Boosting capuchin search with stochastic learning strategy for feature selection

The technological revolution has made available a large amount of data with many irrelevant and noisy features that alter the analysis process and increase time processing. Therefore, feature selection (FS) approaches are used to select the smallest subset of relevant features. Feature selection is...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 19; pp. 14061 - 14080
Main Authors Abd Elaziz, Mohamed, Ouadfel, Salima, Ibrahim, Rehab Ali
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
1433-3058
DOI10.1007/s00521-023-08400-8

Cover

Abstract The technological revolution has made available a large amount of data with many irrelevant and noisy features that alter the analysis process and increase time processing. Therefore, feature selection (FS) approaches are used to select the smallest subset of relevant features. Feature selection is viewed as an optimization process for which meta-heuristics have been successfully applied. Thus, in this paper, a new feature selection approach is proposed based on an enhanced version of the Capuchin search algorithm (CapSA). In the developed FS approach, named ECapSA, three modifications have been introduced to avoid a lack of diversity, and premature convergence of the basic CapSA: (1) The inertia weight is adjusted using the logistic map, (2) sine cosine acceleration coefficients are added to improve convergence, and (3) a stochastic learning strategy is used to add more diversity to the movement of Capuchin and a levy random walk. To demonstrate the performance of ECapSA, different datasets are used, and it is compared with other well-known FS methods. The results provide evidence of the superiority of ECapSA among the tested datasets and competitive methods in terms of performance metrics.
AbstractList The technological revolution has made available a large amount of data with many irrelevant and noisy features that alter the analysis process and increase time processing. Therefore, feature selection (FS) approaches are used to select the smallest subset of relevant features. Feature selection is viewed as an optimization process for which meta-heuristics have been successfully applied. Thus, in this paper, a new feature selection approach is proposed based on an enhanced version of the Capuchin search algorithm (CapSA). In the developed FS approach, named ECapSA, three modifications have been introduced to avoid a lack of diversity, and premature convergence of the basic CapSA: (1) The inertia weight is adjusted using the logistic map, (2) sine cosine acceleration coefficients are added to improve convergence, and (3) a stochastic learning strategy is used to add more diversity to the movement of Capuchin and a levy random walk. To demonstrate the performance of ECapSA, different datasets are used, and it is compared with other well-known FS methods. The results provide evidence of the superiority of ECapSA among the tested datasets and competitive methods in terms of performance metrics.
Author Abd Elaziz, Mohamed
Ouadfel, Salima
Ibrahim, Rehab Ali
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0002-7682-6269
  surname: Abd Elaziz
  fullname: Abd Elaziz, Mohamed
  email: m.elsaied@Gu.edu.eg
  organization: Department of Mathematics, Faculty of Science, Zagazig University, Faculty of Computer Science and Engineering, Galala University, Department of Electrical and Computer Engineering, Lebanese American University, Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, MEU Research Unit, Middle East University
– sequence: 2
  givenname: Salima
  surname: Ouadfel
  fullname: Ouadfel, Salima
  organization: Department of Computer Science, NTIC Faculty, University of Constantine2
– sequence: 3
  givenname: Rehab Ali
  surname: Ibrahim
  fullname: Ibrahim, Rehab Ali
  organization: Department of Mathematics, Faculty of Science, Zagazig University
BookMark eNqNkF9LwzAUxYNMcJt-AZ8KPldvmqTNHnX4Dwb6oM8hS5OtoyY1SRn79qZWEHwYPgVufufec84MTayzGqFLDNcYoLoJAKzAORQkB04Bcn6CppgSkhNgfIKmsKDpu6TkDM1C2AEALTmbotc750Js7CZTsuvVtrFZ0NKrbbZv4jYL0amtTIDK2jS2Axiil1FvDplxPjNaxt7rJGq1io2z5-jUyDboi593jt4f7t-WT_nq5fF5ebvKFSlJzBXmleR6zSlTgCtTV4SyGuMaEy6JWUNRLaTBJQGsmaa8qqkmEhtYFEzWhpA5IuPe3nbysJdtKzrffEh_EBjEUIoYSxGpFPFdiuBJdTWqOu8-ex2i2Lne22RUFBxzVlQVGyg-Usq7ELw2QjVRDulS9KY9fqD4I_2Xq58sIcF2o_2vqyOqLyZKlOY
CitedBy_id crossref_primary_10_1016_j_ymssp_2024_111270
crossref_primary_10_1109_JSEN_2024_3510547
crossref_primary_10_1007_s00521_024_10815_w
crossref_primary_10_1016_j_asoc_2025_112872
crossref_primary_10_1007_s00500_023_09019_6
Cites_doi 10.1016/j.cie.2021.107250
10.1016/j.enconman.2011.12.004
10.1016/j.jksuci.2018.02.013
10.1016/j.cma.2020.113609
10.1109/4235.585893
10.1016/j.engappai.2020.104079
10.1016/j.ins.2012.04.028
10.1109/ACCESS.2019.2919991
10.1080/23311916.2019.1599537
10.1007/s11063-021-10530-w
10.1016/j.neucom.2015.06.083
10.1007/s00521-013-1368-0
10.1007/s00521-015-1920-1
10.1016/j.future.2018.06.020
10.1109/TEVC.2005.857610
10.1109/ACCESS.2019.2897325
10.1109/TEVC.2004.826071
10.1016/j.eswa.2017.07.043
10.1007/s00500-016-2385-6
10.1007/s00521-020-05145-6
10.1007/978-3-319-13826-8_5
10.1016/j.asoc.2017.03.002
10.1016/j.eswa.2020.113572
10.1016/j.knosys.2015.04.015
10.1016/S0020-0190(02)00447-7
10.1016/j.eswa.2021.116158
10.1007/s10586-021-03254-y
10.1109/T-C.1971.223410
10.1109/ACCESS.2020.2991543
10.1109/ACCESS.2017.2695498
10.1016/j.knosys.2020.106131
10.1023/A:1008202821328
10.1007/s11042-012-1278-7
10.1016/j.enconman.2016.09.085
10.1109/TIT.1963.1057810
10.33889/IJMEMS.2020.5.4.056
10.1016/j.asoc.2016.01.044
10.1016/j.swevo.2020.100663
10.1007/s13042-020-01202-7
10.1016/j.ijepes.2009.01.010
10.1007/s10489-018-1261-8
10.1016/j.advengsoft.2017.07.002
10.1016/j.knosys.2018.05.009
10.3390/electronics8101130
10.1023/A:1025667309714
10.1016/j.eswa.2019.113122
10.1016/j.asoc.2017.11.006
10.1007/s00521-017-2988-6
10.3390/computation9060068
10.1016/j.asoc.2013.09.018
10.1007/s00366-020-01028-5
10.12928/TELKOMNIKA.v12i4.535
10.1007/s00521-017-2837-7
10.1016/j.ins.2017.09.015
10.1016/j.asoc.2018.11.033
10.1155/2013/860289
10.1016/j.knosys.2015.12.022
10.1007/s11047-019-09769-z
10.1080/08839514.2020.1712788
10.1016/j.eswa.2016.06.004
10.1016/j.chemolab.2018.11.010
10.1007/978-3-642-21515-5_10
10.1145/3231053.3231072
10.1109/SIU.2018.8404843
10.1109/ICSMC.1997.637339
10.1109/ICEC.1998.699146
10.15439/2017F163
10.1117/12.2282076
10.1155/2015/931256
10.1016/B978-0-12-405163-8.00009-0
10.1007/1-84628-102-4_3
10.1109/ICICIC.2007.209
10.1109/CEC.2018.8477773
10.1007/978-3-642-12538-6_6
10.1109/IRI.2012.6303031
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.1007/s00521-023-08400-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Collection (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 14080
ExternalDocumentID 10.1007/s00521-023-08400-8
10_1007_s00521_023_08400_8
GrantInformation_xml – fundername: Zagazig University
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-c187a8eb845c017fd7345d11d138a3fb0279af16301e5e487d4e3a1f0925adf33
IEDL.DBID BENPR
ISSN 0941-0643
1433-3058
IngestDate Tue Aug 19 16:36:16 EDT 2025
Sat Jul 26 02:31:41 EDT 2025
Wed Oct 01 03:43:38 EDT 2025
Thu Apr 24 22:49:10 EDT 2025
Fri Feb 21 02:43:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Sine cosine acceleration
Feature selection
Capuchin search algorithm (CSA)
Meta-heuristics (MH)
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-c187a8eb845c017fd7345d11d138a3fb0279af16301e5e487d4e3a1f0925adf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7682-6269
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-023-08400-8.pdf
PQID 2818527758
PQPubID 2043988
PageCount 20
ParticipantIDs unpaywall_primary_10_1007_s00521_023_08400_8
proquest_journals_2818527758
crossref_citationtrail_10_1007_s00521_023_08400_8
crossref_primary_10_1007_s00521_023_08400_8
springer_journals_10_1007_s00521_023_08400_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Pashaei, Aydin (CR38) 2017; 56
Lei, Pu (CR66) 2014; 12
Moradi, Gholampour (CR34) 2016; 43
Sayed, Hassanien, Azar (CR18) 2019; 31
Vergara, Estévez (CR12) 2014; 24
CR35
Emary, Zawbaa, Sharawi (CR68) 2019; 75
Mohammadi-Ivatloo, Rabiee, Ehsan (CR59) 2012; 56
Abualigah, Diabat, Mirjalili (CR15) 2021
CR33
Ouadfel, AbdElaziz (CR45) 2020
Mirjalili (CR74) 2016; 96
Chen, Zhou, Yin (CR61) 2018; 422
Abualigah, Yousri, AbdElaziz (CR20) 2021
CR71
CR70
Arora, Singh, Sharma (CR78) 2019; 7
Sindhu, Ngadiran, Yacob (CR55) 2017
Wang, Li, Abd El-Latif (CR7) 2014; 71
Faris, Mafarja, Heidari (CR54) 2018; 154
Chaturvedi, Pandit, Srivastava (CR60) 2009; 31
CR4
CR3
CR6
Ghosh, Ahmed, Singh (CR47) 2020
Abualigah, Dulaimi (CR40) 2021
Marill, Green (CR10) 1963; 9
Dash (CR14) 2021; 33
AbdElaziz, Oliva, Xiong (CR37) 2017; 90
CR43
Jia, Li, Song (CR46) 2019
Babatunde, Armstrong, Leng, Diepeveen (CR19) 2014; 5
Xue, Zhang, Browne (CR41) 2014
Ekbal, Saha (CR1) 2015; 85
Gu, Cheng, Jin (CR42) 2018
Sayed, Tharwat, Hassanien (CR44) 2019
Whitney (CR9) 1971; c-20
Emary, Zawbaa, Hassanien (CR36) 2016; 172
Sadeghian, Akbari, Nematzadeh (CR52) 2021
Kumar, Bharti (CR39) 2021; 20
Braik (CR23) 2021; 53
Mafarja, Mirjalili (CR76) 2018; 62
Arasomwan, Adewumi (CR24) 2013
CR58
Gad, Talha, El-Latif (CR8) 2018; 89
CR13
Ratnaweera, Halgamuge, Watson (CR29) 2004; 8
Nasir, Das, Maity (CR31) 2012; 209
Braik, Sheta, Al-Hiary (CR22) 2021; 33
Arora, Sharma, Anand (CR77) 2020; 34
Qasim, Algamal (CR79) 2020; 5
Elgamal, Yasin, Sabri (CR16) 2021; 9
Ling, Zhou, Luo (CR69) 2017; 5
Abualigah, Elaziz, Sumari (CR17) 2021
Robnik-Šikonja, Kononenko (CR11) 2003; 53
Zhang, Liu, Wang (CR49) 2021
Jordehi (CR28) 2016; 129
Mirjalili (CR75) 2016; 27
Hammouri, Mafarja, Al-Betar (CR48) 2020
CR27
CR26
CR67
ZorarpacI, Özel (CR32) 2016; 62
CR65
Wolpert, Macready (CR21) 1997; 1
CR64
Too, Abdullah, Saad (CR50) 2019
Tubishat, Idris, Shuib (CR53) 2020
CR63
Trelea (CR25) 2003; 85
CR62
Jain, Salau (CR5) 2019
Rodrigues, Yang, De Souza, Papa (CR56) 2015
Storn, Price (CR72) 1997; 11
Liang, Qin, Suganthan, Baskar (CR30) 2006; 10
Mirjalili, Gandomi, Mirjalili (CR73) 2017; 114
Nguyen, Xue, Zhang (CR2) 2020
Abualigah, Alsalibi, Shehab (CR51) 2021
Yan, Ma, Luo, Patel (CR57) 2019
A Ratnaweera (8400_CR29) 2004; 8
H Jia (8400_CR46) 2019
R Dash (8400_CR14) 2021; 33
IC Trelea (8400_CR25) 2003; 85
E Emary (8400_CR68) 2019; 75
E Emary (8400_CR36) 2016; 172
O Babatunde (8400_CR19) 2014; 5
Z Sadeghian (8400_CR52) 2021
S Mirjalili (8400_CR75) 2016; 27
L Abualigah (8400_CR40) 2021
ZM Elgamal (8400_CR16) 2021; 9
L Abualigah (8400_CR20) 2021
Y Ling (8400_CR69) 2017; 5
M Nasir (8400_CR31) 2012; 209
B Mohammadi-Ivatloo (8400_CR59) 2012; 56
8400_CR58
8400_CR13
C Yan (8400_CR57) 2019
S Mirjalili (8400_CR74) 2016; 96
L Abualigah (8400_CR17) 2021
P Moradi (8400_CR34) 2016; 43
E ZorarpacI (8400_CR32) 2016; 62
L Abualigah (8400_CR51) 2021
K Chen (8400_CR61) 2018; 422
AI Hammouri (8400_CR48) 2020
T Marill (8400_CR10) 1963; 9
M Braik (8400_CR23) 2021; 53
R Gad (8400_CR8) 2018; 89
MA Arasomwan (8400_CR24) 2013
E Pashaei (8400_CR38) 2017; 56
L Abualigah (8400_CR15) 2021
H Faris (8400_CR54) 2018; 154
R Storn (8400_CR72) 1997; 11
8400_CR43
S Mirjalili (8400_CR73) 2017; 114
A Ekbal (8400_CR1) 2015; 85
AR Jordehi (8400_CR28) 2016; 129
S Ouadfel (8400_CR45) 2020
OS Qasim (8400_CR79) 2020; 5
N Wang (8400_CR7) 2014; 71
D Rodrigues (8400_CR56) 2015
M AbdElaziz (8400_CR37) 2017; 90
R Sindhu (8400_CR55) 2017
M Braik (8400_CR22) 2021; 33
8400_CR70
B Xue (8400_CR41) 2014
S Arora (8400_CR77) 2020; 34
L Kumar (8400_CR39) 2021; 20
GI Sayed (8400_CR44) 2019
8400_CR71
M Robnik-Šikonja (8400_CR11) 2003; 53
S Jain (8400_CR5) 2019
DH Wolpert (8400_CR21) 1997; 1
8400_CR33
JJ Liang (8400_CR30) 2006; 10
M Mafarja (8400_CR76) 2018; 62
S Gu (8400_CR42) 2018
J Too (8400_CR50) 2019
8400_CR35
Y Zhang (8400_CR49) 2021
8400_CR6
8400_CR4
AW Whitney (8400_CR9) 1971; c-20
8400_CR3
KK Ghosh (8400_CR47) 2020
K Lei (8400_CR66) 2014; 12
S Arora (8400_CR78) 2019; 7
GI Sayed (8400_CR18) 2019; 31
M Tubishat (8400_CR53) 2020
8400_CR63
KT Chaturvedi (8400_CR60) 2009; 31
8400_CR62
BH Nguyen (8400_CR2) 2020
8400_CR67
8400_CR65
8400_CR64
8400_CR27
JR Vergara (8400_CR12) 2014; 24
8400_CR26
References_xml – ident: CR70
– year: 2021
  ident: CR20
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107250
– volume: 56
  start-page: 175
  year: 2012
  end-page: 183
  ident: CR59
  article-title: Time-varying acceleration coefficients IPSO for solving dynamic economic dispatch with non-smooth cost function
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2011.12.004
– ident: CR4
– volume: 33
  start-page: 195
  year: 2021
  end-page: 207
  ident: CR14
  article-title: An adaptive harmony search approach for gene selection and classification of high dimensional medical data
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.02.013
– year: 2021
  ident: CR15
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: CR21
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– year: 2021
  ident: CR52
  article-title: A hybrid feature selection method based on information theory and binary butterfly optimization algorithm
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.104079
– ident: CR35
– volume: 209
  start-page: 16
  year: 2012
  end-page: 36
  ident: CR31
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2012.04.028
– year: 2019
  ident: CR46
  article-title: Spotted hyena optimization algorithm with simulated annealing for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919991
– year: 2019
  ident: CR5
  article-title: An image feature selection approach for dimensionality reduction based on kNN and SVM for AkT proteins
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2019.1599537
– ident: CR58
– volume: 53
  start-page: 2873
  year: 2021
  end-page: 2916
  ident: CR23
  article-title: A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: modeling industrial winding process, case study
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10530-w
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: CR36
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 24
  start-page: 175
  year: 2014
  end-page: 186
  ident: CR12
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1368-0
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: CR75
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– volume: 89
  start-page: 178
  year: 2018
  end-page: 191
  ident: CR8
  article-title: Iris recognition using multi-algorithmic approaches for cognitive internet of things (CIoT) framework
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.06.020
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: CR30
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.857610
– volume: 7
  start-page: 26343
  year: 2019
  end-page: 26361
  ident: CR78
  article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897325
– ident: CR71
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: CR29
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826071
– ident: CR67
– volume: 90
  start-page: 484
  year: 2017
  end-page: 500
  ident: CR37
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.07.043
– year: 2018
  ident: CR42
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2385-6
– volume: 33
  start-page: 2515
  year: 2021
  end-page: 2547
  ident: CR22
  article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05145-6
– year: 2015
  ident: CR56
  article-title: Binary flower pollination algorithm and its application to feature selection
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-319-13826-8_5
– volume: 56
  start-page: 94
  year: 2017
  end-page: 106
  ident: CR38
  article-title: Binary black hole algorithm for feature selection and classification on biological data
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.002
– year: 2020
  ident: CR45
  article-title: Enhanced crow search algorithm for feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113572
– volume: 85
  start-page: 37
  year: 2015
  end-page: 51
  ident: CR1
  article-title: Joint model for feature selection and parameter optimization coupled with classifier ensemble in chemical mention recognition
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.04.015
– volume: 85
  start-page: 317
  year: 2003
  end-page: 325
  ident: CR25
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(02)00447-7
– ident: CR64
– year: 2021
  ident: CR17
  article-title: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116158
– year: 2021
  ident: CR40
  article-title: A novel feature selection method for data mining tasks using hybrid Sine Cosine Algorithm and Genetic Algorithm
  publication-title: Cluster Comput
  doi: 10.1007/s10586-021-03254-y
– volume: c-20
  start-page: 1100
  year: 1971
  end-page: 1103
  ident: CR9
  article-title: A direct method of nonparametric measurement selection
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1971.223410
– ident: CR26
– year: 2020
  ident: CR47
  article-title: Improved binary sailfish optimizer based on adaptive β-Hill climbing for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991543
– volume: 5
  start-page: 6168
  year: 2017
  end-page: 6186
  ident: CR69
  article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695498
– ident: CR43
– year: 2020
  ident: CR48
  article-title: An improved dragonfly algorithm for feature selection
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2020.106131
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: CR72
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 71
  start-page: 1411
  year: 2014
  end-page: 1430
  ident: CR7
  article-title: Toward accurate localization and high recognition performance for noisy iris images
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-012-1278-7
– volume: 129
  start-page: 262
  year: 2016
  end-page: 274
  ident: CR28
  article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.09.085
– volume: 9
  start-page: 11
  year: 1963
  end-page: 17
  ident: CR10
  article-title: On the effectiveness of receptors in recognition systems
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1963.1057810
– volume: 5
  start-page: 697
  year: 2020
  end-page: 706
  ident: CR79
  article-title: Feature selection using different transfer functions for binary bat algorithm
  publication-title: Int J Math Eng Manag Sci
  doi: 10.33889/IJMEMS.2020.5.4.056
– ident: CR33
– volume: 43
  start-page: 117
  year: 2016
  end-page: 130
  ident: CR34
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2016.01.044
– year: 2020
  ident: CR2
  article-title: A survey on swarm intelligence approaches to feature selection in data mining
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100663
– year: 2021
  ident: CR51
  article-title: A parallel hybrid krill herd algorithm for feature selection
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01202-7
– volume: 31
  start-page: 249
  year: 2009
  end-page: 257
  ident: CR60
  article-title: Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2009.01.010
– ident: CR6
– volume: 5
  start-page: 899
  year: 2014
  end-page: 905
  ident: CR19
  article-title: A genetic algorithm-based feature selection
  publication-title: Int J Electron Commun Comput Eng
– ident: CR63
– ident: CR27
– year: 2019
  ident: CR44
  article-title: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1261-8
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: CR73
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: CR54
  article-title: An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.05.009
– year: 2019
  ident: CR50
  article-title: A new quadratic binary harris hawk optimization for feature selection
  publication-title: Electron
  doi: 10.3390/electronics8101130
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: CR11
  article-title: Theoretical and empirical analysis of relieff and rrelieff
  publication-title: Mach Learn
  doi: 10.1023/A:1025667309714
– year: 2020
  ident: CR53
  article-title: Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113122
– volume: 62
  start-page: 441
  year: 2018
  end-page: 453
  ident: CR76
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2017.11.006
– volume: 31
  start-page: 171
  year: 2019
  end-page: 188
  ident: CR18
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2988-6
– ident: CR65
– volume: 9
  start-page: 68
  year: 2021
  ident: CR16
  article-title: Improved equilibrium optimization algorithm using elite opposition-based learning and new local search strategy for feature selection in medical datasets
  publication-title: Computation
  doi: 10.3390/computation9060068
– year: 2014
  ident: CR41
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2013.09.018
– ident: CR3
– ident: CR13
– year: 2021
  ident: CR49
  article-title: Boosted binary Harris hawks optimizer and feature selection
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01028-5
– volume: 12
  start-page: 1023
  year: 2014
  end-page: 1030
  ident: CR66
  article-title: Complex optimization problems using highly efficient particle swarm optimizer
  publication-title: TELKOMNIKA
  doi: 10.12928/TELKOMNIKA.v12i4.535
– year: 2017
  ident: CR55
  article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2837-7
– volume: 422
  start-page: 218
  year: 2018
  end-page: 241
  ident: CR61
  article-title: A hybrid particle swarm optimizer with sine cosine acceleration coefficients
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2017.09.015
– volume: 75
  start-page: 775
  year: 2019
  end-page: 789
  ident: CR68
  article-title: Impact of Lèvy flight on modern meta-heuristic optimizers
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.11.033
– year: 2013
  ident: CR24
  article-title: On the performance of linear decreasing inertia weight particle swarm optimization for global optimization
  publication-title: Sci World J
  doi: 10.1155/2013/860289
– ident: CR62
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: CR74
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 20
  start-page: 39
  year: 2021
  end-page: 61
  ident: CR39
  article-title: A novel hybrid BPSO–SCA approach for feature selection
  publication-title: Nat Comput
  doi: 10.1007/s11047-019-09769-z
– volume: 34
  start-page: 292
  year: 2020
  end-page: 328
  ident: CR77
  article-title: A novel chaotic interior search algorithm for global optimization and feature selection
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2020.1712788
– volume: 62
  start-page: 91
  year: 2016
  end-page: 103
  ident: CR32
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.06.004
– year: 2019
  ident: CR57
  article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.11.010
– volume: 422
  start-page: 218
  year: 2018
  ident: 8400_CR61
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2017.09.015
– year: 2019
  ident: 8400_CR44
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1261-8
– volume: 154
  start-page: 43
  year: 2018
  ident: 8400_CR54
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.05.009
– volume: 5
  start-page: 899
  year: 2014
  ident: 8400_CR19
  publication-title: Int J Electron Commun Comput Eng
– volume: 62
  start-page: 441
  year: 2018
  ident: 8400_CR76
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2017.11.006
– volume: 209
  start-page: 16
  year: 2012
  ident: 8400_CR31
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2012.04.028
– volume: 20
  start-page: 39
  year: 2021
  ident: 8400_CR39
  publication-title: Nat Comput
  doi: 10.1007/s11047-019-09769-z
– volume: 75
  start-page: 775
  year: 2019
  ident: 8400_CR68
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.11.033
– ident: 8400_CR65
  doi: 10.1007/978-3-642-21515-5_10
– volume: 53
  start-page: 23
  year: 2003
  ident: 8400_CR11
  publication-title: Mach Learn
  doi: 10.1023/A:1025667309714
– volume: 43
  start-page: 117
  year: 2016
  ident: 8400_CR34
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2016.01.044
– ident: 8400_CR35
  doi: 10.1145/3231053.3231072
– volume: 9
  start-page: 11
  year: 1963
  ident: 8400_CR10
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1963.1057810
– year: 2020
  ident: 8400_CR2
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100663
– year: 2021
  ident: 8400_CR20
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107250
– year: 2021
  ident: 8400_CR15
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 27
  start-page: 1053
  year: 2016
  ident: 8400_CR75
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– ident: 8400_CR64
– volume: 5
  start-page: 697
  year: 2020
  ident: 8400_CR79
  publication-title: Int J Math Eng Manag Sci
  doi: 10.33889/IJMEMS.2020.5.4.056
– volume: 89
  start-page: 178
  year: 2018
  ident: 8400_CR8
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.06.020
– volume: 129
  start-page: 262
  year: 2016
  ident: 8400_CR28
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.09.085
– ident: 8400_CR43
  doi: 10.1109/SIU.2018.8404843
– year: 2019
  ident: 8400_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919991
– year: 2019
  ident: 8400_CR5
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2019.1599537
– volume: 114
  start-page: 163
  year: 2017
  ident: 8400_CR73
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 34
  start-page: 292
  year: 2020
  ident: 8400_CR77
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2020.1712788
– ident: 8400_CR27
– volume: c-20
  start-page: 1100
  year: 1971
  ident: 8400_CR9
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1971.223410
– ident: 8400_CR58
  doi: 10.1109/ICSMC.1997.637339
– year: 2020
  ident: 8400_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991543
– year: 2017
  ident: 8400_CR55
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2837-7
– year: 2021
  ident: 8400_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116158
– volume: 56
  start-page: 175
  year: 2012
  ident: 8400_CR59
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2011.12.004
– ident: 8400_CR71
– year: 2020
  ident: 8400_CR45
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113572
– year: 2013
  ident: 8400_CR24
  publication-title: Sci World J
  doi: 10.1155/2013/860289
– ident: 8400_CR63
  doi: 10.1109/ICEC.1998.699146
– year: 2019
  ident: 8400_CR50
  publication-title: Electron
  doi: 10.3390/electronics8101130
– ident: 8400_CR6
  doi: 10.15439/2017F163
– volume: 12
  start-page: 1023
  year: 2014
  ident: 8400_CR66
  publication-title: TELKOMNIKA
  doi: 10.12928/TELKOMNIKA.v12i4.535
– volume: 33
  start-page: 2515
  year: 2021
  ident: 8400_CR22
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05145-6
– ident: 8400_CR70
  doi: 10.1117/12.2282076
– volume: 85
  start-page: 317
  year: 2003
  ident: 8400_CR25
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(02)00447-7
– year: 2020
  ident: 8400_CR53
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113122
– volume: 62
  start-page: 91
  year: 2016
  ident: 8400_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.06.004
– volume: 90
  start-page: 484
  year: 2017
  ident: 8400_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.07.043
– volume: 24
  start-page: 175
  year: 2014
  ident: 8400_CR12
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1368-0
– volume: 5
  start-page: 6168
  year: 2017
  ident: 8400_CR69
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695498
– volume: 11
  start-page: 341
  year: 1997
  ident: 8400_CR72
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– year: 2020
  ident: 8400_CR48
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2020.106131
– volume: 8
  start-page: 240
  year: 2004
  ident: 8400_CR29
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826071
– volume: 10
  start-page: 281
  year: 2006
  ident: 8400_CR30
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.857610
– volume: 33
  start-page: 195
  year: 2021
  ident: 8400_CR14
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.02.013
– volume: 96
  start-page: 120
  year: 2016
  ident: 8400_CR74
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 9
  start-page: 68
  year: 2021
  ident: 8400_CR16
  publication-title: Computation
  doi: 10.3390/computation9060068
– ident: 8400_CR26
  doi: 10.1155/2015/931256
– year: 2021
  ident: 8400_CR49
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01028-5
– ident: 8400_CR33
  doi: 10.1016/B978-0-12-405163-8.00009-0
– volume: 56
  start-page: 94
  year: 2017
  ident: 8400_CR38
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.002
– year: 2018
  ident: 8400_CR42
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2385-6
– year: 2021
  ident: 8400_CR51
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01202-7
– volume: 71
  start-page: 1411
  year: 2014
  ident: 8400_CR7
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-012-1278-7
– volume: 1
  start-page: 67
  year: 1997
  ident: 8400_CR21
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– ident: 8400_CR13
  doi: 10.1007/1-84628-102-4_3
– volume: 31
  start-page: 171
  year: 2019
  ident: 8400_CR18
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2988-6
– ident: 8400_CR67
  doi: 10.1109/ICICIC.2007.209
– year: 2014
  ident: 8400_CR41
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2013.09.018
– ident: 8400_CR3
  doi: 10.1109/CEC.2018.8477773
– year: 2015
  ident: 8400_CR56
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-319-13826-8_5
– ident: 8400_CR62
  doi: 10.1007/978-3-642-12538-6_6
– volume: 7
  start-page: 26343
  year: 2019
  ident: 8400_CR78
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897325
– ident: 8400_CR4
  doi: 10.1109/IRI.2012.6303031
– volume: 53
  start-page: 2873
  year: 2021
  ident: 8400_CR23
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10530-w
– year: 2021
  ident: 8400_CR40
  publication-title: Cluster Comput
  doi: 10.1007/s10586-021-03254-y
– volume: 85
  start-page: 37
  year: 2015
  ident: 8400_CR1
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.04.015
– volume: 31
  start-page: 249
  year: 2009
  ident: 8400_CR60
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2009.01.010
– volume: 172
  start-page: 371
  year: 2016
  ident: 8400_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– year: 2021
  ident: 8400_CR52
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.104079
– year: 2019
  ident: 8400_CR57
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.11.010
SSID ssj0004685
Score 2.358334
Snippet The technological revolution has made available a large amount of data with many irrelevant and noisy features that alter the analysis process and increase...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14061
SubjectTerms Artificial Intelligence
Basic converters
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Convergence
Data Mining and Knowledge Discovery
Datasets
Feature selection
Image Processing and Computer Vision
Learning
Optimization
Original Article
Performance measurement
Probability and Statistics in Computer Science
Random walk
Search algorithms
Strategy
Trigonometric functions
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6JQkAc2MIpj59ERUEsFAjFQqUyR7TggUaUVaYXKr8d2nBQQQjDHsZPznX1n330fwHEYG9Q1EeA04ClmKlJY-J7CgWRcENEOfGFudG_vwl6fXQ-CgSsKK6ps9-pK0q7UdbGbOcHUoa9PDRap5-F4EZYs3lYDls6vHm86n-ohLRWnjlxMVg-jrljm516-bkhzL7O-GF2F5Wk-5rM3Phx-2nu669CvvrpMOXk5m07EmXz_Buj439_agDXnjKLzUns2YUHlW7BeET0gZ_fbcH8xGhUmPxpJPjbsKTkqLQSZY1yk_Uf5zA3gM3IkFE-oKFFvZ0g7xShTFj4UFZZ0R2vCDvS7nYfLHnZUDFjSkE6wJHHEYyViFkhtw1kaURakhKSExpxmQge3bZ5p384jKlA6CEqZopxkXtvXOpBRuguNfJSrPUCpx5hShh-YRYyTUK8AKYu4biqFwfppAqnmI5EOp9zQZQyTGmHZiizRIkusyJK4CSf1O-MSpePX1q1qmhNnsUViUbH8SIdPTTitZmr--LfeTmv1-MPg-__r_QBWfKsbJkG4BY3J61QdajdoIo6c1n8AZ4r55w
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6F5FBxIPQlglLkQ2_FYb22dzfH0BYhpCIORILTyq8FqdEmIhuh8OsZ7ysUVQjE2V6vbI_tb-yZ7wP4HiWedU1LaqWyVLjYUR0GjkojlGZ6LEPtX3T_nEenU3F2Ja868KvJhSmj3ZsnySqnwbM05cXRwmZHbeKbv81ENzjknpc0CGgywuIt6EUSEXkXetPzi8l1SbMnfGBPFWcvOKdo3kmdO_P_hv49nzags30n3YYPq3yh1vdqNntyFJ30wTWdqCJQ_o5WhR6Zh2f8ju_t5S7s1FiVTCrj-ggdl3-CfqMDQept4TNcHM_nSx8-TYxaeHGVnFQLiPhbXoLw0twqzwdNao2KG7KsSHHXBDEzyVzJLkqWpSYPGsoXmJ78vvx5SmulBmp4xAtqWBKrxOlESINLPLMxF9IyZhlPFM80-r5jlSH0C5iTDn0kKxxXLAvGIZpIxvlX6Obz3O0BsYEQznn5YBELxSLcIKyIFVY12lMBDYA185Oamsbcq2nM0paAuRy2FIctLYctTQbwo_1mUZF4vFh72Ex7Wi_oZVqSZoUxelcDOGxmblP8UmuHrbm84uf7b6s-hG5xt3LfEBgV-qC2-0dNLANM
  priority: 102
  providerName: Unpaywall
Title Boosting capuchin search with stochastic learning strategy for feature selection
URI https://link.springer.com/article/10.1007/s00521-023-08400-8
https://www.proquest.com/docview/2818527758
https://link.springer.com/content/pdf/10.1007/s00521-023-08400-8.pdf
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61yQE4UF4VoW3kAzdqsbv2PnJAKE2TVkCjCIjUnlZ-LRyiTSCpUP89M443aS9RL7uS7V1L87DHj_k-gPdZQahrOuU2VZZLlzuuk8jx1EilY91LE00nulfj7HIqv1yn13swbnJh6FplMyb6gdrODe2Rf_SoRUmO4e3nxR9OrFF0utpQaKhArWA_eYixfWgnhIzVgvbZcDz5fi9T0pN04pqG7vtIEdJofDId7ZBiaSII6zSKePFwqtrGn5sj02fw5LZeqLt_aja7NyuNXsDzEE6y_lr_L2HP1a_goKFqYMFzX8PkbD5f0g1nZtSC-E9qtrZxRhuxDCNA81sRZDMLNBK_2HKNW3vHMKxllfMAoGzpaXNQl29gOhr-HFzyQKbAjcjEipu4yFXhdCFTg15Y2VzI1MaxjUWhRKVxedpTFUZnUexSh8sYK51QcRX1EtRiJcQhtOp57d4Cs5GUzhHDr8ylijP0YStzhU2NJrSeDsSN3EoTkMaJ8GJWbjCSvaxLlHXpZV0WHfiw-WaxxtnY2fq4UUcZfG5Zbi2kA6eNirbVu_52ulHjIzp_t7vzI3iaeCOiK73H0Fr9vXUnGLisdBf2i9FFF9r986tvP-h9cfN12A02irWDbIDPadLHsul40r_5D-t37j8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hONAe2tKHSEvBh_ZUrK7X3uzmgBBQUHhFqAKJ29avbQ_RJu0Gofy5_rbOON6EXiIuXPdl7cx4PB7PfB_Ap25BqGsm4y7Tjiufe27SxPPMKm2E6WWpoRPdy0G3f6PObrPbFfjb9sJQWWXrE4OjdiNLOfKvAbUozTG83R__5sQaRaerLYWGjtQKbi9AjMXGjnM_vcctXLN3-g31_TlNT46vj_o8sgxwK7tywq0ocl14U6jMonlWLpcqc0I4IQstK4P7tp6uMGxJhM88xvdOealFlfRS_L2KEqK4BKwpqXq4-Vs7PB5cfX_QmRlIQXEPRfVFSsa2ndC8RxlZvJpKwlZNEl78vzQu4t35Ee1zWL-rx3p6r4fDB6vgySt4EcNXdjCztw1Y8fVreNlSQ7DoKd7A1eFo1FBFNbN6THwrNZsJi1Hil2HEaX9pgohmkbbiJ2tmOLlThmE0q3wAHGVNoOlB23kLN08i1newWo9qvwnMJUp5T4zCKldadNFnOJVrfNQaQgfqgGjlVtqIbE4EG8NyjskcZF2irMsg67LowJf5O-MZrsfSp7dadZRxjjflwiI7sNuqaHF72dd252p8xODvlw--A-v968uL8uJ0cP4BnqXBoKiceAtWJ3_u_EcMmiZmO1omgx9PPRn-Ae4tIxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSDwOvBGDATlwY9WaJn3sCINpvKYdmLRblTQpHKauopvQ_j1J-tiQ0ATnpolkx7Id298HcO0FGnWNu5ZwmbCo9KXFHVtabkQZx7ztOlxXdF_7Xm9In0buaGmK33S7lyXJfKZBozQl01Yq4lY1-KZfM1Ua7BCNS2rbVrAOG1R5N81h0PE6S5ORhpRT5TC6v4eSYmzm9z1-uqZFvFmVSHdga5akbP7FxuMlL9Tdh90ifES3ub4PYE0mh7BXUjOgwlKPYHA3mWS6oxlFLNV8JwnK7zTSD69IRXzRB9MQzaigjXhHWY5TO0cqjEWxNICfKDM0OUp3xzDsPrx1elZBnmBFxCNTK8KBzwLJA-pGyupi4RPqCowFJgEjMVfpaJvFKhqzsXSlSlsElYTh2G47SmsxISdQSyaJPAUkbEql1Iy-1KcMe8pmBfWZWhpxjc5TB1zKLYwKZHFNcDEOK0xkI-tQyTo0sg6DOtxU_6Q5rsbK1Y1SHWFhY1locKwcXyU8dWiWKlp8XrVbs1LjHw4_-9_uV7A5uO-GL4_953PYdsz90t29DahNP2fyQsUwU35pruk3lDPkAw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6F5FBxIPQlglLkQ2_FYb22dzfH0BYhpCIORILTyq8FqdEmIhuh8OsZ7ysUVQjE2V6vbI_tb-yZ7wP4HiWedU1LaqWyVLjYUR0GjkojlGZ6LEPtX3T_nEenU3F2Ja868KvJhSmj3ZsnySqnwbM05cXRwmZHbeKbv81ENzjknpc0CGgywuIt6EUSEXkXetPzi8l1SbMnfGBPFWcvOKdo3kmdO_P_hv49nzags30n3YYPq3yh1vdqNntyFJ30wTWdqCJQ_o5WhR6Zh2f8ju_t5S7s1FiVTCrj-ggdl3-CfqMDQept4TNcHM_nSx8-TYxaeHGVnFQLiPhbXoLw0twqzwdNao2KG7KsSHHXBDEzyVzJLkqWpSYPGsoXmJ78vvx5SmulBmp4xAtqWBKrxOlESINLPLMxF9IyZhlPFM80-r5jlSH0C5iTDn0kKxxXLAvGIZpIxvlX6Obz3O0BsYEQznn5YBELxSLcIKyIFVY12lMBDYA185Oamsbcq2nM0paAuRy2FIctLYctTQbwo_1mUZF4vFh72Ex7Wi_oZVqSZoUxelcDOGxmblP8UmuHrbm84uf7b6s-hG5xt3LfEBgV-qC2-0dNLANM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+capuchin+search+with+stochastic+learning+strategy+for+feature+selection&rft.jtitle=Neural+computing+%26+applications&rft.au=Abd+Elaziz%2C+Mohamed&rft.au=Ouadfel%2C+Salima&rft.au=Ibrahim%2C+Rehab+Ali&rft.date=2023-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=19&rft.spage=14061&rft.epage=14080&rft_id=info:doi/10.1007%2Fs00521-023-08400-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_08400_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon