Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models

•The hydrodynamics, mixing and mass transfer of two-phase processes are reviewed.•Bubble/droplet formation mechanism and scaling models are summarized.•The dynamic behavior during formation stage is highlighted.•The circulation topology and mixing inside both droplets and slugs are discussed.•The in...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 229; p. 116017
Main Authors Yao, Chaoqun, Zhao, Yuchao, Ma, Haiyun, Liu, Yanyan, Zhao, Qiankun, Chen, Guangwen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 16.01.2021
Subjects
Online AccessGet full text
ISSN0009-2509
1873-4405
DOI10.1016/j.ces.2020.116017

Cover

Abstract •The hydrodynamics, mixing and mass transfer of two-phase processes are reviewed.•Bubble/droplet formation mechanism and scaling models are summarized.•The dynamic behavior during formation stage is highlighted.•The circulation topology and mixing inside both droplets and slugs are discussed.•The interfacial mass transfer regimes and simulative models are presented. Microreaction technology is preferential in process intensification and chemical synthesis, especially in multiphase applications. A thorough understanding of the hydrodynamics and mass transfer is the pre-requisite for implementing such applications. This review discusses the recent progress on the flow and mass transfer of two-phase systems in microchannels, in a multi-scale view from local mechanism to global behavior. The flow patterns, the formation of bubbles/droplets, and the manipulation of bubbles/droplets are presented and discussed in detail. The mass transfer aspects include the velocity profile and mixing inside droplets/slugs, as well as the interfacial mass transfer mechanism and simulative models. The aim of the review is to show directly the physical ingredients which determine the transport phenomena, help explain the observed behavior, and guide reactor design. To simplify the physical ingredients, the attention is focused on straight channels while phenomena in other channels (e.g., meandering channel) are neglected.
AbstractList •The hydrodynamics, mixing and mass transfer of two-phase processes are reviewed.•Bubble/droplet formation mechanism and scaling models are summarized.•The dynamic behavior during formation stage is highlighted.•The circulation topology and mixing inside both droplets and slugs are discussed.•The interfacial mass transfer regimes and simulative models are presented. Microreaction technology is preferential in process intensification and chemical synthesis, especially in multiphase applications. A thorough understanding of the hydrodynamics and mass transfer is the pre-requisite for implementing such applications. This review discusses the recent progress on the flow and mass transfer of two-phase systems in microchannels, in a multi-scale view from local mechanism to global behavior. The flow patterns, the formation of bubbles/droplets, and the manipulation of bubbles/droplets are presented and discussed in detail. The mass transfer aspects include the velocity profile and mixing inside droplets/slugs, as well as the interfacial mass transfer mechanism and simulative models. The aim of the review is to show directly the physical ingredients which determine the transport phenomena, help explain the observed behavior, and guide reactor design. To simplify the physical ingredients, the attention is focused on straight channels while phenomena in other channels (e.g., meandering channel) are neglected.
ArticleNumber 116017
Author Zhao, Yuchao
Yao, Chaoqun
Zhao, Qiankun
Liu, Yanyan
Chen, Guangwen
Ma, Haiyun
Author_xml – sequence: 1
  givenname: Chaoqun
  surname: Yao
  fullname: Yao, Chaoqun
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 2
  givenname: Yuchao
  orcidid: 0000-0001-7238-7265
  surname: Zhao
  fullname: Zhao, Yuchao
  organization: Shandong Collaborative Innovation Center of Light Hydrocarbon Transformation and Utilization, College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
– sequence: 3
  givenname: Haiyun
  surname: Ma
  fullname: Ma, Haiyun
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 4
  givenname: Yanyan
  surname: Liu
  fullname: Liu, Yanyan
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 5
  givenname: Qiankun
  surname: Zhao
  fullname: Zhao, Qiankun
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 6
  givenname: Guangwen
  orcidid: 0000-0001-5290-7921
  surname: Chen
  fullname: Chen, Guangwen
  email: gwchen@dicp.ac.cn
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
BookMark eNp9kE1OwzAQRi1UJNrCAdj5Agl2nMQxrKqKP6kSm7K2ps6Eukrsyo6ouD2OyopFV9Z45o3mewsyc94hIfec5Zzx-uGQG4x5wYpU85pxeUXmvJEiK0tWzcicMaayomLqhixiPKRSSs7mBLYnnx33EJF2vT9RcC0dIEY6BnCxw0Cto4M1wZs9OId9fKQrGvDb4ol2wQ-09wZ6OuDUt3Ggo6dfvd9Nf75N87fkuoM-4t3fuySfL8_b9Vu2-Xh9X682mRG1GLOWG8lFg4A7rJXk6W6FVdUUZZPiiMpAobisge1YKSrFedkx1YiiUgoAGxBLws97060xBuz0MdgBwo_mTE-O9EEnR3pypM-OEiP_McaOMFrvUnzbXySfzmRKOMkIOhqLzmBrA5pRt95eoH8B7IWCVg
CitedBy_id crossref_primary_10_1016_j_molliq_2022_119133
crossref_primary_10_1016_j_ces_2024_120494
crossref_primary_10_35848_1347_4065_adb6b0
crossref_primary_10_1016_j_aej_2021_07_011
crossref_primary_10_1016_j_jtice_2022_104602
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125186
crossref_primary_10_3390_fluids10020026
crossref_primary_10_1016_j_expthermflusci_2024_111391
crossref_primary_10_1016_j_rser_2023_113357
crossref_primary_10_1021_acs_iecr_1c00800
crossref_primary_10_1016_j_cep_2024_109859
crossref_primary_10_3390_sym14081661
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123334
crossref_primary_10_1021_acs_iecr_2c03066
crossref_primary_10_1063_5_0220101
crossref_primary_10_1016_j_ces_2025_121298
crossref_primary_10_1016_j_cjche_2023_06_006
crossref_primary_10_3390_mi12091113
crossref_primary_10_1016_j_cej_2022_136682
crossref_primary_10_1016_j_ijthermalsci_2023_108338
crossref_primary_10_1016_j_cej_2024_155348
crossref_primary_10_1016_j_ces_2023_119011
crossref_primary_10_1016_j_ces_2023_118969
crossref_primary_10_1063_5_0252466
crossref_primary_10_1016_j_ces_2021_116668
crossref_primary_10_1002_aic_18701
crossref_primary_10_1002_cjce_25020
crossref_primary_10_1016_j_applthermaleng_2023_120537
crossref_primary_10_1002_advs_202406325
crossref_primary_10_1016_j_cej_2021_130226
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125320
crossref_primary_10_1016_j_fuel_2023_128699
crossref_primary_10_58224_2619_0575_2024_7_2_43_52
crossref_primary_10_1016_j_cej_2022_140670
crossref_primary_10_1016_j_cej_2024_149285
crossref_primary_10_1016_j_anucene_2024_110494
crossref_primary_10_1016_j_biortech_2023_130154
crossref_primary_10_1063_5_0190747
crossref_primary_10_1021_acs_iecr_3c04121
crossref_primary_10_1021_acs_iecr_4c02694
crossref_primary_10_1016_j_energy_2023_127650
crossref_primary_10_1016_j_ces_2024_119777
crossref_primary_10_1016_j_ces_2024_119898
crossref_primary_10_1016_j_ces_2021_117375
crossref_primary_10_1515_tsd_2022_2482
crossref_primary_10_1134_S1810232821040093
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121344
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125665
crossref_primary_10_1007_s41981_021_00176_z
crossref_primary_10_1021_acscatal_4c06638
crossref_primary_10_1103_PhysRevFluids_7_013604
crossref_primary_10_1615_InterfacPhenomHeatTransfer_2022046727
crossref_primary_10_3389_fceng_2022_779611
crossref_primary_10_1016_j_seppur_2025_131525
crossref_primary_10_1016_j_ces_2021_117285
crossref_primary_10_1016_j_ces_2021_117166
crossref_primary_10_1016_j_ces_2024_120969
crossref_primary_10_1016_j_flowmeasinst_2024_102548
crossref_primary_10_1140_epjp_s13360_023_03977_4
crossref_primary_10_1016_j_ces_2022_117609
crossref_primary_10_1063_5_0231939
crossref_primary_10_1016_j_ces_2025_121253
crossref_primary_10_1021_acs_iecr_3c03693
crossref_primary_10_1016_j_cej_2023_142228
crossref_primary_10_1016_j_jtice_2025_105985
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104005
crossref_primary_10_1088_1361_6501_ada1e8
crossref_primary_10_1002_aic_18508
crossref_primary_10_3390_en15176141
crossref_primary_10_1016_j_ces_2021_117037
crossref_primary_10_1002_pol_20230722
crossref_primary_10_1007_s41981_022_00228_y
crossref_primary_10_3390_mi13101661
crossref_primary_10_1016_j_ces_2021_116926
crossref_primary_10_1002_aic_18221
crossref_primary_10_1007_s41981_021_00179_w
crossref_primary_10_1016_j_cej_2023_142335
crossref_primary_10_1016_j_cej_2023_143426
crossref_primary_10_1016_j_cej_2020_127419
crossref_primary_10_3390_w15061033
crossref_primary_10_1016_j_cjche_2022_06_016
crossref_primary_10_1063_5_0151374
crossref_primary_10_1007_s12217_022_10026_9
crossref_primary_10_1021_acs_langmuir_3c01017
crossref_primary_10_1016_j_ces_2023_118510
crossref_primary_10_1063_5_0103497
crossref_primary_10_1016_j_ceja_2023_100518
crossref_primary_10_1016_j_ces_2020_116299
crossref_primary_10_3390_app10238739
crossref_primary_10_1016_j_ces_2024_120709
crossref_primary_10_1039_D4RE00223G
crossref_primary_10_1007_s13202_023_01696_1
crossref_primary_10_1038_s41598_024_75356_7
crossref_primary_10_1007_s40430_023_04478_2
crossref_primary_10_1016_j_icheatmasstransfer_2022_106124
crossref_primary_10_1039_D3GC03360K
crossref_primary_10_1016_j_cej_2023_144223
crossref_primary_10_1016_j_ces_2022_117509
crossref_primary_10_1016_j_cherd_2021_07_006
crossref_primary_10_1007_s10404_023_02633_8
crossref_primary_10_1002_ceat_202000396
crossref_primary_10_1016_j_cherd_2025_03_011
crossref_primary_10_20914_2310_1202_2024_3_274_281
crossref_primary_10_1021_acs_iecr_3c02941
crossref_primary_10_1016_j_ces_2023_118743
crossref_primary_10_1002_ceat_202200214
crossref_primary_10_1016_j_ces_2022_117752
crossref_primary_10_3390_en18040984
crossref_primary_10_1016_j_psep_2022_02_036
crossref_primary_10_1016_j_seppur_2023_123489
crossref_primary_10_1016_j_cej_2021_129045
Cites_doi 10.1103/PhysRevE.86.026308
10.1016/j.ces.2018.02.018
10.1016/j.cej.2017.05.056
10.1002/aic.12367
10.1039/c001191f
10.1021/la8035852
10.1016/j.ces.2020.115734
10.1016/j.ces.2013.05.054
10.1039/c0lc00442a
10.1103/PhysRevLett.108.264502
10.1016/j.ces.2018.02.010
10.1007/s41981-019-00062-9
10.1016/j.ijmultiphaseflow.2009.07.006
10.1016/S0009-2509(97)00217-0
10.1021/acs.langmuir.6b00271
10.1016/j.ces.2005.01.037
10.1021/ac800088s
10.1016/j.ces.2004.03.010
10.1016/j.ces.2009.03.010
10.1063/1.870254
10.1039/B610888A
10.1002/aic.14704
10.1016/j.cej.2018.10.056
10.1002/ange.201403719
10.1039/b511976f
10.1039/c3lc50533b
10.1126/science.aan0745
10.1039/b510841a
10.1016/j.cep.2015.08.008
10.1039/C4LC01431F
10.1007/s10404-017-2011-7
10.1007/s10404-008-0306-4
10.1016/j.ces.2018.06.007
10.1002/aic.10924
10.1016/j.ces.2014.11.005
10.1016/S0009-2509(97)00114-0
10.1126/science.aaf1337
10.1016/j.ces.2010.08.038
10.1103/PhysRevLett.99.104502
10.1088/0957-0233/22/10/105401
10.1039/D0RA00913J
10.1063/1.1992514
10.1103/PhysRevLett.100.014502
10.1002/aic.16934
10.1007/s10404-009-0471-0
10.1017/S002211200700910X
10.1002/aic.15889
10.1016/j.ces.2013.02.013
10.1016/j.ces.2016.12.003
10.1016/j.ijheatfluidflow.2011.11.001
10.1016/j.cherd.2013.07.031
10.1016/j.ces.2013.03.046
10.1002/aic.14306
10.1002/aic.11029
10.1039/b906558j
10.1016/j.cej.2019.05.051
10.1016/j.ijmultiphaseflow.2011.06.004
10.1016/j.cej.2015.09.102
10.1103/PhysRevLett.103.214501
10.1103/PhysRevE.78.036317
10.1103/PhysRevE.78.016307
10.1063/1.3549266
10.1016/j.ces.2015.02.016
10.1016/j.cattod.2009.07.054
10.1016/j.ces.2011.06.003
10.1002/ceat.201200600
10.1007/s10404-007-0233-9
10.1016/j.cherd.2016.06.017
10.1021/la100029q
10.1103/PhysRevLett.86.4163
10.1021/la052682f
10.1039/C4RA00654B
10.1002/aic.11033
10.1039/C5LC00420A
10.1039/C2GC36652E
10.1016/j.ces.2010.03.012
10.1007/s10404-017-2019-z
10.1016/j.ces.2013.03.041
10.1039/C4LC00671B
10.1103/PhysRevLett.108.134501
10.1016/j.colsurfa.2008.09.033
10.1016/j.ces.2015.03.066
10.1017/S0022112095001455
10.1016/j.cej.2017.07.037
10.1007/s10404-017-1982-8
10.1103/PhysRevLett.100.024501
10.1016/j.ces.2016.01.004
10.1039/c3lc51222c
10.1021/acs.iecr.5b01991
10.1002/ange.200390172
10.1016/j.ces.2010.12.033
10.1134/S0869864315030014
10.1002/aic.13825
10.1016/j.ces.2019.115207
10.1039/b813325e
10.1017/jfm.2013.18
10.1063/1.2911716
10.1039/B818479H
10.1016/j.cej.2016.06.023
10.1016/j.ces.2019.07.046
10.1016/j.cep.2017.12.017
10.1016/j.ces.2012.08.039
10.1039/B806946H
10.1038/s41467-019-10505-5
10.1016/j.jiec.2018.04.038
10.1021/acs.iecr.5b04917
10.1021/ja075180s
10.1016/j.ijmultiphaseflow.2018.04.005
10.1016/j.cej.2018.03.119
10.1021/la204852w
10.1103/PhysRevE.93.022802
10.1103/PhysRevLett.94.184502
10.1103/PhysRevLett.100.034504
10.1016/j.ces.2011.10.048
10.1039/c1lc20348g
10.1088/1367-2630/11/7/075021
10.1021/ja411601a
10.1016/j.ces.2011.10.036
10.1016/j.cep.2019.02.014
10.1002/aic.14895
10.1039/c2lc21263c
10.1002/aic.15217
10.1002/apj.2393
10.1039/c1lc20534j
10.1021/ie102200j
10.1016/j.ces.2008.07.025
10.1017/S0022112003007213
10.1002/ceat.201100643
10.1103/PhysRevLett.94.164501
10.1103/PhysRevLett.92.054503
10.1063/1.1929547
10.1016/j.cherd.2016.09.001
10.1016/j.ces.2009.01.067
10.1016/j.ijmultiphaseflow.2006.02.014
10.1039/C7RE00082K
10.1002/aic.15547
10.1016/j.ces.2014.03.016
10.1002/aic.15026
10.1039/C1LC20639G
10.1002/anie.200600122
10.1021/acs.langmuir.8b00123
10.1088/0022-3727/12/9/009
10.1021/ie0490536
10.1016/j.ces.2017.03.007
10.1039/C6LC00186F
10.1007/s10404-006-0139-y
10.1016/j.ces.2013.01.049
10.1039/C8SM01144C
10.1103/PhysRevLett.99.094502
10.1016/j.ces.2016.02.013
10.1016/j.ces.2007.08.068
10.1039/b706549c
10.1134/S0040579516060166
10.1002/cssc.201200766
10.1016/j.cej.2007.07.037
10.1016/j.cej.2010.09.088
10.1039/B609851G
10.1016/j.ces.2011.05.015
10.1039/B617391H
10.1002/aic.12698
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ces.2020.116017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4405
ExternalDocumentID 10_1016_j_ces_2020_116017
S0009250920305492
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
NDZJH
R2-
SC5
SEW
T9H
VH1
WUQ
Y6R
ZY4
~HD
ID FETCH-LOGICAL-c363t-d1c7138eaebe69714409e55824860135ca29176a0b04359114f09832599aae8a3
IEDL.DBID .~1
ISSN 0009-2509
IngestDate Wed Oct 01 05:19:59 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microreactor
Transport
Multiphase
Viscous fluid
Microfluidic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d1c7138eaebe69714409e55824860135ca29176a0b04359114f09832599aae8a3
ORCID 0000-0001-5290-7921
0000-0001-7238-7265
ParticipantIDs crossref_primary_10_1016_j_ces_2020_116017
crossref_citationtrail_10_1016_j_ces_2020_116017
elsevier_sciencedirect_doi_10_1016_j_ces_2020_116017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-16
PublicationDateYYYYMMDD 2021-01-16
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-16
  day: 16
PublicationDecade 2020
PublicationTitle Chemical engineering science
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cubaud, Mason (b0130) 2008; 20
Kashid MN, G.I., Goetz S., Franzke J., Acker JF., Platte F., Agar DW., Turek S., 2005. Internal circulation within the liquid slugs of a liquid− liquid slug-flow capillary microreactor. Ind. Eng. Chem. Res. 44, 5003–5010.
Ma, Zhang, Fu, Zhu, Wang, Ma, Luo (b0450) 2018; 65
Liu, Chen, Yue (b0435) 2020; 10
Kinoshita, Kaneda, Fujii, Oshima (b0360) 2007; 7
Kashid, Renken, Kiwi-Minsker (b0345) 2011; 66
Kralj, Sahoo, Jensen (b0370) 2007; 7
Thulasidas, Abraham, Cerro (b0610) 1997; 52
Parthiban, Khan (b0495) 2012; 12
Yao, Dong, Zhao, Chen (b0755) 2014; 112
Yao, Ma, Zhao, Liu, Zhao, Chen (bib821) 2020; 223
Van der Graaf, Nisisako, Schroën, Van Der Sman, Boom (b0650) 2006; 22
Mi, Yao, Zhao, Chen (b0470) 2019; 137
Cabral, Hudson (b0080) 2006; 6
Scheiff, Mendorf, Agar, Reis, Mackley (b0530) 2011; 11
Li, Li, Yang, Kinoshita, Oishi, Oshima (b0410) 2012; 69
Ward, Faivre, Stone (b0705) 2010; 26
Garstecki, Fuerstman, Stone, Whitesides (b0235) 2006; 6
Di Miceli Raimondi, Prat, Gourdon, Cognet (b0140) 2008; 63
Hein, Moskopp, Seemann (b0285) 2015; 15
Voicu, Abolhasani, Choueiri, Lestari, Seiler, Menard, Greener, Guenther, Stephan, Kumacheva (b0675) 2014; 136
Wang, Zhu, Fu, Ma (b0700) 2015; 61
Deng, Sun, Wang, Ju, Xie, Chu (b0165) 2013; 13
Zhang, Liu, Zhao, Yao, Chen (b0805) 2019; 358
Ufer, Sudhoff, Mescher, Agar (b0630) 2011; 167
Mei, Hébrard, Dietrich, Loubière (b0465) 2020; 115717
Abolhasani, Kumacheva, Günther (b0020) 2015; 54
Fu, Ma, Funfschilling, Li (b0200) 2011; 66
Niu, X., Gulati, S., Edel, J.B., demello, A.J., 2008. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8, 1837-1841.
Vandu, Liu, Krishna (b0670) 2005; 60
Guillot, Colin, Utada, Ajdari (b0260) 2007; 99
Fu, Funfschilling, Ma, Li (b0190) 2009; 8
Adamo, Beingessner, Behnam, Chen, Jamison, Jensen, Monbaliu, Myerson, Revalor, Snead (b0025) 2016; 352
Yao, Zhao, Chen (b0770) 2018; 189
Xu, Tostado, Xu, Lu, Luo (b0720) 2014; 14
Yue (b0790) 2017; 15
Zhao, Chen, Yuan (b0820) 2006; 52
Bai, Fu, Zhao, Cheng (b0045) 2016; 145
Yang, Dietrich, Hébrard, Loubière, Gourdon (b0730) 2017; 63
Hu, Pine, Leal (b0310) 2000; 12
Jakiela, Makulska, Korczyk, Garstecki (b0320) 2011; 11
Svetlov, Abiev (b0595) 2016; 50
Castro-Hernandez, Gundabala, Fernández-Nieves, Gordillo (b0095) 2009; 11
Jose, Cubaud (b0330) 2014; 4
Fu, Wu, Ma, Li (b0215) 2012; 84
Kececi, Wörner, Onea, Soyhan (b0350) 2009; 147
Utada, Fernandez-Nieves, Stone, Weitz (b0640) 2007; 99
Abate, Mary, van Steijn, Weitz (b0005) 2012; 12
Abiev, Butler, Cid, Lalanne, Billet (b0010) 2019; 207
Fu, Ma, Funfschilling, Zhu, Li (b0205) 2010; 65
Hodges, Jensen, Rallison (b0300) 2004; 501
Yao, Zhao, Zheng, Zhang, Chen (b0780) 2020; 66
Castell, Allender, Barrow (b0090) 2009; 9
Cole, Groh, Johnson, Burcham, Campbell, Diseroad, Heller, Howell, Kallman, Koenig (b0125) 2017; 356
Bremond, Thiam, Bibette (b0060) 2008; 100
Christopher, Noharuddin, Taylor, Anna (b0115) 2008; 78
Yao, Liu, Xu, Zhao, Chen (b0765) 2018; 64
Dong, Yao, Zhang, Chen, Xu, Yuan (b0155) 2016; 62
Zhang, Yao, Ma, Jin, Zhang, Lü, Zhao (b0800) 2018; 182
Kashid, Renken, Kiwi-Minsker (b0340) 2011; 50
Hoang, Portela, Kleijn, Kreutzer, Van Steijn (b0295) 2013; 717
Dong, Yao, Zhang, Xu, Chen, Zhao, Yuan (b0150) 2015; 15
Liu, Zhang, Zhu, Fu, Ma, Li (b0425) 2018; 125
Chinnov, E., Ron’Shin, F., Kabov, O.A., 2015. Regimes of two-phase flow in micro-and minichannels. Thermophys. Aeromech+ 22, 265-284.
Steegmans, Schroën, Boom (b0555) 2009; 64
Dogan, Nas, Muradoglu (b0145) 2009; 35
Yagodnitsyna, Kovalev, Bilsky (b0725) 2016; 303
Zaloha, Kristal, Jiricny, Völkel, Xuereb, Aubin (b0795) 2012; 68
Aota, Nonaka, Hibara, Kitamori (b0035) 2007; 46
Tanner (b0600) 1979; 12
Waelchli, Rudolf von Rohr (b0680) 2006; 32
Zhao, Wang, Shao, Zhang, Jin, Cheng (b0815) 2013; 100
Hessel, Kralisch, Kockmann, Noel, Wang (b0290) 2013; 6
Li, Angeli (b0400) 2016; 143
Yao, Zheng, Zhao, Zhang, Chen (b0785) 2019; 373
Gunther, Jensen (b0265) 2006; 6
Yao, Zhao, Ye, Dangi, Dong, Chen (b0775) 2013; 95
Korczyk, van Steijn, Blonski, Zaremba, Beattie, Garstecki (b0365) 2019; 10
Sarrazin, Loubière, Prat, Gourdon, Bonometti, Magnaudet (b0520) 2006; 52
Afkhami, Leshansky, Renardy (b0030) 2011; 23
Scheiff, Holbach, Agar (b0525) 2013; 36
Tostado, Xu, Du, Luo (b0620) 2012; 28
Ghaini, Mescher, Agar (b0245) 2011; 66
Sarrazin, Bonometti, Prat, Gourdon, Magnaudet (b0515) 2007; 5
Baroud, Gallaire, Dangla (b0040) 2010; 10
Wang, Zhang, Zhang, Luo (b0695) 2016; 32
Tsaoulidis, Angeli (b0625) 2016; 62
Butler, Lalanne, Sandmann, Cid, Billet (b0070) 2018; 105
Burton, Waldrep, Taborek (b0075) 2005; 94
Lu, Fu, Zhu, Ma, Li (b0445) 2016; 93
Yao, Dong, Zhao, Chen (b0750) 2014; 60
Wong, Radke, Morris (b0270) 1995; 292
Eskin, Mostowfi (b0180) 2012; 33
van Steijn, Kreutzer, Kleijn (b0665) 2007; 62
Liu, Zhang, Pang, Wang, Li (b0440) 2017; 21
Steegmans, Schroën, Boom (b0560) 2009; 25
Li, Angeli (b0405) 2017; 328
Guillot, Colin, Ajdari (b0255) 2008; 78
Nirmal, Leary, Ramachandran (b0480) 2019; 15
Garstecki, Stone, Whitesides (b0240) 2005; 94
Yao, Dong, Zhang, Mi, Zhao, Chen (b0745) 2015; 61
Glawdel, Ren (b0250) 2012; 86
Soh, Yeoh, Timchenko (b0545) 2017; 21
Fu, Ma (b0195) 2015; 135
Pascaline, Vincent, Patrick (b0500) 2008; 80
Cao, Wu, Sundén (b0085) 2018; 344
Fu, Ma, Li (b0210) 2015; 97
Fuerstman, Lai, Thurlow, Shevkoplyas, Stone, Whitesides (b0225) 2007; 7
Horii, Fuchigami, Atobe (b0305) 2007; 129
De Menech, Garstecki, Jousse, Stone (b0160) 2008; 595
Du, Qi, Fan, Chen (b0175) 2020; 15
Lindken, Rossi, Grosse, Westerweel (b0415) 2009; 9
Tomotika (b0615) 1935; 150
Sun, Cubaud (b0585) 2011; 11
Oishi, Kinoshita, Fujii, Oshima (b0490) 2011; 22
Thorsen, Roberts, Arnold, Quake (b0605) 2001; 86
Ganapathy, Al-Hajri, Ohadi (b0230) 2013; 94
Beer, Rose, Kennedy (b0050) 2009; 9
Lam, Sorensen, Gavriilidis (b0380) 2013; 91
Sobieszuk, Aubin, Pohorecki (b0540) 2012; 35
Link, Anna, Weitz, Stone (b0420) 2004; 92
Shao, Gavriilidis, Angeli (b0535) 2009; 64
Yao, Dong, Zhao, Chen (b0760) 2015; 123
Hao, Jin, Wang, Zhou, Zhao, Zhang, Lü (b0280) 2020; 10
Stefan, Yu, Tapio (b0565) 2016; 113
Muradoglu, Stone (b0475) 2005; 17
Wang, Lu, Yang, Luo (b0690) 2013; 59
Butler, Cid, Billet (b0065) 2016; 115
Marín, Campo-Cortés, Gordillo (b0460) 2009; 344
Susanti, Winkelman, J.G.M., Schuur, B., Heeres, H.J., Yue, J., 2016. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors. Ind. Eng. Chem. Res. 55, 4691–4702.
Wang, Li, Xie, Luo (b0685) 2017; 2
Zhao, Middelberg (b0120) 2011; 66
Leshansky, Afkhami, Jullien, Tabeling (b0395) 2012; 108
van Steijn, Kleijn, Kreutzer (b0655) 2009; 103
King, Walsh, Grimes (b0355) 2007; 3
Haase, Murzin, Salmi (b0275) 2016; 113
Chen, Zhao, Han, Ye, Dang, Chen (b0105) 2013; 15
Lan, Wang, Guo, Li, Luo (b0385) 2016; 62
Zhao, Riaud, Luo, Jin, Cheng (b0810) 2015; 131
Fu, Bai, Zhao, Zhang, Jin, Cheng (b0220) 2018; 181
Dietrich, Loubière, Jimenez, Hébrard, Gourdon (b0135) 2013; 100
Dollet, Van Hoeve, Raven, Marmottant, Versluis (b0170) 2008; 100
Bercic, Pintar (b0055) 1997; 52
Riaud, Zhang, Wang, Wang, Luo (b0510) 2018; 34
Xu, Li, Tan, Wang, Luo (b0715) 2006; 52
Stone, Stone (b0570) 2005; 17
Su, Zhao, Jiao, Chen, Yuan (b0580) 2011; 57
Riaud, Wang, Luo (b0505) 2013; 99
Yang, Loubière, Dietrich, Le Men, Gourdon, Hébrard (b0735) 2017; 165
Chen, Gao, Zhang, Zhao (b0100) 2016; 16
Jia, Zhang (b0325) 2016; 285
Ma, Sherwood, Huck, Balabani (b0455) 2014; 14
Foroughi, Kawaji (b0185) 2011; 37
Ładosz, von Rohr (b0375) 2017; 21
Lan, Wang, Wang, Liu, Guo, Sun, Li, Li (b0390) 2019; 209
Song, Tice, Ismagilov (b0550) 2003; 115
van Baten, Krishna (b0645) 2004; 59
Xu, Li, Tan, Luo (b0710) 2008; 5
Su, Chen, Yuan (b0575) 2012; 58
Yang, Nieves-Remacha, Jensen (b0740) 2017; 169
Liu, Wang, Wang, Wang, Luo (b0430) 2017; 325
Van steijn, V., Kreutzer, M., Kleijn, C., 2008. Velocity fluctuations of segmented flow in microchannels. Chem. Eng. J. 135, 159-165.
Abolhasani, Günther, Kumacheva (b0015) 2014; 126
Utada, Fernandez-Nieves, Gordillo, Weitz (b0635) 2008; 100
Jakiela, Korczyk, Makulska, Cybulski, Garstecki (b0315) 2012; 108
Cubaud (10.1016/j.ces.2020.116017_b0130) 2008; 20
Tomotika (10.1016/j.ces.2020.116017_b0615) 1935; 150
Yang (10.1016/j.ces.2020.116017_b0735) 2017; 165
Afkhami (10.1016/j.ces.2020.116017_b0030) 2011; 23
Stefan (10.1016/j.ces.2020.116017_b0565) 2016; 113
Hessel (10.1016/j.ces.2020.116017_b0290) 2013; 6
Sun (10.1016/j.ces.2020.116017_b0585) 2011; 11
Yao (10.1016/j.ces.2020.116017_b0775) 2013; 95
Fu (10.1016/j.ces.2020.116017_b0190) 2009; 8
Li (10.1016/j.ces.2020.116017_b0410) 2012; 69
Riaud (10.1016/j.ces.2020.116017_b0510) 2018; 34
Fu (10.1016/j.ces.2020.116017_b0200) 2011; 66
Link (10.1016/j.ces.2020.116017_b0420) 2004; 92
Yue (10.1016/j.ces.2020.116017_b0790) 2017; 15
Jakiela (10.1016/j.ces.2020.116017_b0320) 2011; 11
Fu (10.1016/j.ces.2020.116017_b0205) 2010; 65
Hein (10.1016/j.ces.2020.116017_b0285) 2015; 15
Yao (10.1016/j.ces.2020.116017_bib821) 2020; 223
Utada (10.1016/j.ces.2020.116017_b0635) 2008; 100
Utada (10.1016/j.ces.2020.116017_b0640) 2007; 99
Jia (10.1016/j.ces.2020.116017_b0325) 2016; 285
Lu (10.1016/j.ces.2020.116017_b0445) 2016; 93
Yao (10.1016/j.ces.2020.116017_b0760) 2015; 123
Cole (10.1016/j.ces.2020.116017_b0125) 2017; 356
Van der Graaf (10.1016/j.ces.2020.116017_b0650) 2006; 22
Vandu (10.1016/j.ces.2020.116017_b0670) 2005; 60
Soh (10.1016/j.ces.2020.116017_b0545) 2017; 21
Ładosz (10.1016/j.ces.2020.116017_b0375) 2017; 21
Kashid (10.1016/j.ces.2020.116017_b0345) 2011; 66
King (10.1016/j.ces.2020.116017_b0355) 2007; 3
Butler (10.1016/j.ces.2020.116017_b0065) 2016; 115
Deng (10.1016/j.ces.2020.116017_b0165) 2013; 13
Yagodnitsyna (10.1016/j.ces.2020.116017_b0725) 2016; 303
10.1016/j.ces.2020.116017_b0485
Christopher (10.1016/j.ces.2020.116017_b0115) 2008; 78
Chen (10.1016/j.ces.2020.116017_b0100) 2016; 16
Hodges (10.1016/j.ces.2020.116017_b0300) 2004; 501
Svetlov (10.1016/j.ces.2020.116017_b0595) 2016; 50
Hoang (10.1016/j.ces.2020.116017_b0295) 2013; 717
Li (10.1016/j.ces.2020.116017_b0400) 2016; 143
Thorsen (10.1016/j.ces.2020.116017_b0605) 2001; 86
van Steijn (10.1016/j.ces.2020.116017_b0665) 2007; 62
Lan (10.1016/j.ces.2020.116017_b0385) 2016; 62
Glawdel (10.1016/j.ces.2020.116017_b0250) 2012; 86
Voicu (10.1016/j.ces.2020.116017_b0675) 2014; 136
Thulasidas (10.1016/j.ces.2020.116017_b0610) 1997; 52
Abiev (10.1016/j.ces.2020.116017_b0010) 2019; 207
Horii (10.1016/j.ces.2020.116017_b0305) 2007; 129
Ufer (10.1016/j.ces.2020.116017_b0630) 2011; 167
Dollet (10.1016/j.ces.2020.116017_b0170) 2008; 100
Zhang (10.1016/j.ces.2020.116017_b0805) 2019; 358
Ma (10.1016/j.ces.2020.116017_b0455) 2014; 14
Li (10.1016/j.ces.2020.116017_b0405) 2017; 328
Liu (10.1016/j.ces.2020.116017_b0440) 2017; 21
Song (10.1016/j.ces.2020.116017_b0550) 2003; 115
Aota (10.1016/j.ces.2020.116017_b0035) 2007; 46
Steegmans (10.1016/j.ces.2020.116017_b0560) 2009; 25
Eskin (10.1016/j.ces.2020.116017_b0180) 2012; 33
Xu (10.1016/j.ces.2020.116017_b0720) 2014; 14
Zhao (10.1016/j.ces.2020.116017_b0815) 2013; 100
Jose (10.1016/j.ces.2020.116017_b0330) 2014; 4
Cabral (10.1016/j.ces.2020.116017_b0080) 2006; 6
Haase (10.1016/j.ces.2020.116017_b0275) 2016; 113
Ganapathy (10.1016/j.ces.2020.116017_b0230) 2013; 94
Lindken (10.1016/j.ces.2020.116017_b0415) 2009; 9
Fu (10.1016/j.ces.2020.116017_b0210) 2015; 97
Scheiff (10.1016/j.ces.2020.116017_b0525) 2013; 36
Lan (10.1016/j.ces.2020.116017_b0390) 2019; 209
10.1016/j.ces.2020.116017_b0660
Wang (10.1016/j.ces.2020.116017_b0695) 2016; 32
Xu (10.1016/j.ces.2020.116017_b0710) 2008; 5
Adamo (10.1016/j.ces.2020.116017_b0025) 2016; 352
Riaud (10.1016/j.ces.2020.116017_b0505) 2013; 99
Fuerstman (10.1016/j.ces.2020.116017_b0225) 2007; 7
Wang (10.1016/j.ces.2020.116017_b0700) 2015; 61
Castro-Hernandez (10.1016/j.ces.2020.116017_b0095) 2009; 11
Mei (10.1016/j.ces.2020.116017_b0465) 2020; 115717
van Steijn (10.1016/j.ces.2020.116017_b0655) 2009; 103
Dong (10.1016/j.ces.2020.116017_b0150) 2015; 15
Mi (10.1016/j.ces.2020.116017_b0470) 2019; 137
Abolhasani (10.1016/j.ces.2020.116017_b0015) 2014; 126
Du (10.1016/j.ces.2020.116017_b0175) 2020; 15
Tanner (10.1016/j.ces.2020.116017_b0600) 1979; 12
Marín (10.1016/j.ces.2020.116017_b0460) 2009; 344
Parthiban (10.1016/j.ces.2020.116017_b0495) 2012; 12
Shao (10.1016/j.ces.2020.116017_b0535) 2009; 64
Sobieszuk (10.1016/j.ces.2020.116017_b0540) 2012; 35
Hu (10.1016/j.ces.2020.116017_b0310) 2000; 12
Korczyk (10.1016/j.ces.2020.116017_b0365) 2019; 10
Yao (10.1016/j.ces.2020.116017_b0745) 2015; 61
Tsaoulidis (10.1016/j.ces.2020.116017_b0625) 2016; 62
Lam (10.1016/j.ces.2020.116017_b0380) 2013; 91
van Baten (10.1016/j.ces.2020.116017_b0645) 2004; 59
Guillot (10.1016/j.ces.2020.116017_b0255) 2008; 78
Gunther (10.1016/j.ces.2020.116017_b0265) 2006; 6
Jakiela (10.1016/j.ces.2020.116017_b0315) 2012; 108
Liu (10.1016/j.ces.2020.116017_b0435) 2020; 10
Abolhasani (10.1016/j.ces.2020.116017_b0020) 2015; 54
10.1016/j.ces.2020.116017_b0335
Garstecki (10.1016/j.ces.2020.116017_b0240) 2005; 94
Yao (10.1016/j.ces.2020.116017_b0750) 2014; 60
Sarrazin (10.1016/j.ces.2020.116017_b0520) 2006; 52
Castell (10.1016/j.ces.2020.116017_b0090) 2009; 9
Yao (10.1016/j.ces.2020.116017_b0770) 2018; 189
Tostado (10.1016/j.ces.2020.116017_b0620) 2012; 28
Oishi (10.1016/j.ces.2020.116017_b0490) 2011; 22
Yang (10.1016/j.ces.2020.116017_b0740) 2017; 169
Hao (10.1016/j.ces.2020.116017_b0280) 2020; 10
Zaloha (10.1016/j.ces.2020.116017_b0795) 2012; 68
Fu (10.1016/j.ces.2020.116017_b0220) 2018; 181
Ghaini (10.1016/j.ces.2020.116017_b0245) 2011; 66
Yang (10.1016/j.ces.2020.116017_b0730) 2017; 63
Abate (10.1016/j.ces.2020.116017_b0005) 2012; 12
Leshansky (10.1016/j.ces.2020.116017_b0395) 2012; 108
Zhao (10.1016/j.ces.2020.116017_b0120) 2011; 66
Pascaline (10.1016/j.ces.2020.116017_b0500) 2008; 80
Zhang (10.1016/j.ces.2020.116017_b0800) 2018; 182
Zhao (10.1016/j.ces.2020.116017_b0820) 2006; 52
Liu (10.1016/j.ces.2020.116017_b0430) 2017; 325
Baroud (10.1016/j.ces.2020.116017_b0040) 2010; 10
Cao (10.1016/j.ces.2020.116017_b0085) 2018; 344
Kashid (10.1016/j.ces.2020.116017_b0340) 2011; 50
Waelchli (10.1016/j.ces.2020.116017_b0680) 2006; 32
Zhao (10.1016/j.ces.2020.116017_b0810) 2015; 131
Kralj (10.1016/j.ces.2020.116017_b0370) 2007; 7
Kececi (10.1016/j.ces.2020.116017_b0350) 2009; 147
Wang (10.1016/j.ces.2020.116017_b0685) 2017; 2
Chen (10.1016/j.ces.2020.116017_b0105) 2013; 15
Muradoglu (10.1016/j.ces.2020.116017_b0475) 2005; 17
Liu (10.1016/j.ces.2020.116017_b0425) 2018; 125
Ma (10.1016/j.ces.2020.116017_b0450) 2018; 65
Su (10.1016/j.ces.2020.116017_b0580) 2011; 57
Steegmans (10.1016/j.ces.2020.116017_b0555) 2009; 64
Butler (10.1016/j.ces.2020.116017_b0070) 2018; 105
Foroughi (10.1016/j.ces.2020.116017_b0185) 2011; 37
Su (10.1016/j.ces.2020.116017_b0575) 2012; 58
Bremond (10.1016/j.ces.2020.116017_b0060) 2008; 100
10.1016/j.ces.2020.116017_b0110
Wong (10.1016/j.ces.2020.116017_b0270) 1995; 292
Yao (10.1016/j.ces.2020.116017_b0765) 2018; 64
Dong (10.1016/j.ces.2020.116017_b0155) 2016; 62
Garstecki (10.1016/j.ces.2020.116017_b0235) 2006; 6
Sarrazin (10.1016/j.ces.2020.116017_b0515) 2007; 5
Di Miceli Raimondi (10.1016/j.ces.2020.116017_b0140) 2008; 63
De Menech (10.1016/j.ces.2020.116017_b0160) 2008; 595
Ward (10.1016/j.ces.2020.116017_b0705) 2010; 26
10.1016/j.ces.2020.116017_b0590
Guillot (10.1016/j.ces.2020.116017_b0260) 2007; 99
Wang (10.1016/j.ces.2020.116017_b0690) 2013; 59
Stone (10.1016/j.ces.2020.116017_b0570) 2005; 17
Bai (10.1016/j.ces.2020.116017_b0045) 2016; 145
Fu (10.1016/j.ces.2020.116017_b0195) 2015; 135
Yao (10.1016/j.ces.2020.116017_b0785) 2019; 373
Dogan (10.1016/j.ces.2020.116017_b0145) 2009; 35
Yao (10.1016/j.ces.2020.116017_b0780) 2020; 66
Yao (10.1016/j.ces.2020.116017_b0755) 2014; 112
Bercic (10.1016/j.ces.2020.116017_b0055) 1997; 52
Beer (10.1016/j.ces.2020.116017_b0050) 2009; 9
Fu (10.1016/j.ces.2020.116017_b0215) 2012; 84
Kinoshita (10.1016/j.ces.2020.116017_b0360) 2007; 7
Burton (10.1016/j.ces.2020.116017_b0075) 2005; 94
Xu (10.1016/j.ces.2020.116017_b0715) 2006; 52
Dietrich (10.1016/j.ces.2020.116017_b0135) 2013; 100
Nirmal (10.1016/j.ces.2020.116017_b0480) 2019; 15
Scheiff (10.1016/j.ces.2020.116017_b0530) 2011; 11
References_xml – volume: 11
  year: 2009
  ident: b0095
  article-title: Scaling the drop size in coflow experiments
  publication-title: New J. Phys.
– volume: 129
  start-page: 11692
  year: 2007
  end-page: 11693
  ident: b0305
  article-title: A new approach to anodic substitution reaction using parallel laminar flow in a micro-flow reactor
  publication-title: J. Amer. Chem. Soc.
– volume: 100
  year: 2008
  ident: b0635
  article-title: Absolute instability of a liquid jet in a coflowing stream
  publication-title: Phys. Rev. Lett.
– volume: 108
  year: 2012
  ident: b0395
  article-title: Obstructed breakup of slender drops in a microfluidic T junction
  publication-title: Phys. Rev. Lett.
– volume: 46
  start-page: 878
  year: 2007
  end-page: 880
  ident: b0035
  article-title: Countercurrent laminar microflow for highly efficient solvent extraction
  publication-title: Angewandte Chem.
– volume: 10
  start-page: 2528
  year: 2019
  ident: b0365
  article-title: Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels
  publication-title: Nat. Commun.
– volume: 99
  start-page: 238
  year: 2013
  end-page: 249
  ident: b0505
  article-title: A combined Lattice-Boltzmann method for the simulation of two-phase flows in microchannel
  publication-title: Chem. Eng. Sci.
– volume: 57
  start-page: 1409
  year: 2011
  end-page: 1418
  ident: b0580
  article-title: The intensification of rapid reactions for multiphase systems in a microchannel reactor by packing microparticles
  publication-title: AIChE J.
– volume: 6
  start-page: 427
  year: 2006
  end-page: 436
  ident: b0080
  article-title: Microfluidic approach for rapid multicomponent interfacial tensiometry
  publication-title: Lab Chip
– volume: 60
  start-page: 1132
  year: 2014
  end-page: 1142
  ident: b0750
  article-title: The effect of system pressure on gas-liquid slug flow in a microchannel
  publication-title: AIChE J.
– volume: 145
  start-page: 141
  year: 2016
  end-page: 148
  ident: b0045
  article-title: Droplet formation in a microfluidic T-junction involving highly viscous fluid systems
  publication-title: Chem. Eng. Sci.
– volume: 12
  start-page: 1516
  year: 2012
  end-page: 1521
  ident: b0005
  article-title: Experimental validation of plugging during drop formation in a T-junction
  publication-title: Lab Chip
– reference: Niu, X., Gulati, S., Edel, J.B., demello, A.J., 2008. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8, 1837-1841.
– volume: 22
  start-page: 4144
  year: 2006
  end-page: 4152
  ident: b0650
  article-title: Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel
  publication-title: Langmuir
– volume: 15
  start-page: 2746
  year: 2019
  end-page: 2756
  ident: b0480
  article-title: Mass transfer dynamics in the dissolution of Taylor bubbles
  publication-title: Soft Matter
– volume: 23
  year: 2011
  ident: b0030
  article-title: Numerical investigation of elongated drops in a microfluidic T-junction
  publication-title: Phys. Fluids
– volume: 26
  start-page: 9233
  year: 2010
  end-page: 9239
  ident: b0705
  article-title: Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction
  publication-title: Langmuir
– volume: 11
  start-page: 2924
  year: 2011
  end-page: 2928
  ident: b0585
  article-title: Dissolution of carbon dioxide bubbles and microfluidic multiphase flows
  publication-title: Lab Chip
– volume: 91
  start-page: 1941
  year: 2013
  end-page: 1953
  ident: b0380
  article-title: Review on gas–liquid separations in microchannel devices
  publication-title: Chem. Eng. Res. Des.
– volume: 143
  start-page: 276
  year: 2016
  end-page: 286
  ident: b0400
  article-title: Intensified Eu(III) extraction using ionic liquids in small channels
  publication-title: Chem. Eng. Sci.
– volume: 64
  start-page: 2749
  year: 2009
  end-page: 2761
  ident: b0535
  article-title: Flow regimes for adiabatic gas–liquid flow in microchannels
  publication-title: Chem. Eng. Sci.
– volume: 32
  start-page: 3174
  year: 2016
  end-page: 3185
  ident: b0695
  article-title: Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes
  publication-title: Langmuir
– volume: 373
  start-page: 437
  year: 2019
  end-page: 445
  ident: b0785
  article-title: Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel
  publication-title: Chem. Eng. J.
– volume: 35
  start-page: 1346
  year: 2012
  end-page: 1358
  ident: b0540
  article-title: Hydrodynamics and mass transfer in gas-liquid flows in microreactors
  publication-title: Chem. Eng. Technol.
– volume: 50
  start-page: 975
  year: 2016
  end-page: 989
  ident: b0595
  article-title: Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model
  publication-title: Theor. Found. Chem. Eng.
– volume: 113
  start-page: 304
  year: 2016
  end-page: 329
  ident: b0565
  article-title: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow
  publication-title: Chem. Eng. Res. Des.
– volume: 100
  start-page: 172
  year: 2013
  end-page: 182
  ident: b0135
  article-title: A new direct technique for visualizing and measuring gas–liquid mass transfer around bubbles moving in a straight millimetric square channel
  publication-title: Chem. Eng. Sci.
– volume: 15
  start-page: 91
  year: 2013
  end-page: 94
  ident: b0105
  article-title: Safe, efficient and selective synthesis of dinitro herbicidesvia a multifunctional continuous-flow microreactor: one-step dinitration with nitric acid as agent
  publication-title: Green Chem.
– volume: 62
  start-page: 2542
  year: 2016
  end-page: 2549
  ident: b0385
  article-title: Study on the transient interfacial tension in a microfluidic droplet formation coupling interphase mass transfer process
  publication-title: AIChE J.
– volume: 10
  start-page: 14322
  year: 2020
  end-page: 14330
  ident: b0280
  article-title: Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor
  publication-title: RSC Adv.
– volume: 11
  start-page: 1022
  year: 2011
  end-page: 1029
  ident: b0530
  article-title: The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream
  publication-title: Lab Chip
– volume: 126
  start-page: 8126
  year: 2014
  end-page: 8136
  ident: b0015
  article-title: Microfluidic studies of carbon dioxide
  publication-title: Angewandte Chem.
– reference: Susanti, Winkelman, J.G.M., Schuur, B., Heeres, H.J., Yue, J., 2016. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors. Ind. Eng. Chem. Res. 55, 4691–4702.
– volume: 150
  start-page: 322
  year: 1935
  end-page: 337
  ident: b0615
  article-title: On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid
  publication-title: Proceed. Royal Soc. London A
– volume: 61
  start-page: 1081
  year: 2015
  end-page: 1091
  ident: b0700
  article-title: Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction
  publication-title: AIChE J.
– volume: 6
  start-page: 437
  year: 2006
  end-page: 446
  ident: b0235
  article-title: Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up
  publication-title: Lab Chip
– volume: 33
  start-page: 147
  year: 2012
  end-page: 155
  ident: b0180
  article-title: A model of a bubble train flow accompanied with mass transfer through a long microchannel
  publication-title: Int. J. Heat Fluid Flow
– volume: 94
  year: 2005
  ident: b0075
  article-title: Scaling and instabilities in bubble pinch-off
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 2680
  year: 2008
  end-page: 2687
  ident: b0500
  article-title: Microfluidic Droplet-Based Liquid-Liquid
  publication-title: Anal. Chem.
– volume: 15
  start-page: 1145
  year: 2015
  end-page: 1152
  ident: b0150
  article-title: A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification
  publication-title: Lab Chip
– volume: 34
  start-page: 4980
  year: 2018
  end-page: 4990
  ident: b0510
  article-title: Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel
  publication-title: Langmuir
– volume: 59
  start-page: 643
  year: 2013
  end-page: 649
  ident: b0690
  article-title: Microdroplet coalescences at microchannel junctions with different collision angles
  publication-title: AIChE J.
– volume: 22
  year: 2011
  ident: b0490
  article-title: Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV)
  publication-title: Meas. Sci. Technol.
– volume: 99
  year: 2007
  ident: b0260
  article-title: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers
  publication-title: Phys. Rev. Lett.
– volume: 181
  start-page: 79
  year: 2018
  end-page: 89
  ident: b0220
  article-title: Simulation of reactive mixing behaviors inside micro-droplets by a lattice Boltzmann method
  publication-title: Chem. Eng. Sci.
– volume: 9
  start-page: 2551
  year: 2009
  end-page: 2567
  ident: b0415
  article-title: Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines
  publication-title: Lab Chip
– volume: 92
  year: 2004
  ident: b0420
  article-title: Geometrically mediated breakup of drops in microfluidic devices
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 792
  year: 2003
  end-page: 796
  ident: b0550
  article-title: A microfluidic system for controlling reaction networks in time
  publication-title: Angewandte Chem.
– volume: 209
  year: 2019
  ident: b0390
  article-title: Determination of transient interfacial tension in a microfluidic device using a Laplace sensor
  publication-title: Chem. Eng. Sci.
– volume: 66
  start-page: 1394
  year: 2011
  end-page: 1411
  ident: b0120
  article-title: Two-phase microfluidic flows
  publication-title: Chem. Eng. Sci.
– volume: 52
  start-page: 3005
  year: 2006
  end-page: 3010
  ident: b0715
  article-title: Preparation of highly monodisperse droplet in a T-junction microfluidic device
  publication-title: AIChE J.
– volume: 189
  start-page: 340
  year: 2018
  end-page: 359
  ident: b0770
  article-title: Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications
  publication-title: Chem. Eng. Sci.
– volume: 182
  start-page: 17
  year: 2018
  end-page: 27
  ident: b0800
  article-title: Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels
  publication-title: Chem. Eng. Sci.
– volume: 15
  start-page: 2879
  year: 2015
  end-page: 2886
  ident: b0285
  article-title: Flow field induced particle accumulation inside droplets in rectangular channels
  publication-title: Lab Chip
– volume: 63
  start-page: 5522
  year: 2008
  end-page: 5530
  ident: b0140
  article-title: Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow
  publication-title: Chem. Eng. Sci.
– volume: 115
  start-page: 292
  year: 2016
  end-page: 302
  ident: b0065
  article-title: Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique
  publication-title: Chem. Eng. Res. Des.
– volume: 63
  start-page: 2272
  year: 2017
  end-page: 2284
  ident: b0730
  article-title: Optical methods to investigate the enhancement factor of an oxygen-sensitive colorimetric reaction using microreactors
  publication-title: AIChE J.
– volume: 7
  start-page: 338
  year: 2007
  end-page: 346
  ident: b0360
  article-title: Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV
  publication-title: Lab Chip
– volume: 54
  start-page: 9046
  year: 2015
  end-page: 9051
  ident: b0020
  article-title: Peclet number dependence of mass transfer in microscale segmented gas-liquid flow
  publication-title: Ind. Eng. Chem. Res.
– volume: 59
  start-page: 2535
  year: 2004
  end-page: 2545
  ident: b0645
  article-title: CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries
  publication-title: Chem. Eng. Sci.
– volume: 112
  start-page: 15
  year: 2014
  end-page: 24
  ident: b0755
  article-title: An online method to measure mass transfer of slug flow in a microchannel
  publication-title: Chem. Eng. Sci.
– volume: 7
  start-page: 1479
  year: 2007
  end-page: 1489
  ident: b0225
  article-title: The pressure drop along rectangular microchannels containing bubbles
  publication-title: Lab Chip
– volume: 10
  start-page: 2032
  year: 2010
  ident: b0040
  article-title: Dynamics of microfluidic droplets
  publication-title: Lab Chip
– volume: 78
  year: 2008
  ident: b0115
  article-title: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions
  publication-title: Phys. Rev. E
– volume: 86
  year: 2012
  ident: b0250
  article-title: Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 3611
  year: 2014
  end-page: 3620
  ident: b0455
  article-title: On the flow topology inside droplets moving in rectangular microchannels
  publication-title: Lab Chip
– volume: 358
  start-page: 794
  year: 2019
  end-page: 805
  ident: b0805
  article-title: Hydrodynamics and mass transfer characteristics of liquid–liquid slug flow in microchannels: The effects of temperature, fluid properties and channel size
  publication-title: Chem. Eng. J.
– volume: 100
  year: 2008
  ident: b0170
  article-title: Role of the channel geometry on the bubble pinch-off in flow-focusing devices
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 304
  year: 2016
  end-page: 329
  ident: b0275
  article-title: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow
  publication-title: Chem. Eng. Res. Desi.
– volume: 108
  year: 2012
  ident: b0315
  article-title: Discontinuous transition in a laminar fluid flow: a change of flow topology inside a droplet moving in a micron-size channel
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 185
  year: 2018
  end-page: 201
  ident: b0070
  article-title: Mass transfer in Taylor flow: transfer rate modelling from measurements at the slug and film scale
  publication-title: Int. J. Multiphase Flow
– volume: 86
  start-page: 4163
  year: 2001
  end-page: 4166
  ident: b0605
  article-title: Dynamic pattern formation in a vesicle-generating microfluidic device
  publication-title: Phys. Rev. Lett.
– volume: 62
  start-page: 1307
  year: 2016
  ident: b0155
  article-title: Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors
  publication-title: AIChE J.
– volume: 125
  start-page: 8
  year: 2018
  end-page: 17
  ident: b0425
  article-title: Formation of droplet and “string of sausages” for water-ionic liquid ([BMIM][PF6]) two-phase flow in a flow-focusing device
  publication-title: Chem. Eng. Process.
– volume: 9
  start-page: 838
  year: 2009
  end-page: 840
  ident: b0050
  article-title: Observed velocity fluctuations in monodisperse droplet generators
  publication-title: Lab Chip
– volume: 78
  year: 2008
  ident: b0255
  article-title: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries
  publication-title: Phys. Rev. E
– volume: 12
  start-page: 484
  year: 2000
  end-page: 489
  ident: b0310
  article-title: Drop deformation, breakup, and coalescence with compatibilizer
  publication-title: Phys. Fluids
– volume: 169
  start-page: 106
  year: 2017
  end-page: 116
  ident: b0740
  article-title: Simulations and analysis of multiphase transport and reaction in segmented flow microreactors
  publication-title: Chem. Eng. Sci.
– volume: 4
  start-page: 14962
  year: 2014
  end-page: 14970
  ident: b0330
  article-title: Formation and dynamics of partially wetting droplets in square microchannels
  publication-title: RSC Adv.
– volume: 65
  start-page: 272
  year: 2018
  end-page: 279
  ident: b0450
  article-title: Manipulation of microdroplets at a T-junction: Coalescence and scaling law
  publication-title: J. Ind. Eng. Chem.
– volume: 5
  start-page: 131
  year: 2007
  end-page: 137
  ident: b0515
  article-title: Hydrodynamic structures of droplets engineered in rectangular micro-channels
  publication-title: Microfluid. Nanofluidics
– volume: 25
  start-page: 3396
  year: 2009
  end-page: 3401
  ident: b0560
  article-title: Characterization of emulsification at flat microchannel Y junctions
  publication-title: Langmuir
– volume: 11
  start-page: 3603
  year: 2011
  ident: b0320
  article-title: Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities
  publication-title: Lab Chip
– volume: 52
  start-page: 2947
  year: 1997
  end-page: 2962
  ident: b0610
  article-title: Flow patterns in liquid slugs during bubble-train flow inside capillaries
  publication-title: Chem. Eng. Sci.
– volume: 595
  start-page: 141
  year: 2008
  end-page: 161
  ident: b0160
  article-title: Transition from squeezing to dripping in a microfluidic T-shaped junction
  publication-title: J. Fluid Mech.
– volume: 165
  start-page: 192
  year: 2017
  end-page: 203
  ident: b0735
  article-title: Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel
  publication-title: Chem. Eng. Sci.
– volume: 9
  start-page: 388
  year: 2009
  end-page: 396
  ident: b0090
  article-title: Liquid–liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows
  publication-title: Lab Chip
– volume: 36
  start-page: 975
  year: 2013
  end-page: 984
  ident: b0525
  article-title: Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction
  publication-title: Chem. Eng. Technol.
– volume: 60
  start-page: 6430
  year: 2005
  end-page: 6437
  ident: b0670
  article-title: Mass transfer from Taylor bubbles rising in single capillaries
  publication-title: Chem. Eng. Sci.
– volume: 501
  start-page: 279
  year: 2004
  end-page: 301
  ident: b0300
  article-title: The motion of a viscous drop through a cylindrical tube
  publication-title: J. Fluid Mech.
– volume: 352
  start-page: 61
  year: 2016
  end-page: 67
  ident: b0025
  article-title: On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system
  publication-title: Science
– volume: 344
  start-page: 2
  year: 2009
  end-page: 7
  ident: b0460
  article-title: Generation of micron-sized drops and bubbles through viscous coflows
  publication-title: Colloid. Surface. A
– volume: 292
  start-page: 95
  year: 1995
  end-page: 110
  ident: b0270
  article-title: The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 3653
  year: 2013
  end-page: 3657
  ident: b0165
  article-title: A novel surgery-like strategy for droplet coalescence in microchannels
  publication-title: Lab Chip
– volume: 28
  start-page: 3120
  year: 2012
  end-page: 3128
  ident: b0620
  article-title: experimental study on dynamic interfacial tension with mixture of SDS–PEG as surfactants in a coflowing microfluidic device
  publication-title: Langmuir
– volume: 37
  start-page: 1147
  year: 2011
  end-page: 1155
  ident: b0185
  article-title: Viscous oil–water flows in a microchannel initially saturated with oil: Flow patterns and pressure drop characteristics
  publication-title: Int. J. Multiphase Flow
– volume: 69
  start-page: 340
  year: 2012
  end-page: 351
  ident: b0410
  article-title: Study on the mechanism of droplet formation in T-junction microchannel
  publication-title: Chem. Eng. Sci.
– volume: 717
  year: 2013
  ident: b0295
  article-title: Dynamics of droplet breakup in a T-junction
  publication-title: J. Fluid Mech.
– volume: 35
  start-page: 1149
  year: 2009
  end-page: 1158
  ident: b0145
  article-title: Mixing of miscible liquids in gas-segmented serpentine channels
  publication-title: Int. J. Multiphase Flow
– volume: 66
  start-page: 3876
  year: 2011
  end-page: 3897
  ident: b0345
  article-title: Gas-liquid and liquid-liquid mass transfer in microstructured reactors
  publication-title: Chem. Eng. Sci.
– volume: 21
  start-page: 175
  year: 2017
  ident: b0545
  article-title: Numerical investigation of formation and dissolution of CO2 bubbles within silicone oil in a cross-junction microchannel
  publication-title: Microfluid. Nanofluidics
– volume: 131
  start-page: 118
  year: 2015
  end-page: 128
  ident: b0810
  article-title: Simulation of liquid mixing inside micro-droplets by a lattice Boltzmann method
  publication-title: Chem. Eng. Sci.
– volume: 52
  start-page: 3709
  year: 1997
  end-page: 3719
  ident: b0055
  article-title: The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries
  publication-title: Chem. Eng. Sci.
– volume: 285
  start-page: 252
  year: 2016
  end-page: 263
  ident: b0325
  article-title: Investigation of the Taylor bubble under the effect of dissolution in microchannel
  publication-title: Chem. Eng. J.
– volume: 344
  start-page: 604
  year: 2018
  end-page: 615
  ident: b0085
  article-title: Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels
  publication-title: Chem. Eng. J.
– volume: 303
  start-page: 547
  year: 2016
  end-page: 554
  ident: b0725
  article-title: Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction
  publication-title: Chem. Eng. J.
– volume: 223
  start-page: 115734
  year: 2020
  ident: bib821
  article-title: Mass transfer in liquid-liquid Taylor flow in a microchannel: local concentration distribution, mass transfer regime and the effect of fluid viscosity
  publication-title: Chem. Eng. Sci.
– volume: 12
  start-page: 582
  year: 2012
  end-page: 588
  ident: b0495
  article-title: Filtering microfluidic bubble trains at a symmetric junction
  publication-title: Lab Chip
– volume: 15
  year: 2020
  ident: b0175
  article-title: Numerical investigation of bubble breakup in a four-branched microchannel based on non-Newtonian pseudoplastic fluid
  publication-title: Asia-Pac. J. Chem. Eng.
– volume: 21
  start-page: 153
  year: 2017
  ident: b0375
  article-title: Design rules for microscale capillary phase separators
  publication-title: Microfluid. Nanofluidics
– volume: 97
  start-page: 38
  year: 2015
  end-page: 44
  ident: b0210
  article-title: Bubble coalescence in non-Newtonian fluids in a microfluidic expansion device
  publication-title: Chem. Eng. Process.
– volume: 16
  start-page: 1332
  year: 2016
  end-page: 1339
  ident: b0100
  article-title: Three-dimensional splitting microfluidics
  publication-title: Lab Chip
– volume: 135
  start-page: 343
  year: 2015
  end-page: 372
  ident: b0195
  article-title: Bubble formation and breakup dynamics in microfluidic devices: A review
  publication-title: Chem. Eng. Sci.
– volume: 6
  start-page: 1487
  year: 2006
  end-page: 1503
  ident: b0265
  article-title: Multiphase microfluidics: from flow characteristics to chemical and materials synthesis
  publication-title: Lab Chip
– volume: 84
  start-page: 207
  year: 2012
  end-page: 217
  ident: b0215
  article-title: Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting
  publication-title: Chem. Eng. Sci.
– volume: 66
  start-page: 1168
  year: 2011
  end-page: 1178
  ident: b0245
  article-title: Hydrodynamic studies of liquid–liquid slug flows in circular microchannels
  publication-title: Chem. Eng. Sci.
– volume: 325
  start-page: 342
  year: 2017
  end-page: 349
  ident: b0430
  article-title: A simple online phase separator for the microfluidic mass transfer studies
  publication-title: Chem. Eng. J.
– volume: 137
  start-page: 137
  year: 2019
  end-page: 147
  ident: b0470
  article-title: Ethylene/ethane absorption with AgNO3 solutions in ultrasonic microreactors
  publication-title: Chem. Eng. Process.
– volume: 94
  start-page: 138
  year: 2013
  end-page: 149
  ident: b0230
  article-title: Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters
  publication-title: Chem. Eng. Sci.
– volume: 103
  year: 2009
  ident: b0655
  article-title: Flows around confined bubbles and their importance in triggering Pinch-Off
  publication-title: Phys. Rev. Lett.
– volume: 52
  start-page: 4061
  year: 2006
  end-page: 4070
  ident: b0520
  article-title: Experimental and numerical study of droplets hydrodynamics in microchannels
  publication-title: AIChE J.
– volume: 15
  start-page: 3
  year: 2017
  end-page: 19
  ident: b0790
  article-title: Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis
  publication-title: Catal. Today
– volume: 100
  start-page: 456
  year: 2013
  end-page: 463
  ident: b0815
  article-title: Mixing performance and drug nano-particle preparation inside slugs in a gas–liquid microchannel reactor
  publication-title: Chem. Eng. Sci.
– volume: 62
  start-page: 315
  year: 2016
  end-page: 324
  ident: b0625
  article-title: Effect of channel size on liquid-liquid plug flow in small channels
  publication-title: AIChE J.
– volume: 52
  start-page: 4052
  year: 2006
  end-page: 4060
  ident: b0820
  article-title: Liquid-liquid two-phase flow patterns in a rectangular microchannel
  publication-title: AIChE J.
– volume: 328
  start-page: 717
  year: 2017
  end-page: 736
  ident: b0405
  article-title: Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels
  publication-title: Chem. Eng. J.
– volume: 93
  year: 2016
  ident: b0445
  article-title: Dynamics of bubble breakup at a T junction
  publication-title: Phys. Rev. E
– volume: 58
  start-page: 1660
  year: 2012
  end-page: 1670
  ident: b0575
  article-title: Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel
  publication-title: AIChE J.
– volume: 5
  start-page: 711
  year: 2008
  end-page: 717
  ident: b0710
  article-title: Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping
  publication-title: Microfluid. Nanofluidics
– volume: 21
  start-page: 180
  year: 2017
  ident: b0440
  article-title: Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel
  publication-title: Microfluid. Nanofluidics
– volume: 147
  start-page: S125
  year: 2009
  end-page: S131
  ident: b0350
  article-title: Recirculation time and liquid slug mass transfer in co-current upward and downward Taylor flow
  publication-title: Catal. Today
– volume: 32
  start-page: 791
  year: 2006
  end-page: 806
  ident: b0680
  article-title: Two-phase flow characteristics in gas–liquid microreactors
  publication-title: Int. J. Multiphase Flow
– volume: 20
  year: 2008
  ident: b0130
  article-title: Capillary threads and viscous droplets in square microchannels
  publication-title: Phys. Fluids
– volume: 100
  year: 2008
  ident: b0060
  article-title: Decompressing Emulsion Droplets Favors Coalescence
  publication-title: Phys. Rev. Lett.
– volume: 356
  start-page: 1144
  year: 2017
  end-page: 1150
  ident: b0125
  article-title: Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions
  publication-title: Science
– volume: 65
  start-page: 3739
  year: 2010
  end-page: 3748
  ident: b0205
  article-title: Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction
  publication-title: Chem. Eng. Sci.
– volume: 10
  start-page: 103
  year: 2020
  end-page: 121
  ident: b0435
  article-title: Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes
  publication-title: J. Flow Chem.
– volume: 64
  start-page: 3042
  year: 2009
  end-page: 3050
  ident: b0555
  article-title: Generalised insights in droplet formation at T-junctions through statistical analysis
  publication-title: Chem. Eng. Sci.
– volume: 94
  year: 2005
  ident: b0240
  article-title: Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions
  publication-title: Phys. Rev. Lett.
– volume: 66
  start-page: e16934
  year: 2020
  ident: b0780
  article-title: The effect of liquid viscosity and modeling of mass transfer in gas–liquid slug flow in a rectangular microchannel
  publication-title: AIChE J.
– volume: 123
  start-page: 137
  year: 2015
  end-page: 145
  ident: b0760
  article-title: Gas-liquid flow and mass transfer in a microchannel under elevated pressures
  publication-title: Chem. Eng. Sci.
– volume: 6
  start-page: 746
  year: 2013
  end-page: 789
  ident: b0290
  article-title: Novel process windows for enabling, accelerating, and uplifting flow chemistry
  publication-title: ChemSusChem
– volume: 50
  start-page: 6906
  year: 2011
  end-page: 6914
  ident: b0340
  article-title: Influence of flow regime on mass transfer in different types of microchannels
  publication-title: Ind. Eng. Chem. Res.
– volume: 17
  year: 2005
  ident: b0570
  article-title: Imaging and quantifying mixing in a model droplet micromixer
  publication-title: Phys. Fluids
– volume: 8
  start-page: 467
  year: 2009
  end-page: 475
  ident: b0190
  article-title: Scaling the formation of slug bubbles in microfluidic flow-focusing devices
  publication-title: Microfluid. Nanofluidics
– volume: 14
  start-page: 1357
  year: 2014
  end-page: 1366
  ident: b0720
  article-title: Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device
  publication-title: Lab Chip
– volume: 3
  start-page: 463
  year: 2007
  end-page: 472
  ident: b0355
  article-title: PIV measurements of flow within plugs in a microchannel
  publication-title: Microfluid. Nanofluidics
– volume: 17
  year: 2005
  ident: b0475
  article-title: Mixing in a drop moving through a serpentine channel: A computational study
  publication-title: Phys. Fluids
– reference: Van steijn, V., Kreutzer, M., Kleijn, C., 2008. Velocity fluctuations of segmented flow in microchannels. Chem. Eng. J. 135, 159-165.
– volume: 68
  start-page: 640
  year: 2012
  end-page: 649
  ident: b0795
  article-title: Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels
  publication-title: Chem. Eng. Sci.
– volume: 95
  start-page: 246
  year: 2013
  end-page: 256
  ident: b0775
  article-title: Characteristics of slug flow with inertial effects in a rectangular microchannel
  publication-title: Chem. Eng. Sci.
– reference: Chinnov, E., Ron’Shin, F., Kabov, O.A., 2015. Regimes of two-phase flow in micro-and minichannels. Thermophys. Aeromech+ 22, 265-284.
– volume: 66
  start-page: 4184
  year: 2011
  end-page: 4195
  ident: b0200
  article-title: Dynamics of bubble breakup in a microfluidic T-junction divergence
  publication-title: Chem. Eng. Sci.
– volume: 167
  start-page: 468
  year: 2011
  end-page: 474
  ident: b0630
  article-title: Suspension catalysis in a liquid–liquid capillary microreactor
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1473
  year: 1979
  ident: b0600
  article-title: The spreading of silicone oil drops on horizontal surfaces
  publication-title: J. Phys. D Appl. Phys.
– volume: 207
  start-page: 1331
  year: 2019
  end-page: 1340
  ident: b0010
  article-title: Mass transfer characteristics and concentration field evolution for gas-liquid Taylor flow in milli channels
  publication-title: Chem. Eng. Sci.
– volume: 62
  start-page: 7505
  year: 2007
  end-page: 7514
  ident: b0665
  article-title: μ-PIV study of the formation of segmented flow in microfluidic T-junctions
  publication-title: Chem. Eng. Sci.
– volume: 64
  start-page: 346
  year: 2018
  end-page: 357
  ident: b0765
  article-title: Formation of liquid-liquid slug flow in a microfluidic T-junction: Effects of fluid properties and leakage flow
  publication-title: AIChE J.
– volume: 136
  start-page: 3875
  year: 2014
  end-page: 3880
  ident: b0675
  article-title: Microfluidic studies of CO2 sequestration by frustrated Lewis pairs
  publication-title: J. Amer. Chem. Soc.
– volume: 2
  start-page: 611
  year: 2017
  end-page: 627
  ident: b0685
  article-title: Liquid–liquid microflow reaction engineering
  publication-title: React. Chem. Eng.
– volume: 61
  start-page: 3964
  year: 2015
  end-page: 3972
  ident: b0745
  article-title: On the leakage flow around gas bubbles in slug flow in a microchannel
  publication-title: AIChE J.
– volume: 7
  start-page: 256
  year: 2007
  end-page: 263
  ident: b0370
  article-title: Integrated continuous microfluidic liquid–liquid extraction
  publication-title: Lab Chip
– volume: 99
  year: 2007
  ident: b0640
  article-title: Dripping to jetting transitions in coflowing liquid streams
  publication-title: Phys. Rev. Lett.
– reference: Kashid MN, G.I., Goetz S., Franzke J., Acker JF., Platte F., Agar DW., Turek S., 2005. Internal circulation within the liquid slugs of a liquid− liquid slug-flow capillary microreactor. Ind. Eng. Chem. Res. 44, 5003–5010.
– volume: 115717
  year: 2020
  ident: b0465
  article-title: Gas-liquid mass transfer around Taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor
  publication-title: Chem. Eng. Sci.
– volume: 86
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0250
  article-title: Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.026308
– volume: 182
  start-page: 17
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0800
  article-title: Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.02.018
– volume: 325
  start-page: 342
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0430
  article-title: A simple online phase separator for the microfluidic mass transfer studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.056
– volume: 57
  start-page: 1409
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0580
  article-title: The intensification of rapid reactions for multiphase systems in a microchannel reactor by packing microparticles
  publication-title: AIChE J.
  doi: 10.1002/aic.12367
– volume: 10
  start-page: 2032
  year: 2010
  ident: 10.1016/j.ces.2020.116017_b0040
  article-title: Dynamics of microfluidic droplets
  publication-title: Lab Chip
  doi: 10.1039/c001191f
– volume: 25
  start-page: 3396
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0560
  article-title: Characterization of emulsification at flat microchannel Y junctions
  publication-title: Langmuir
  doi: 10.1021/la8035852
– volume: 223
  start-page: 115734
  year: 2020
  ident: 10.1016/j.ces.2020.116017_bib821
  article-title: Mass transfer in liquid-liquid Taylor flow in a microchannel: local concentration distribution, mass transfer regime and the effect of fluid viscosity
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115734
– volume: 99
  start-page: 238
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0505
  article-title: A combined Lattice-Boltzmann method for the simulation of two-phase flows in microchannel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.05.054
– volume: 11
  start-page: 1022
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0530
  article-title: The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream
  publication-title: Lab Chip
  doi: 10.1039/c0lc00442a
– volume: 108
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0395
  article-title: Obstructed breakup of slender drops in a microfluidic T junction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.264502
– volume: 181
  start-page: 79
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0220
  article-title: Simulation of reactive mixing behaviors inside micro-droplets by a lattice Boltzmann method
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.02.010
– volume: 10
  start-page: 103
  year: 2020
  ident: 10.1016/j.ces.2020.116017_b0435
  article-title: Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes
  publication-title: J. Flow Chem.
  doi: 10.1007/s41981-019-00062-9
– volume: 35
  start-page: 1149
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0145
  article-title: Mixing of miscible liquids in gas-segmented serpentine channels
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2009.07.006
– volume: 52
  start-page: 3709
  year: 1997
  ident: 10.1016/j.ces.2020.116017_b0055
  article-title: The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(97)00217-0
– volume: 32
  start-page: 3174
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0695
  article-title: Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b00271
– volume: 60
  start-page: 6430
  year: 2005
  ident: 10.1016/j.ces.2020.116017_b0670
  article-title: Mass transfer from Taylor bubbles rising in single capillaries
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.01.037
– volume: 80
  start-page: 2680
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0500
  article-title: Microfluidic Droplet-Based Liquid-Liquid
  publication-title: Anal. Chem.
  doi: 10.1021/ac800088s
– volume: 59
  start-page: 2535
  year: 2004
  ident: 10.1016/j.ces.2020.116017_b0645
  article-title: CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.03.010
– volume: 64
  start-page: 3042
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0555
  article-title: Generalised insights in droplet formation at T-junctions through statistical analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.03.010
– volume: 12
  start-page: 484
  year: 2000
  ident: 10.1016/j.ces.2020.116017_b0310
  article-title: Drop deformation, breakup, and coalescence with compatibilizer
  publication-title: Phys. Fluids
  doi: 10.1063/1.870254
– volume: 7
  start-page: 256
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0370
  article-title: Integrated continuous microfluidic liquid–liquid extraction
  publication-title: Lab Chip
  doi: 10.1039/B610888A
– volume: 61
  start-page: 1081
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0700
  article-title: Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction
  publication-title: AIChE J.
  doi: 10.1002/aic.14704
– volume: 358
  start-page: 794
  year: 2019
  ident: 10.1016/j.ces.2020.116017_b0805
  article-title: Hydrodynamics and mass transfer characteristics of liquid–liquid slug flow in microchannels: The effects of temperature, fluid properties and channel size
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.056
– volume: 126
  start-page: 8126
  year: 2014
  ident: 10.1016/j.ces.2020.116017_b0015
  article-title: Microfluidic studies of carbon dioxide
  publication-title: Angewandte Chem.
  doi: 10.1002/ange.201403719
– volume: 6
  start-page: 427
  year: 2006
  ident: 10.1016/j.ces.2020.116017_b0080
  article-title: Microfluidic approach for rapid multicomponent interfacial tensiometry
  publication-title: Lab Chip
  doi: 10.1039/b511976f
– volume: 13
  start-page: 3653
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0165
  article-title: A novel surgery-like strategy for droplet coalescence in microchannels
  publication-title: Lab Chip
  doi: 10.1039/c3lc50533b
– volume: 356
  start-page: 1144
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0125
  article-title: Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions
  publication-title: Science
  doi: 10.1126/science.aan0745
– volume: 6
  start-page: 437
  year: 2006
  ident: 10.1016/j.ces.2020.116017_b0235
  article-title: Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up
  publication-title: Lab Chip
  doi: 10.1039/b510841a
– volume: 97
  start-page: 38
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0210
  article-title: Bubble coalescence in non-Newtonian fluids in a microfluidic expansion device
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2015.08.008
– volume: 15
  start-page: 1145
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0150
  article-title: A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification
  publication-title: Lab Chip
  doi: 10.1039/C4LC01431F
– volume: 21
  start-page: 175
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0545
  article-title: Numerical investigation of formation and dissolution of CO2 bubbles within silicone oil in a cross-junction microchannel
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-017-2011-7
– volume: 5
  start-page: 711
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0710
  article-title: Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-008-0306-4
– volume: 189
  start-page: 340
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0770
  article-title: Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.06.007
– volume: 52
  start-page: 3005
  year: 2006
  ident: 10.1016/j.ces.2020.116017_b0715
  article-title: Preparation of highly monodisperse droplet in a T-junction microfluidic device
  publication-title: AIChE J.
  doi: 10.1002/aic.10924
– volume: 123
  start-page: 137
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0760
  article-title: Gas-liquid flow and mass transfer in a microchannel under elevated pressures
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.11.005
– volume: 52
  start-page: 2947
  year: 1997
  ident: 10.1016/j.ces.2020.116017_b0610
  article-title: Flow patterns in liquid slugs during bubble-train flow inside capillaries
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(97)00114-0
– volume: 352
  start-page: 61
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0025
  article-title: On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system
  publication-title: Science
  doi: 10.1126/science.aaf1337
– volume: 66
  start-page: 1394
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0120
  article-title: Two-phase microfluidic flows
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.08.038
– volume: 99
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0260
  article-title: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.104502
– volume: 22
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0490
  article-title: Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV)
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/22/10/105401
– volume: 10
  start-page: 14322
  year: 2020
  ident: 10.1016/j.ces.2020.116017_b0280
  article-title: Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00913J
– volume: 17
  year: 2005
  ident: 10.1016/j.ces.2020.116017_b0475
  article-title: Mixing in a drop moving through a serpentine channel: A computational study
  publication-title: Phys. Fluids
  doi: 10.1063/1.1992514
– volume: 100
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0635
  article-title: Absolute instability of a liquid jet in a coflowing stream
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.014502
– volume: 66
  start-page: e16934
  year: 2020
  ident: 10.1016/j.ces.2020.116017_b0780
  article-title: The effect of liquid viscosity and modeling of mass transfer in gas–liquid slug flow in a rectangular microchannel
  publication-title: AIChE J.
  doi: 10.1002/aic.16934
– volume: 8
  start-page: 467
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0190
  article-title: Scaling the formation of slug bubbles in microfluidic flow-focusing devices
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-009-0471-0
– volume: 595
  start-page: 141
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0160
  article-title: Transition from squeezing to dripping in a microfluidic T-shaped junction
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200700910X
– volume: 64
  start-page: 346
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0765
  article-title: Formation of liquid-liquid slug flow in a microfluidic T-junction: Effects of fluid properties and leakage flow
  publication-title: AIChE J.
  doi: 10.1002/aic.15889
– volume: 100
  start-page: 456
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0815
  article-title: Mixing performance and drug nano-particle preparation inside slugs in a gas–liquid microchannel reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.02.013
– volume: 169
  start-page: 106
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0740
  article-title: Simulations and analysis of multiphase transport and reaction in segmented flow microreactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.12.003
– volume: 33
  start-page: 147
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0180
  article-title: A model of a bubble train flow accompanied with mass transfer through a long microchannel
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2011.11.001
– volume: 91
  start-page: 1941
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0380
  article-title: Review on gas–liquid separations in microchannel devices
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.07.031
– volume: 95
  start-page: 246
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0775
  article-title: Characteristics of slug flow with inertial effects in a rectangular microchannel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.03.046
– volume: 60
  start-page: 1132
  year: 2014
  ident: 10.1016/j.ces.2020.116017_b0750
  article-title: The effect of system pressure on gas-liquid slug flow in a microchannel
  publication-title: AIChE J.
  doi: 10.1002/aic.14306
– volume: 52
  start-page: 4052
  year: 2006
  ident: 10.1016/j.ces.2020.116017_b0820
  article-title: Liquid-liquid two-phase flow patterns in a rectangular microchannel
  publication-title: AIChE J.
  doi: 10.1002/aic.11029
– volume: 9
  start-page: 2551
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0415
  article-title: Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines
  publication-title: Lab Chip
  doi: 10.1039/b906558j
– volume: 373
  start-page: 437
  year: 2019
  ident: 10.1016/j.ces.2020.116017_b0785
  article-title: Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.051
– volume: 37
  start-page: 1147
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0185
  article-title: Viscous oil–water flows in a microchannel initially saturated with oil: Flow patterns and pressure drop characteristics
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2011.06.004
– volume: 285
  start-page: 252
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0325
  article-title: Investigation of the Taylor bubble under the effect of dissolution in microchannel
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.09.102
– volume: 103
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0655
  article-title: Flows around confined bubbles and their importance in triggering Pinch-Off
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.214501
– volume: 78
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0115
  article-title: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.036317
– volume: 62
  start-page: 1307
  issue: 1294
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0155
  article-title: Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors
  publication-title: AIChE J.
– volume: 78
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0255
  article-title: Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.016307
– volume: 23
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0030
  article-title: Numerical investigation of elongated drops in a microfluidic T-junction
  publication-title: Phys. Fluids
  doi: 10.1063/1.3549266
– volume: 135
  start-page: 343
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0195
  article-title: Bubble formation and breakup dynamics in microfluidic devices: A review
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.02.016
– volume: 147
  start-page: S125
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0350
  article-title: Recirculation time and liquid slug mass transfer in co-current upward and downward Taylor flow
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2009.07.054
– volume: 66
  start-page: 4184
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0200
  article-title: Dynamics of bubble breakup in a microfluidic T-junction divergence
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.06.003
– volume: 36
  start-page: 975
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0525
  article-title: Slug flow of ionic liquids in capillary microcontactors: fluid dynamic intensification for solvent extraction
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201200600
– volume: 5
  start-page: 131
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0515
  article-title: Hydrodynamic structures of droplets engineered in rectangular micro-channels
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-007-0233-9
– volume: 113
  start-page: 304
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0275
  article-title: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow
  publication-title: Chem. Eng. Res. Desi.
  doi: 10.1016/j.cherd.2016.06.017
– volume: 26
  start-page: 9233
  year: 2010
  ident: 10.1016/j.ces.2020.116017_b0705
  article-title: Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction
  publication-title: Langmuir
  doi: 10.1021/la100029q
– volume: 86
  start-page: 4163
  year: 2001
  ident: 10.1016/j.ces.2020.116017_b0605
  article-title: Dynamic pattern formation in a vesicle-generating microfluidic device
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.4163
– volume: 22
  start-page: 4144
  year: 2006
  ident: 10.1016/j.ces.2020.116017_b0650
  article-title: Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel
  publication-title: Langmuir
  doi: 10.1021/la052682f
– volume: 4
  start-page: 14962
  year: 2014
  ident: 10.1016/j.ces.2020.116017_b0330
  article-title: Formation and dynamics of partially wetting droplets in square microchannels
  publication-title: RSC Adv.
  doi: 10.1039/C4RA00654B
– volume: 52
  start-page: 4061
  year: 2006
  ident: 10.1016/j.ces.2020.116017_b0520
  article-title: Experimental and numerical study of droplets hydrodynamics in microchannels
  publication-title: AIChE J.
  doi: 10.1002/aic.11033
– volume: 15
  start-page: 2879
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0285
  article-title: Flow field induced particle accumulation inside droplets in rectangular channels
  publication-title: Lab Chip
  doi: 10.1039/C5LC00420A
– volume: 15
  start-page: 91
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0105
  article-title: Safe, efficient and selective synthesis of dinitro herbicidesvia a multifunctional continuous-flow microreactor: one-step dinitration with nitric acid as agent
  publication-title: Green Chem.
  doi: 10.1039/C2GC36652E
– volume: 65
  start-page: 3739
  year: 2010
  ident: 10.1016/j.ces.2020.116017_b0205
  article-title: Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.03.012
– volume: 21
  start-page: 180
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0440
  article-title: Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-017-2019-z
– volume: 100
  start-page: 172
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0135
  article-title: A new direct technique for visualizing and measuring gas–liquid mass transfer around bubbles moving in a straight millimetric square channel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.03.041
– volume: 14
  start-page: 3611
  year: 2014
  ident: 10.1016/j.ces.2020.116017_b0455
  article-title: On the flow topology inside droplets moving in rectangular microchannels
  publication-title: Lab Chip
  doi: 10.1039/C4LC00671B
– volume: 108
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0315
  article-title: Discontinuous transition in a laminar fluid flow: a change of flow topology inside a droplet moving in a micron-size channel
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.134501
– volume: 15
  start-page: 3
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0790
  article-title: Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis
  publication-title: Catal. Today
– volume: 344
  start-page: 2
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0460
  article-title: Generation of micron-sized drops and bubbles through viscous coflows
  publication-title: Colloid. Surface. A
  doi: 10.1016/j.colsurfa.2008.09.033
– volume: 131
  start-page: 118
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0810
  article-title: Simulation of liquid mixing inside micro-droplets by a lattice Boltzmann method
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.03.066
– volume: 292
  start-page: 95
  year: 1995
  ident: 10.1016/j.ces.2020.116017_b0270
  article-title: The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095001455
– volume: 328
  start-page: 717
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0405
  article-title: Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.037
– volume: 21
  start-page: 153
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0375
  article-title: Design rules for microscale capillary phase separators
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-017-1982-8
– volume: 100
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0060
  article-title: Decompressing Emulsion Droplets Favors Coalescence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.024501
– volume: 143
  start-page: 276
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0400
  article-title: Intensified Eu(III) extraction using ionic liquids in small channels
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.01.004
– volume: 14
  start-page: 1357
  year: 2014
  ident: 10.1016/j.ces.2020.116017_b0720
  article-title: Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device
  publication-title: Lab Chip
  doi: 10.1039/c3lc51222c
– volume: 54
  start-page: 9046
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0020
  article-title: Peclet number dependence of mass transfer in microscale segmented gas-liquid flow
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b01991
– volume: 115
  start-page: 792
  year: 2003
  ident: 10.1016/j.ces.2020.116017_b0550
  article-title: A microfluidic system for controlling reaction networks in time
  publication-title: Angewandte Chem.
  doi: 10.1002/ange.200390172
– volume: 66
  start-page: 1168
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0245
  article-title: Hydrodynamic studies of liquid–liquid slug flows in circular microchannels
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.12.033
– volume: 115717
  year: 2020
  ident: 10.1016/j.ces.2020.116017_b0465
  article-title: Gas-liquid mass transfer around Taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor
  publication-title: Chem. Eng. Sci.
– ident: 10.1016/j.ces.2020.116017_b0110
  doi: 10.1134/S0869864315030014
– volume: 59
  start-page: 643
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0690
  article-title: Microdroplet coalescences at microchannel junctions with different collision angles
  publication-title: AIChE J.
  doi: 10.1002/aic.13825
– volume: 209
  year: 2019
  ident: 10.1016/j.ces.2020.116017_b0390
  article-title: Determination of transient interfacial tension in a microfluidic device using a Laplace sensor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.115207
– ident: 10.1016/j.ces.2020.116017_b0485
  doi: 10.1039/b813325e
– volume: 717
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0295
  article-title: Dynamics of droplet breakup in a T-junction
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.18
– volume: 113
  start-page: 304
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0565
  article-title: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.06.017
– volume: 20
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0130
  article-title: Capillary threads and viscous droplets in square microchannels
  publication-title: Phys. Fluids
  doi: 10.1063/1.2911716
– volume: 9
  start-page: 838
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0050
  article-title: Observed velocity fluctuations in monodisperse droplet generators
  publication-title: Lab Chip
  doi: 10.1039/B818479H
– volume: 303
  start-page: 547
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0725
  article-title: Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.06.023
– volume: 207
  start-page: 1331
  year: 2019
  ident: 10.1016/j.ces.2020.116017_b0010
  article-title: Mass transfer characteristics and concentration field evolution for gas-liquid Taylor flow in milli channels
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.07.046
– volume: 125
  start-page: 8
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0425
  article-title: Formation of droplet and “string of sausages” for water-ionic liquid ([BMIM][PF6]) two-phase flow in a flow-focusing device
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2017.12.017
– volume: 84
  start-page: 207
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0215
  article-title: Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.08.039
– volume: 9
  start-page: 388
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0090
  article-title: Liquid–liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows
  publication-title: Lab Chip
  doi: 10.1039/B806946H
– volume: 10
  start-page: 2528
  year: 2019
  ident: 10.1016/j.ces.2020.116017_b0365
  article-title: Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10505-5
– volume: 65
  start-page: 272
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0450
  article-title: Manipulation of microdroplets at a T-junction: Coalescence and scaling law
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.04.038
– ident: 10.1016/j.ces.2020.116017_b0590
  doi: 10.1021/acs.iecr.5b04917
– volume: 129
  start-page: 11692
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0305
  article-title: A new approach to anodic substitution reaction using parallel laminar flow in a micro-flow reactor
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja075180s
– volume: 105
  start-page: 185
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0070
  article-title: Mass transfer in Taylor flow: transfer rate modelling from measurements at the slug and film scale
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.04.005
– volume: 344
  start-page: 604
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0085
  article-title: Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.119
– volume: 28
  start-page: 3120
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0620
  article-title: experimental study on dynamic interfacial tension with mixture of SDS–PEG as surfactants in a coflowing microfluidic device
  publication-title: Langmuir
  doi: 10.1021/la204852w
– volume: 93
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0445
  article-title: Dynamics of bubble breakup at a T junction
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.022802
– volume: 94
  year: 2005
  ident: 10.1016/j.ces.2020.116017_b0075
  article-title: Scaling and instabilities in bubble pinch-off
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.184502
– volume: 100
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0170
  article-title: Role of the channel geometry on the bubble pinch-off in flow-focusing devices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.034504
– volume: 69
  start-page: 340
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0410
  article-title: Study on the mechanism of droplet formation in T-junction microchannel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.10.048
– volume: 11
  start-page: 2924
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0585
  article-title: Dissolution of carbon dioxide bubbles and microfluidic multiphase flows
  publication-title: Lab Chip
  doi: 10.1039/c1lc20348g
– volume: 11
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0095
  article-title: Scaling the drop size in coflow experiments
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/7/075021
– volume: 136
  start-page: 3875
  year: 2014
  ident: 10.1016/j.ces.2020.116017_b0675
  article-title: Microfluidic studies of CO2 sequestration by frustrated Lewis pairs
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja411601a
– volume: 68
  start-page: 640
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0795
  article-title: Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.10.036
– volume: 137
  start-page: 137
  year: 2019
  ident: 10.1016/j.ces.2020.116017_b0470
  article-title: Ethylene/ethane absorption with AgNO3 solutions in ultrasonic microreactors
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2019.02.014
– volume: 61
  start-page: 3964
  year: 2015
  ident: 10.1016/j.ces.2020.116017_b0745
  article-title: On the leakage flow around gas bubbles in slug flow in a microchannel
  publication-title: AIChE J.
  doi: 10.1002/aic.14895
– volume: 12
  start-page: 1516
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0005
  article-title: Experimental validation of plugging during drop formation in a T-junction
  publication-title: Lab Chip
  doi: 10.1039/c2lc21263c
– volume: 62
  start-page: 2542
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0385
  article-title: Study on the transient interfacial tension in a microfluidic droplet formation coupling interphase mass transfer process
  publication-title: AIChE J.
  doi: 10.1002/aic.15217
– volume: 150
  start-page: 322
  year: 1935
  ident: 10.1016/j.ces.2020.116017_b0615
  article-title: On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid
  publication-title: Proceed. Royal Soc. London A
– volume: 15
  year: 2020
  ident: 10.1016/j.ces.2020.116017_b0175
  article-title: Numerical investigation of bubble breakup in a four-branched microchannel based on non-Newtonian pseudoplastic fluid
  publication-title: Asia-Pac. J. Chem. Eng.
  doi: 10.1002/apj.2393
– volume: 11
  start-page: 3603
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0320
  article-title: Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities
  publication-title: Lab Chip
  doi: 10.1039/c1lc20534j
– volume: 50
  start-page: 6906
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0340
  article-title: Influence of flow regime on mass transfer in different types of microchannels
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102200j
– volume: 63
  start-page: 5522
  year: 2008
  ident: 10.1016/j.ces.2020.116017_b0140
  article-title: Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.07.025
– volume: 501
  start-page: 279
  year: 2004
  ident: 10.1016/j.ces.2020.116017_b0300
  article-title: The motion of a viscous drop through a cylindrical tube
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003007213
– volume: 35
  start-page: 1346
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0540
  article-title: Hydrodynamics and mass transfer in gas-liquid flows in microreactors
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201100643
– volume: 94
  year: 2005
  ident: 10.1016/j.ces.2020.116017_b0240
  article-title: Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.164501
– volume: 92
  year: 2004
  ident: 10.1016/j.ces.2020.116017_b0420
  article-title: Geometrically mediated breakup of drops in microfluidic devices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.054503
– volume: 17
  year: 2005
  ident: 10.1016/j.ces.2020.116017_b0570
  article-title: Imaging and quantifying mixing in a model droplet micromixer
  publication-title: Phys. Fluids
  doi: 10.1063/1.1929547
– volume: 115
  start-page: 292
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0065
  article-title: Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.09.001
– volume: 64
  start-page: 2749
  year: 2009
  ident: 10.1016/j.ces.2020.116017_b0535
  article-title: Flow regimes for adiabatic gas–liquid flow in microchannels
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.01.067
– volume: 32
  start-page: 791
  year: 2006
  ident: 10.1016/j.ces.2020.116017_b0680
  article-title: Two-phase flow characteristics in gas–liquid microreactors
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2006.02.014
– volume: 2
  start-page: 611
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0685
  article-title: Liquid–liquid microflow reaction engineering
  publication-title: React. Chem. Eng.
  doi: 10.1039/C7RE00082K
– volume: 63
  start-page: 2272
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0730
  article-title: Optical methods to investigate the enhancement factor of an oxygen-sensitive colorimetric reaction using microreactors
  publication-title: AIChE J.
  doi: 10.1002/aic.15547
– volume: 112
  start-page: 15
  year: 2014
  ident: 10.1016/j.ces.2020.116017_b0755
  article-title: An online method to measure mass transfer of slug flow in a microchannel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.03.016
– volume: 62
  start-page: 315
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0625
  article-title: Effect of channel size on liquid-liquid plug flow in small channels
  publication-title: AIChE J.
  doi: 10.1002/aic.15026
– volume: 12
  start-page: 582
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0495
  article-title: Filtering microfluidic bubble trains at a symmetric junction
  publication-title: Lab Chip
  doi: 10.1039/C1LC20639G
– volume: 46
  start-page: 878
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0035
  article-title: Countercurrent laminar microflow for highly efficient solvent extraction
  publication-title: Angewandte Chem.
  doi: 10.1002/anie.200600122
– volume: 34
  start-page: 4980
  year: 2018
  ident: 10.1016/j.ces.2020.116017_b0510
  article-title: Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b00123
– volume: 12
  start-page: 1473
  year: 1979
  ident: 10.1016/j.ces.2020.116017_b0600
  article-title: The spreading of silicone oil drops on horizontal surfaces
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/12/9/009
– ident: 10.1016/j.ces.2020.116017_b0335
  doi: 10.1021/ie0490536
– volume: 165
  start-page: 192
  year: 2017
  ident: 10.1016/j.ces.2020.116017_b0735
  article-title: Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.03.007
– volume: 16
  start-page: 1332
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0100
  article-title: Three-dimensional splitting microfluidics
  publication-title: Lab Chip
  doi: 10.1039/C6LC00186F
– volume: 3
  start-page: 463
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0355
  article-title: PIV measurements of flow within plugs in a microchannel
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-006-0139-y
– volume: 94
  start-page: 138
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0230
  article-title: Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.01.049
– volume: 15
  start-page: 2746
  year: 2019
  ident: 10.1016/j.ces.2020.116017_b0480
  article-title: Mass transfer dynamics in the dissolution of Taylor bubbles
  publication-title: Soft Matter
  doi: 10.1039/C8SM01144C
– volume: 99
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0640
  article-title: Dripping to jetting transitions in coflowing liquid streams
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.094502
– volume: 145
  start-page: 141
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0045
  article-title: Droplet formation in a microfluidic T-junction involving highly viscous fluid systems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.02.013
– volume: 62
  start-page: 7505
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0665
  article-title: μ-PIV study of the formation of segmented flow in microfluidic T-junctions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.08.068
– volume: 7
  start-page: 1479
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0225
  article-title: The pressure drop along rectangular microchannels containing bubbles
  publication-title: Lab Chip
  doi: 10.1039/b706549c
– volume: 50
  start-page: 975
  year: 2016
  ident: 10.1016/j.ces.2020.116017_b0595
  article-title: Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S0040579516060166
– volume: 6
  start-page: 746
  year: 2013
  ident: 10.1016/j.ces.2020.116017_b0290
  article-title: Novel process windows for enabling, accelerating, and uplifting flow chemistry
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200766
– ident: 10.1016/j.ces.2020.116017_b0660
  doi: 10.1016/j.cej.2007.07.037
– volume: 167
  start-page: 468
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0630
  article-title: Suspension catalysis in a liquid–liquid capillary microreactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.09.088
– volume: 6
  start-page: 1487
  year: 2006
  ident: 10.1016/j.ces.2020.116017_b0265
  article-title: Multiphase microfluidics: from flow characteristics to chemical and materials synthesis
  publication-title: Lab Chip
  doi: 10.1039/B609851G
– volume: 66
  start-page: 3876
  year: 2011
  ident: 10.1016/j.ces.2020.116017_b0345
  article-title: Gas-liquid and liquid-liquid mass transfer in microstructured reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.05.015
– volume: 7
  start-page: 338
  year: 2007
  ident: 10.1016/j.ces.2020.116017_b0360
  article-title: Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV
  publication-title: Lab Chip
  doi: 10.1039/B617391H
– volume: 58
  start-page: 1660
  year: 2012
  ident: 10.1016/j.ces.2020.116017_b0575
  article-title: Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel
  publication-title: AIChE J.
  doi: 10.1002/aic.12698
SSID ssj0007710
Score 2.6352775
Snippet •The hydrodynamics, mixing and mass transfer of two-phase processes are reviewed.•Bubble/droplet formation mechanism and scaling models are summarized.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116017
SubjectTerms Microfluidic
Microreactor
Multiphase
Transport
Viscous fluid
Title Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models
URI https://dx.doi.org/10.1016/j.ces.2020.116017
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: AKRWK
  dateStart: 19510101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFZcvAkxCb7jrdSLFWhpxZ6W7JJiivdbWlXevO3O7MPraAevO4m7DJJvpkh38xHyE1gXWG0mjHXtYZhzTKTkEawSPDEiYQw1pQE2VEwnHhPU3_aIv2mFgZplTX2V5heonX9pFtbs7tMU6zx5RIcuHRwz3oScdjzQlQxuHv_onmEoeCNmhqObm42S44XHEVIER0EDkhMwp9905a_GRyQ_TpQpL3qXw5Jy-ZHZG-rfeAxUePNgi1fwA_R2XyxoSo3NINgmBZlNGpXNM1phow7LO_N4Uv3tEerYhWKdSW09GQ0s_g-XWe0WNCqQwgtFXLWJ2QyeBj3h6yWTGDaDdyCGaEh64ysgrUJZIg3t9L6fuSg1pRwfa0cyM8CxRMOcRIAnTfjEg61L6VSNlLuKWnni9yeEcq1byN4pHVgPInqgxEPEpUY7UNCLaJzwhtjxbruJ46yFvO4IY69xmDfGO0bV_Y9J7efU5ZVM42_BnvNCsTfdkQMYP_7tIv_Tbskuw6yVTjKZl-RdrF6s9cQbhRJp9xPHbLTe3wejj4AecHRuw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YEJKdR5OLHZqoqqQOnUSt0ix3FFUZNUbVA3fjt3eUCRgIE1sZXobH93J393HyHXvnHtWKuJ5bomtrBm2ZKQRljCZpEjbDs2cUGQHfi9kfc45uMG6dS1MEirrLC_xPQCrasnrcqarfl0ijW-TIIDlw7uWU8CDm963AkwA7t9_-J5BIHNajk1HF5fbRYkLziLkCM6iByQmQQ_O6c1h9PdI7tVpEjb5c_sk4ZJD8jOWv_AQ6KGq8yav4AjopNZtqIqjWkC0TDNi3DULOg0pQlS7rC-N4Uv3dE2LatVKBaW0MKV0cTg--kyoXlGyxYhtJDIWR6RUfd-2OlZlWaCpV3fza3Y1pB2CqNgcXwZ4NWtNJwLB8WmbJdr5UCC5isWMQiUAOm8CZNwqrmUShmh3GOykWapOSGUaW4EPNLajz2J8oOC-ZGKYs0ho7ZFk7DaWKGuGoqjrsUsrJljryHYN0T7hqV9m-Tmc8q87Kbx12CvXoHw25YIAe1_n3b6v2lXZKs3fO6H_YfB0xnZdpC6wlBD-5xs5Is3cwGxRx5dFnvrA4I401A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-phase+flow+and+mass+transfer+in+microchannels%3A+A+review+from+local+mechanism+to+global+models&rft.jtitle=Chemical+engineering+science&rft.au=Yao%2C+Chaoqun&rft.au=Zhao%2C+Yuchao&rft.au=Ma%2C+Haiyun&rft.au=Liu%2C+Yanyan&rft.date=2021-01-16&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=229&rft_id=info:doi/10.1016%2Fj.ces.2020.116017&rft.externalDocID=S0009250920305492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon