Boosting capuchin search with stochastic learning strategy for feature selection
The technological revolution has made available a large amount of data with many irrelevant and noisy features that alter the analysis process and increase time processing. Therefore, feature selection (FS) approaches are used to select the smallest subset of relevant features. Feature selection is...
Saved in:
| Published in | Neural computing & applications Vol. 35; no. 19; pp. 14061 - 14080 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 1433-3058 |
| DOI | 10.1007/s00521-023-08400-8 |
Cover
| Abstract | The technological revolution has made available a large amount of data with many irrelevant and noisy features that alter the analysis process and increase time processing. Therefore, feature selection (FS) approaches are used to select the smallest subset of relevant features. Feature selection is viewed as an optimization process for which meta-heuristics have been successfully applied. Thus, in this paper, a new feature selection approach is proposed based on an enhanced version of the Capuchin search algorithm (CapSA). In the developed FS approach, named ECapSA, three modifications have been introduced to avoid a lack of diversity, and premature convergence of the basic CapSA: (1) The inertia weight is adjusted using the logistic map, (2) sine cosine acceleration coefficients are added to improve convergence, and (3) a stochastic learning strategy is used to add more diversity to the movement of Capuchin and a levy random walk. To demonstrate the performance of ECapSA, different datasets are used, and it is compared with other well-known FS methods. The results provide evidence of the superiority of ECapSA among the tested datasets and competitive methods in terms of performance metrics. |
|---|---|
| AbstractList | The technological revolution has made available a large amount of data with many irrelevant and noisy features that alter the analysis process and increase time processing. Therefore, feature selection (FS) approaches are used to select the smallest subset of relevant features. Feature selection is viewed as an optimization process for which meta-heuristics have been successfully applied. Thus, in this paper, a new feature selection approach is proposed based on an enhanced version of the Capuchin search algorithm (CapSA). In the developed FS approach, named ECapSA, three modifications have been introduced to avoid a lack of diversity, and premature convergence of the basic CapSA: (1) The inertia weight is adjusted using the logistic map, (2) sine cosine acceleration coefficients are added to improve convergence, and (3) a stochastic learning strategy is used to add more diversity to the movement of Capuchin and a levy random walk. To demonstrate the performance of ECapSA, different datasets are used, and it is compared with other well-known FS methods. The results provide evidence of the superiority of ECapSA among the tested datasets and competitive methods in terms of performance metrics. |
| Author | Abd Elaziz, Mohamed Ouadfel, Salima Ibrahim, Rehab Ali |
| Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0000-0002-7682-6269 surname: Abd Elaziz fullname: Abd Elaziz, Mohamed email: m.elsaied@Gu.edu.eg organization: Department of Mathematics, Faculty of Science, Zagazig University, Faculty of Computer Science and Engineering, Galala University, Department of Electrical and Computer Engineering, Lebanese American University, Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, MEU Research Unit, Middle East University – sequence: 2 givenname: Salima surname: Ouadfel fullname: Ouadfel, Salima organization: Department of Computer Science, NTIC Faculty, University of Constantine2 – sequence: 3 givenname: Rehab Ali surname: Ibrahim fullname: Ibrahim, Rehab Ali organization: Department of Mathematics, Faculty of Science, Zagazig University |
| BookMark | eNqNkF9LwzAUxYNMcJt-AZ8KPldvmqTNHnX4Dwb6oM8hS5OtoyY1SRn79qZWEHwYPgVufufec84MTayzGqFLDNcYoLoJAKzAORQkB04Bcn6CppgSkhNgfIKmsKDpu6TkDM1C2AEALTmbotc750Js7CZTsuvVtrFZ0NKrbbZv4jYL0amtTIDK2jS2Axiil1FvDplxPjNaxt7rJGq1io2z5-jUyDboi593jt4f7t-WT_nq5fF5ebvKFSlJzBXmleR6zSlTgCtTV4SyGuMaEy6JWUNRLaTBJQGsmaa8qqkmEhtYFEzWhpA5IuPe3nbysJdtKzrffEh_EBjEUIoYSxGpFPFdiuBJdTWqOu8-ex2i2Lne22RUFBxzVlQVGyg-Usq7ELw2QjVRDulS9KY9fqD4I_2Xq58sIcF2o_2vqyOqLyZKlOY |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2024_111270 crossref_primary_10_1109_JSEN_2024_3510547 crossref_primary_10_1007_s00521_024_10815_w crossref_primary_10_1016_j_asoc_2025_112872 crossref_primary_10_1007_s00500_023_09019_6 |
| Cites_doi | 10.1016/j.cie.2021.107250 10.1016/j.enconman.2011.12.004 10.1016/j.jksuci.2018.02.013 10.1016/j.cma.2020.113609 10.1109/4235.585893 10.1016/j.engappai.2020.104079 10.1016/j.ins.2012.04.028 10.1109/ACCESS.2019.2919991 10.1080/23311916.2019.1599537 10.1007/s11063-021-10530-w 10.1016/j.neucom.2015.06.083 10.1007/s00521-013-1368-0 10.1007/s00521-015-1920-1 10.1016/j.future.2018.06.020 10.1109/TEVC.2005.857610 10.1109/ACCESS.2019.2897325 10.1109/TEVC.2004.826071 10.1016/j.eswa.2017.07.043 10.1007/s00500-016-2385-6 10.1007/s00521-020-05145-6 10.1007/978-3-319-13826-8_5 10.1016/j.asoc.2017.03.002 10.1016/j.eswa.2020.113572 10.1016/j.knosys.2015.04.015 10.1016/S0020-0190(02)00447-7 10.1016/j.eswa.2021.116158 10.1007/s10586-021-03254-y 10.1109/T-C.1971.223410 10.1109/ACCESS.2020.2991543 10.1109/ACCESS.2017.2695498 10.1016/j.knosys.2020.106131 10.1023/A:1008202821328 10.1007/s11042-012-1278-7 10.1016/j.enconman.2016.09.085 10.1109/TIT.1963.1057810 10.33889/IJMEMS.2020.5.4.056 10.1016/j.asoc.2016.01.044 10.1016/j.swevo.2020.100663 10.1007/s13042-020-01202-7 10.1016/j.ijepes.2009.01.010 10.1007/s10489-018-1261-8 10.1016/j.advengsoft.2017.07.002 10.1016/j.knosys.2018.05.009 10.3390/electronics8101130 10.1023/A:1025667309714 10.1016/j.eswa.2019.113122 10.1016/j.asoc.2017.11.006 10.1007/s00521-017-2988-6 10.3390/computation9060068 10.1016/j.asoc.2013.09.018 10.1007/s00366-020-01028-5 10.12928/TELKOMNIKA.v12i4.535 10.1007/s00521-017-2837-7 10.1016/j.ins.2017.09.015 10.1016/j.asoc.2018.11.033 10.1155/2013/860289 10.1016/j.knosys.2015.12.022 10.1007/s11047-019-09769-z 10.1080/08839514.2020.1712788 10.1016/j.eswa.2016.06.004 10.1016/j.chemolab.2018.11.010 10.1007/978-3-642-21515-5_10 10.1145/3231053.3231072 10.1109/SIU.2018.8404843 10.1109/ICSMC.1997.637339 10.1109/ICEC.1998.699146 10.15439/2017F163 10.1117/12.2282076 10.1155/2015/931256 10.1016/B978-0-12-405163-8.00009-0 10.1007/1-84628-102-4_3 10.1109/ICICIC.2007.209 10.1109/CEC.2018.8477773 10.1007/978-3-642-12538-6_6 10.1109/IRI.2012.6303031 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.1007/s00521-023-08400-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 14080 |
| ExternalDocumentID | 10.1007/s00521-023-08400-8 10_1007_s00521_023_08400_8 |
| GrantInformation_xml | – fundername: Zagazig University |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c363t-c187a8eb845c017fd7345d11d138a3fb0279af16301e5e487d4e3a1f0925adf33 |
| IEDL.DBID | BENPR |
| ISSN | 0941-0643 1433-3058 |
| IngestDate | Tue Aug 19 16:36:16 EDT 2025 Sat Jul 26 02:31:41 EDT 2025 Wed Oct 01 03:43:38 EDT 2025 Thu Apr 24 22:49:10 EDT 2025 Fri Feb 21 02:43:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | Sine cosine acceleration Feature selection Capuchin search algorithm (CSA) Meta-heuristics (MH) |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-c187a8eb845c017fd7345d11d138a3fb0279af16301e5e487d4e3a1f0925adf33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7682-6269 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-023-08400-8.pdf |
| PQID | 2818527758 |
| PQPubID | 2043988 |
| PageCount | 20 |
| ParticipantIDs | unpaywall_primary_10_1007_s00521_023_08400_8 proquest_journals_2818527758 crossref_citationtrail_10_1007_s00521_023_08400_8 crossref_primary_10_1007_s00521_023_08400_8 springer_journals_10_1007_s00521_023_08400_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230700 2023-07-00 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 7 year: 2023 text: 20230700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Pashaei, Aydin (CR38) 2017; 56 Lei, Pu (CR66) 2014; 12 Moradi, Gholampour (CR34) 2016; 43 Sayed, Hassanien, Azar (CR18) 2019; 31 Vergara, Estévez (CR12) 2014; 24 CR35 Emary, Zawbaa, Sharawi (CR68) 2019; 75 Mohammadi-Ivatloo, Rabiee, Ehsan (CR59) 2012; 56 Abualigah, Diabat, Mirjalili (CR15) 2021 CR33 Ouadfel, AbdElaziz (CR45) 2020 Mirjalili (CR74) 2016; 96 Chen, Zhou, Yin (CR61) 2018; 422 Abualigah, Yousri, AbdElaziz (CR20) 2021 CR71 CR70 Arora, Singh, Sharma (CR78) 2019; 7 Sindhu, Ngadiran, Yacob (CR55) 2017 Wang, Li, Abd El-Latif (CR7) 2014; 71 Faris, Mafarja, Heidari (CR54) 2018; 154 Chaturvedi, Pandit, Srivastava (CR60) 2009; 31 CR4 CR3 CR6 Ghosh, Ahmed, Singh (CR47) 2020 Abualigah, Dulaimi (CR40) 2021 Marill, Green (CR10) 1963; 9 Dash (CR14) 2021; 33 AbdElaziz, Oliva, Xiong (CR37) 2017; 90 CR43 Jia, Li, Song (CR46) 2019 Babatunde, Armstrong, Leng, Diepeveen (CR19) 2014; 5 Xue, Zhang, Browne (CR41) 2014 Ekbal, Saha (CR1) 2015; 85 Gu, Cheng, Jin (CR42) 2018 Sayed, Tharwat, Hassanien (CR44) 2019 Whitney (CR9) 1971; c-20 Emary, Zawbaa, Hassanien (CR36) 2016; 172 Sadeghian, Akbari, Nematzadeh (CR52) 2021 Kumar, Bharti (CR39) 2021; 20 Braik (CR23) 2021; 53 Mafarja, Mirjalili (CR76) 2018; 62 Arasomwan, Adewumi (CR24) 2013 CR58 Gad, Talha, El-Latif (CR8) 2018; 89 CR13 Ratnaweera, Halgamuge, Watson (CR29) 2004; 8 Nasir, Das, Maity (CR31) 2012; 209 Braik, Sheta, Al-Hiary (CR22) 2021; 33 Arora, Sharma, Anand (CR77) 2020; 34 Qasim, Algamal (CR79) 2020; 5 Elgamal, Yasin, Sabri (CR16) 2021; 9 Ling, Zhou, Luo (CR69) 2017; 5 Abualigah, Elaziz, Sumari (CR17) 2021 Robnik-Šikonja, Kononenko (CR11) 2003; 53 Zhang, Liu, Wang (CR49) 2021 Jordehi (CR28) 2016; 129 Mirjalili (CR75) 2016; 27 Hammouri, Mafarja, Al-Betar (CR48) 2020 CR27 CR26 CR67 ZorarpacI, Özel (CR32) 2016; 62 CR65 Wolpert, Macready (CR21) 1997; 1 CR64 Too, Abdullah, Saad (CR50) 2019 Tubishat, Idris, Shuib (CR53) 2020 CR63 Trelea (CR25) 2003; 85 CR62 Jain, Salau (CR5) 2019 Rodrigues, Yang, De Souza, Papa (CR56) 2015 Storn, Price (CR72) 1997; 11 Liang, Qin, Suganthan, Baskar (CR30) 2006; 10 Mirjalili, Gandomi, Mirjalili (CR73) 2017; 114 Nguyen, Xue, Zhang (CR2) 2020 Abualigah, Alsalibi, Shehab (CR51) 2021 Yan, Ma, Luo, Patel (CR57) 2019 A Ratnaweera (8400_CR29) 2004; 8 H Jia (8400_CR46) 2019 R Dash (8400_CR14) 2021; 33 IC Trelea (8400_CR25) 2003; 85 E Emary (8400_CR68) 2019; 75 E Emary (8400_CR36) 2016; 172 O Babatunde (8400_CR19) 2014; 5 Z Sadeghian (8400_CR52) 2021 S Mirjalili (8400_CR75) 2016; 27 L Abualigah (8400_CR40) 2021 ZM Elgamal (8400_CR16) 2021; 9 L Abualigah (8400_CR20) 2021 Y Ling (8400_CR69) 2017; 5 M Nasir (8400_CR31) 2012; 209 B Mohammadi-Ivatloo (8400_CR59) 2012; 56 8400_CR58 8400_CR13 C Yan (8400_CR57) 2019 S Mirjalili (8400_CR74) 2016; 96 L Abualigah (8400_CR17) 2021 P Moradi (8400_CR34) 2016; 43 E ZorarpacI (8400_CR32) 2016; 62 L Abualigah (8400_CR51) 2021 K Chen (8400_CR61) 2018; 422 AI Hammouri (8400_CR48) 2020 T Marill (8400_CR10) 1963; 9 M Braik (8400_CR23) 2021; 53 R Gad (8400_CR8) 2018; 89 MA Arasomwan (8400_CR24) 2013 E Pashaei (8400_CR38) 2017; 56 L Abualigah (8400_CR15) 2021 H Faris (8400_CR54) 2018; 154 R Storn (8400_CR72) 1997; 11 8400_CR43 S Mirjalili (8400_CR73) 2017; 114 A Ekbal (8400_CR1) 2015; 85 AR Jordehi (8400_CR28) 2016; 129 S Ouadfel (8400_CR45) 2020 OS Qasim (8400_CR79) 2020; 5 N Wang (8400_CR7) 2014; 71 D Rodrigues (8400_CR56) 2015 M AbdElaziz (8400_CR37) 2017; 90 R Sindhu (8400_CR55) 2017 M Braik (8400_CR22) 2021; 33 8400_CR70 B Xue (8400_CR41) 2014 S Arora (8400_CR77) 2020; 34 L Kumar (8400_CR39) 2021; 20 GI Sayed (8400_CR44) 2019 8400_CR71 M Robnik-Šikonja (8400_CR11) 2003; 53 S Jain (8400_CR5) 2019 DH Wolpert (8400_CR21) 1997; 1 8400_CR33 JJ Liang (8400_CR30) 2006; 10 M Mafarja (8400_CR76) 2018; 62 S Gu (8400_CR42) 2018 J Too (8400_CR50) 2019 8400_CR35 Y Zhang (8400_CR49) 2021 8400_CR6 8400_CR4 AW Whitney (8400_CR9) 1971; c-20 8400_CR3 KK Ghosh (8400_CR47) 2020 K Lei (8400_CR66) 2014; 12 S Arora (8400_CR78) 2019; 7 GI Sayed (8400_CR18) 2019; 31 M Tubishat (8400_CR53) 2020 8400_CR63 KT Chaturvedi (8400_CR60) 2009; 31 8400_CR62 BH Nguyen (8400_CR2) 2020 8400_CR67 8400_CR65 8400_CR64 8400_CR27 JR Vergara (8400_CR12) 2014; 24 8400_CR26 |
| References_xml | – ident: CR70 – year: 2021 ident: CR20 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107250 – volume: 56 start-page: 175 year: 2012 end-page: 183 ident: CR59 article-title: Time-varying acceleration coefficients IPSO for solving dynamic economic dispatch with non-smooth cost function publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2011.12.004 – ident: CR4 – volume: 33 start-page: 195 year: 2021 end-page: 207 ident: CR14 article-title: An adaptive harmony search approach for gene selection and classification of high dimensional medical data publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2018.02.013 – year: 2021 ident: CR15 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: CR21 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – year: 2021 ident: CR52 article-title: A hybrid feature selection method based on information theory and binary butterfly optimization algorithm publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.104079 – ident: CR35 – volume: 209 start-page: 16 year: 2012 end-page: 36 ident: CR31 article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2012.04.028 – year: 2019 ident: CR46 article-title: Spotted hyena optimization algorithm with simulated annealing for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919991 – year: 2019 ident: CR5 article-title: An image feature selection approach for dimensionality reduction based on kNN and SVM for AkT proteins publication-title: Cogent Eng doi: 10.1080/23311916.2019.1599537 – ident: CR58 – volume: 53 start-page: 2873 year: 2021 end-page: 2916 ident: CR23 article-title: A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: modeling industrial winding process, case study publication-title: Neural Process Lett doi: 10.1007/s11063-021-10530-w – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: CR36 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 24 start-page: 175 year: 2014 end-page: 186 ident: CR12 article-title: A review of feature selection methods based on mutual information publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1368-0 – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: CR75 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1920-1 – volume: 89 start-page: 178 year: 2018 end-page: 191 ident: CR8 article-title: Iris recognition using multi-algorithmic approaches for cognitive internet of things (CIoT) framework publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.06.020 – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: CR30 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.857610 – volume: 7 start-page: 26343 year: 2019 end-page: 26361 ident: CR78 article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897325 – ident: CR71 – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: CR29 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2004.826071 – ident: CR67 – volume: 90 start-page: 484 year: 2017 end-page: 500 ident: CR37 article-title: An improved opposition-based sine cosine algorithm for global optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.07.043 – year: 2018 ident: CR42 article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer publication-title: Soft Comput doi: 10.1007/s00500-016-2385-6 – volume: 33 start-page: 2515 year: 2021 end-page: 2547 ident: CR22 article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05145-6 – year: 2015 ident: CR56 article-title: Binary flower pollination algorithm and its application to feature selection publication-title: Stud Comput Intell doi: 10.1007/978-3-319-13826-8_5 – volume: 56 start-page: 94 year: 2017 end-page: 106 ident: CR38 article-title: Binary black hole algorithm for feature selection and classification on biological data publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.03.002 – year: 2020 ident: CR45 article-title: Enhanced crow search algorithm for feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113572 – volume: 85 start-page: 37 year: 2015 end-page: 51 ident: CR1 article-title: Joint model for feature selection and parameter optimization coupled with classifier ensemble in chemical mention recognition publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.04.015 – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: CR25 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inf Process Lett doi: 10.1016/S0020-0190(02)00447-7 – ident: CR64 – year: 2021 ident: CR17 article-title: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116158 – year: 2021 ident: CR40 article-title: A novel feature selection method for data mining tasks using hybrid Sine Cosine Algorithm and Genetic Algorithm publication-title: Cluster Comput doi: 10.1007/s10586-021-03254-y – volume: c-20 start-page: 1100 year: 1971 end-page: 1103 ident: CR9 article-title: A direct method of nonparametric measurement selection publication-title: IEEE Trans Comput doi: 10.1109/T-C.1971.223410 – ident: CR26 – year: 2020 ident: CR47 article-title: Improved binary sailfish optimizer based on adaptive β-Hill climbing for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991543 – volume: 5 start-page: 6168 year: 2017 end-page: 6186 ident: CR69 article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2695498 – ident: CR43 – year: 2020 ident: CR48 article-title: An improved dragonfly algorithm for feature selection publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2020.106131 – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: CR72 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – volume: 71 start-page: 1411 year: 2014 end-page: 1430 ident: CR7 article-title: Toward accurate localization and high recognition performance for noisy iris images publication-title: Multimed Tools Appl doi: 10.1007/s11042-012-1278-7 – volume: 129 start-page: 262 year: 2016 end-page: 274 ident: CR28 article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.09.085 – volume: 9 start-page: 11 year: 1963 end-page: 17 ident: CR10 article-title: On the effectiveness of receptors in recognition systems publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1963.1057810 – volume: 5 start-page: 697 year: 2020 end-page: 706 ident: CR79 article-title: Feature selection using different transfer functions for binary bat algorithm publication-title: Int J Math Eng Manag Sci doi: 10.33889/IJMEMS.2020.5.4.056 – ident: CR33 – volume: 43 start-page: 117 year: 2016 end-page: 130 ident: CR34 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2016.01.044 – year: 2020 ident: CR2 article-title: A survey on swarm intelligence approaches to feature selection in data mining publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100663 – year: 2021 ident: CR51 article-title: A parallel hybrid krill herd algorithm for feature selection publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01202-7 – volume: 31 start-page: 249 year: 2009 end-page: 257 ident: CR60 article-title: Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2009.01.010 – ident: CR6 – volume: 5 start-page: 899 year: 2014 end-page: 905 ident: CR19 article-title: A genetic algorithm-based feature selection publication-title: Int J Electron Commun Comput Eng – ident: CR63 – ident: CR27 – year: 2019 ident: CR44 article-title: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection publication-title: Appl Intell doi: 10.1007/s10489-018-1261-8 – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR73 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: CR54 article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.05.009 – year: 2019 ident: CR50 article-title: A new quadratic binary harris hawk optimization for feature selection publication-title: Electron doi: 10.3390/electronics8101130 – volume: 53 start-page: 23 year: 2003 end-page: 69 ident: CR11 article-title: Theoretical and empirical analysis of relieff and rrelieff publication-title: Mach Learn doi: 10.1023/A:1025667309714 – year: 2020 ident: CR53 article-title: Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113122 – volume: 62 start-page: 441 year: 2018 end-page: 453 ident: CR76 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2017.11.006 – volume: 31 start-page: 171 year: 2019 end-page: 188 ident: CR18 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2988-6 – ident: CR65 – volume: 9 start-page: 68 year: 2021 ident: CR16 article-title: Improved equilibrium optimization algorithm using elite opposition-based learning and new local search strategy for feature selection in medical datasets publication-title: Computation doi: 10.3390/computation9060068 – year: 2014 ident: CR41 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2013.09.018 – ident: CR3 – ident: CR13 – year: 2021 ident: CR49 article-title: Boosted binary Harris hawks optimizer and feature selection publication-title: Eng Comput doi: 10.1007/s00366-020-01028-5 – volume: 12 start-page: 1023 year: 2014 end-page: 1030 ident: CR66 article-title: Complex optimization problems using highly efficient particle swarm optimizer publication-title: TELKOMNIKA doi: 10.12928/TELKOMNIKA.v12i4.535 – year: 2017 ident: CR55 article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2837-7 – volume: 422 start-page: 218 year: 2018 end-page: 241 ident: CR61 article-title: A hybrid particle swarm optimizer with sine cosine acceleration coefficients publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2017.09.015 – volume: 75 start-page: 775 year: 2019 end-page: 789 ident: CR68 article-title: Impact of Lèvy flight on modern meta-heuristic optimizers publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2018.11.033 – year: 2013 ident: CR24 article-title: On the performance of linear decreasing inertia weight particle swarm optimization for global optimization publication-title: Sci World J doi: 10.1155/2013/860289 – ident: CR62 – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR74 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 20 start-page: 39 year: 2021 end-page: 61 ident: CR39 article-title: A novel hybrid BPSO–SCA approach for feature selection publication-title: Nat Comput doi: 10.1007/s11047-019-09769-z – volume: 34 start-page: 292 year: 2020 end-page: 328 ident: CR77 article-title: A novel chaotic interior search algorithm for global optimization and feature selection publication-title: Appl Artif Intell doi: 10.1080/08839514.2020.1712788 – volume: 62 start-page: 91 year: 2016 end-page: 103 ident: CR32 article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.06.004 – year: 2019 ident: CR57 article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.11.010 – volume: 422 start-page: 218 year: 2018 ident: 8400_CR61 publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2017.09.015 – year: 2019 ident: 8400_CR44 publication-title: Appl Intell doi: 10.1007/s10489-018-1261-8 – volume: 154 start-page: 43 year: 2018 ident: 8400_CR54 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.05.009 – volume: 5 start-page: 899 year: 2014 ident: 8400_CR19 publication-title: Int J Electron Commun Comput Eng – volume: 62 start-page: 441 year: 2018 ident: 8400_CR76 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2017.11.006 – volume: 209 start-page: 16 year: 2012 ident: 8400_CR31 publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2012.04.028 – volume: 20 start-page: 39 year: 2021 ident: 8400_CR39 publication-title: Nat Comput doi: 10.1007/s11047-019-09769-z – volume: 75 start-page: 775 year: 2019 ident: 8400_CR68 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2018.11.033 – ident: 8400_CR65 doi: 10.1007/978-3-642-21515-5_10 – volume: 53 start-page: 23 year: 2003 ident: 8400_CR11 publication-title: Mach Learn doi: 10.1023/A:1025667309714 – volume: 43 start-page: 117 year: 2016 ident: 8400_CR34 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2016.01.044 – ident: 8400_CR35 doi: 10.1145/3231053.3231072 – volume: 9 start-page: 11 year: 1963 ident: 8400_CR10 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1963.1057810 – year: 2020 ident: 8400_CR2 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100663 – year: 2021 ident: 8400_CR20 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107250 – year: 2021 ident: 8400_CR15 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 27 start-page: 1053 year: 2016 ident: 8400_CR75 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1920-1 – ident: 8400_CR64 – volume: 5 start-page: 697 year: 2020 ident: 8400_CR79 publication-title: Int J Math Eng Manag Sci doi: 10.33889/IJMEMS.2020.5.4.056 – volume: 89 start-page: 178 year: 2018 ident: 8400_CR8 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.06.020 – volume: 129 start-page: 262 year: 2016 ident: 8400_CR28 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.09.085 – ident: 8400_CR43 doi: 10.1109/SIU.2018.8404843 – year: 2019 ident: 8400_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919991 – year: 2019 ident: 8400_CR5 publication-title: Cogent Eng doi: 10.1080/23311916.2019.1599537 – volume: 114 start-page: 163 year: 2017 ident: 8400_CR73 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 34 start-page: 292 year: 2020 ident: 8400_CR77 publication-title: Appl Artif Intell doi: 10.1080/08839514.2020.1712788 – ident: 8400_CR27 – volume: c-20 start-page: 1100 year: 1971 ident: 8400_CR9 publication-title: IEEE Trans Comput doi: 10.1109/T-C.1971.223410 – ident: 8400_CR58 doi: 10.1109/ICSMC.1997.637339 – year: 2020 ident: 8400_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991543 – year: 2017 ident: 8400_CR55 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2837-7 – year: 2021 ident: 8400_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116158 – volume: 56 start-page: 175 year: 2012 ident: 8400_CR59 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2011.12.004 – ident: 8400_CR71 – year: 2020 ident: 8400_CR45 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113572 – year: 2013 ident: 8400_CR24 publication-title: Sci World J doi: 10.1155/2013/860289 – ident: 8400_CR63 doi: 10.1109/ICEC.1998.699146 – year: 2019 ident: 8400_CR50 publication-title: Electron doi: 10.3390/electronics8101130 – ident: 8400_CR6 doi: 10.15439/2017F163 – volume: 12 start-page: 1023 year: 2014 ident: 8400_CR66 publication-title: TELKOMNIKA doi: 10.12928/TELKOMNIKA.v12i4.535 – volume: 33 start-page: 2515 year: 2021 ident: 8400_CR22 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05145-6 – ident: 8400_CR70 doi: 10.1117/12.2282076 – volume: 85 start-page: 317 year: 2003 ident: 8400_CR25 publication-title: Inf Process Lett doi: 10.1016/S0020-0190(02)00447-7 – year: 2020 ident: 8400_CR53 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113122 – volume: 62 start-page: 91 year: 2016 ident: 8400_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.06.004 – volume: 90 start-page: 484 year: 2017 ident: 8400_CR37 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.07.043 – volume: 24 start-page: 175 year: 2014 ident: 8400_CR12 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1368-0 – volume: 5 start-page: 6168 year: 2017 ident: 8400_CR69 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2695498 – volume: 11 start-page: 341 year: 1997 ident: 8400_CR72 publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – year: 2020 ident: 8400_CR48 publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2020.106131 – volume: 8 start-page: 240 year: 2004 ident: 8400_CR29 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2004.826071 – volume: 10 start-page: 281 year: 2006 ident: 8400_CR30 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.857610 – volume: 33 start-page: 195 year: 2021 ident: 8400_CR14 publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2018.02.013 – volume: 96 start-page: 120 year: 2016 ident: 8400_CR74 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 9 start-page: 68 year: 2021 ident: 8400_CR16 publication-title: Computation doi: 10.3390/computation9060068 – ident: 8400_CR26 doi: 10.1155/2015/931256 – year: 2021 ident: 8400_CR49 publication-title: Eng Comput doi: 10.1007/s00366-020-01028-5 – ident: 8400_CR33 doi: 10.1016/B978-0-12-405163-8.00009-0 – volume: 56 start-page: 94 year: 2017 ident: 8400_CR38 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.03.002 – year: 2018 ident: 8400_CR42 publication-title: Soft Comput doi: 10.1007/s00500-016-2385-6 – year: 2021 ident: 8400_CR51 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01202-7 – volume: 71 start-page: 1411 year: 2014 ident: 8400_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-012-1278-7 – volume: 1 start-page: 67 year: 1997 ident: 8400_CR21 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – ident: 8400_CR13 doi: 10.1007/1-84628-102-4_3 – volume: 31 start-page: 171 year: 2019 ident: 8400_CR18 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2988-6 – ident: 8400_CR67 doi: 10.1109/ICICIC.2007.209 – year: 2014 ident: 8400_CR41 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2013.09.018 – ident: 8400_CR3 doi: 10.1109/CEC.2018.8477773 – year: 2015 ident: 8400_CR56 publication-title: Stud Comput Intell doi: 10.1007/978-3-319-13826-8_5 – ident: 8400_CR62 doi: 10.1007/978-3-642-12538-6_6 – volume: 7 start-page: 26343 year: 2019 ident: 8400_CR78 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897325 – ident: 8400_CR4 doi: 10.1109/IRI.2012.6303031 – volume: 53 start-page: 2873 year: 2021 ident: 8400_CR23 publication-title: Neural Process Lett doi: 10.1007/s11063-021-10530-w – year: 2021 ident: 8400_CR40 publication-title: Cluster Comput doi: 10.1007/s10586-021-03254-y – volume: 85 start-page: 37 year: 2015 ident: 8400_CR1 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.04.015 – volume: 31 start-page: 249 year: 2009 ident: 8400_CR60 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2009.01.010 – volume: 172 start-page: 371 year: 2016 ident: 8400_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – year: 2021 ident: 8400_CR52 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.104079 – year: 2019 ident: 8400_CR57 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.11.010 |
| SSID | ssj0004685 |
| Score | 2.358334 |
| Snippet | The technological revolution has made available a large amount of data with many irrelevant and noisy features that alter the analysis process and increase... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14061 |
| SubjectTerms | Artificial Intelligence Basic converters Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Convergence Data Mining and Knowledge Discovery Datasets Feature selection Image Processing and Computer Vision Learning Optimization Original Article Performance measurement Probability and Statistics in Computer Science Random walk Search algorithms Strategy Trigonometric functions |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6JQkAc2MIpj59ERUEsFAjFQqUyR7TggUaUVaYXKr8d2nBQQQjDHsZPznX1n330fwHEYG9Q1EeA04ClmKlJY-J7CgWRcENEOfGFudG_vwl6fXQ-CgSsKK6ps9-pK0q7UdbGbOcHUoa9PDRap5-F4EZYs3lYDls6vHm86n-ohLRWnjlxMVg-jrljm516-bkhzL7O-GF2F5Wk-5rM3Phx-2nu669CvvrpMOXk5m07EmXz_Buj439_agDXnjKLzUns2YUHlW7BeET0gZ_fbcH8xGhUmPxpJPjbsKTkqLQSZY1yk_Uf5zA3gM3IkFE-oKFFvZ0g7xShTFj4UFZZ0R2vCDvS7nYfLHnZUDFjSkE6wJHHEYyViFkhtw1kaURakhKSExpxmQge3bZ5p384jKlA6CEqZopxkXtvXOpBRuguNfJSrPUCpx5hShh-YRYyTUK8AKYu4biqFwfppAqnmI5EOp9zQZQyTGmHZiizRIkusyJK4CSf1O-MSpePX1q1qmhNnsUViUbH8SIdPTTitZmr--LfeTmv1-MPg-__r_QBWfKsbJkG4BY3J61QdajdoIo6c1n8AZ4r55w priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6F5FBxIPQlglLkQ2_FYb22dzfH0BYhpCIORILTyq8FqdEmIhuh8OsZ7ysUVQjE2V6vbI_tb-yZ7wP4HiWedU1LaqWyVLjYUR0GjkojlGZ6LEPtX3T_nEenU3F2Ja868KvJhSmj3ZsnySqnwbM05cXRwmZHbeKbv81ENzjknpc0CGgywuIt6EUSEXkXetPzi8l1SbMnfGBPFWcvOKdo3kmdO_P_hv49nzags30n3YYPq3yh1vdqNntyFJ30wTWdqCJQ_o5WhR6Zh2f8ju_t5S7s1FiVTCrj-ggdl3-CfqMDQept4TNcHM_nSx8-TYxaeHGVnFQLiPhbXoLw0twqzwdNao2KG7KsSHHXBDEzyVzJLkqWpSYPGsoXmJ78vvx5SmulBmp4xAtqWBKrxOlESINLPLMxF9IyZhlPFM80-r5jlSH0C5iTDn0kKxxXLAvGIZpIxvlX6Obz3O0BsYEQznn5YBELxSLcIKyIFVY12lMBDYA185Oamsbcq2nM0paAuRy2FIctLYctTQbwo_1mUZF4vFh72Ex7Wi_oZVqSZoUxelcDOGxmblP8UmuHrbm84uf7b6s-hG5xt3LfEBgV-qC2-0dNLANM priority: 102 providerName: Unpaywall |
| Title | Boosting capuchin search with stochastic learning strategy for feature selection |
| URI | https://link.springer.com/article/10.1007/s00521-023-08400-8 https://www.proquest.com/docview/2818527758 https://link.springer.com/content/pdf/10.1007/s00521-023-08400-8.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61yQE4UF4VoW3kAzdqsbv2PnJAKE2TVkCjCIjUnlZ-LRyiTSCpUP89M443aS9RL7uS7V1L87DHj_k-gPdZQahrOuU2VZZLlzuuk8jx1EilY91LE00nulfj7HIqv1yn13swbnJh6FplMyb6gdrODe2Rf_SoRUmO4e3nxR9OrFF0utpQaKhArWA_eYixfWgnhIzVgvbZcDz5fi9T0pN04pqG7vtIEdJofDId7ZBiaSII6zSKePFwqtrGn5sj02fw5LZeqLt_aja7NyuNXsDzEE6y_lr_L2HP1a_goKFqYMFzX8PkbD5f0g1nZtSC-E9qtrZxRhuxDCNA81sRZDMLNBK_2HKNW3vHMKxllfMAoGzpaXNQl29gOhr-HFzyQKbAjcjEipu4yFXhdCFTg15Y2VzI1MaxjUWhRKVxedpTFUZnUexSh8sYK51QcRX1EtRiJcQhtOp57d4Cs5GUzhHDr8ylijP0YStzhU2NJrSeDsSN3EoTkMaJ8GJWbjCSvaxLlHXpZV0WHfiw-WaxxtnY2fq4UUcZfG5Zbi2kA6eNirbVu_52ulHjIzp_t7vzI3iaeCOiK73H0Fr9vXUnGLisdBf2i9FFF9r986tvP-h9cfN12A02irWDbIDPadLHsul40r_5D-t37j8 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hONAe2tKHSEvBh_ZUrK7X3uzmgBBQUHhFqAKJ29avbQ_RJu0Gofy5_rbOON6EXiIuXPdl7cx4PB7PfB_Ap25BqGsm4y7Tjiufe27SxPPMKm2E6WWpoRPdy0G3f6PObrPbFfjb9sJQWWXrE4OjdiNLOfKvAbUozTG83R__5sQaRaerLYWGjtQKbi9AjMXGjnM_vcctXLN3-g31_TlNT46vj_o8sgxwK7tywq0ocl14U6jMonlWLpcqc0I4IQstK4P7tp6uMGxJhM88xvdOealFlfRS_L2KEqK4BKwpqXq4-Vs7PB5cfX_QmRlIQXEPRfVFSsa2ndC8RxlZvJpKwlZNEl78vzQu4t35Ee1zWL-rx3p6r4fDB6vgySt4EcNXdjCztw1Y8fVreNlSQ7DoKd7A1eFo1FBFNbN6THwrNZsJi1Hil2HEaX9pgohmkbbiJ2tmOLlThmE0q3wAHGVNoOlB23kLN08i1newWo9qvwnMJUp5T4zCKldadNFnOJVrfNQaQgfqgGjlVtqIbE4EG8NyjskcZF2irMsg67LowJf5O-MZrsfSp7dadZRxjjflwiI7sNuqaHF72dd252p8xODvlw--A-v968uL8uJ0cP4BnqXBoKiceAtWJ3_u_EcMmiZmO1omgx9PPRn-Ae4tIxI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSDwOvBGDATlwY9WaJn3sCINpvKYdmLRblTQpHKauopvQ_j1J-tiQ0ATnpolkx7Id298HcO0FGnWNu5ZwmbCo9KXFHVtabkQZx7ztOlxXdF_7Xm9In0buaGmK33S7lyXJfKZBozQl01Yq4lY1-KZfM1Ua7BCNS2rbVrAOG1R5N81h0PE6S5ORhpRT5TC6v4eSYmzm9z1-uqZFvFmVSHdga5akbP7FxuMlL9Tdh90ifES3ub4PYE0mh7BXUjOgwlKPYHA3mWS6oxlFLNV8JwnK7zTSD69IRXzRB9MQzaigjXhHWY5TO0cqjEWxNICfKDM0OUp3xzDsPrx1elZBnmBFxCNTK8KBzwLJA-pGyupi4RPqCowFJgEjMVfpaJvFKhqzsXSlSlsElYTh2G47SmsxISdQSyaJPAUkbEql1Iy-1KcMe8pmBfWZWhpxjc5TB1zKLYwKZHFNcDEOK0xkI-tQyTo0sg6DOtxU_6Q5rsbK1Y1SHWFhY1locKwcXyU8dWiWKlp8XrVbs1LjHw4_-9_uV7A5uO-GL4_953PYdsz90t29DahNP2fyQsUwU35pruk3lDPkAw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6F5FBxIPQlglLkQ2_FYb22dzfH0BYhpCIORILTyq8FqdEmIhuh8OsZ7ysUVQjE2V6vbI_tb-yZ7wP4HiWedU1LaqWyVLjYUR0GjkojlGZ6LEPtX3T_nEenU3F2Ja868KvJhSmj3ZsnySqnwbM05cXRwmZHbeKbv81ENzjknpc0CGgywuIt6EUSEXkXetPzi8l1SbMnfGBPFWcvOKdo3kmdO_P_hv49nzags30n3YYPq3yh1vdqNntyFJ30wTWdqCJQ_o5WhR6Zh2f8ju_t5S7s1FiVTCrj-ggdl3-CfqMDQept4TNcHM_nSx8-TYxaeHGVnFQLiPhbXoLw0twqzwdNao2KG7KsSHHXBDEzyVzJLkqWpSYPGsoXmJ78vvx5SmulBmp4xAtqWBKrxOlESINLPLMxF9IyZhlPFM80-r5jlSH0C5iTDn0kKxxXLAvGIZpIxvlX6Obz3O0BsYEQznn5YBELxSLcIKyIFVY12lMBDYA185Oamsbcq2nM0paAuRy2FIctLYctTQbwo_1mUZF4vFh72Ex7Wi_oZVqSZoUxelcDOGxmblP8UmuHrbm84uf7b6s-hG5xt3LfEBgV-qC2-0dNLANM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+capuchin+search+with+stochastic+learning+strategy+for+feature+selection&rft.jtitle=Neural+computing+%26+applications&rft.au=Abd+Elaziz%2C+Mohamed&rft.au=Ouadfel%2C+Salima&rft.au=Ibrahim%2C+Rehab+Ali&rft.date=2023-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=19&rft.spage=14061&rft.epage=14080&rft_id=info:doi/10.1007%2Fs00521-023-08400-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_08400_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |