Underwater Small Target Classification Using Sparse Multi-View Discriminant Analysis and the Invariant Scattering Transform

Sonar automatic target recognition (ATR) systems suffer from complex acoustic scattering, background clutter, and waveguide effects that are ever-present in the ocean. Traditional signal processing techniques often struggle to distinguish targets when noise and complicated target geometries are intr...

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and engineering Vol. 12; no. 10; p. 1886
Main Authors Christensen, Andrew, Sen Gupta, Ananya, Kirsteins, Ivars
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text
ISSN2077-1312
2077-1312
DOI10.3390/jmse12101886

Cover

Abstract Sonar automatic target recognition (ATR) systems suffer from complex acoustic scattering, background clutter, and waveguide effects that are ever-present in the ocean. Traditional signal processing techniques often struggle to distinguish targets when noise and complicated target geometries are introduced. Recent advancements in machine learning and wavelet theory offer promising directions for extracting informative features from sonar return data. This work introduces a feature extraction and dimensionality reduction technique using the invariant scattering transform and Sparse Multi-view Discriminant Analysis for identifying highly informative features in the PONDEX09/PONDEX10 datasets. The extracted features are used to train a support vector machine classifier that achieves an average classification accuracy of 97.3% using six unique targets.
AbstractList Sonar automatic target recognition (ATR) systems suffer from complex acoustic scattering, background clutter, and waveguide effects that are ever-present in the ocean. Traditional signal processing techniques often struggle to distinguish targets when noise and complicated target geometries are introduced. Recent advancements in machine learning and wavelet theory offer promising directions for extracting informative features from sonar return data. This work introduces a feature extraction and dimensionality reduction technique using the invariant scattering transform and Sparse Multi-view Discriminant Analysis for identifying highly informative features in the PONDEX09/PONDEX10 datasets. The extracted features are used to train a support vector machine classifier that achieves an average classification accuracy of 97.3% using six unique targets.
Audience Academic
Author Kirsteins, Ivars
Sen Gupta, Ananya
Christensen, Andrew
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0009-0009-9636-0126
  surname: Christensen
  fullname: Christensen, Andrew
– sequence: 2
  givenname: Ananya
  orcidid: 0000-0001-5255-8493
  surname: Sen Gupta
  fullname: Sen Gupta, Ananya
– sequence: 3
  givenname: Ivars
  surname: Kirsteins
  fullname: Kirsteins, Ivars
BookMark eNp9kUuP0zAUhSM0SAzD7PgBltiSwY_GsZdVeVUaxKIt2-jGuS6uErvYLlXFn8clCM0Ke2Hr-NzPV_e8rG588FhVrxl9EELTd4cpIeOMMqXks-qW07atmWD85sn9RXWf0oGWpbhkVN5Wv3Z-wHiGjJFsJhhHsoW4x0xWI6TkrDOQXfBkl5zfk80RYkLy5TRmV39zeCbvXTLRTc6Dz2TpYbwklwj4geTvSNb-J0R3fdoUTvnjCtlG8MmGOL2qnlsYE97_Pe-q3ccP29Xn-vHrp_Vq-VgbIUWue8slStTaUI7WSIu91dL0bSNaypvWUjC2lcYu-t4MGqBBqRAt8pYXhYq7aj1zhwCH7ljahXjpArjujxDivoOYnRmxY7pHKs0w8KFZNJKCVrJHQUEhH6xqC6ueWSd_hMu5DOwfkNHuGkT3NIjifzP7jzH8OGHK3SGcYplT6koeVCohZFNcD7NrD6UJ523IEUzZA07OlJytK_pSsYWQmildCt7OBSaGlCLa_3fxGwPnq60
Cites_doi 10.1121/2.0001489
10.1121/1.4921609
10.1109/JOE.2007.907926
10.1121/10.0015136
10.3390/jmse11010069
10.3390/s20010094
10.1109/JOE.2010.2094230
10.1109/ACCESS.2019.2939005
10.1121/1.1509425
10.1109/AUV.2016.7778662
10.3390/jmse10010084
10.1109/OCEANS-TAIPEI.2014.6964476
10.1109/CVPR.2015.7298594
10.1109/OCEANSSYD.2010.5603657
10.1007/BFb0020217
10.1109/ACCESS.2020.2995390
10.1121/1.4788636
10.1109/JOE.2019.2963041
10.1109/JOE.2020.3039037
10.1117/12.884475
10.3390/jmse10060736
10.1080/00031305.1982.10483045
10.3390/rs10040501
10.1109/JOE.2014.2356934
10.1098/rsta.2015.0203
10.1109/TIP.2009.2017161
10.1037/h0071325
10.1109/TSP.2014.2326991
10.1109/ACSSC.2015.7421444
10.1111/j.2517-6161.1996.tb02080.x
10.3390/jmse11051074
10.3390/s24010273
10.1126/science.290.5500.2323
10.1109/CVPR.2007.382983
10.1016/j.apacoust.2018.11.003
10.1109/JOE.2018.2835538
10.1109/TPAMI.2012.230
10.1121/1.3419926
10.3390/jmse11010021
10.1162/0899766042321814
10.1109/OCEANSAP.2016.7485712
10.1016/B978-012466606-1/50008-8
10.1109/ICPR.2016.7900011
10.1121/1.397718
10.1109/OCEANS.2016.7761334
10.1109/JOE.2011.2160471
10.1109/TPAMI.2015.2435740
10.7551/mitpress/4175.001.0001
10.1016/B978-0-12-801522-3.00012-4
10.23919/OCEANS40490.2019.8962556
10.1109/CSSE.2008.599
10.1121/10.0002168
10.1121/1.4789403
10.1145/2347736.2347755
10.1121/1.5133944
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
SOI
ADTOC
UNPAY
DOA
DOI 10.3390/jmse12101886
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_19be06cdd2d54560a986be30a8e2df87
10.3390/jmse12101886
A814369189
10_3390_jmse12101886
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
SOI
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c363t-bf26e6e99c02efc6febf96cb75370257f0acf76cf4bbcd9aa5e68eefe272bbc03
IEDL.DBID UNPAY
ISSN 2077-1312
IngestDate Fri Oct 03 12:37:38 EDT 2025
Sun Sep 07 11:09:32 EDT 2025
Fri Jul 25 12:09:12 EDT 2025
Mon Oct 20 16:59:09 EDT 2025
Thu Oct 16 04:28:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-bf26e6e99c02efc6febf96cb75370257f0acf76cf4bbcd9aa5e68eefe272bbc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-9636-0126
0000-0001-5255-8493
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/jmse12101886
PQID 3120683365
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_19be06cdd2d54560a986be30a8e2df87
unpaywall_primary_10_3390_jmse12101886
proquest_journals_3120683365
gale_infotracacademiconefile_A814369189
crossref_primary_10_3390_jmse12101886
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Wachowski (ref_7) 2011; 36
Jin (ref_43) 2019; 7
Kubicek (ref_26) 2020; 148
Tibshirani (ref_54) 1996; 58
ref_14
Tesei (ref_58) 2002; 112
ref_13
ref_57
Bruna (ref_28) 2013; 35
ref_56
Nie (ref_55) 2010; 23
Domingos (ref_48) 2012; 55
ref_53
ref_52
ref_19
Kargl (ref_70) 2014; 40
ref_15
Tesfaye (ref_12) 2015; 41
ref_61
Mallat (ref_47) 2016; 374
Williams (ref_69) 2010; 127
ref_25
ref_24
ref_68
ref_23
ref_22
ref_20
ref_64
ref_63
ref_62
Williams (ref_40) 2020; 46
ref_29
Pezeshki (ref_10) 2007; 32
ref_27
Pedregosa (ref_67) 2011; 12
Roweis (ref_49) 2000; 290
Bianco (ref_3) 2019; 146
Magand (ref_60) 1996; 82
Madhusudhana (ref_21) 2015; 137
ref_36
ref_35
ref_34
ref_33
Andreux (ref_66) 2020; 21
ref_32
Tucker (ref_8) 2011; 36
ref_30
ref_39
Hall (ref_2) 2018; 44
ref_38
ref_37
Muller (ref_5) 1982; 36
Wang (ref_31) 2019; 146
Sammelmann (ref_59) 1989; 85
ref_45
Hotelling (ref_51) 1933; 24
ref_44
ref_42
ref_41
ref_1
Kubicek (ref_11) 2022; 152
Kan (ref_18) 2015; 38
Miao (ref_17) 2021; 46
Hardoon (ref_6) 2004; 16
Williams (ref_16) 2009; 18
Le (ref_46) 2020; 8
Mallat (ref_65) 2014; 62
ref_9
ref_4
References_xml – ident: ref_9
– volume: 23
  start-page: 1813
  year: 2010
  ident: ref_55
  article-title: Efficient and robust feature selection via joint L2, 1-norms minimization
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_13
  doi: 10.1121/2.0001489
– volume: 137
  start-page: 3077
  year: 2015
  ident: ref_21
  article-title: Automatic detection of echolocation clicks based on a Gabor model of their waveform
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4921609
– volume: 32
  start-page: 948
  year: 2007
  ident: ref_10
  article-title: Undersea target classification using canonical correlation analysis
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2007.907926
– volume: 152
  start-page: 2893
  year: 2022
  ident: ref_11
  article-title: Canonical correlation analysis as a feature extraction method to classify active sonar targets with shallow neural networks
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0015136
– ident: ref_33
  doi: 10.3390/jmse11010069
– ident: ref_38
  doi: 10.3390/s20010094
– volume: 36
  start-page: 37
  year: 2011
  ident: ref_8
  article-title: Coherence-based underwater target detection from multiple disparate sonar platforms
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2010.2094230
– ident: ref_42
– ident: ref_61
– volume: 7
  start-page: 125522
  year: 2019
  ident: ref_43
  article-title: Accurate underwater ATR in forward-looking sonar imagery using deep convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939005
– volume: 112
  start-page: 1817
  year: 2002
  ident: ref_58
  article-title: Measurements and modeling of acoustic scattering from partially and completely buried spherical shells
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1509425
– ident: ref_37
  doi: 10.1109/AUV.2016.7778662
– ident: ref_32
  doi: 10.3390/jmse10010084
– ident: ref_19
  doi: 10.1109/OCEANS-TAIPEI.2014.6964476
– ident: ref_45
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_1
  doi: 10.1109/OCEANSSYD.2010.5603657
– ident: ref_56
– ident: ref_52
  doi: 10.1007/BFb0020217
– ident: ref_27
– volume: 8
  start-page: 94126
  year: 2020
  ident: ref_46
  article-title: Deep gabor neural network for automatic detection of mine-like objects in sonar imagery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995390
– ident: ref_50
  doi: 10.1121/1.4788636
– volume: 21
  start-page: 1
  year: 2020
  ident: ref_66
  article-title: Kymatio: Scattering transforms in python
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 236
  year: 2020
  ident: ref_40
  article-title: On the use of tiny convolutional neural networks for human-expert-level classification performance in sonar imagery
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2019.2963041
– volume: 46
  start-page: 952
  year: 2021
  ident: ref_17
  article-title: Underwater acoustic signal classification based on sparse time–frequency representation and deep learning
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2020.3039037
– volume: 82
  start-page: 707
  year: 1996
  ident: ref_60
  article-title: Time frequency analysis of energy distribution for circumferential waves on cylindrical elastic shells
  publication-title: Acta Acust. United Acust.
– ident: ref_4
  doi: 10.1117/12.884475
– ident: ref_41
  doi: 10.3390/jmse10060736
– volume: 36
  start-page: 342
  year: 1982
  ident: ref_5
  article-title: Understanding canonical correlation through the general linear model and principal components
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1982.10483045
– ident: ref_29
  doi: 10.3390/rs10040501
– volume: 40
  start-page: 632
  year: 2014
  ident: ref_70
  article-title: Scattering from objects at a water–sediment interface: Experiment, high-speed and high-fidelity models, and physical insight
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2014.2356934
– volume: 374
  start-page: 20150203
  year: 2016
  ident: ref_47
  article-title: Understanding deep convolutional networks
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2015.0203
– volume: 18
  start-page: 1239
  year: 2009
  ident: ref_16
  article-title: Bayesian data fusion of multiview synthetic aperture sonar imagery for seabed classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2017161
– volume: 24
  start-page: 417
  year: 1933
  ident: ref_51
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0071325
– volume: 62
  start-page: 4114
  year: 2014
  ident: ref_65
  article-title: Deep scattering spectrum
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2326991
– ident: ref_23
  doi: 10.1109/ACSSC.2015.7421444
– ident: ref_24
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_54
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref_34
  doi: 10.3390/jmse11051074
– ident: ref_35
  doi: 10.3390/s24010273
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref_49
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref_64
  doi: 10.1109/CVPR.2007.382983
– volume: 146
  start-page: 145
  year: 2019
  ident: ref_31
  article-title: Underwater sonar image classification using adaptive weights convolutional neural network
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2018.11.003
– volume: 44
  start-page: 739
  year: 2018
  ident: ref_2
  article-title: Underwater unexploded ordnance (UXO) classification using a matched subspace classifier with adaptive dictionaries
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2018.2835538
– volume: 35
  start-page: 1872
  year: 2013
  ident: ref_28
  article-title: Invariant scattering convolution networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.230
– ident: ref_63
– ident: ref_44
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_67
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 127
  start-page: 3356
  year: 2010
  ident: ref_69
  article-title: Acoustic scattering from a solid aluminum cylinder in contact with a sand sediment: Measurements, modeling, and interpretation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3419926
– ident: ref_53
  doi: 10.3390/jmse11010021
– volume: 16
  start-page: 2639
  year: 2004
  ident: ref_6
  article-title: Canonical correlation analysis: An overview with application to learning methods
  publication-title: Neural Comput.
  doi: 10.1162/0899766042321814
– ident: ref_20
  doi: 10.1109/OCEANSAP.2016.7485712
– ident: ref_22
  doi: 10.1016/B978-012466606-1/50008-8
– ident: ref_30
  doi: 10.1109/ICPR.2016.7900011
– volume: 85
  start-page: 114
  year: 1989
  ident: ref_59
  article-title: The acoustic scattering by a submerged, spherical shell. I: The bifurcation of the dispersion curve for the spherical antisymmetric Lamb wave
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.397718
– volume: 41
  start-page: 592
  year: 2015
  ident: ref_12
  article-title: Image-based automated change detection for synthetic aperture sonar by multistage coregistration and canonical correlation analysis
  publication-title: IEEE J. Ocean. Eng.
– ident: ref_39
  doi: 10.1109/OCEANS.2016.7761334
– volume: 36
  start-page: 665
  year: 2011
  ident: ref_7
  article-title: A new synthetic aperture sonar processing method using coherence analysis
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2011.2160471
– ident: ref_15
– volume: 38
  start-page: 188
  year: 2015
  ident: ref_18
  article-title: Multi-view discriminant analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2435740
– ident: ref_68
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref_62
  doi: 10.1016/B978-0-12-801522-3.00012-4
– ident: ref_25
  doi: 10.23919/OCEANS40490.2019.8962556
– ident: ref_36
  doi: 10.1109/CSSE.2008.599
– ident: ref_57
– volume: 148
  start-page: 2061
  year: 2020
  ident: ref_26
  article-title: Sonar target representation using two-dimensional Gabor wavelet features
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0002168
– ident: ref_14
  doi: 10.1121/1.4789403
– volume: 55
  start-page: 78
  year: 2012
  ident: ref_48
  article-title: A few useful things to know about machine learning
  publication-title: Commun. ACM
  doi: 10.1145/2347736.2347755
– volume: 146
  start-page: 3590
  year: 2019
  ident: ref_3
  article-title: Machine learning in acoustics: Theory and applications
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5133944
SSID ssj0000826106
Score 2.2790008
Snippet Sonar automatic target recognition (ATR) systems suffer from complex acoustic scattering, background clutter, and waveguide effects that are ever-present in...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1886
SubjectTerms Accuracy
Acoustic scattering
Acoustics
Algorithms
Analysis
Automatic target recognition
Background noise
Classification
Clutter
convolutional networks
Datasets
Deep learning
Discriminant analysis
Feature extraction
Invariants
Machine learning
multi-view
Neural networks
Noise reduction
Ocean bottom
Signal processing
small targets
Sonar
sparsity
Submarines
Support vector machines
Target recognition
Waveguides
Wavelet analysis
wavelets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KLn1AaPqgbtOgQx8nE1vyytIxSROSHtrDbkpuQo8RpCTustlkKfnzGcneYCg0l1xlI4aZkfQNfPMNwCfhtI8qWCpLUJaNjqLUrg6lbRUKrnwaB5_YFj_k8Wnz_WxyNhr1lThhvTxw77jdWjuspA-Bh_TYV1Yr6VBUViEPUeU-8krpUTGV72BCzVTs9Ex3QXX97u_LK0xiWbVKbdOjNyhL9f97IT-Hp9fd3P5d2YuL0Ytz9BI2B6jI9noTt-AJdq_gxU-Ptht0pl_DbZ5btCLAuGDTS9qEzTK1m-Vhl4kGlD3PMjOATedUxiLLTbflr3NcsW_n6dro6TBsLVDCbBcYAUN20t1QKZ0-TX3W4UybzNZQ9w2cHh3ODo7LYZ5C6YUUy9JFLlGi1r7iGL2M6KKW3lHF0hL0aWNlfWylj41zPmhrJygVYkTeclqpxFvY6P50-A5YwNjq1msnHW8mVlndYNOIyK20GmNdwOe1h828l80wVG6kSJhxJArYT-6__yeJXecFSgEzpIB5KAUK-JqCZ9KRXC6st0NnAZmaxK3MniJQKHWtdAHb6_ia4axeGVHzSioh5KSAL_cx_6_Z7x_D7A_wjBNC6pmB27CxXFzjR0I4S7eTk_kOvV79kQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7YGHhHhVBArygccpamJnHfuAUAutCocFsVvUW-THGIHa7LLdUiH-PB4nWVZC6tWxLMtjj79xvvkG4IWw2gXlTQxLUOaVDiLXtvS5qRUKrhyVgye2xUQen1QfT8enWzAZcmGIVjn4xOSo_dzRG_meKHkhlRBy_HbxM6eqUfR3dSihYfrSCv5Nkhi7AduclLFGsH1wOPn8Zf3qEi-8iBdkx4AXMd7f-3F-gdS1VJROvXE3JQn__x31bbh52S7M7ytzdrZxEx3dg7s9hGT7nc3vwxa2D-DOJ4em7fWnH8KfVM_oKgLJJZuex0HYLFG-WSqCSfSgZBGWGANsuojhLbKUjJt_jevA3n8nd9LRZNggXMJM61kEjOxD-yuG2PRp6pI-Jw0yGyDwIzg5Opy9O877Ogu5E1Kschu4RIlau4JjcDKgDVo6GyOZOkKiOhTGhVq6UFnrvDZmjFIhBuQ1jy2F2IFRO2_xMTCPoda101ZaXo2NMrrCqhKBG2k0hjKDl8MKN4tOTqOJYQhZotm0RAYHtPzrPiSCnRrmy29Nf6aaUlsspPOee8KBhdFKWhSFUch9UHUGr8l4DR3V1dI402ccxKmS6FWzryJYlLpUOoPdwb5Nf4Yvmn87LoNXa5tfO-0n14_zFG7xiIk6LuAujFbLS3wWMc3KPu836l8GOfsG
  priority: 102
  providerName: ProQuest
Title Underwater Small Target Classification Using Sparse Multi-View Discriminant Analysis and the Invariant Scattering Transform
URI https://www.proquest.com/docview/3120683365
https://doi.org/10.3390/jmse12101886
https://doaj.org/article/19be06cdd2d54560a986be30a8e2df87
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61yYGHxBuxUCIfCpy27Nq7fhxTSCgcQkUSVE4r2zuWCu0SpQkR8Oex91EFKgFXr3c1smfsb9afvwHYZ0ZZJ0vt0xLkcaYci5VJy1gLiYxKG8rBB7bFhB_Ns3cn-ckO7Hd3YbbO75lPx19-Pr_AoHGVSsl3oc9zj7h70J9PjoefQt24RIg4ZSltOO1XXvltt6lF-a8uvTfg2rpa6O8bfXa2tbeMb8Oos6qhlHw5WK_Mgf3xh2Djv8y-A7dacEmGjTfchR2s7sHN9xZ11SpT34efdaWjjYeYSzI998aQWU0GJ3V5zEAcqueK1FwCMl34xBdJfU03_niKG_L6NCw0DYGGdJImRFcl8VCSvK2--eQ7PJraWrkzfGTWgeMHMB-PZq-O4rYCQ2wZZ6vYOMqRo1I2oegsd2ic4tb4HEd4sCRcoq0T3LrMGFsqrXPkEtEhFdS3JOwh9KqvFT4CUqITSlhluKFZrqVWGWYZc1RzrdClETzrZqpYNEIbhU9QwmgW26MZwWGYxss-QR67bvDDX7TRVqTKYMJtWdIyIMREK8kNskRLpKWTIoIXwQmKEMSrpba6vYvgTQ1yWMVQehjJVSpVBHudnxRtdF8U3t8SLhnjeQTPL33nr2Y__t-OT-A69bip4QvuQW-1XONTj3tWZgC7cvxmAP3D0eT4w6D-ezBoQ-EXN00GkQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeyggIZ4iUMAHCqdVd-2N1z5UqKWtEloCIinqbevHGLVqNyFJiSr-G7-NsbMbIiH11uvuamR5xjPfeGfmI-QtN8p66TSmJSCSXHmeKJO5RBcSOJM20MGHaoue6Bznn07aJyvkT9MLE8oqG58YHbUb2nBHvsUzlgrJuWh_GP1MAmtU-LvaUGjomlrBbccRY3VjxyFczzCFm2x391Dfm4wd7A8-dpKaZSCxXPBpYjwTIEApmzLwVngwXglrEMcXCAgKn2rrC2F9box1Sus2CAnggRUMn6Qc5d4haznPFSZ_a7v7va_fFrc8GGARn4h5xT3nKt06v5xAGNqVydC-vRQLI2XA_4HhHlm_qkb6eqYvLpYi38FD8qCGrHRnbmOPyApUj8n9LxZ0Vc-7fkJ-R_6kGQLXMe1fohA6iCXmNJJuhnKkaAE0VijQ_gjTaaCx-Tf5jvtO986C-5qX5dBmUArVlaMIUGm3-oUpfXjVt3EeaBAyaCD3U3J8Kzv-jKxWwwqeE-rAF6qwygjD8raWWuWQ59wzLbQCn7XIZrPD5Wg-vqPEtCdoolzWRIvshu1ffBOGbscHw_GPsj7DZaYMpMI6x1zAnalWUhjgqZbAnJdFi7wPyiuDa5iOtdV1hwMuNQzZKnckglOhMqlaZKPRb1n7jEn5z8Jb5N1C5zcu-8XNct6Q9c7g81F51O0dviR3GeKxeR3iBlmdjq_gFeKpqXldGy0lp7d9Tv4CAOM7sw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkPiSEJ-iMMAPDJ6iJnbq2A8IDUpZGRpI7dDeMn-c0aYtLW1HNfGf8dfhc5JSCWlve02ik-U73_3O-d0dIa-4UdZLp0NaAiLJleeJMplLdCGBM2lxHDyyLfbF7kH--bB3uEH-tLUwSKtsfWJ01G5i8Y68yzOWCsm56HV9Q4v41h-8m_5McIIU_mltx2nUJrIHF8uQvs3fDvtB19uMDT6OP-wmzYSBxHLBF4nxTIAApWzKwFvhwXglrAkYvghgoPCptr4Q1ufGWKe07oGQAB5YwcKTlAe518j1Aru4Y5X64NPqfieE1oBMRM2151yl3ZOzOWC7rkxi4fZaFIzDAv4PCbfJzfNqqi-W-vR0LeYN7pG7DVilO7V13ScbUD0gd75a0FXT6foh-R0nJy0DZJ3R0VkQQseRXE7juE0kIkXd08hNoKNpSKSBxrLf5HvYcdo_RsdVE3Jo2yKF6srRAE3psPoVknl8NbKxEygKGbdg-xE5uJL9fkw2q0kFTwh14AtVWGWEYXlPS61yyHPumRZagc86ZLvd4XJaN-4oQ8KDmijXNdEh73H7V99gu-34YDL7UTant8yUgVRY55hDxJlqJYUBnmoJzHlZdMgbVF6JTmEx01Y3tQ1hqdheq9yRAZYKlUnVIVutfsvGW8zLf7bdIa9XOr902U8vl_OS3Aino_wy3N97Rm6xAMRqAuIW2VzMzuF5AFIL8yJaLCVHV31E_gKE5zlN
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7YGHxBsRWpAPBU4piZ34cVygVeFQkHYXlVPkx1jqK6y2WVbAn6-dR7VQCbg6TjQaj-1vlG--AdhhRlkvnQ5pCfK0UJ6lyuQu1UIio9LGdvCRbXHID2bFx6PyaAN2hlqYtf_3LKTjb07OLzBqXOVS8huwycuAuEewOTv8PP4a-8ZlQqQ5y2nHab_2ym-3TSvKf_3ovQ03l_Vc_1jps7O1u2X_HuwNVnWUktPdZWN27c8_BBv_ZfZ9uNuDSzLuouEBbGD9EO58sqjrXpn6EfxqOx2tAsRckMl5MIZMWzI4adtjRuJQu1ak5RKQyTwkvkjaMt30yzGuyPvjeNB0BBoySJoQXTsSoCT5UH8PyXd8NLGtcmf8yHQAx49htr83fXeQ9h0YUss4a1LjKUeOStmMorfco_GKWxNyHBHAkvCZtl5w6wtjrFNal8glokcqaBjJ2BMY1d9qfArEoRdKWGW4oUWppVYFFgXzVHOt0OcJvBxWqpp3QhtVSFCiN6t1bybwNi7j1Zwoj90OBPdX_W6rcmUw49Y56iJCzLSS3CDLtETqvBQJvI5BUMVN3Cy01X0tQjA1ymFVYxlgJFe5VAlsD3FS9bv7ogrxlnHJGC8TeHUVO381-9n_TtyCWzTgpo4vuA2jZrHE5wH3NOZFH_aX3wgDHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Small+Target+Classification+Using+Sparse+Multi-View+Discriminant+Analysis+and+the+Invariant+Scattering+Transform&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Christensen%2C+Andrew&rft.au=Ananya+Sen+Gupta&rft.au=Kirsteins%2C+Ivars&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=12&rft.issue=10&rft.spage=1886&rft_id=info:doi/10.3390%2Fjmse12101886&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon