Lung Cancer Detection Systems Applied to Medical Images: A State-of-the-Art Survey
Lung cancer represents a significant global health challenge, transcending demographic boundaries of age, gender, and ethnicity. Timely detection stands as a pivotal factor for enhancing both survival rates and post-diagnosis quality of life. Artificial intelligence (AI) emerges as a transformative...
Saved in:
| Published in | Archives of computational methods in engineering Vol. 32; no. 1; pp. 343 - 380 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.01.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1134-3060 1886-1784 1886-1784 |
| DOI | 10.1007/s11831-024-10141-3 |
Cover
| Abstract | Lung cancer represents a significant global health challenge, transcending demographic boundaries of age, gender, and ethnicity. Timely detection stands as a pivotal factor for enhancing both survival rates and post-diagnosis quality of life. Artificial intelligence (AI) emerges as a transformative force with the potential to substantially enhance the accuracy and efficiency of Computer-Aided Diagnosis (CAD) systems for lung cancer. Despite the burgeoning interest, a notable gap persists in the literature concerning comprehensive reviews that delve into the intricate design and architectural facets of these systems. While existing reviews furnish valuable insights into result summaries and model attributes, a glaring absence prevails in offering a reliable roadmap to guide researchers towards optimal research directions. Addressing this gap in automated lung cancer detection within medical imaging, this survey adopts a focused approach, specifically targeting innovative models tailored solely for medical image analysis. The survey endeavors to meticulously scrutinize and merge knowledge pertaining to both the architectural components and intended functionalities of these models. In adherence to PRISMA guidelines, this survey systematically incorporates and analyzes 119 original articles spanning the years 2019–2023 sourced from Scopus and WoS-indexed repositories. The survey is underpinned by three primary areas of inquiry: the application of AI within CAD systems, the intricacies of model architectural designs, and comparative analyses of the latest advancements in lung cancer detection systems. To ensure coherence and depth in analysis, the surveyed methodologies are categorically classified into seven distinct groups based on their foundational models. Furthermore, the survey conducts a rigorous review of references and discerns trend observations concerning model designs and associated tasks. Beyond synthesizing existing knowledge, this survey serves as a guide that highlights potential avenues for further research within this critical domain. By providing comprehensive insights and facilitating informed decision-making, this survey aims to contribute to the body of knowledge in the study of automated lung cancer detection and propel advancements in the field. |
|---|---|
| AbstractList | Lung cancer represents a significant global health challenge, transcending demographic boundaries of age, gender, and ethnicity. Timely detection stands as a pivotal factor for enhancing both survival rates and post-diagnosis quality of life. Artificial intelligence (AI) emerges as a transformative force with the potential to substantially enhance the accuracy and efficiency of Computer-Aided Diagnosis (CAD) systems for lung cancer. Despite the burgeoning interest, a notable gap persists in the literature concerning comprehensive reviews that delve into the intricate design and architectural facets of these systems. While existing reviews furnish valuable insights into result summaries and model attributes, a glaring absence prevails in offering a reliable roadmap to guide researchers towards optimal research directions. Addressing this gap in automated lung cancer detection within medical imaging, this survey adopts a focused approach, specifically targeting innovative models tailored solely for medical image analysis. The survey endeavors to meticulously scrutinize and merge knowledge pertaining to both the architectural components and intended functionalities of these models. In adherence to PRISMA guidelines, this survey systematically incorporates and analyzes 119 original articles spanning the years 2019–2023 sourced from Scopus and WoS-indexed repositories. The survey is underpinned by three primary areas of inquiry: the application of AI within CAD systems, the intricacies of model architectural designs, and comparative analyses of the latest advancements in lung cancer detection systems. To ensure coherence and depth in analysis, the surveyed methodologies are categorically classified into seven distinct groups based on their foundational models. Furthermore, the survey conducts a rigorous review of references and discerns trend observations concerning model designs and associated tasks. Beyond synthesizing existing knowledge, this survey serves as a guide that highlights potential avenues for further research within this critical domain. By providing comprehensive insights and facilitating informed decision-making, this survey aims to contribute to the body of knowledge in the study of automated lung cancer detection and propel advancements in the field. |
| Author | Tan, Sher Lyn Selvachandran, Ganeshsree Ding, Weiping Paramesran, Raveendran |
| Author_xml | – sequence: 1 givenname: Sher Lyn surname: Tan fullname: Tan, Sher Lyn organization: School of Information Technology, Monash University Malaysia – sequence: 2 givenname: Ganeshsree orcidid: 0000-0001-7161-2109 surname: Selvachandran fullname: Selvachandran, Ganeshsree email: Ganeshsree.Selvachandran@monash.edu, ganeshsree86@yahoo.com organization: School of Business, Monash University Malaysia, Symbiosis Institute of Technology, Symbiosis International (Deemed University) – sequence: 3 givenname: Raveendran surname: Paramesran fullname: Paramesran, Raveendran organization: School of Information Technology, Monash University Malaysia, Department of Electrical Engineering, Faculty of Engineering, University of Malaya – sequence: 4 givenname: Weiping surname: Ding fullname: Ding, Weiping organization: School of Information Science and Technology, Nantong University |
| BookMark | eNqNkM1OwzAQhC1UJNrCC3CyxNlgx45jc6vKX6UiJApny3U3JVWaBNsB5e0JtBISh4rT7mFmd-YboUFVV4DQOaOXjNLsKjCmOCM0EYRRJhjhR2jIlJKEZUoM-p1xQTiV9ASNQthQmgqtkyF6nrfVGk9t5cDjG4jgYlFXeNGFCNuAJ01TFrDCscaPsCqcLfFsa9cQrvEEL6KNQOqcxDcgEx_xovUf0J2i49yWAc72c4xe725fpg9k_nQ_m07mxHHJI3FqqaxdKp1CLiCzXCdOOau0cjzTOV0xEFQqt0yVsC5Lc8m1ltytllyDkI6PEd_dbavGdp-2LE3ji631nWHUfGMxOyymx2J-sBjeuy52rsbX7y2EaDZ166s-qOFJKqViaZr1KrVTOV-H4CE3rujb9miit0V5-EHyx_qvVPsuoRdXa_C_qQ64vgDU95QC |
| CitedBy_id | crossref_primary_10_1007_s42519_024_00422_2 |
| Cites_doi | 10.1016/j.cmpb.2022.106786 10.1016/j.gpb.2022.11.003 10.1016/j.health.2023.100195 10.1016/j.media.2019.101628 10.1016/j.measurement.2020.108882 10.1016/j.patcog.2021.107825 10.1016/B978-0-443-18450-5.00008-6 10.1109/JBHI.2019.2963720 10.1016/j.compeleceng.2020.106626 10.1016/j.bspc.2022.104340 10.1016/j.jksuci.2019.11.013 10.1016/j.bspc.2021.103347 10.1016/j.eswa.2022.118672 10.1016/j.bbe.2021.08.006 10.1016/j.bspc.2023.105327 10.1109/ACCESS.2021.3071057 10.1016/j.tranon.2021.101141 10.1016/j.compmedimag.2019.02.003 10.1007/s11831-023-09964-3 10.1016/j.cmpb.2021.106111 10.1109/TCYB.2019.2935141 10.1016/j.artmed.2021.102017 10.1007/s00500-023-08453-w 10.1016/j.bspc.2022.103973 10.1016/j.bspc.2023.104948 10.1016/j.compmedimag.2020.101814 10.1016/j.bea.2023.100076 10.1007/s11517-020-02302-w 10.1109/ACCESS.2021.3129597 10.1016/j.bspc.2021.102890 10.1016/j.cmpb.2020.105720 10.1109/JBHI.2018.2879834 10.1016/j.bspc.2022.103643 10.1016/j.bspc.2019.101586 10.1109/ACCESS.2020.3040155 10.1016/j.rineng.2023.101111 10.1016/j.cmpb.2020.105902 10.1016/j.ceh.2022.04.001 10.1016/j.bspc.2021.102446 10.1016/j.eswa.2021.115681 10.1016/j.eswa.2019.05.041 10.1016/j.crad.2017.01.002 10.1007/s10489-023-04552-1 10.1016/j.bspc.2022.104197 10.1016/j.artmed.2023.102572 10.1016/j.compbiomed.2022.105691 10.1016/j.bspc.2021.102761 10.1016/j.bspc.2022.103701 10.1016/j.measurement.2019.05.027 10.1016/j.compbiomed.2021.104357 10.1016/j.eswa.2020.113564 10.1016/j.jiph.2020.06.033 10.1016/j.crad.2021.04.006 10.1038/s41598-022-16861-5 10.1016/j.compbiomed.2021.104811 10.1016/j.artmed.2019.101744 10.1016/j.patcog.2021.108309 10.1016/j.bspc.2021.103028 10.1016/j.bspc.2022.103791 10.1016/j.lungcan.2022.01.002 10.1007/s00530-021-00878-3 10.1186/s13643-021-01626-4 10.1016/j.jksuci.2021.07.005 10.1016/j.compbiomed.2021.105161 10.1109/ACCESS.2020.3026080 10.1016/j.compbiomed.2021.105086 10.1016/j.cmpb.2019.06.005 10.1016/j.imu.2020.100391 10.1016/j.asoc.2022.109872 10.1016/j.cmpb.2021.106170 10.1007/s10916-019-1190-z 10.1016/j.asoc.2021.108094 10.1016/j.future.2018.10.009 10.1007/s11547-023-01621-w 10.1016/j.neucom.2018.12.081 10.1016/j.compbiomed.2021.104348 10.1007/s11042-023-14893-1 10.1016/j.acra.2020.06.010 10.1016/j.eswa.2020.114259 10.1016/j.cmpb.2022.106680 10.1016/j.measen.2022.100588 10.1109/TII.2020.2972918 10.1007/s11042-023-14943-8 10.1016/j.crad.2021.03.021 10.1109/ACCESS.2020.3044941 10.1016/j.bspc.2022.103596 10.1016/j.compbiomed.2021.104806 10.1016/j.bspc.2021.102527 10.1016/j.eswa.2021.115469 10.1016/j.bspc.2022.103986 10.1016/j.bspc.2023.104965 10.1109/ACCESS.2021.3068896 10.1016/j.bspc.2022.103773 10.1016/j.knosys.2021.106753 10.1016/j.compbiomed.2022.105781 10.1109/TMI.2018.2876510 10.1016/j.eswa.2023.120361 10.1016/j.compmedimag.2021.101886 10.7759/cureus.10017 10.1109/ACCESS.2020.2984381 10.1007/s11042-022-13566-9 10.1016/j.bspc.2019.101659 10.1016/j.ejrad.2021.110068 10.1109/ACCESS.2019.2903587 10.1016/j.chemolab.2023.104763 10.1007/s10278-023-00822-z 10.1016/j.cmpb.2021.106332 10.1016/j.eswa.2022.119350 10.1007/s12539-021-00468-x 10.1016/j.compbiomed.2021.104472 10.1016/j.jtcvs.2021.02.010 10.1016/j.cmpb.2022.107108 10.1016/j.jrras.2022.01.015 10.1016/j.icte.2020.06.007 10.1109/TMI.2019.2947595 10.1016/j.acra.2020.07.030 10.1007/s11042-022-13005-9 10.1016/j.compbiomed.2020.104032 10.1016/j.imu.2019.100205 10.1016/j.eswa.2023.119961 10.1016/j.bspc.2022.104241 10.1016/j.bspc.2021.102790 10.1109/ACCESS.2022.3150924 10.1016/j.cmpb.2020.105910 10.1016/j.knosys.2019.105128 10.1016/j.bspc.2020.102296 10.1016/j.patcog.2022.108576 10.1016/j.artmed.2020.101792 10.1016/j.media.2019.07.004 10.1016/j.xcrm.2023.100933 10.1038/s41598-018-36047-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 ADTOC UNPAY |
| DOI | 10.1007/s11831-024-10141-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Public Health |
| EISSN | 1886-1784 |
| EndPage | 380 |
| ExternalDocumentID | 10.1007/s11831-024-10141-3 10_1007_s11831_024_10141_3 |
| GrantInformation_xml | – fundername: Monash University |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION PUEGO JQ2 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c363t-c8b8aab895ef4e7a392c8ca898c379f0d1e4068cb584ac75f639963cdb39e46c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1134-3060 1886-1784 |
| IngestDate | Sun Sep 07 11:05:39 EDT 2025 Mon Oct 06 18:31:52 EDT 2025 Wed Oct 01 04:56:09 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Mon Jul 21 06:08:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Medical image processing Deep learning Computer-aided diagnosis (CAD) Lung cancer detection Pulmonary nodules detection Convolutional neural network (CNN) |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-c8b8aab895ef4e7a392c8ca898c379f0d1e4068cb584ac75f639963cdb39e46c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7161-2109 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11831-024-10141-3 |
| PQID | 3256681557 |
| PQPubID | 1486352 |
| PageCount | 38 |
| ParticipantIDs | unpaywall_primary_10_1007_s11831_024_10141_3 proquest_journals_3256681557 crossref_citationtrail_10_1007_s11831_024_10141_3 crossref_primary_10_1007_s11831_024_10141_3 springer_journals_10_1007_s11831_024_10141_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | MP Saradhi (10141_CR12) 2021; 113 G Kasinathan (10141_CR89) 2019; 134 X Fu (10141_CR110) 2022; 126 G Li (10141_CR76) 2020; 8 X Huang (10141_CR88) 2019; 74 S Jain (10141_CR41) 2021; 137 S Modak (10141_CR135) 2023; 5 Q Tian (10141_CR56) 2021; 68 A Halder (10141_CR69) 2022; 72 Y Xie (10141_CR91) 2019; 38 EA Siddiqui (10141_CR74) 2023; 235 JC Souza (10141_CR18) 2019; 177 MDBS Tam (10141_CR62) 2021; 76 JCF Kuo (10141_CR124) 2021; 68 A Halder (10141_CR52) 2020; 197 10141_CR59 U Demiroğlu (10141_CR58) 2023; 82 H Huang (10141_CR79) 2022; 76 M Kanipriya (10141_CR80) 2022; 78 X Xu (10141_CR129) 2020; 189 G Kavithaa (10141_CR123) 2021; 13 MG Bandyk (10141_CR28) 2021; 134 M Al-Shabi (10141_CR50) 2022; 122 W Zuo (10141_CR8) 2019; 7 AK Ajai (10141_CR57) 2022; 78 C Wang (10141_CR68) 2021; 14 K Huang (10141_CR121) 2022; 76 H Jiang (10141_CR77) 2021; 113 H Malik (10141_CR113) 2022; 28 J Civit-Masot (10141_CR108) 2022; 226 D Zhao (10141_CR120) 2023; 211 R Pandian (10141_CR34) 2022; 24 SP Morozov (10141_CR61) 2021; 206 S Dey (10141_CR78) 2022; 114 S Tomassini (10141_CR25) 2022; 146 HL Lancaster (10141_CR63) 2022; 165 K Sathyakumar (10141_CR22) 2020; 12 DI Moris (10141_CR38) 2021; 185 Q Jin (10141_CR37) 2021; 218 Y Guo (10141_CR104) 2021; 28 P Nanglia (10141_CR66) 2021; 7 G Srivastava (10141_CR87) 2023; 132 X Li (10141_CR95) 2020; 103 D Moitra (10141_CR98) 2020; 159 Y Gu (10141_CR134) 2021; 137 R Toda (10141_CR39) 2022; 12 J Mendes (10141_CR40) 2023; 215 H Cao (10141_CR16) 2020; 24 Y Chen (10141_CR102) 2021; 9 A Masood (10141_CR97) 2020; 16 N Kumar (10141_CR70) 2022; 75 S Tyagi (10141_CR43) 2022; 147 Y Xu (10141_CR81) 2022; 77 ID Apostolopoulos (10141_CR100) 2021; 41 K Chen (10141_CR131) 2023; 128 PM Shakeel (10141_CR133) 2019; 145 M Liu (10141_CR96) 2020; 391 P Sengodan (10141_CR86) 2023; 229 C Liu (10141_CR5) 2020; 8 S Mehmood (10141_CR114) 2022; 10 A Heidari (10141_CR126) 2023; 141 S Jain (10141_CR11) 2021 J Zhou (10141_CR24) 2022; 5 E Bebas (10141_CR48) 2021; 66 S Bharati (10141_CR93) 2020; 20 MJ Page (10141_CR27) 2021; 10 K Suzuki (10141_CR117) 2022; 29 AR Bushara (10141_CR72) 2023; 82 G Savitha (10141_CR64) 2020; 84 X Cui (10141_CR6) 2022; 146 AA Mohammad (10141_CR49) 2021; 9 I Ali (10141_CR92) 2020; 8 Y Xie (10141_CR44) 2019; 57 L Sun (10141_CR105) 2021; 133 S Wankhade (10141_CR132) 2023; 3 Z Xu (10141_CR17) 2022; 77 Y Han (10141_CR111) 2022; 217 DM Ibrahim (10141_CR29) 2021; 132 NBM Kumar (10141_CR46) 2023; 79 HJ Bae (10141_CR128) 2018; 8 MMA Priya (10141_CR55) 2021; 199 YS Huang (10141_CR112) 2022; 220 M Nishio (10141_CR36) 2020; 126 S Suresh (10141_CR116) 2022; 34 BAl Mohammad (10141_CR21) 2017; 72 SF Ashraf (10141_CR53) 2022; 163 SNA Shah (10141_CR26) 2023; 30 10141_CR3 V Bishnoi (10141_CR118) 2023; 36 W Xiao (10141_CR107) 2021; 70 F Shariaty (10141_CR125) 2022; 140 10141_CR2 A Rey (10141_CR67) 2021; 168 10141_CR1 MH Sabzalian (10141_CR85) 2023; 84 P Dutande (10141_CR103) 2021; 67 D Wang (10141_CR7) 2021; 199 Q Hu (10141_CR127) 2020; 103 S Marques (10141_CR33) 2021; 184 P Marentakis (10141_CR130) 2021; 59 C Ladbury (10141_CR20) 2023; 4 O Ozdemir (10141_CR115) 2022; 34 A Teramoto (10141_CR31) 2019; 16 M Li (10141_CR65) 2021; 9 K Wang (10141_CR13) 2021; 69 WM Salama (10141_CR45) 2022; 81 SVSN Murthy (10141_CR47) 2023; 86 BR Pandit (10141_CR119) 2023; 82 Y Li (10141_CR19) 2022; 20 T Saba (10141_CR4) 2020; 13 D Gu (10141_CR23) 2021; 89 JCF Kuo (10141_CR122) 2020; 56 P Dutande (10141_CR109) 2022; 141 M Zhang (10141_CR54) 2022; 15 V Indumathi (10141_CR82) 2023; 81 L Tiwari (10141_CR30) 2021; 172 SK Lakshmanaprabu (10141_CR75) 2019; 92 G Savitha (10141_CR51) 2019; 53 M Braveen (10141_CR14) 2023 M Bicakci (10141_CR32) 2020; 8 MH Alshayeji (10141_CR71) 2023; 53 J Shi (10141_CR10) 2021; 209 SP Pawar (10141_CR42) 2021; 64 Y Lei (10141_CR94) 2020; 60 MG Lanjewar (10141_CR73) 2023; 224 D Wang (10141_CR106) 2021; 88 R Rajagopal (10141_CR84) 2023; 79 X Wang (10141_CR9) 2020; 50 O Ozdemir (10141_CR99) 2020; 39 V Rajasekar (10141_CR35) 2023; 18 MS Kavitha (10141_CR15) 2019; 43 KB Chen (10141_CR101) 2021; 207 P Sahu (10141_CR90) 2019; 23 TS Prakash (10141_CR83) 2023; 84 HH Hsu (10141_CR60) 2021; 76 |
| References_xml | – volume: 220 start-page: 106786 year: 2022 ident: 10141_CR112 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106786 – volume: 20 start-page: 850 issue: 5 year: 2022 ident: 10141_CR19 publication-title: Genomics Proteom Bioinform doi: 10.1016/j.gpb.2022.11.003 – volume: 3 start-page: 100195 year: 2023 ident: 10141_CR132 publication-title: Healthcare Anal doi: 10.1016/j.health.2023.100195 – volume: 60 start-page: 101628 year: 2020 ident: 10141_CR94 publication-title: Med Image Anal doi: 10.1016/j.media.2019.101628 – volume: 172 start-page: 108882 year: 2021 ident: 10141_CR30 publication-title: Measurement doi: 10.1016/j.measurement.2020.108882 – volume: 113 start-page: 107825 year: 2021 ident: 10141_CR77 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.107825 – ident: 10141_CR59 doi: 10.1016/B978-0-443-18450-5.00008-6 – volume: 24 start-page: 2006 issue: 7 year: 2020 ident: 10141_CR16 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2963720 – volume: 84 start-page: 106626 year: 2020 ident: 10141_CR64 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2020.106626 – volume: 81 start-page: 104340 year: 2023 ident: 10141_CR82 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104340 – volume: 34 start-page: 1706 issue: 5 year: 2022 ident: 10141_CR116 publication-title: J King Saud Univ doi: 10.1016/j.jksuci.2019.11.013 – volume: 72 start-page: 103347 issue: 1 year: 2022 ident: 10141_CR69 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103347 – volume: 211 start-page: 11867 year: 2023 ident: 10141_CR120 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118672 – volume: 41 start-page: 1243 issue: 4 year: 2021 ident: 10141_CR100 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2021.08.006 – volume: 86 start-page: 105327 issue: Part C year: 2023 ident: 10141_CR47 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105327 – volume: 9 start-page: 53687 year: 2021 ident: 10141_CR65 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071057 – volume: 14 start-page: 101141 issue: 8 year: 2021 ident: 10141_CR68 publication-title: Transl Oncol doi: 10.1016/j.tranon.2021.101141 – volume: 74 start-page: 25 year: 2019 ident: 10141_CR88 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.02.003 – volume: 30 start-page: 4917 year: 2023 ident: 10141_CR26 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-09964-3 – volume: 206 start-page: 106111 year: 2021 ident: 10141_CR61 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106111 – ident: 10141_CR1 – volume: 50 start-page: 3950 issue: 9 year: 2020 ident: 10141_CR9 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2935141 – volume: 113 start-page: 102017 year: 2021 ident: 10141_CR12 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102017 – year: 2023 ident: 10141_CR14 publication-title: Soft Comput doi: 10.1007/s00500-023-08453-w – volume: 78 start-page: 103973 year: 2022 ident: 10141_CR80 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103973 – volume: 84 start-page: 104948 year: 2023 ident: 10141_CR83 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104948 – volume: 88 start-page: 101814 year: 2021 ident: 10141_CR106 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2020.101814 – volume: 5 start-page: 100076 year: 2023 ident: 10141_CR135 publication-title: Biomed Eng Adv doi: 10.1016/j.bea.2023.100076 – volume: 59 start-page: 215 year: 2021 ident: 10141_CR130 publication-title: Med Biol Eng Compu doi: 10.1007/s11517-020-02302-w – volume: 9 start-page: 158140 year: 2021 ident: 10141_CR49 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3129597 – volume: 69 start-page: 102890 year: 2021 ident: 10141_CR13 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102890 – volume: 197 start-page: 105720 year: 2020 ident: 10141_CR52 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105720 – volume: 23 start-page: 960 issue: 3 year: 2019 ident: 10141_CR90 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2879834 – volume: 76 start-page: 103643 year: 2022 ident: 10141_CR121 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103643 – volume: 53 start-page: 101586 year: 2019 ident: 10141_CR51 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101586 – volume: 8 start-page: 218470 year: 2020 ident: 10141_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3040155 – volume: 18 start-page: 101111 year: 2023 ident: 10141_CR35 publication-title: Results Eng doi: 10.1016/j.rineng.2023.101111 – volume: 199 start-page: 105902 year: 2021 ident: 10141_CR55 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105902 – volume: 5 start-page: 19 year: 2022 ident: 10141_CR24 publication-title: Clin eHealth doi: 10.1016/j.ceh.2022.04.001 – volume: 66 start-page: 102446 year: 2021 ident: 10141_CR48 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102446 – volume: 185 start-page: 115681 year: 2021 ident: 10141_CR38 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115681 – volume: 134 start-page: 112 year: 2019 ident: 10141_CR89 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.05.041 – volume: 72 start-page: 433 year: 2017 ident: 10141_CR21 publication-title: Clin Radiol doi: 10.1016/j.crad.2017.01.002 – volume: 53 start-page: 19724 year: 2023 ident: 10141_CR71 publication-title: Appl Intell doi: 10.1007/s10489-023-04552-1 – volume: 79 start-page: 104197 issue: 1 year: 2023 ident: 10141_CR84 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104197 – volume: 141 start-page: 102572 year: 2023 ident: 10141_CR126 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2023.102572 – volume: 146 start-page: 105691 year: 2022 ident: 10141_CR25 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105691 – volume: 68 start-page: 102761 year: 2021 ident: 10141_CR56 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102761 – volume: 76 start-page: 103701 year: 2022 ident: 10141_CR79 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103701 – volume: 145 start-page: 702 year: 2019 ident: 10141_CR133 publication-title: Measurement doi: 10.1016/j.measurement.2019.05.027 – volume: 133 start-page: 104357 year: 2021 ident: 10141_CR105 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104357 – volume: 159 year: 2020 ident: 10141_CR98 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113564 – ident: 10141_CR3 – volume: 13 start-page: 1274 issue: 9 year: 2020 ident: 10141_CR4 publication-title: J Infect Public Health doi: 10.1016/j.jiph.2020.06.033 – volume: 76 start-page: 626e23–626e32 issue: 8 year: 2021 ident: 10141_CR60 publication-title: Clin Radiol doi: 10.1016/j.crad.2021.04.006 – volume: 12 start-page: 12867 year: 2022 ident: 10141_CR39 publication-title: Sci Rep doi: 10.1038/s41598-022-16861-5 – volume: 137 start-page: 104811 year: 2021 ident: 10141_CR41 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104811 – volume: 103 start-page: 101744 year: 2020 ident: 10141_CR95 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101744 – volume: 122 start-page: 108309 year: 2022 ident: 10141_CR50 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108309 – volume: 70 start-page: 103028 year: 2021 ident: 10141_CR107 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103028 – volume: 77 start-page: 103791 year: 2022 ident: 10141_CR81 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103791 – volume: 165 start-page: 133 year: 2022 ident: 10141_CR63 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2022.01.002 – volume: 28 start-page: 815 year: 2022 ident: 10141_CR113 publication-title: Multimedia Syst doi: 10.1007/s00530-021-00878-3 – volume: 10 start-page: 89 year: 2021 ident: 10141_CR27 publication-title: Syst Rev doi: 10.1186/s13643-021-01626-4 – volume: 34 start-page: 6199 issue: 8 year: 2022 ident: 10141_CR115 publication-title: J King Saud Univ doi: 10.1016/j.jksuci.2021.07.005 – volume: 141 start-page: 105161 year: 2022 ident: 10141_CR109 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105161 – volume: 8 start-page: 175859 year: 2020 ident: 10141_CR92 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026080 – volume: 140 start-page: 105086 year: 2022 ident: 10141_CR125 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105086 – volume: 177 start-page: 285 year: 2019 ident: 10141_CR18 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.06.005 – volume: 20 start-page: 100391 year: 2020 ident: 10141_CR93 publication-title: InformMed Unlocked doi: 10.1016/j.imu.2020.100391 – volume: 132 start-page: 109872 year: 2023 ident: 10141_CR87 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109872 – volume: 207 start-page: 106170 year: 2021 ident: 10141_CR101 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106170 – volume: 43 start-page: 73 year: 2019 ident: 10141_CR15 publication-title: J Med Syst doi: 10.1007/s10916-019-1190-z – ident: 10141_CR2 – volume: 114 start-page: 108094 year: 2022 ident: 10141_CR78 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.108094 – volume: 92 start-page: 374 year: 2019 ident: 10141_CR75 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.10.009 – volume: 128 start-page: 537 year: 2023 ident: 10141_CR131 publication-title: Radiol Med (Torino) doi: 10.1007/s11547-023-01621-w – volume: 391 start-page: 199 year: 2020 ident: 10141_CR96 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.081 – volume: 132 start-page: 104348 year: 2021 ident: 10141_CR29 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104348 – volume: 82 start-page: 37573 year: 2023 ident: 10141_CR72 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-14893-1 – volume: 28 start-page: e258 issue: 9 year: 2021 ident: 10141_CR104 publication-title: Acad Radiol doi: 10.1016/j.acra.2020.06.010 – volume: 168 year: 2021 ident: 10141_CR67 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114259 – volume: 217 start-page: 106680 year: 2022 ident: 10141_CR111 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106680 – volume: 24 start-page: 100588 year: 2022 ident: 10141_CR34 publication-title: Measurement doi: 10.1016/j.measen.2022.100588 – volume: 16 start-page: 7791 issue: 12 year: 2020 ident: 10141_CR97 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2020.2972918 – volume: 82 start-page: 33379 year: 2023 ident: 10141_CR58 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-14943-8 – volume: 76 start-page: 607 issue: 8 year: 2021 ident: 10141_CR62 publication-title: Clin Radiol doi: 10.1016/j.crad.2021.03.021 – volume: 8 start-page: 228905 year: 2020 ident: 10141_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3044941 – volume: 75 start-page: 103596 year: 2022 ident: 10141_CR70 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103596 – volume: 137 start-page: 104806 year: 2021 ident: 10141_CR134 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104806 – volume: 67 start-page: 102527 year: 2021 ident: 10141_CR103 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102527 – volume: 184 start-page: 115469 year: 2021 ident: 10141_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115469 – volume: 78 start-page: 103986 year: 2022 ident: 10141_CR57 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103986 – volume: 84 start-page: 104965 year: 2023 ident: 10141_CR85 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104965 – volume: 9 start-page: 50301 year: 2021 ident: 10141_CR102 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068896 – volume: 77 year: 2022 ident: 10141_CR17 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103773 – volume: 218 start-page: 106753 year: 2021 ident: 10141_CR37 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.106753 – volume: 147 start-page: 105781 year: 2022 ident: 10141_CR43 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105781 – volume: 38 start-page: 991 issue: 4 year: 2019 ident: 10141_CR91 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2876510 – volume: 229 start-page: 120361 issue: 1 year: 2023 ident: 10141_CR86 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120361 – volume: 89 start-page: 101886 year: 2021 ident: 10141_CR23 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2021.101886 – year: 2021 ident: 10141_CR11 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104811 – volume: 12 start-page: e10017 issue: 8 year: 2020 ident: 10141_CR22 publication-title: Cureus doi: 10.7759/cureus.10017 – volume: 8 start-page: 67300 year: 2020 ident: 10141_CR76 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984381 – volume: 82 start-page: 6605 year: 2023 ident: 10141_CR119 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-022-13566-9 – volume: 56 start-page: 101659 year: 2020 ident: 10141_CR122 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101659 – volume: 146 start-page: 110068 year: 2022 ident: 10141_CR6 publication-title: Radiology doi: 10.1016/j.ejrad.2021.110068 – volume: 7 start-page: 32510 year: 2019 ident: 10141_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903587 – volume: 235 start-page: 104763 year: 2023 ident: 10141_CR74 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2023.104763 – volume: 36 start-page: 1364 year: 2023 ident: 10141_CR118 publication-title: J Digit Imaging doi: 10.1007/s10278-023-00822-z – volume: 209 start-page: 106332 year: 2021 ident: 10141_CR10 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106332 – volume: 215 start-page: 119350 year: 2023 ident: 10141_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119350 – volume: 13 start-page: 779 year: 2021 ident: 10141_CR123 publication-title: Interdisc Sci doi: 10.1007/s12539-021-00468-x – volume: 134 start-page: 104472 year: 2021 ident: 10141_CR28 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104472 – volume: 163 start-page: P1496-11505E10 issue: 4 year: 2022 ident: 10141_CR53 publication-title: Thoracic doi: 10.1016/j.jtcvs.2021.02.010 – volume: 226 start-page: 107108 year: 2022 ident: 10141_CR108 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.107108 – volume: 15 start-page: 152 issue: 1 year: 2022 ident: 10141_CR54 publication-title: J Radiat Res Appl Sci doi: 10.1016/j.jrras.2022.01.015 – volume: 7 start-page: 335 issue: 3 year: 2021 ident: 10141_CR66 publication-title: ICT Express doi: 10.1016/j.icte.2020.06.007 – volume: 39 start-page: 1419 issue: 5 year: 2020 ident: 10141_CR99 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2947595 – volume: 29 start-page: S11 year: 2022 ident: 10141_CR117 publication-title: Acad Radiol doi: 10.1016/j.acra.2020.07.030 – volume: 81 start-page: 32705 year: 2022 ident: 10141_CR45 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13005-9 – volume: 126 start-page: 104032 year: 2020 ident: 10141_CR36 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.104032 – volume: 16 start-page: 100205 year: 2019 ident: 10141_CR31 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2019.100205 – volume: 224 start-page: 119961 year: 2023 ident: 10141_CR73 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119961 – volume: 79 start-page: 104241 issue: Part 2 year: 2023 ident: 10141_CR46 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104241 – volume: 68 start-page: 102790 year: 2021 ident: 10141_CR124 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102790 – volume: 10 start-page: 25657 year: 2022 ident: 10141_CR114 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150924 – volume: 199 start-page: 105910 year: 2021 ident: 10141_CR7 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105910 – volume: 189 start-page: 105128 year: 2020 ident: 10141_CR129 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105128 – volume: 64 start-page: 102296 year: 2021 ident: 10141_CR42 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102296 – volume: 126 start-page: 108576 year: 2022 ident: 10141_CR110 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.108576 – volume: 103 start-page: 101792 year: 2020 ident: 10141_CR127 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101792 – volume: 57 start-page: 237 year: 2019 ident: 10141_CR44 publication-title: Med Image Anal doi: 10.1016/j.media.2019.07.004 – volume: 4 start-page: 100933 issue: 2 year: 2023 ident: 10141_CR20 publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2023.100933 – volume: 8 start-page: 17687 year: 2018 ident: 10141_CR128 publication-title: Sci Rep doi: 10.1038/s41598-018-36047-2 |
| SSID | ssj0054992 |
| Score | 2.4481447 |
| SecondaryResourceType | review_article |
| Snippet | Lung cancer represents a significant global health challenge, transcending demographic boundaries of age, gender, and ethnicity. Timely detection stands as a... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 343 |
| SubjectTerms | Algorithms Artificial intelligence CAD Classification Computer aided design Design Diagnosis Engineering Human error Image analysis Lung cancer Lung diseases Mathematical and Computational Engineering Medical diagnosis Medical imaging Medical research Medical screening Public health Review Article Soft computing Tomography Ultrasonic imaging |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHGAHHgPEYKAcuLGgtemyjNs03q8DMAlOVZu6F0Y3bR1o_HqcLt0AIQTn5lXHsT_HsQ2w79VCJEWiudFd3IvIYFUu1nmI6EaeirSDJhr55laed7zLx_qjDQob5q_dc5dkJqlnwW7EfWT6uh439WUdLuZhIcu3VYCF1tnT1UkugY3Jk3k5HWFu_WXNBsv8PMpXhTRDmVPHaBEWR0k_GL8F3e4n3XO6Ap181ZMnJ8-HozQ81O_fEjr-97dWYdmCUdaacM8azGFSghULTJk99sMSFD9lLVyHu2sSEKxt2GXAjjHNHnMlzOY-Z3n3tMesF4hdvJDUGh6xFsuwLe_FnHAnp3nZ_WjwiuMN6JyePLTPuS3NwLWQIuVahSoIQtWsY-xhIyCUpZUOVFNp0WjGtchBQgpKh4RvAt2oxwYISaGjUDTRk1psQiHpJbgFTGHkyliJKCLL0LRQApWWKBVBGeU0yuDk--Nrm7fclM_o-rOMy4aEPpHQz0joizIcTPv0J1k7fm1dybfdtyd46AvCglIR2qIFVPOdm33-bbTqlF3-MPn2_0bfgSXXVCDOLoEqUEgHI9wlWJSGe_YUfAD00v2z priority: 102 providerName: Springer Nature |
| Title | Lung Cancer Detection Systems Applied to Medical Images: A State-of-the-Art Survey |
| URI | https://link.springer.com/article/10.1007/s11831-024-10141-3 https://www.proquest.com/docview/3256681557 https://doi.org/10.1007/s11831-024-10141-3 |
| UnpaywallVersion | publishedVersion |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9tAEIBHkByqHni0IEAQ7aG3shR77fWkNyu8CgVV0Ehwsuz1-EJwUOxQ0V_fWWeTAEKIXnzxPuzZWc-33p0ZgC_BfkZsSIy0tksGOS9Y0adQZkR-HmBuPLLeyOcX-qQfnF6H1y5MjvWFebF__61iAFa84PUDabPKelItQluHzN0taPcvfsU3TfYUZX_vT1yCEbX0Igych8zrjTy3QnO0nO2GfoQP4_I-ffyTDgZPDM7R8iRzUdXEKbTnTG73xnW2Z_6-iOL4vndZgSXHnSKeKMoqLFD5CZYdgwo3w6vPcPmTZ7_oWV0YiQOqm5NapXCBzcW0Qj0UbotH_LjjT1L1XcSiAVc5LCRDpeSexNV49ECPa9A_OvzdO5Eu74I0SqtaGswwTTPshlQEFKWMUAZNil00KuoW-7lHjAFoMoaX1ERhYSlHK5NnqkuBNmodWuWwpA0QSLmvC1R5zss-WwIVodGkkTkFvWgTvOk4JMYFJbe5MQbJPJyyFVrCQksaoSVqE77O6txPQnK8WXp7OryJm55Vohj0NDJK8QPsTod8fvut1nZnavGOzrf-r_g2tOrRmHYYc-qsA-34-ObssAOLPd3ja9-PO07n_wEI7fG8 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHpSDbyOKugdvugntlmXrjaAGFDyoJN6adjs9YSFQNPx7Z8sWMDFGz91HM7O7883OzjcAl14tQjIkmhvbxb2YHFblYp1HiG7sqVg7aLKRe0-y3fce3upvNilsUrx2L0KS-Um9THaj1Ueur-txU1_W4WIdNgyBlWHM77vN4vw1Dk8e43SEufOXNZsq8_MY383REmMuwqJl2Jymo3D2GQ4GK5bnfhe2LWRkzbmO92AN033YsfCR2c052YfyCrfgATx3aRuzllHqmN1ilj-5SpllKGdF92zIbKyGdd7pbJncsCbLESgfJpzQIad52ct0_IGzQ-jf37222twWUOBaSJFxrSIVhpHy65h42AgJC2mlQ-UrLRp-UosdJHuudEQoJNSNemLgihQ6joSPntTiCErpMMVjYApjVyZKxDH5b6aFEqi0RKkIcCinUQGnkGOgLbu4KXIxCJa8yEb2Ack-yGUfiApcLfqM5twav7auFuoJ7D6bBIIQm1SEiegHrguVLT__Ntr1Qq1_mPzkf6NfwGb7tdcNup2nx1PYck3N4PzapgqlbDzFMwIyWXSer9sve8XjrA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMAOvBHjmQM3iFibLsu4oY2J54R4SNyqNnFPo5u2DsS_x-nSbUgIwbmJU9lx_DmObYDjoBojGRLNre3igSGHVflY4zGibwJltIc2G_m-I69egpvX2utMFn_-2r0ISY5zGmyVpjQ765vkbJr4RjuR3GA_4LbXrMfFPCwEZN1sD4OmbBZnsXV-8ninJ-z9v6y6tJmfaXw3TVO8OQmRlmFplPajz4-o252xQu01WHHwkV2M5b0Oc5huwKqDkswp6nADyjN1Bjfh8Y5UmjWtgAeshVn-_Cplrlo5K6ZnPebiNuz6jc6Z4Tm7YDka5b2EE1LktC57Gg3e8XMLXtqXz80r7popcC2kyLhWsYqiWDVqmARYjwgXaaUj1VBa1BtJ1XhItl3pmBBJpOu1xEIXKbSJRQMDqcU2lNJeijvAFBpfJkoYQ76cHaEEKi1RKgIfyqtXwCv4GGpXadw2vOiG0xrJlvch8T7MeR-KCpxM5vTHdTZ-Hb1fiCd0OjcMBaE3qQgf0Q-cFiKbfv6N2ulErH9YfPd_1I9g8aHVDu-uO7d7sOzb9sH5Dc4-lLLBCA8I02TxYb5tvwDX5-fS |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbhYPx4G8jRk0P3rTo6NY9vBGVqFFiVBI8LVv3dhEHYUODf72vo4AaQ_S8rt3a171P177vY-zQPY2QHIkWxncJN6YFK9TQExFiLXYh1g6aaOS7lrpquzcdr2NlckwszI_9-5OMAFjSgrfmCpNV1hFykZWVR9xdYuV2677xXGRPkeb3_jgkGEAJxwfXRsj8Xsl3LzRDy-lu6DJbGqb9cPQedrtfHE5zdZy5KCt0Cs05k5fqMI-q-uOHiuPf3mWNrVju5I2xoayzBUw32KplUG5neLbJHm5p9vNzYwsDfoF5cVIr5VbYnE9uyHvcbvHw61f6JGVnvMELcBW9RBBUCmqJPw4HbzjaYu3m5dP5lbB5F4SWSuZCQwRhGEHdw8RFPySE0qBDqIOWfj05jR0kDAAdEbyE2vcSQzlK6jiSdXSVltuslPZS3GEcMK6pBGQc07LPlACJoBUqIE4Bx68wZzIOgbai5CY3RjeYySmbTguo04Ki0wJZYUfTe_pjSY65pfcmwxvY6ZkFkkBPAaEUPcDxZMhnl-fVdjw1iz80vvu_4nuslA-GuE-Yk0cH1r4_AU0J7mI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung+Cancer+Detection+Systems+Applied+to+Medical+Images%3A+A+State-of-the-Art+Survey&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Tan%2C+Sher+Lyn&rft.au=Selvachandran%2C+Ganeshsree&rft.au=Paramesran%2C+Raveendran&rft.au=Ding%2C+Weiping&rft.date=2025-01-01&rft.pub=Springer+Netherlands&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=32&rft.issue=1&rft.spage=343&rft.epage=380&rft_id=info:doi/10.1007%2Fs11831-024-10141-3&rft.externalDocID=10_1007_s11831_024_10141_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |