaud, Wang, Luo (b0505) 2013; 99 Yang, Loubière, Dietrich, Le Men, Gourdon, Hébrard (b0735) 2017; 165 Chen, Gao, Zhang, Zhao (b0100) 2016; 16 Jia, Zhang (b0325) 2016; 285 Ma, Sherwood, Huck, Balabani (b0455) 2014; 14 Foroughi, Kawaji (b0185) 2011; 37 Ładosz, von Rohr (b0375) 2017; 21 Lan, Wang, Wang, Liu, Guo, Sun, Li, Li (b0390) 2019; 209 Song, Tice, Ismagilov (b0550) 2003; 115 van Baten, Krishna (b0645) 2004; 59 Xu, Li, Tan, Luo (b0710) 2008; 5 Su, Chen, Yuan (b0575) 2012; 58 Yang, Nieves-Remacha, Jensen (b0740) 2017; 169 Liu, Wang, Wang, Wang, Luo (b0430) 2017; 325 Van steijn, V., Kreutzer, M., Kleijn, C., 2008. Velocity fluctuations of segmented flow in microchannels. Chem. Eng. J. 135, 159-165. Abolhasani, Günther, Kumacheva (b0015) 2014; 126 Utada, Fernandez-Nieves, Gordillo, Weitz (b0635) 2008; 100 Jakiela, Korczyk, Makulska, Cybulski, Garstecki (b0315) 2012; 108 Cubaud (10.1016/j.ces.2020.116017_b0130) 2008; 20 Tomotika (10.1016/j.ces.2020.116017_b0615) 1935; 150 Yang (10.1016/j.ces.2020.116017_b0735) 2017; 165 Afkhami (10.1016/j.ces.2020.116017_b0030) 2011; 23 Stefan (10.1016/j.ces.2020.116017_b0565) 2016; 113 Hessel (10.1016/j.ces.2020.116017_b0290) 2013; 6 Sun (10.1016/j.ces.2020.116017_b0585) 2011; 11 Yao (10.1016/j.ces.2020.116017_b0775) 2013; 95 Fu (10.1016/j.ces.2020.116017_b0190) 2009; 8 Li (10.1016/j.ces.2020.116017_b0410) 2012; 69 Riaud (10.1016/j.ces.2020.116017_b0510) 2018; 34 Fu (10.1016/j.ces.2020.116017_b0200) 2011; 66 Link (10.1016/j.ces.2020.116017_b0420) 2004; 92 Yue (10.1016/j.ces.2020.116017_b0790) 2017; 15 Jakiela (10.1016/j.ces.2020.116017_b0320) 2011; 11 Fu (10.1016/j.ces.2020.116017_b0205) 2010; 65 Hein (10.1016/j.ces.2020.116017_b0285) 2015; 15 Yao (10.1016/j.ces.2020.116017_bib821) 2020; 223 Utada (10.1016/j.ces.2020.116017_b0635) 2008; 100 Utada (10.1016/j.ces.2020.116017_b0640) 2007; 99 Jia (10.1016/j.ces.2020.116017_b0325) 2016; 285 Lu (10.1016/j.ces.2020.116017_b0445) 2016; 93 Yao (10.1016/j.ces.2020.116017_b0760) 2015; 123 Cole (10.1016/j.ces.2020.116017_b0125) 2017; 356 Van der Graaf (10.1016/j.ces.2020.116017_b0650) 2006; 22 Vandu (10.1016/j.ces.2020.116017_b0670) 2005; 60 Soh (10.1016/j.ces.2020.116017_b0545) 2017; 21 Ładosz (10.1016/j.ces.2020.116017_b0375) 2017; 21 Kashid (10.1016/j.ces.2020.116017_b0345) 2011; 66 King (10.1016/j.ces.2020.116017_b0355) 2007; 3 Butler (10.1016/j.ces.2020.116017_b0065) 2016; 115 Deng (10.1016/j.ces.2020.116017_b0165) 2013; 13 Yagodnitsyna (10.1016/j.ces.2020.116017_b0725) 2016; 303 10.1016/j.ces.2020.116017_b0485 Christopher (10.1016/j.ces.2020.116017_b0115) 2008; 78 Chen (10.1016/j.ces.2020.116017_b0100) 2016; 16 Hodges (10.1016/j.ces.2020.116017_b0300) 2004; 501 Svetlov (10.1016/j.ces.2020.116017_b0595) 2016; 50 Hoang (10.1016/j.ces.2020.116017_b0295) 2013; 717 Li (10.1016/j.ces.2020.116017_b0400) 2016; 143 Thorsen (10.1016/j.ces.2020.116017_b0605) 2001; 86 van Steijn (10.1016/j.ces.2020.116017_b0665) 2007; 62 Lan (10.1016/j.ces.2020.116017_b0385) 2016; 62 Glawdel (10.1016/j.ces.2020.116017_b0250) 2012; 86 Voicu (10.1016/j.ces.2020.116017_b0675) 2014; 136 Thulasidas (10.1016/j.ces.2020.116017_b0610) 1997; 52 Abiev (10.1016/j.ces.2020.116017_b0010) 2019; 207 Horii (10.1016/j.ces.2020.116017_b0305) 2007; 129 Ufer (10.1016/j.ces.2020.116017_b0630) 2011; 167 Dollet (10.1016/j.ces.2020.116017_b0170) 2008; 100 Zhang (10.1016/j.ces.2020.116017_b0805) 2019; 358 Ma (10.1016/j.ces.2020.116017_b0455) 2014; 14 Li (10.1016/j.ces.2020.116017_b0405) 2017; 328 Liu (10.1016/j.ces.2020.116017_b0440) 2017; 21 Song (10.1016/j.ces.2020.116017_b0550) 2003; 115 Aota (10.1016/j.ces.2020.116017_b0035) 2007; 46 Steegmans (10.1016/j.ces.2020.116017_b0560) 2009; 25 Eskin (10.1016/j.ces.2020.116017_b0180) 2012; 33 Xu (10.1016/j.ces.2020.116017_b0720) 2014; 14 Zhao (10.1016/j.ces.2020.116017_b0815) 2013; 100 Jose (10.1016/j.ces.2020.116017_b0330) 2014; 4 Cabral (10.1016/j.ces.2020.116017_b0080) 2006; 6 Haase (10.1016/j.ces.2020.116017_b0275) 2016; 113 Ganapathy (10.1016/j.ces.2020.116017_b0230) 2013; 94 Lindken (10.1016/j.ces.2020.116017_b0415) 2009; 9 Fu (10.1016/j.ces.2020.116017_b0210) 2015; 97 Scheiff (10.1016/j.ces.2020.116017_b0525) 2013; 36 Lan (10.1016/j.ces.2020.116017_b0390) 2019; 209 10.1016/j.ces.2020.116017_b0660 Wang (10.1016/j.ces.2020.116017_b0695) 2016; 32 Xu (10.1016/j.ces.2020.116017_b0710) 2008; 5 Adamo (10.1016/j.ces.2020.116017_b0025) 2016; 352 Riaud (10.1016/j.ces.2020.116017_b0505) 2013; 99 Fuerstman (10.1016/j.ces.2020.116017_b0225) 2007; 7 Wang (10.1016/j.ces.2020.116017_b0700) 2015; 61 Castro-Hernandez (10.1016/j.ces.2020.116017_b0095) 2009; 11 Mei (10.1016/j.ces.2020.116017_b0465) 2020; 115717 van Steijn (10.1016/j.ces.2020.116017_b0655) 2009; 103 Dong (10.1016/j.ces.2020.116017_b0150) 2015; 15 Mi (10.1016/j.ces.2020.116017_b0470) 2019; 137 Abolhasani (10.1016/j.ces.2020.116017_b0015) 2014; 126 Du (10.1016/j.ces.2020.116017_b0175) 2020; 15 Tanner (10.1016/j.ces.2020.116017_b0600) 1979; 12 Marín (10.1016/j.ces.2020.116017_b0460) 2009; 344 Parthiban (10.1016/j.ces.2020.116017_b0495) 2012; 12 Shao (10.1016/j.ces.2020.116017_b0535) 2009; 64 Sobieszuk (10.1016/j.ces.2020.116017_b0540) 2012; 35 Hu (10.1016/j.ces.2020.116017_b0310) 2000; 12 Korczyk (10.1016/j.ces.2020.116017_b0365) 2019; 10 Yao (10.1016/j.ces.2020.116017_b0745) 2015; 61 Tsaoulidis (10.1016/j.ces.2020.116017_b0625) 2016; 62 Lam (10.1016/j.ces.2020.116017_b0380) 2013; 91 van Baten (10.1016/j.ces.2020.116017_b0645) 2004; 59 Guillot (10.1016/j.ces.2020.116017_b0255) 2008; 78 Gunther (10.1016/j.ces.2020.116017_b0265) 2006; 6 Jakiela (10.1016/j.ces.2020.116017_b0315) 2012; 108 Liu (10.1016/j.ces.2020.116017_b0435) 2020; 10 Abolhasani (10.1016/j.ces.2020.116017_b0020) 2015; 54 10.1016/j.ces.2020.116017_b0335 Garstecki (10.1016/j.ces.2020.116017_b0240) 2005; 94 Yao (10.1016/j.ces.2020.116017_b0750) 2014; 60 Sarrazin (10.1016/j.ces.2020.116017_b0520) 2006; 52 Castell (10.1016/j.ces.2020.116017_b0090) 2009; 9 Yao (10.1016/j.ces.2020.116017_b0770) 2018; 189 Tostado (10.1016/j.ces.2020.116017_b0620) 2012; 28 Oishi (10.1016/j.ces.2020.116017_b0490) 2011; 22 Yang (10.1016/j.ces.2020.116017_b0740) 2017; 169 Hao (10.1016/j.ces.2020.116017_b0280) 2020; 10 Zaloha (10.1016/j.ces.2020.116017_b0795) 2012; 68 Fu (10.1016/j.ces.2020.116017_b0220) 2018; 181 Ghaini (10.1016/j.ces.2020.116017_b0245) 2011; 66 Yang (10.1016/j.ces.2020.116017_b0730) 2017; 63 Abate (10.1016/j.ces.2020.116017_b0005) 2012; 12 Leshansky (10.1016/j.ces.2020.116017_b0395) 2012; 108 Zhao (10.1016/j.ces.2020.116017_b0120) 2011; 66 Pascaline (10.1016/j.ces.2020.116017_b0500) 2008; 80 Zhang (10.1016/j.ces.2020.116017_b0800) 2018; 182 Zhao (10.1016/j.ces.2020.116017_b0820) 2006; 52 Liu (10.1016/j.ces.2020.116017_b0430) 2017; 325 Baroud (10.1016/j.ces.2020.116017_b0040) 2010; 10 Cao (10.1016/j.ces.2020.116017_b0085) 2018; 344 Kashid (10.1016/j.ces.2020.116017_b0340) 2011; 50 Waelchli (10.1016/j.ces.2020.116017_b0680) 2006; 32 Zhao (10.1016/j.ces.2020.116017_b0810) 2015; 131 Kralj (10.1016/j.ces.2020.116017_b0370) 2007; 7 Kececi (10.1016/j.ces.2020.116017_b0350) 2009; 147 Wang (10.1016/j.ces.2020.116017_b0685) 2017; 2 Chen (10.1016/j.ces.2020.116017_b0105) 2013; 15 Muradoglu (10.1016/j.ces.2020.116017_b0475) 2005; 17 Liu (10.1016/j.ces.2020.116017_b0425) 2018; 125 Ma (10.1016/j.ces.2020.116017_b0450) 2018; 65 Su (10.1016/j.ces.2020.116017_b0580) 2011; 57 Steegmans (10.1016/j.ces.2020.116017_b0555) 2009; 64 Butler (10.1016/j.ces.2020.116017_b0070) 2018; 105 Foroughi (10.1016/j.ces.2020.116017_b0185) 2011; 37 Su (10.1016/j.ces.2020.116017_b0575) 2012; 58 Bremond (10.1016/j.ces.2020.116017_b0060) 2008; 100 10.1016/j.ces.2020.116017_b0110 Wong (10.1016/j.ces.2020.116017_b0270) 1995; 292 Yao (10.1016/j.ces.2020.116017_b0765) 2018; 64 Dong (10.1016/j.ces.2020.116017_b0155) 2016; 62 Garstecki (10.1016/j.ces.2020.116017_b0235) 2006; 6 Sarrazin (10.1016/j.ces.2020.116017_b0515) 2007; 5 Di Miceli Raimondi (10.1016/j.ces.2020.116017_b0140) 2008; 63 De Menech (10.1016/j.ces.2020.116017_b0160) 2008; 595 Ward (10.1016/j.ces.2020.116017_b0705) 2010; 26 10.1016/j.ces.2020.116017_b0590 Guillot (10.1016/j.ces.2020.116017_b0260) 2007; 99 Wang (10.1016/j.ces.2020.116017_b0690) 2013; 59 Stone (10.1016/j.ces.2020.116017_b0570) 2005; 17 Bai (10.1016/j.ces.2020.116017_b0045) 2016; 145 Fu (10.1016/j.ces.2020.116017_b0195) 2015; 135 Yao (10.1016/j.ces.2020.116017_b0785) 2019; 373 Dogan (10.1016/j.ces.2020.116017_b0145) 2009; 35 Yao (10.1016/j.ces.2020.116017_b0780) 2020; 66 Yao (10.1016/j.ces.2020.116017_b0755) 2014; 112 Bercic (10.1016/j.ces.2020.116017_b0055) 1997; 52 Beer (10.1016/j.ces.2020.116017_b0050) 2009; 9 Fu (10.1016/j.ces.2020.116017_b0215) 2012; 84 Kinoshita (10.1016/j.ces.2020.116017_b0360) 2007; 7 Burton (10.1016/j.ces.2020.116017_b0075) 2005; 94 Xu (10.1016/j.ces.2020.116017_b0715) 2006; 52 Dietrich (10.1016/j.ces.2020.116017_b0135) 2013; 100 Nirmal (10.1016/j.ces.2020.116017_b0480) 2019; 15 Scheiff (10.1016/j.ces.2020.116017_b0530) 2011; 11  | 
    
| References_xml | – volume: 11 year: 2009 ident: b0095 article-title: Scaling the drop size in coflow experiments publication-title: New J. Phys. – volume: 129 start-page: 11692 year: 2007 end-page: 11693 ident: b0305 article-title: A new approach to anodic substitution reaction using parallel laminar flow in a micro-flow reactor publication-title: J. Amer. Chem. Soc. – volume: 100 year: 2008 ident: b0635 article-title: Absolute instability of a liquid jet in a coflowing stream publication-title: Phys. Rev. Lett. – volume: 108 year: 2012 ident: b0395 article-title: Obstructed breakup of slender drops in a microfluidic T junction publication-title: Phys. Rev. Lett. – volume: 46 start-page: 878 year: 2007 end-page: 880 ident: b0035 article-title: Countercurrent laminar microflow for highly efficient solvent extraction publication-title: Angewandte Chem. – volume: 10 start-page: 2528 year: 2019 ident: b0365 article-title: Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels publication-title: Nat. Commun. – volume: 99 start-page: 238 year: 2013 end-page: 249 ident: b0505 article-title: A combined Lattice-Boltzmann method for the simulation of two-phase flows in microchannel publication-title: Chem. Eng. Sci. – volume: 57 start-page: 1409 year: 2011 end-page: 1418 ident: b0580 article-title: The intensification of rapid reactions for multiphase systems in a microchannel reactor by packing microparticles publication-title: AIChE J. – volume: 6 start-page: 427 year: 2006 end-page: 436 ident: b0080 article-title: Microfluidic approach for rapid multicomponent interfacial tensiometry publication-title: Lab Chip – volume: 60 start-page: 1132 year: 2014 end-page: 1142 ident: b0750 article-title: The effect of system pressure on gas-liquid slug flow in a microchannel publication-title: AIChE J. – volume: 145 start-page: 141 year: 2016 end-page: 148 ident: b0045 article-title: Droplet formation in a microfluidic T-junction involving highly viscous fluid systems publication-title: Chem. Eng. Sci. – volume: 12 start-page: 1516 year: 2012 end-page: 1521 ident: b0005 article-title: Experimental validation of plugging during drop formation in a T-junction publication-title: Lab Chip – reference: Niu, X., Gulati, S., Edel, J.B., demello, A.J., 2008. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8, 1837-1841. – volume: 22 start-page: 4144 year: 2006 end-page: 4152 ident: b0650 article-title: Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel publication-title: Langmuir – volume: 15 start-page: 2746 year: 2019 end-page: 2756 ident: b0480 article-title: Mass transfer dynamics in the dissolution of Taylor bubbles publication-title: Soft Matter – volume: 23 year: 2011 ident: b0030 article-title: Numerical investigation of elongated drops in a microfluidic T-junction publication-title: Phys. Fluids – volume: 26 start-page: 9233 year: 2010 end-page: 9239 ident: b0705 article-title: Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction publication-title: Langmuir – volume: 11 start-page: 2924 year: 2011 end-page: 2928 ident: b0585 article-title: Dissolution of carbon dioxide bubbles and microfluidic multiphase flows publication-title: Lab Chip – volume: 91 start-page: 1941 year: 2013 end-page: 1953 ident: b0380 article-title: Review on gas–liquid separations in microchannel devices publication-title: Chem. Eng. Res. Des. – volume: 143 start-page: 276 year: 2016 end-page: 286 ident: b0400 article-title: Intensified Eu(III) extraction using ionic liquids in small channels publication-title: Chem. Eng. Sci. – volume: 64 start-page: 2749 year: 2009 end-page: 2761 ident: b0535 article-title: Flow regimes for adiabatic gas–liquid flow in microchannels publication-title: Chem. Eng. Sci. – volume: 32 start-page: 3174 year: 2016 end-page: 3185 ident: b0695 article-title: Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes publication-title: Langmuir – volume: 373 start-page: 437 year: 2019 end-page: 445 ident: b0785 article-title: Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel publication-title: Chem. Eng. J. – volume: 35 start-page: 1346 year: 2012 end-page: 1358 ident: b0540 article-title: Hydrodynamics and mass transfer in gas-liquid flows in microreactors publication-title: Chem. Eng. Technol. – volume: 50 start-page: 975 year: 2016 end-page: 989 ident: b0595 article-title: Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model publication-title: Theor. Found. Chem. Eng. – volume: 113 start-page: 304 year: 2016 end-page: 329 ident: b0565 article-title: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow publication-title: Chem. Eng. Res. Des. – volume: 100 start-page: 172 year: 2013 end-page: 182 ident: b0135 article-title: A new direct technique for visualizing and measuring gas–liquid mass transfer around bubbles moving in a straight millimetric square channel publication-title: Chem. Eng. Sci. – volume: 15 start-page: 91 year: 2013 end-page: 94 ident: b0105 article-title: Safe, efficient and selective synthesis of dinitro herbicidesvia a multifunctional continuous-flow microreactor: one-step dinitration with nitric acid as agent publication-title: Green Chem. – volume: 62 start-page: 2542 year: 2016 end-page: 2549 ident: b0385 article-title: Study on the transient interfacial tension in a microfluidic droplet formation coupling interphase mass transfer process publication-title: AIChE J. – volume: 10 start-page: 14322 year: 2020 end-page: 14330 ident: b0280 article-title: Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor publication-title: RSC Adv. – volume: 11 start-page: 1022 year: 2011 end-page: 1029 ident: b0530 article-title: The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream publication-title: Lab Chip – volume: 126 start-page: 8126 year: 2014 end-page: 8136 ident: b0015 article-title: Microfluidic studies of carbon dioxide publication-title: Angewandte Chem. – reference: Susanti, Winkelman, J.G.M., Schuur, B., Heeres, H.J., Yue, J., 2016. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors. Ind. Eng. Chem. Res. 55, 4691–4702. – volume: 150 start-page: 322 year: 1935 end-page: 337 ident: b0615 article-title: On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid publication-title: Proceed. Royal Soc. London A – volume: 61 start-page: 1081 year: 2015 end-page: 1091 ident: b0700 article-title: Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction publication-title: AIChE J. – volume: 6 start-page: 437 year: 2006 end-page: 446 ident: b0235 article-title: Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up publication-title: Lab Chip – volume: 33 start-page: 147 year: 2012 end-page: 155 ident: b0180 article-title: A model of a bubble train flow accompanied with mass transfer through a long microchannel publication-title: Int. J. Heat Fluid Flow – volume: 94 year: 2005 ident: b0075 article-title: Scaling and instabilities in bubble pinch-off publication-title: Phys. Rev. Lett. – volume: 80 start-page: 2680 year: 2008 end-page: 2687 ident: b0500 article-title: Microfluidic Droplet-Based Liquid-Liquid publication-title: Anal. Chem. – volume: 15 start-page: 1145 year: 2015 end-page: 1152 ident: b0150 article-title: A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification publication-title: Lab Chip – volume: 34 start-page: 4980 year: 2018 end-page: 4990 ident: b0510 article-title: Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel publication-title: Langmuir – volume: 59 start-page: 643 year: 2013 end-page: 649 ident: b0690 article-title: Microdroplet coalescences at microchannel junctions with different collision angles publication-title: AIChE J. – volume: 22 year: 2011 ident: b0490 article-title: Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV) publication-title: Meas. Sci. Technol. – volume: 99 year: 2007 ident: b0260 article-title: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers publication-title: Phys. Rev. Lett. – volume: 181 start-page: 79 year: 2018 end-page: 89 ident: b0220 article-title: Simulation of reactive mixing behaviors inside micro-droplets by a lattice Boltzmann method publication-title: Chem. Eng. Sci. – volume: 9 start-page: 2551 year: 2009 end-page: 2567 ident: b0415 article-title: Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines publication-title: Lab Chip – volume: 92 year: 2004 ident: b0420 article-title: Geometrically mediated breakup of drops in microfluidic devices publication-title: Phys. Rev. Lett. – volume: 115 start-page: 792 year: 2003 end-page: 796 ident: b0550 article-title: A microfluidic system for controlling reaction networks in time publication-title: Angewandte Chem. – volume: 209 year: 2019 ident: b0390 article-title: Determination of transient interfacial tension in a microfluidic device using a Laplace sensor publication-title: Chem. Eng. Sci. – volume: 66 start-page: 1394 year: 2011 end-page: 1411 ident: b0120 article-title: Two-phase microfluidic flows publication-title: Chem. Eng. Sci. – volume: 52 start-page: 3005 year: 2006 end-page: 3010 ident: b0715 article-title: Preparation of highly monodisperse droplet in a T-junction microfluidic device publication-title: AIChE J. – volume: 189 start-page: 340 year: 2018 end-page: 359 ident: b0770 article-title: Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications publication-title: Chem. Eng. Sci. – volume: 182 start-page: 17 year: 2018 end-page: 27 ident: b0800 article-title: Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels publication-title: Chem. Eng. Sci. – volume: 15 start-page: 2879 year: 2015 end-page: 2886 ident: b0285 article-title: Flow field induced particle accumulation inside droplets in rectangular channels publication-title: Lab Chip – volume: 63 start-page: 5522 year: 2008 end-page: 5530 ident: b0140 article-title: Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow publication-title: Chem. Eng. Sci. – volume: 115 start-page: 292 year: 2016 end-page: 302 ident: b0065 article-title: Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique publication-title: Chem. Eng. Res. Des. – volume: 63 start-page: 2272 year: 2017 end-page: 2284 ident: b0730 article-title: Optical methods to investigate the enhancement factor of an oxygen-sensitive colorimetric reaction using microreactors publication-title: AIChE J. – volume: 7 start-page: 338 year: 2007 end-page: 346 ident: b0360 article-title: Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV publication-title: Lab Chip – volume: 54 start-page: 9046 year: 2015 end-page: 9051 ident: b0020 article-title: Peclet number dependence of mass transfer in microscale segmented gas-liquid flow publication-title: Ind. Eng. Chem. Res. – volume: 59 start-page: 2535 year: 2004 end-page: 2545 ident: b0645 article-title: CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries publication-title: Chem. Eng. Sci. – volume: 112 start-page: 15 year: 2014 end-page: 24 ident: b0755 article-title: An online method to measure mass transfer of slug flow in a microchannel publication-title: Chem. Eng. Sci. – volume: 7 start-page: 1479 year: 2007 end-page: 1489 ident: b0225 article-title: The pressure drop along rectangular microchannels containing bubbles publication-title: Lab Chip – volume: 10 start-page: 2032 year: 2010 ident: b0040 article-title: Dynamics of microfluidic droplets publication-title: Lab Chip – volume: 78 year: 2008 ident: b0115 article-title: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions publication-title: Phys. Rev. E – volume: 86 year: 2012 ident: b0250 article-title: Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects publication-title: Phys. Rev. E – volume: 14 start-page: 3611 year: 2014 end-page: 3620 ident: b0455 article-title: On the flow topology inside droplets moving in rectangular microchannels publication-title: Lab Chip – volume: 358 start-page: 794 year: 2019 end-page: 805 ident: b0805 article-title: Hydrodynamics and mass transfer characteristics of liquid–liquid slug flow in microchannels: The effects of temperature, fluid properties and channel size publication-title: Chem. Eng. J. – volume: 100 year: 2008 ident: b0170 article-title: Role of the channel geometry on the bubble pinch-off in flow-focusing devices publication-title: Phys. Rev. Lett. – volume: 113 start-page: 304 year: 2016 end-page: 329 ident: b0275 article-title: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow publication-title: Chem. Eng. Res. Desi. – volume: 108 year: 2012 ident: b0315 article-title: Discontinuous transition in a laminar fluid flow: a change of flow topology inside a droplet moving in a micron-size channel publication-title: Phys. Rev. Lett. – volume: 105 start-page: 185 year: 2018 end-page: 201 ident: b0070 article-title: Mass transfer in Taylor flow: transfer rate modelling from measurements at the slug and film scale publication-title: Int. J. Multiphase Flow – volume: 86 start-page: 4163 year: 2001 end-page: 4166 ident: b0605 article-title: Dynamic pattern formation in a vesicle-generating microfluidic device publication-title: Phys. Rev. Lett. – volume: 62 start-page: 1307 year: 2016 ident: b0155 article-title: Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors publication-title: AIChE J. – volume: 125 start-page: 8 year: 2018 end-page: 17 ident: b0425 article-title: Formation of droplet and “string of sausages” for water-ionic liquid ([BMIM][PF6]) two-phase flow in a flow-focusing device publication-title: Chem. Eng. Process. – volume: 9 start-page: 838 year: 2009 end-page: 840 ident: b0050 article-title: Observed velocity fluctuations in monodisperse droplet generators publication-title: Lab Chip – volume: 78 year: 2008 ident: b0255 article-title: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries publication-title: Phys. Rev. E – volume: 12 start-page: 484 year: 2000 end-page: 489 ident: b0310 article-title: Drop deformation, breakup, and coalescence with compatibilizer publication-title: Phys. Fluids – volume: 169 start-page: 106 year: 2017 end-page: 116 ident: b0740 article-title: Simulations and analysis of multiphase transport and reaction in segmented flow microreactors publication-title: Chem. Eng. Sci. – volume: 4 start-page: 14962 year: 2014 end-page: 14970 ident: b0330 article-title: Formation and dynamics of partially wetting droplets in square microchannels publication-title: RSC Adv. – volume: 65 start-page: 272 year: 2018 end-page: 279 ident: b0450 article-title: Manipulation of microdroplets at a T-junction: Coalescence and scaling law publication-title: J. Ind. Eng. Chem. – volume: 5 start-page: 131 year: 2007 end-page: 137 ident: b0515 article-title: Hydrodynamic structures of droplets engineered in rectangular micro-channels publication-title: Microfluid. Nanofluidics – volume: 25 start-page: 3396 year: 2009 end-page: 3401 ident: b0560 article-title: Characterization of emulsification at flat microchannel Y junctions publication-title: Langmuir – volume: 11 start-page: 3603 year: 2011 ident: b0320 article-title: Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities publication-title: Lab Chip – volume: 52 start-page: 2947 year: 1997 end-page: 2962 ident: b0610 article-title: Flow patterns in liquid slugs during bubble-train flow inside capillaries publication-title: Chem. Eng. Sci. – volume: 595 start-page: 141 year: 2008 end-page: 161 ident: b0160 article-title: Transition from squeezing to dripping in a microfluidic T-shaped junction publication-title: J. Fluid Mech. – volume: 165 start-page: 192 year: 2017 end-page: 203 ident: b0735 article-title: Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel publication-title: Chem. Eng. Sci. – volume: 9 start-page: 388 year: 2009 end-page: 396 ident: b0090 article-title: Liquid–liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows publication-title: Lab Chip – volume: 36 start-page: 975 year: 2013 end-page: 984 ident: b0525 article-title: Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction publication-title: Chem. Eng. Technol. – volume: 60 start-page: 6430 year: 2005 end-page: 6437 ident: b0670 article-title: Mass transfer from Taylor bubbles rising in single capillaries publication-title: Chem. Eng. Sci. – volume: 501 start-page: 279 year: 2004 end-page: 301 ident: b0300 article-title: The motion of a viscous drop through a cylindrical tube publication-title: J. Fluid Mech. – volume: 352 start-page: 61 year: 2016 end-page: 67 ident: b0025 article-title: On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system publication-title: Science – volume: 344 start-page: 2 year: 2009 end-page: 7 ident: b0460 article-title: Generation of micron-sized drops and bubbles through viscous coflows publication-title: Colloid. Surface. A – volume: 292 start-page: 95 year: 1995 end-page: 110 ident: b0270 article-title: The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow publication-title: J. Fluid Mech. – volume: 13 start-page: 3653 year: 2013 end-page: 3657 ident: b0165 article-title: A novel surgery-like strategy for droplet coalescence in microchannels publication-title: Lab Chip – volume: 28 start-page: 3120 year: 2012 end-page: 3128 ident: b0620 article-title: experimental study on dynamic interfacial tension with mixture of SDS–PEG as surfactants in a coflowing microfluidic device publication-title: Langmuir – volume: 37 start-page: 1147 year: 2011 end-page: 1155 ident: b0185 article-title: Viscous oil–water flows in a microchannel initially saturated with oil: Flow patterns and pressure drop characteristics publication-title: Int. J. Multiphase Flow – volume: 69 start-page: 340 year: 2012 end-page: 351 ident: b0410 article-title: Study on the mechanism of droplet formation in T-junction microchannel publication-title: Chem. Eng. Sci. – volume: 717 year: 2013 ident: b0295 article-title: Dynamics of droplet breakup in a T-junction publication-title: J. Fluid Mech. – volume: 35 start-page: 1149 year: 2009 end-page: 1158 ident: b0145 article-title: Mixing of miscible liquids in gas-segmented serpentine channels publication-title: Int. J. Multiphase Flow – volume: 66 start-page: 3876 year: 2011 end-page: 3897 ident: b0345 article-title: Gas-liquid and liquid-liquid mass transfer in microstructured reactors publication-title: Chem. Eng. Sci. – volume: 21 start-page: 175 year: 2017 ident: b0545 article-title: Numerical investigation of formation and dissolution of CO2 bubbles within silicone oil in a cross-junction microchannel publication-title: Microfluid. Nanofluidics – volume: 131 start-page: 118 year: 2015 end-page: 128 ident: b0810 article-title: Simulation of liquid mixing inside micro-droplets by a lattice Boltzmann method publication-title: Chem. Eng. Sci. – volume: 52 start-page: 3709 year: 1997 end-page: 3719 ident: b0055 article-title: The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries publication-title: Chem. Eng. Sci. – volume: 285 start-page: 252 year: 2016 end-page: 263 ident: b0325 article-title: Investigation of the Taylor bubble under the effect of dissolution in microchannel publication-title: Chem. Eng. J. – volume: 344 start-page: 604 year: 2018 end-page: 615 ident: b0085 article-title: Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels publication-title: Chem. Eng. J. – volume: 303 start-page: 547 year: 2016 end-page: 554 ident: b0725 article-title: Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction publication-title: Chem. Eng. J. – volume: 223 start-page: 115734 year: 2020 ident: bib821 article-title: Mass transfer in liquid-liquid Taylor flow in a microchannel: local concentration distribution, mass transfer regime and the effect of fluid viscosity publication-title: Chem. Eng. Sci. – volume: 12 start-page: 582 year: 2012 end-page: 588 ident: b0495 article-title: Filtering microfluidic bubble trains at a symmetric junction publication-title: Lab Chip – volume: 15 year: 2020 ident: b0175 article-title: Numerical investigation of bubble breakup in a four-branched microchannel based on non-Newtonian pseudoplastic fluid publication-title: Asia-Pac. J. Chem. Eng. – volume: 21 start-page: 153 year: 2017 ident: b0375 article-title: Design rules for microscale capillary phase separators publication-title: Microfluid. Nanofluidics – volume: 97 start-page: 38 year: 2015 end-page: 44 ident: b0210 article-title: Bubble coalescence in non-Newtonian fluids in a microfluidic expansion device publication-title: Chem. Eng. Process. – volume: 16 start-page: 1332 year: 2016 end-page: 1339 ident: b0100 article-title: Three-dimensional splitting microfluidics publication-title: Lab Chip – volume: 135 start-page: 343 year: 2015 end-page: 372 ident: b0195 article-title: Bubble formation and breakup dynamics in microfluidic devices: A review publication-title: Chem. Eng. Sci. – volume: 6 start-page: 1487 year: 2006 end-page: 1503 ident: b0265 article-title: Multiphase microfluidics: from flow characteristics to chemical and materials synthesis publication-title: Lab Chip – volume: 84 start-page: 207 year: 2012 end-page: 217 ident: b0215 article-title: Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting publication-title: Chem. Eng. Sci. – volume: 66 start-page: 1168 year: 2011 end-page: 1178 ident: b0245 article-title: Hydrodynamic studies of liquid–liquid slug flows in circular microchannels publication-title: Chem. Eng. Sci. – volume: 325 start-page: 342 year: 2017 end-page: 349 ident: b0430 article-title: A simple online phase separator for the microfluidic mass transfer studies publication-title: Chem. Eng. J. – volume: 137 start-page: 137 year: 2019 end-page: 147 ident: b0470 article-title: Ethylene/ethane absorption with AgNO3 solutions in ultrasonic microreactors publication-title: Chem. Eng. Process. – volume: 94 start-page: 138 year: 2013 end-page: 149 ident: b0230 article-title: Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters publication-title: Chem. Eng. Sci. – volume: 103 year: 2009 ident: b0655 article-title: Flows around confined bubbles and their importance in triggering Pinch-Off publication-title: Phys. Rev. Lett. – volume: 52 start-page: 4061 year: 2006 end-page: 4070 ident: b0520 article-title: Experimental and numerical study of droplets hydrodynamics in microchannels publication-title: AIChE J. – volume: 15 start-page: 3 year: 2017 end-page: 19 ident: b0790 article-title: Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis publication-title: Catal. Today – volume: 100 start-page: 456 year: 2013 end-page: 463 ident: b0815 article-title: Mixing performance and drug nano-particle preparation inside slugs in a gas–liquid microchannel reactor publication-title: Chem. Eng. Sci. – volume: 62 start-page: 315 year: 2016 end-page: 324 ident: b0625 article-title: Effect of channel size on liquid-liquid plug flow in small channels publication-title: AIChE J. – volume: 52 start-page: 4052 year: 2006 end-page: 4060 ident: b0820 article-title: Liquid-liquid two-phase flow patterns in a rectangular microchannel publication-title: AIChE J. – volume: 328 start-page: 717 year: 2017 end-page: 736 ident: b0405 article-title: Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels publication-title: Chem. Eng. J. – volume: 93 year: 2016 ident: b0445 article-title: Dynamics of bubble breakup at a T junction publication-title: Phys. Rev. E – volume: 58 start-page: 1660 year: 2012 end-page: 1670 ident: b0575 article-title: Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel publication-title: AIChE J. – volume: 5 start-page: 711 year: 2008 end-page: 717 ident: b0710 article-title: Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping publication-title: Microfluid. Nanofluidics – volume: 21 start-page: 180 year: 2017 ident: b0440 article-title: Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel publication-title: Microfluid. Nanofluidics – volume: 147 start-page: S125 year: 2009 end-page: S131 ident: b0350 article-title: Recirculation time and liquid slug mass transfer in co-current upward and downward Taylor flow publication-title: Catal. Today – volume: 32 start-page: 791 year: 2006 end-page: 806 ident: b0680 article-title: Two-phase flow characteristics in gas–liquid microreactors publication-title: Int. J. Multiphase Flow – volume: 20 year: 2008 ident: b0130 article-title: Capillary threads and viscous droplets in square microchannels publication-title: Phys. Fluids – volume: 100 year: 2008 ident: b0060 article-title: Decompressing Emulsion Droplets Favors Coalescence publication-title: Phys. Rev. Lett. – volume: 356 start-page: 1144 year: 2017 end-page: 1150 ident: b0125 article-title: Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions publication-title: Science – volume: 65 start-page: 3739 year: 2010 end-page: 3748 ident: b0205 article-title: Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction publication-title: Chem. Eng. Sci. – volume: 10 start-page: 103 year: 2020 end-page: 121 ident: b0435 article-title: Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes publication-title: J. Flow Chem. – volume: 64 start-page: 3042 year: 2009 end-page: 3050 ident: b0555 article-title: Generalised insights in droplet formation at T-junctions through statistical analysis publication-title: Chem. Eng. Sci. – volume: 94 year: 2005 ident: b0240 article-title: Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions publication-title: Phys. Rev. Lett. – volume: 66 start-page: e16934 year: 2020 ident: b0780 article-title: The effect of liquid viscosity and modeling of mass transfer in gas–liquid slug flow in a rectangular microchannel publication-title: AIChE J. – volume: 123 start-page: 137 year: 2015 end-page: 145 ident: b0760 article-title: Gas-liquid flow and mass transfer in a microchannel under elevated pressures publication-title: Chem. Eng. Sci. – volume: 6 start-page: 746 year: 2013 end-page: 789 ident: b0290 article-title: Novel process windows for enabling, accelerating, and uplifting flow chemistry publication-title: ChemSusChem – volume: 50 start-page: 6906 year: 2011 end-page: 6914 ident: b0340 article-title: Influence of flow regime on mass transfer in different types of microchannels publication-title: Ind. Eng. Chem. Res. – volume: 17 year: 2005 ident: b0570 article-title: Imaging and quantifying mixing in a model droplet micromixer publication-title: Phys. Fluids – volume: 8 start-page: 467 year: 2009 end-page: 475 ident: b0190 article-title: Scaling the formation of slug bubbles in microfluidic flow-focusing devices publication-title: Microfluid. Nanofluidics – volume: 14 start-page: 1357 year: 2014 end-page: 1366 ident: b0720 article-title: Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device publication-title: Lab Chip – volume: 3 start-page: 463 year: 2007 end-page: 472 ident: b0355 article-title: PIV measurements of flow within plugs in a microchannel publication-title: Microfluid. Nanofluidics – volume: 17 year: 2005 ident: b0475 article-title: Mixing in a drop moving through a serpentine channel: A computational study publication-title: Phys. Fluids – reference: Van steijn, V., Kreutzer, M., Kleijn, C., 2008. Velocity fluctuations of segmented flow in microchannels. Chem. Eng. J. 135, 159-165. – volume: 68 start-page: 640 year: 2012 end-page: 649 ident: b0795 article-title: Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels publication-title: Chem. Eng. Sci. – volume: 95 start-page: 246 year: 2013 end-page: 256 ident: b0775 article-title: Characteristics of slug flow with inertial effects in a rectangular microchannel publication-title: Chem. Eng. Sci. – reference: Chinnov, E., Ron’Shin, F., Kabov, O.A., 2015. Regimes of two-phase flow in micro-and minichannels. Thermophys. Aeromech+ 22, 265-284. – volume: 66 start-page: 4184 year: 2011 end-page: 4195 ident: b0200 article-title: Dynamics of bubble breakup in a microfluidic T-junction divergence publication-title: Chem. Eng. Sci. – volume: 167 start-page: 468 year: 2011 end-page: 474 ident: b0630 article-title: Suspension catalysis in a liquid–liquid capillary microreactor publication-title: Chem. Eng. J. – volume: 12 start-page: 1473 year: 1979 ident: b0600 article-title: The spreading of silicone oil drops on horizontal surfaces publication-title: J. Phys. D Appl. Phys. – volume: 207 start-page: 1331 year: 2019 end-page: 1340 ident: b0010 article-title: Mass transfer characteristics and concentration field evolution for gas-liquid Taylor flow in milli channels publication-title: Chem. Eng. Sci. – volume: 62 start-page: 7505 year: 2007 end-page: 7514 ident: b0665 article-title: μ-PIV study of the formation of segmented flow in microfluidic T-junctions publication-title: Chem. Eng. Sci. – volume: 64 start-page: 346 year: 2018 end-page: 357 ident: b0765 article-title: Formation of liquid-liquid slug flow in a microfluidic T-junction: Effects of fluid properties and leakage flow publication-title: AIChE J. – volume: 136 start-page: 3875 year: 2014 end-page: 3880 ident: b0675 article-title: Microfluidic studies of CO2 sequestration by frustrated Lewis pairs publication-title: J. Amer. Chem. Soc. – volume: 2 start-page: 611 year: 2017 end-page: 627 ident: b0685 article-title: Liquid–liquid microflow reaction engineering publication-title: React. Chem. Eng. – volume: 61 start-page: 3964 year: 2015 end-page: 3972 ident: b0745 article-title: On the leakage flow around gas bubbles in slug flow in a microchannel publication-title: AIChE J. – volume: 7 start-page: 256 year: 2007 end-page: 263 ident: b0370 article-title: Integrated continuous microfluidic liquid–liquid extraction publication-title: Lab Chip – volume: 99 year: 2007 ident: b0640 article-title: Dripping to jetting transitions in coflowing liquid streams publication-title: Phys. Rev. Lett. – reference: Kashid MN, G.I., Goetz S., Franzke J., Acker JF., Platte F., Agar DW., Turek S., 2005. Internal circulation within the liquid slugs of a liquid− liquid slug-flow capillary microreactor. Ind. Eng. Chem. Res. 44, 5003–5010. – volume: 115717 year: 2020 ident: b0465 article-title: Gas-liquid mass transfer around Taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor publication-title: Chem. Eng. Sci. – volume: 86 year: 2012 ident: 10.1016/j.ces.2020.116017_b0250 article-title: Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.026308 – volume: 182 start-page: 17 year: 2018 ident: 10.1016/j.ces.2020.116017_b0800 article-title: Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.02.018 – volume: 325 start-page: 342 year: 2017 ident: 10.1016/j.ces.2020.116017_b0430 article-title: A simple online phase separator for the microfluidic mass transfer studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.056 – volume: 57 start-page: 1409 year: 2011 ident: 10.1016/j.ces.2020.116017_b0580 article-title: The intensification of rapid reactions for multiphase systems in a microchannel reactor by packing microparticles publication-title: AIChE J. doi: 10.1002/aic.12367 – volume: 10 start-page: 2032 year: 2010 ident: 10.1016/j.ces.2020.116017_b0040 article-title: Dynamics of microfluidic droplets publication-title: Lab Chip doi: 10.1039/c001191f – volume: 25 start-page: 3396 year: 2009 ident: 10.1016/j.ces.2020.116017_b0560 article-title: Characterization of emulsification at flat microchannel Y junctions publication-title: Langmuir doi: 10.1021/la8035852 – volume: 223 start-page: 115734 year: 2020 ident: 10.1016/j.ces.2020.116017_bib821 article-title: Mass transfer in liquid-liquid Taylor flow in a microchannel: local concentration distribution, mass transfer regime and the effect of fluid viscosity publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115734 – volume: 99 start-page: 238 year: 2013 ident: 10.1016/j.ces.2020.116017_b0505 article-title: A combined Lattice-Boltzmann method for the simulation of two-phase flows in microchannel publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.05.054 – volume: 11 start-page: 1022 year: 2011 ident: 10.1016/j.ces.2020.116017_b0530 article-title: The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream publication-title: Lab Chip doi: 10.1039/c0lc00442a – volume: 108 year: 2012 ident: 10.1016/j.ces.2020.116017_b0395 article-title: Obstructed breakup of slender drops in a microfluidic T junction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.264502 – volume: 181 start-page: 79 year: 2018 ident: 10.1016/j.ces.2020.116017_b0220 article-title: Simulation of reactive mixing behaviors inside micro-droplets by a lattice Boltzmann method publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.02.010 – volume: 10 start-page: 103 year: 2020 ident: 10.1016/j.ces.2020.116017_b0435 article-title: Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes publication-title: J. Flow Chem. doi: 10.1007/s41981-019-00062-9 – volume: 35 start-page: 1149 year: 2009 ident: 10.1016/j.ces.2020.116017_b0145 article-title: Mixing of miscible liquids in gas-segmented serpentine channels publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2009.07.006 – volume: 52 start-page: 3709 year: 1997 ident: 10.1016/j.ces.2020.116017_b0055 article-title: The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(97)00217-0 – volume: 32 start-page: 3174 year: 2016 ident: 10.1016/j.ces.2020.116017_b0695 article-title: Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes publication-title: Langmuir doi: 10.1021/acs.langmuir.6b00271 – volume: 60 start-page: 6430 year: 2005 ident: 10.1016/j.ces.2020.116017_b0670 article-title: Mass transfer from Taylor bubbles rising in single capillaries publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.01.037 – volume: 80 start-page: 2680 year: 2008 ident: 10.1016/j.ces.2020.116017_b0500 article-title: Microfluidic Droplet-Based Liquid-Liquid publication-title: Anal. Chem. doi: 10.1021/ac800088s – volume: 59 start-page: 2535 year: 2004 ident: 10.1016/j.ces.2020.116017_b0645 article-title: CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.03.010 – volume: 64 start-page: 3042 year: 2009 ident: 10.1016/j.ces.2020.116017_b0555 article-title: Generalised insights in droplet formation at T-junctions through statistical analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.03.010 – volume: 12 start-page: 484 year: 2000 ident: 10.1016/j.ces.2020.116017_b0310 article-title: Drop deformation, breakup, and coalescence with compatibilizer publication-title: Phys. Fluids doi: 10.1063/1.870254 – volume: 7 start-page: 256 year: 2007 ident: 10.1016/j.ces.2020.116017_b0370 article-title: Integrated continuous microfluidic liquid–liquid extraction publication-title: Lab Chip doi: 10.1039/B610888A – volume: 61 start-page: 1081 year: 2015 ident: 10.1016/j.ces.2020.116017_b0700 article-title: Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction publication-title: AIChE J. doi: 10.1002/aic.14704 – volume: 358 start-page: 794 year: 2019 ident: 10.1016/j.ces.2020.116017_b0805 article-title: Hydrodynamics and mass transfer characteristics of liquid–liquid slug flow in microchannels: The effects of temperature, fluid properties and channel size publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.056 – volume: 126 start-page: 8126 year: 2014 ident: 10.1016/j.ces.2020.116017_b0015 article-title: Microfluidic studies of carbon dioxide publication-title: Angewandte Chem. doi: 10.1002/ange.201403719 – volume: 6 start-page: 427 year: 2006 ident: 10.1016/j.ces.2020.116017_b0080 article-title: Microfluidic approach for rapid multicomponent interfacial tensiometry publication-title: Lab Chip doi: 10.1039/b511976f – volume: 13 start-page: 3653 year: 2013 ident: 10.1016/j.ces.2020.116017_b0165 article-title: A novel surgery-like strategy for droplet coalescence in microchannels publication-title: Lab Chip doi: 10.1039/c3lc50533b – volume: 356 start-page: 1144 year: 2017 ident: 10.1016/j.ces.2020.116017_b0125 article-title: Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions publication-title: Science doi: 10.1126/science.aan0745 – volume: 6 start-page: 437 year: 2006 ident: 10.1016/j.ces.2020.116017_b0235 article-title: Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up publication-title: Lab Chip doi: 10.1039/b510841a – volume: 97 start-page: 38 year: 2015 ident: 10.1016/j.ces.2020.116017_b0210 article-title: Bubble coalescence in non-Newtonian fluids in a microfluidic expansion device publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2015.08.008 – volume: 15 start-page: 1145 year: 2015 ident: 10.1016/j.ces.2020.116017_b0150 article-title: A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification publication-title: Lab Chip doi: 10.1039/C4LC01431F – volume: 21 start-page: 175 year: 2017 ident: 10.1016/j.ces.2020.116017_b0545 article-title: Numerical investigation of formation and dissolution of CO2 bubbles within silicone oil in a cross-junction microchannel publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-017-2011-7 – volume: 5 start-page: 711 year: 2008 ident: 10.1016/j.ces.2020.116017_b0710 article-title: Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-008-0306-4 – volume: 189 start-page: 340 year: 2018 ident: 10.1016/j.ces.2020.116017_b0770 article-title: Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.007 – volume: 52 start-page: 3005 year: 2006 ident: 10.1016/j.ces.2020.116017_b0715 article-title: Preparation of highly monodisperse droplet in a T-junction microfluidic device publication-title: AIChE J. doi: 10.1002/aic.10924 – volume: 123 start-page: 137 year: 2015 ident: 10.1016/j.ces.2020.116017_b0760 article-title: Gas-liquid flow and mass transfer in a microchannel under elevated pressures publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.11.005 – volume: 52 start-page: 2947 year: 1997 ident: 10.1016/j.ces.2020.116017_b0610 article-title: Flow patterns in liquid slugs during bubble-train flow inside capillaries publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(97)00114-0 – volume: 352 start-page: 61 year: 2016 ident: 10.1016/j.ces.2020.116017_b0025 article-title: On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system publication-title: Science doi: 10.1126/science.aaf1337 – volume: 66 start-page: 1394 year: 2011 ident: 10.1016/j.ces.2020.116017_b0120 article-title: Two-phase microfluidic flows publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.08.038 – volume: 99 year: 2007 ident: 10.1016/j.ces.2020.116017_b0260 article-title: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.104502 – volume: 22 year: 2011 ident: 10.1016/j.ces.2020.116017_b0490 article-title: Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV) publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/22/10/105401 – volume: 10 start-page: 14322 year: 2020 ident: 10.1016/j.ces.2020.116017_b0280 article-title: Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor publication-title: RSC Adv. doi: 10.1039/D0RA00913J – volume: 17 year: 2005 ident: 10.1016/j.ces.2020.116017_b0475 article-title: Mixing in a drop moving through a serpentine channel: A computational study publication-title: Phys. Fluids doi: 10.1063/1.1992514 – volume: 100 year: 2008 ident: 10.1016/j.ces.2020.116017_b0635 article-title: Absolute instability of a liquid jet in a coflowing stream publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.014502 – volume: 66 start-page: e16934 year: 2020 ident: 10.1016/j.ces.2020.116017_b0780 article-title: The effect of liquid viscosity and modeling of mass transfer in gas–liquid slug flow in a rectangular microchannel publication-title: AIChE J. doi: 10.1002/aic.16934 – volume: 8 start-page: 467 year: 2009 ident: 10.1016/j.ces.2020.116017_b0190 article-title: Scaling the formation of slug bubbles in microfluidic flow-focusing devices publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-009-0471-0 – volume: 595 start-page: 141 year: 2008 ident: 10.1016/j.ces.2020.116017_b0160 article-title: Transition from squeezing to dripping in a microfluidic T-shaped junction publication-title: J. Fluid Mech. doi: 10.1017/S002211200700910X – volume: 64 start-page: 346 year: 2018 ident: 10.1016/j.ces.2020.116017_b0765 article-title: Formation of liquid-liquid slug flow in a microfluidic T-junction: Effects of fluid properties and leakage flow publication-title: AIChE J. doi: 10.1002/aic.15889 – volume: 100 start-page: 456 year: 2013 ident: 10.1016/j.ces.2020.116017_b0815 article-title: Mixing performance and drug nano-particle preparation inside slugs in a gas–liquid microchannel reactor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.02.013 – volume: 169 start-page: 106 year: 2017 ident: 10.1016/j.ces.2020.116017_b0740 article-title: Simulations and analysis of multiphase transport and reaction in segmented flow microreactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.12.003 – volume: 33 start-page: 147 year: 2012 ident: 10.1016/j.ces.2020.116017_b0180 article-title: A model of a bubble train flow accompanied with mass transfer through a long microchannel publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2011.11.001 – volume: 91 start-page: 1941 year: 2013 ident: 10.1016/j.ces.2020.116017_b0380 article-title: Review on gas–liquid separations in microchannel devices publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.07.031 – volume: 95 start-page: 246 year: 2013 ident: 10.1016/j.ces.2020.116017_b0775 article-title: Characteristics of slug flow with inertial effects in a rectangular microchannel publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.03.046 – volume: 60 start-page: 1132 year: 2014 ident: 10.1016/j.ces.2020.116017_b0750 article-title: The effect of system pressure on gas-liquid slug flow in a microchannel publication-title: AIChE J. doi: 10.1002/aic.14306 – volume: 52 start-page: 4052 year: 2006 ident: 10.1016/j.ces.2020.116017_b0820 article-title: Liquid-liquid two-phase flow patterns in a rectangular microchannel publication-title: AIChE J. doi: 10.1002/aic.11029 – volume: 9 start-page: 2551 year: 2009 ident: 10.1016/j.ces.2020.116017_b0415 article-title: Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines publication-title: Lab Chip doi: 10.1039/b906558j – volume: 373 start-page: 437 year: 2019 ident: 10.1016/j.ces.2020.116017_b0785 article-title: Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.051 – volume: 37 start-page: 1147 year: 2011 ident: 10.1016/j.ces.2020.116017_b0185 article-title: Viscous oil–water flows in a microchannel initially saturated with oil: Flow patterns and pressure drop characteristics publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2011.06.004 – volume: 285 start-page: 252 year: 2016 ident: 10.1016/j.ces.2020.116017_b0325 article-title: Investigation of the Taylor bubble under the effect of dissolution in microchannel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.102 – volume: 103 year: 2009 ident: 10.1016/j.ces.2020.116017_b0655 article-title: Flows around confined bubbles and their importance in triggering Pinch-Off publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.214501 – volume: 78 year: 2008 ident: 10.1016/j.ces.2020.116017_b0115 article-title: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.036317 – volume: 62 start-page: 1307 issue: 1294 year: 2016 ident: 10.1016/j.ces.2020.116017_b0155 article-title: Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors publication-title: AIChE J. – volume: 78 year: 2008 ident: 10.1016/j.ces.2020.116017_b0255 article-title: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.016307 – volume: 23 year: 2011 ident: 10.1016/j.ces.2020.116017_b0030 article-title: Numerical investigation of elongated drops in a microfluidic T-junction publication-title: Phys. Fluids doi: 10.1063/1.3549266 – volume: 135 start-page: 343 year: 2015 ident: 10.1016/j.ces.2020.116017_b0195 article-title: Bubble formation and breakup dynamics in microfluidic devices: A review publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.02.016 – volume: 147 start-page: S125 year: 2009 ident: 10.1016/j.ces.2020.116017_b0350 article-title: Recirculation time and liquid slug mass transfer in co-current upward and downward Taylor flow publication-title: Catal. Today doi: 10.1016/j.cattod.2009.07.054 – volume: 66 start-page: 4184 year: 2011 ident: 10.1016/j.ces.2020.116017_b0200 article-title: Dynamics of bubble breakup in a microfluidic T-junction divergence publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.06.003 – volume: 36 start-page: 975 year: 2013 ident: 10.1016/j.ces.2020.116017_b0525 article-title: Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201200600 – volume: 5 start-page: 131 year: 2007 ident: 10.1016/j.ces.2020.116017_b0515 article-title: Hydrodynamic structures of droplets engineered in rectangular micro-channels publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-007-0233-9 – volume: 113 start-page: 304 year: 2016 ident: 10.1016/j.ces.2020.116017_b0275 article-title: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow publication-title: Chem. Eng. Res. Desi. doi: 10.1016/j.cherd.2016.06.017 – volume: 26 start-page: 9233 year: 2010 ident: 10.1016/j.ces.2020.116017_b0705 article-title: Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction publication-title: Langmuir doi: 10.1021/la100029q – volume: 86 start-page: 4163 year: 2001 ident: 10.1016/j.ces.2020.116017_b0605 article-title: Dynamic pattern formation in a vesicle-generating microfluidic device publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.4163 – volume: 22 start-page: 4144 year: 2006 ident: 10.1016/j.ces.2020.116017_b0650 article-title: Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel publication-title: Langmuir doi: 10.1021/la052682f – volume: 4 start-page: 14962 year: 2014 ident: 10.1016/j.ces.2020.116017_b0330 article-title: Formation and dynamics of partially wetting droplets in square microchannels publication-title: RSC Adv. doi: 10.1039/C4RA00654B – volume: 52 start-page: 4061 year: 2006 ident: 10.1016/j.ces.2020.116017_b0520 article-title: Experimental and numerical study of droplets hydrodynamics in microchannels publication-title: AIChE J. doi: 10.1002/aic.11033 – volume: 15 start-page: 2879 year: 2015 ident: 10.1016/j.ces.2020.116017_b0285 article-title: Flow field induced particle accumulation inside droplets in rectangular channels publication-title: Lab Chip doi: 10.1039/C5LC00420A – volume: 15 start-page: 91 year: 2013 ident: 10.1016/j.ces.2020.116017_b0105 article-title: Safe, efficient and selective synthesis of dinitro herbicidesvia a multifunctional continuous-flow microreactor: one-step dinitration with nitric acid as agent publication-title: Green Chem. doi: 10.1039/C2GC36652E – volume: 65 start-page: 3739 year: 2010 ident: 10.1016/j.ces.2020.116017_b0205 article-title: Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.03.012 – volume: 21 start-page: 180 year: 2017 ident: 10.1016/j.ces.2020.116017_b0440 article-title: Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-017-2019-z – volume: 100 start-page: 172 year: 2013 ident: 10.1016/j.ces.2020.116017_b0135 article-title: A new direct technique for visualizing and measuring gas–liquid mass transfer around bubbles moving in a straight millimetric square channel publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.03.041 – volume: 14 start-page: 3611 year: 2014 ident: 10.1016/j.ces.2020.116017_b0455 article-title: On the flow topology inside droplets moving in rectangular microchannels publication-title: Lab Chip doi: 10.1039/C4LC00671B – volume: 108 year: 2012 ident: 10.1016/j.ces.2020.116017_b0315 article-title: Discontinuous transition in a laminar fluid flow: a change of flow topology inside a droplet moving in a micron-size channel publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.134501 – volume: 15 start-page: 3 year: 2017 ident: 10.1016/j.ces.2020.116017_b0790 article-title: Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis publication-title: Catal. Today – volume: 344 start-page: 2 year: 2009 ident: 10.1016/j.ces.2020.116017_b0460 article-title: Generation of micron-sized drops and bubbles through viscous coflows publication-title: Colloid. Surface. A doi: 10.1016/j.colsurfa.2008.09.033 – volume: 131 start-page: 118 year: 2015 ident: 10.1016/j.ces.2020.116017_b0810 article-title: Simulation of liquid mixing inside micro-droplets by a lattice Boltzmann method publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.03.066 – volume: 292 start-page: 95 year: 1995 ident: 10.1016/j.ces.2020.116017_b0270 article-title: The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112095001455 – volume: 328 start-page: 717 year: 2017 ident: 10.1016/j.ces.2020.116017_b0405 article-title: Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.037 – volume: 21 start-page: 153 year: 2017 ident: 10.1016/j.ces.2020.116017_b0375 article-title: Design rules for microscale capillary phase separators publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-017-1982-8 – volume: 100 year: 2008 ident: 10.1016/j.ces.2020.116017_b0060 article-title: Decompressing Emulsion Droplets Favors Coalescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.024501 – volume: 143 start-page: 276 year: 2016 ident: 10.1016/j.ces.2020.116017_b0400 article-title: Intensified Eu(III) extraction using ionic liquids in small channels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.01.004 – volume: 14 start-page: 1357 year: 2014 ident: 10.1016/j.ces.2020.116017_b0720 article-title: Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device publication-title: Lab Chip doi: 10.1039/c3lc51222c – volume: 54 start-page: 9046 year: 2015 ident: 10.1016/j.ces.2020.116017_b0020 article-title: Peclet number dependence of mass transfer in microscale segmented gas-liquid flow publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b01991 – volume: 115 start-page: 792 year: 2003 ident: 10.1016/j.ces.2020.116017_b0550 article-title: A microfluidic system for controlling reaction networks in time publication-title: Angewandte Chem. doi: 10.1002/ange.200390172 – volume: 66 start-page: 1168 year: 2011 ident: 10.1016/j.ces.2020.116017_b0245 article-title: Hydrodynamic studies of liquid–liquid slug flows in circular microchannels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.12.033 – volume: 115717 year: 2020 ident: 10.1016/j.ces.2020.116017_b0465 article-title: Gas-liquid mass transfer around Taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor publication-title: Chem. Eng. Sci. – ident: 10.1016/j.ces.2020.116017_b0110 doi: 10.1134/S0869864315030014 – volume: 59 start-page: 643 year: 2013 ident: 10.1016/j.ces.2020.116017_b0690 article-title: Microdroplet coalescences at microchannel junctions with different collision angles publication-title: AIChE J. doi: 10.1002/aic.13825 – volume: 209 year: 2019 ident: 10.1016/j.ces.2020.116017_b0390 article-title: Determination of transient interfacial tension in a microfluidic device using a Laplace sensor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.115207 – ident: 10.1016/j.ces.2020.116017_b0485 doi: 10.1039/b813325e – volume: 717 year: 2013 ident: 10.1016/j.ces.2020.116017_b0295 article-title: Dynamics of droplet breakup in a T-junction publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.18 – volume: 113 start-page: 304 year: 2016 ident: 10.1016/j.ces.2020.116017_b0565 article-title: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.06.017 – volume: 20 year: 2008 ident: 10.1016/j.ces.2020.116017_b0130 article-title: Capillary threads and viscous droplets in square microchannels publication-title: Phys. Fluids doi: 10.1063/1.2911716 – volume: 9 start-page: 838 year: 2009 ident: 10.1016/j.ces.2020.116017_b0050 article-title: Observed velocity fluctuations in monodisperse droplet generators publication-title: Lab Chip doi: 10.1039/B818479H – volume: 303 start-page: 547 year: 2016 ident: 10.1016/j.ces.2020.116017_b0725 article-title: Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.06.023 – volume: 207 start-page: 1331 year: 2019 ident: 10.1016/j.ces.2020.116017_b0010 article-title: Mass transfer characteristics and concentration field evolution for gas-liquid Taylor flow in milli channels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.07.046 – volume: 125 start-page: 8 year: 2018 ident: 10.1016/j.ces.2020.116017_b0425 article-title: Formation of droplet and “string of sausages” for water-ionic liquid ([BMIM][PF6]) two-phase flow in a flow-focusing device publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2017.12.017 – volume: 84 start-page: 207 year: 2012 ident: 10.1016/j.ces.2020.116017_b0215 article-title: Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.08.039 – volume: 9 start-page: 388 year: 2009 ident: 10.1016/j.ces.2020.116017_b0090 article-title: Liquid–liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows publication-title: Lab Chip doi: 10.1039/B806946H – volume: 10 start-page: 2528 year: 2019 ident: 10.1016/j.ces.2020.116017_b0365 article-title: Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels publication-title: Nat. Commun. doi: 10.1038/s41467-019-10505-5 – volume: 65 start-page: 272 year: 2018 ident: 10.1016/j.ces.2020.116017_b0450 article-title: Manipulation of microdroplets at a T-junction: Coalescence and scaling law publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.04.038 – ident: 10.1016/j.ces.2020.116017_b0590 doi: 10.1021/acs.iecr.5b04917 – volume: 129 start-page: 11692 year: 2007 ident: 10.1016/j.ces.2020.116017_b0305 article-title: A new approach to anodic substitution reaction using parallel laminar flow in a micro-flow reactor publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja075180s – volume: 105 start-page: 185 year: 2018 ident: 10.1016/j.ces.2020.116017_b0070 article-title: Mass transfer in Taylor flow: transfer rate modelling from measurements at the slug and film scale publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2018.04.005 – volume: 344 start-page: 604 year: 2018 ident: 10.1016/j.ces.2020.116017_b0085 article-title: Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.119 – volume: 28 start-page: 3120 year: 2012 ident: 10.1016/j.ces.2020.116017_b0620 article-title: experimental study on dynamic interfacial tension with mixture of SDS–PEG as surfactants in a coflowing microfluidic device publication-title: Langmuir doi: 10.1021/la204852w – volume: 93 year: 2016 ident: 10.1016/j.ces.2020.116017_b0445 article-title: Dynamics of bubble breakup at a T junction publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.022802 – volume: 94 year: 2005 ident: 10.1016/j.ces.2020.116017_b0075 article-title: Scaling and instabilities in bubble pinch-off publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.184502 – volume: 100 year: 2008 ident: 10.1016/j.ces.2020.116017_b0170 article-title: Role of the channel geometry on the bubble pinch-off in flow-focusing devices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.034504 – volume: 69 start-page: 340 year: 2012 ident: 10.1016/j.ces.2020.116017_b0410 article-title: Study on the mechanism of droplet formation in T-junction microchannel publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.10.048 – volume: 11 start-page: 2924 year: 2011 ident: 10.1016/j.ces.2020.116017_b0585 article-title: Dissolution of carbon dioxide bubbles and microfluidic multiphase flows publication-title: Lab Chip doi: 10.1039/c1lc20348g – volume: 11 year: 2009 ident: 10.1016/j.ces.2020.116017_b0095 article-title: Scaling the drop size in coflow experiments publication-title: New J. Phys. doi: 10.1088/1367-2630/11/7/075021 – volume: 136 start-page: 3875 year: 2014 ident: 10.1016/j.ces.2020.116017_b0675 article-title: Microfluidic studies of CO2 sequestration by frustrated Lewis pairs publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja411601a – volume: 68 start-page: 640 year: 2012 ident: 10.1016/j.ces.2020.116017_b0795 article-title: Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.10.036 – volume: 137 start-page: 137 year: 2019 ident: 10.1016/j.ces.2020.116017_b0470 article-title: Ethylene/ethane absorption with AgNO3 solutions in ultrasonic microreactors publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2019.02.014 – volume: 61 start-page: 3964 year: 2015 ident: 10.1016/j.ces.2020.116017_b0745 article-title: On the leakage flow around gas bubbles in slug flow in a microchannel publication-title: AIChE J. doi: 10.1002/aic.14895 – volume: 12 start-page: 1516 year: 2012 ident: 10.1016/j.ces.2020.116017_b0005 article-title: Experimental validation of plugging during drop formation in a T-junction publication-title: Lab Chip doi: 10.1039/c2lc21263c – volume: 62 start-page: 2542 year: 2016 ident: 10.1016/j.ces.2020.116017_b0385 article-title: Study on the transient interfacial tension in a microfluidic droplet formation coupling interphase mass transfer process publication-title: AIChE J. doi: 10.1002/aic.15217 – volume: 150 start-page: 322 year: 1935 ident: 10.1016/j.ces.2020.116017_b0615 article-title: On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid publication-title: Proceed. Royal Soc. London A – volume: 15 year: 2020 ident: 10.1016/j.ces.2020.116017_b0175 article-title: Numerical investigation of bubble breakup in a four-branched microchannel based on non-Newtonian pseudoplastic fluid publication-title: Asia-Pac. J. Chem. Eng. doi: 10.1002/apj.2393 – volume: 11 start-page: 3603 year: 2011 ident: 10.1016/j.ces.2020.116017_b0320 article-title: Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities publication-title: Lab Chip doi: 10.1039/c1lc20534j – volume: 50 start-page: 6906 year: 2011 ident: 10.1016/j.ces.2020.116017_b0340 article-title: Influence of flow regime on mass transfer in different types of microchannels publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102200j – volume: 63 start-page: 5522 year: 2008 ident: 10.1016/j.ces.2020.116017_b0140 article-title: Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.07.025 – volume: 501 start-page: 279 year: 2004 ident: 10.1016/j.ces.2020.116017_b0300 article-title: The motion of a viscous drop through a cylindrical tube publication-title: J. Fluid Mech. doi: 10.1017/S0022112003007213 – volume: 35 start-page: 1346 year: 2012 ident: 10.1016/j.ces.2020.116017_b0540 article-title: Hydrodynamics and mass transfer in gas-liquid flows in microreactors publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201100643 – volume: 94 year: 2005 ident: 10.1016/j.ces.2020.116017_b0240 article-title: Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.164501 – volume: 92 year: 2004 ident: 10.1016/j.ces.2020.116017_b0420 article-title: Geometrically mediated breakup of drops in microfluidic devices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.054503 – volume: 17 year: 2005 ident: 10.1016/j.ces.2020.116017_b0570 article-title: Imaging and quantifying mixing in a model droplet micromixer publication-title: Phys. Fluids doi: 10.1063/1.1929547 – volume: 115 start-page: 292 year: 2016 ident: 10.1016/j.ces.2020.116017_b0065 article-title: Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.09.001 – volume: 64 start-page: 2749 year: 2009 ident: 10.1016/j.ces.2020.116017_b0535 article-title: Flow regimes for adiabatic gas–liquid flow in microchannels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.01.067 – volume: 32 start-page: 791 year: 2006 ident: 10.1016/j.ces.2020.116017_b0680 article-title: Two-phase flow characteristics in gas–liquid microreactors publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2006.02.014 – volume: 2 start-page: 611 year: 2017 ident: 10.1016/j.ces.2020.116017_b0685 article-title: Liquid–liquid microflow reaction engineering publication-title: React. Chem. Eng. doi: 10.1039/C7RE00082K – volume: 63 start-page: 2272 year: 2017 ident: 10.1016/j.ces.2020.116017_b0730 article-title: Optical methods to investigate the enhancement factor of an oxygen-sensitive colorimetric reaction using microreactors publication-title: AIChE J. doi: 10.1002/aic.15547 – volume: 112 start-page: 15 year: 2014 ident: 10.1016/j.ces.2020.116017_b0755 article-title: An online method to measure mass transfer of slug flow in a microchannel publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.03.016 – volume: 62 start-page: 315 year: 2016 ident: 10.1016/j.ces.2020.116017_b0625 article-title: Effect of channel size on liquid-liquid plug flow in small channels publication-title: AIChE J. doi: 10.1002/aic.15026 – volume: 12 start-page: 582 year: 2012 ident: 10.1016/j.ces.2020.116017_b0495 article-title: Filtering microfluidic bubble trains at a symmetric junction publication-title: Lab Chip doi: 10.1039/C1LC20639G – volume: 46 start-page: 878 year: 2007 ident: 10.1016/j.ces.2020.116017_b0035 article-title: Countercurrent laminar microflow for highly efficient solvent extraction publication-title: Angewandte Chem. doi: 10.1002/anie.200600122 – volume: 34 start-page: 4980 year: 2018 ident: 10.1016/j.ces.2020.116017_b0510 article-title: Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00123 – volume: 12 start-page: 1473 year: 1979 ident: 10.1016/j.ces.2020.116017_b0600 article-title: The spreading of silicone oil drops on horizontal surfaces publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/12/9/009 – ident: 10.1016/j.ces.2020.116017_b0335 doi: 10.1021/ie0490536 – volume: 165 start-page: 192 year: 2017 ident: 10.1016/j.ces.2020.116017_b0735 article-title: Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.03.007 – volume: 16 start-page: 1332 year: 2016 ident: 10.1016/j.ces.2020.116017_b0100 article-title: Three-dimensional splitting microfluidics publication-title: Lab Chip doi: 10.1039/C6LC00186F – volume: 3 start-page: 463 year: 2007 ident: 10.1016/j.ces.2020.116017_b0355 article-title: PIV measurements of flow within plugs in a microchannel publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-006-0139-y – volume: 94 start-page: 138 year: 2013 ident: 10.1016/j.ces.2020.116017_b0230 article-title: Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.01.049 – volume: 15 start-page: 2746 year: 2019 ident: 10.1016/j.ces.2020.116017_b0480 article-title: Mass transfer dynamics in the dissolution of Taylor bubbles publication-title: Soft Matter doi: 10.1039/C8SM01144C – volume: 99 year: 2007 ident: 10.1016/j.ces.2020.116017_b0640 article-title: Dripping to jetting transitions in coflowing liquid streams publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.094502 – volume: 145 start-page: 141 year: 2016 ident: 10.1016/j.ces.2020.116017_b0045 article-title: Droplet formation in a microfluidic T-junction involving highly viscous fluid systems publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.02.013 – volume: 62 start-page: 7505 year: 2007 ident: 10.1016/j.ces.2020.116017_b0665 article-title: μ-PIV study of the formation of segmented flow in microfluidic T-junctions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.08.068 – volume: 7 start-page: 1479 year: 2007 ident: 10.1016/j.ces.2020.116017_b0225 article-title: The pressure drop along rectangular microchannels containing bubbles publication-title: Lab Chip doi: 10.1039/b706549c – volume: 50 start-page: 975 year: 2016 ident: 10.1016/j.ces.2020.116017_b0595 article-title: Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model publication-title: Theor. Found. Chem. Eng. doi: 10.1134/S0040579516060166 – volume: 6 start-page: 746 year: 2013 ident: 10.1016/j.ces.2020.116017_b0290 article-title: Novel process windows for enabling, accelerating, and uplifting flow chemistry publication-title: ChemSusChem doi: 10.1002/cssc.201200766 – ident: 10.1016/j.ces.2020.116017_b0660 doi: 10.1016/j.cej.2007.07.037 – volume: 167 start-page: 468 year: 2011 ident: 10.1016/j.ces.2020.116017_b0630 article-title: Suspension catalysis in a liquid–liquid capillary microreactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.09.088 – volume: 6 start-page: 1487 year: 2006 ident: 10.1016/j.ces.2020.116017_b0265 article-title: Multiphase microfluidics: from flow characteristics to chemical and materials synthesis publication-title: Lab Chip doi: 10.1039/B609851G – volume: 66 start-page: 3876 year: 2011 ident: 10.1016/j.ces.2020.116017_b0345 article-title: Gas-liquid and liquid-liquid mass transfer in microstructured reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.05.015 – volume: 7 start-page: 338 year: 2007 ident: 10.1016/j.ces.2020.116017_b0360 article-title: Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV publication-title: Lab Chip doi: 10.1039/B617391H – volume: 58 start-page: 1660 year: 2012 ident: 10.1016/j.ces.2020.116017_b0575 article-title: Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel publication-title: AIChE J. doi: 10.1002/aic.12698  | 
    
| SSID | ssj0007710 | 
    
| Score | 2.6352775 | 
    
| Snippet | •The hydrodynamics, mixing and mass transfer of two-phase processes are reviewed.•Bubble/droplet formation mechanism and scaling models are summarized.•The... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 116017 | 
    
| SubjectTerms | Microfluidic Microreactor Multiphase Transport Viscous fluid  | 
    
| Title | Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models | 
    
| URI | https://dx.doi.org/10.1016/j.ces.2020.116017 | 
    
| Volume | 229 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4405 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007710 issn: 0009-2509 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-4405 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007710 issn: 0009-2509 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4405 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007710 issn: 0009-2509 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-4405 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007710 issn: 0009-2509 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4405 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007710 issn: 0009-2509 databaseCode: AKRWK dateStart: 19510101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFZcvAkxCb7jrdSLFWhpxZ6W7JJiivdbWlXevO3O7MPraAevO4m7DJJvpkh38xHyE1gXWG0mjHXtYZhzTKTkEawSPDEiYQw1pQE2VEwnHhPU3_aIv2mFgZplTX2V5heonX9pFtbs7tMU6zx5RIcuHRwz3oScdjzQlQxuHv_onmEoeCNmhqObm42S44XHEVIER0EDkhMwp9905a_GRyQ_TpQpL3qXw5Jy-ZHZG-rfeAxUePNgi1fwA_R2XyxoSo3NINgmBZlNGpXNM1phow7LO_N4Uv3tEerYhWKdSW09GQ0s_g-XWe0WNCqQwgtFXLWJ2QyeBj3h6yWTGDaDdyCGaEh64ysgrUJZIg3t9L6fuSg1pRwfa0cyM8CxRMOcRIAnTfjEg61L6VSNlLuKWnni9yeEcq1byN4pHVgPInqgxEPEpUY7UNCLaJzwhtjxbruJ46yFvO4IY69xmDfGO0bV_Y9J7efU5ZVM42_BnvNCsTfdkQMYP_7tIv_Tbskuw6yVTjKZl-RdrF6s9cQbhRJp9xPHbLTe3wejj4AecHRuw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YEJKdR5OLHZqoqqQOnUSt0ix3FFUZNUbVA3fjt3eUCRgIE1sZXobH93J393HyHXvnHtWKuJ5bomtrBm2ZKQRljCZpEjbDs2cUGQHfi9kfc45uMG6dS1MEirrLC_xPQCrasnrcqarfl0ijW-TIIDlw7uWU8CDm963AkwA7t9_-J5BIHNajk1HF5fbRYkLziLkCM6iByQmQQ_O6c1h9PdI7tVpEjb5c_sk4ZJD8jOWv_AQ6KGq8yav4AjopNZtqIqjWkC0TDNi3DULOg0pQlS7rC-N4Uv3dE2LatVKBaW0MKV0cTg--kyoXlGyxYhtJDIWR6RUfd-2OlZlWaCpV3fza3Y1pB2CqNgcXwZ4NWtNJwLB8WmbJdr5UCC5isWMQiUAOm8CZNwqrmUShmh3GOykWapOSGUaW4EPNLajz2J8oOC-ZGKYs0ho7ZFk7DaWKGuGoqjrsUsrJljryHYN0T7hqV9m-Tmc8q87Kbx12CvXoHw25YIAe1_n3b6v2lXZKs3fO6H_YfB0xnZdpC6wlBD-5xs5Is3cwGxRx5dFnvrA4I401A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-phase+flow+and+mass+transfer+in+microchannels%3A+A+review+from+local+mechanism+to+global+models&rft.jtitle=Chemical+engineering+science&rft.au=Yao%2C+Chaoqun&rft.au=Zhao%2C+Yuchao&rft.au=Ma%2C+Haiyun&rft.au=Liu%2C+Yanyan&rft.date=2021-01-16&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=229&rft_id=info:doi/10.1016%2Fj.ces.2020.116017&rft.externalDocID=S0009250920305492 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |