Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony – ABC-algorithm

Biomedical signals are usually contaminated by noise generated from sources such as power line interference and disturbances produced by the movement of the recording electrodes. Also the signal-to-noise ratio of biomedical signals is usually quite low. In addition, biomedical signals often interfer...

Full description

Saved in:
Bibliographic Details
Published inDigital signal processing Vol. 23; no. 3; pp. 1051 - 1058
Main Authors Karaboga, Nurhan, Latifoglu, Fatma
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2013
Subjects
Online AccessGet full text
ISSN1051-2004
1095-4333
DOI10.1016/j.dsp.2012.09.015

Cover

Abstract Biomedical signals are usually contaminated by noise generated from sources such as power line interference and disturbances produced by the movement of the recording electrodes. Also the signal-to-noise ratio of biomedical signals is usually quite low. In addition, biomedical signals often interfere with each other. Therefore, the filters employed for eliminating noise and interference are significant in the medical practice. Digital infinite impulse response (IIR) filters have shorter filter length than the finite impulse response (FIR) filters with the same frequency characteristic. Therefore, in this work, an approach based on digital IIR filters are described for the elimination of noise on transcranial Doppler by using artificial bee colony (ABC) which is a popular swarm based optimization algorithm introduced recently. Moreover, the performance of the proposed approach is compared to particle swarm optimization algorithm.
AbstractList Biomedical signals are usually contaminated by noise generated from sources such as power line interference and disturbances produced by the movement of the recording electrodes. Also the signal-to-noise ratio of biomedical signals is usually quite low. In addition, biomedical signals often interfere with each other. Therefore, the filters employed for eliminating noise and interference are significant in the medical practice. Digital infinite impulse response (IIR) filters have shorter filter length than the finite impulse response (FIR) filters with the same frequency characteristic. Therefore, in this work, an approach based on digital IIR filters are described for the elimination of noise on transcranial Doppler by using artificial bee colony (ABC) which is a popular swarm based optimization algorithm introduced recently. Moreover, the performance of the proposed approach is compared to particle swarm optimization algorithm.
Author Latifoglu, Fatma
Karaboga, Nurhan
Author_xml – sequence: 1
  givenname: Nurhan
  surname: Karaboga
  fullname: Karaboga, Nurhan
  email: nurhan_k@erciyes.edu.tr
  organization: Erciyes University, Engineering Faculty, Electrical&Electronics Eng. Dep., 39039, Kayseri, Turkey
– sequence: 2
  givenname: Fatma
  surname: Latifoglu
  fullname: Latifoglu, Fatma
  email: flatifoglu@erciyes.edu.tr
  organization: Erciyes University, Engineering Faculty, Electrical&Electronics Eng. Dep., 39039, Kayseri, Turkey
BookMark eNqFkb1uFDEURkcoSCSBB6BzSTOD_2csqrAksFIkJAS15fFcL1557cGeJYrS8A68IU-Ch6WiCI19LZ9zi--7aM5iitA0LwnuCCby9b6bytxRTGiHVYeJeNKcE6xEyxljZ-ssSEsx5s-ai1L2GOOeU3nePFwHf_DRLD5FlByKyRdAdV6yicXWw5uA3qV5DpBR8btYn8fi4w5tt5-Q82GBXNAE6xdM6M4vX5HJi3feruYIgGwKKd6jXz9-oqu3m9aEXcoVOzxvnjoTCrz4e182X26uP28-tLcf3283V7etZZIt7ehILydhCTBHew5cjUoMdqTUOKB0YMoJabHsxQi9E1YJKYTq-cBBSCcHdtm8Ou2dc_p2hLLogy8WQjAR0rFoIgjjtAbF_48yrio4KFnR_oTanErJ4LT1y58ca3Q-aIL12oze69qMXpvRWOnaTDXJP-ac_cHk-0edNycHalDfPWRdrIdoYfIZ7KKn5B-xfwPIWqnb
CitedBy_id crossref_primary_10_1007_s13755_023_00268_1
crossref_primary_10_1016_j_sigpro_2016_09_004
crossref_primary_10_34133_research_0361
crossref_primary_10_1088_1757_899X_611_1_012031
crossref_primary_10_1007_s00500_020_05440_3
crossref_primary_10_1007_s11633_017_1091_x
crossref_primary_10_1016_j_dsp_2017_03_003
crossref_primary_10_3390_info10050176
crossref_primary_10_1016_j_engappai_2016_11_005
crossref_primary_10_1016_j_asoc_2016_05_007
crossref_primary_10_1080_13632469_2022_2120114
crossref_primary_10_1002_cepa_1555
crossref_primary_10_1016_j_ins_2014_08_040
crossref_primary_10_1007_s11760_015_0758_4
crossref_primary_10_1142_S0218126618500731
crossref_primary_10_1016_j_neucom_2014_04_082
crossref_primary_10_1016_j_jksuci_2014_03_021
crossref_primary_10_1016_j_cie_2021_107616
crossref_primary_10_1109_TII_2018_2857198
crossref_primary_10_1109_OJCAS_2020_3035771
crossref_primary_10_1109_TUFFC_2020_2975483
crossref_primary_10_3934_mbe_2023077
crossref_primary_10_1016_j_dsp_2015_02_010
crossref_primary_10_1016_j_apacoust_2020_107669
crossref_primary_10_1007_s00034_018_0959_5
Cites_doi 10.5772/6742
10.1109/MHS.1995.494215
10.1109/TUFFC.2006.1621500
10.1109/ICNN.1995.488968
10.1109/TBME.1974.324381
10.1016/S0301-5629(99)00024-1
10.1016/j.jfranklin.2008.11.003
10.1016/j.asoc.2007.05.007
10.1121/1.390733
10.1016/0929-8266(95)00135-2
10.1109/79.543974
10.1007/s10462-012-9328-0
10.1007/s10898-007-9149-x
10.1109/MCAS.2005.1405897
10.1177/016173468600800403
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright_xml – notice: 2012 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dsp.2012.09.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1095-4333
EndPage 1058
ExternalDocumentID 10_1016_j_dsp_2012_09_015
S1051200412002345
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-bf176d5c1e3f274e49b958cb22afe22839f56c0675be7f5c9565597484e56f683
IEDL.DBID .~1
ISSN 1051-2004
IngestDate Sun Sep 28 11:15:05 EDT 2025
Sun Sep 28 08:50:10 EDT 2025
Wed Oct 01 04:26:56 EDT 2025
Thu Apr 24 23:09:28 EDT 2025
Fri Feb 23 02:28:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Noise elimination
Artificial bee colony algorithm
IIR filter
Particle swarm optimization
Transcranial Doppler signal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-bf176d5c1e3f274e49b958cb22afe22839f56c0675be7f5c9565597484e56f683
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1349433896
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1513424334
proquest_miscellaneous_1349433896
crossref_citationtrail_10_1016_j_dsp_2012_09_015
crossref_primary_10_1016_j_dsp_2012_09_015
elsevier_sciencedirect_doi_10_1016_j_dsp_2012_09_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Digital signal processing
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Karaboga, Basturk (br0210) January 2008; 8
Engelbrecht (br0220) 2005
Liu, Wang, Wang (br0080) 1997; 17
Wang, Shen (br0240) 2006; 53
Ng, Leung, Chung, Luk, Lau (br0110) 1996; 13
Karaboga, Basturk (br0200) 2007; 39
D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
Brody, Meindl (br0030) May 1974; 21
Shung, Yuan, Fei, Tarbell (br0040) 1984; 75
R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43.
Diniz (br0020) 2008
Cai, Cui, Zeng, Tan (br0260) January 2009
Leeuwen, Hoeks, Reneman (br0050) Oct. 1986; 8
(br0170) 2008
Krusienski, Jenkins (br0070) 2005; 5
Karaboga (br0120) 2005; 8
Evans (br0010) 1989
Akay, Karaboga (br0250) 2009
.
Karaboga (br0140) 2009; 346
Karaboga, Cetinkaya (br0130) 2011; 19
D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artificial Intelligence Review
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the 4th IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
Liu, Wang, Wang (br0090) 1999; 25
Wang, Fish (br0230) 1996; 3
Haykin (br0060) 2002
Chen (br0100) 2001
Wang (10.1016/j.dsp.2012.09.015_br0240) 2006; 53
Karaboga (10.1016/j.dsp.2012.09.015_br0130) 2011; 19
10.1016/j.dsp.2012.09.015_br0160
Shung (10.1016/j.dsp.2012.09.015_br0040) 1984; 75
Ng (10.1016/j.dsp.2012.09.015_br0110) 1996; 13
10.1016/j.dsp.2012.09.015_br0180
Karaboga (10.1016/j.dsp.2012.09.015_br0210) 2008; 8
Karaboga (10.1016/j.dsp.2012.09.015_br0140) 2009; 346
Liu (10.1016/j.dsp.2012.09.015_br0090) 1999; 25
Engelbrecht (10.1016/j.dsp.2012.09.015_br0220) 2005
Haykin (10.1016/j.dsp.2012.09.015_br0060) 2002
Akay (10.1016/j.dsp.2012.09.015_br0250) 2009
Diniz (10.1016/j.dsp.2012.09.015_br0020) 2008
Liu (10.1016/j.dsp.2012.09.015_br0080) 1997; 17
10.1016/j.dsp.2012.09.015_br0150
10.1016/j.dsp.2012.09.015_br0190
(10.1016/j.dsp.2012.09.015_br0170) 2008
Krusienski (10.1016/j.dsp.2012.09.015_br0070) 2005; 5
Leeuwen (10.1016/j.dsp.2012.09.015_br0050) 1986; 8
Evans (10.1016/j.dsp.2012.09.015_br0010) 1989
Brody (10.1016/j.dsp.2012.09.015_br0030) 1974; 21
Karaboga (10.1016/j.dsp.2012.09.015_br0120) 2005; 8
Cai (10.1016/j.dsp.2012.09.015_br0260) 2009
Chen (10.1016/j.dsp.2012.09.015_br0100) 2001
Karaboga (10.1016/j.dsp.2012.09.015_br0200) 2007; 39
Wang (10.1016/j.dsp.2012.09.015_br0230) 1996; 3
References_xml – volume: 5
  start-page: 8
  year: 2005
  end-page: 20
  ident: br0070
  article-title: Design and performance of adaptive systems based on structured stochastic optimization strategies
  publication-title: IEEE Circuits Syst. Mag.
– volume: 53
  start-page: 735
  year: 2006
  end-page: 744
  ident: br0240
  article-title: Noise reduction for Doppler ultrasound signal based on the adapted local cosine transform and the garrote thresholding method
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– reference: R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43.
– year: 2005
  ident: br0220
  article-title: Fundamentals of Computational Swarm Intelligence
– volume: 8
  start-page: 252
  year: Oct. 1986
  end-page: 271
  ident: br0050
  article-title: Simulation of real-time frequency estimators for pulsed Doppler systems
  publication-title: Ultrason. Imag.
– volume: 17
  start-page: 9
  year: 1997
  end-page: 11
  ident: br0080
  article-title: Extracting the spectrogram envelop using the improved percentile method
  publication-title: Tech. Acoust.
– year: 2008
  ident: br0170
  publication-title: Swarm Intelligence: Introduction and Applications
– volume: 13
  start-page: 38
  year: 1996
  end-page: 46
  ident: br0110
  article-title: The genetic search approach: A new learning algorithm for adaptive IIR filtering
  publication-title: IEEE Signal Process. Mag.
– reference: D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
– volume: 25
  start-page: 839
  year: 1999
  end-page: 846
  ident: br0090
  article-title: Spectrogram enhancement algorithm: A soft thresholding-based approach
  publication-title: Ultrasound Med. Biol.
– year: 1989
  ident: br0010
  article-title: Doppler Ultrasound Physics, Instrumentation, and Clinical Application
– start-page: 608
  year: 2009
  end-page: 619
  ident: br0250
  article-title: Parameter tuning to the artificial bee colony algorithm
  publication-title: 1st International Conference on Computational Collective Intelligence
– volume: 75
  start-page: 1265
  year: 1984
  end-page: 1272
  ident: br0040
  article-title: Effect of flow disturbance on ultrasonic back-scatter from blood
  publication-title: J. Acoust. Soc. Am.
– year: 2001
  ident: br0100
  article-title: Digital Signal Processing: Spectral Computation and Filter Design
– reference: D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artificial Intelligence Review,
– volume: 8
  start-page: 1
  year: 2005
  end-page: 9
  ident: br0120
  article-title: Digital IIR filter design using differential evolution algorithm
  publication-title: EURASIP J. Appl. Signal Process.
– volume: 8
  start-page: 687
  year: January 2008
  end-page: 697
  ident: br0210
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Applied Soft Computing
– volume: 19
  start-page: 175
  year: 2011
  end-page: 190
  ident: br0130
  article-title: A novel and efficient algorithm for adaptive filtering: Artificial bee colony algorithm
  publication-title: Turkish J. Electr. Eng. Comput. Sci.
– volume: 21
  start-page: 183
  year: May 1974
  end-page: 192
  ident: br0030
  article-title: Theoretical analysis of the CW Doppler ultrasonic flowmeter
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2002
  ident: br0060
  article-title: Adaptive Filter Theory
– reference: .
– volume: 3
  start-page: 71
  year: 1996
  end-page: 81
  ident: br0230
  article-title: Arterial Doppler signal simulation by time domain processing
  publication-title: Eur. J. Ultrasound
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: br0200
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the 4th IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
– year: January 2009
  ident: br0260
  article-title: Individual parameter selection strategy for particle swarm optimization
  publication-title: Particle Swarm Optimization
– year: 2008
  ident: br0020
  article-title: Adaptive Filtering Algorithms and Practical Implementations
– volume: 346
  start-page: 328
  year: 2009
  end-page: 348
  ident: br0140
  article-title: A new design method based on artificial bee colony algorithm for digital IIR filters
  publication-title: J. Franklin Inst.
– year: 2009
  ident: 10.1016/j.dsp.2012.09.015_br0260
  article-title: Individual parameter selection strategy for particle swarm optimization
  doi: 10.5772/6742
– volume: 8
  start-page: 1
  year: 2005
  ident: 10.1016/j.dsp.2012.09.015_br0120
  article-title: Digital IIR filter design using differential evolution algorithm
  publication-title: EURASIP J. Appl. Signal Process.
– ident: 10.1016/j.dsp.2012.09.015_br0160
  doi: 10.1109/MHS.1995.494215
– volume: 53
  start-page: 735
  year: 2006
  ident: 10.1016/j.dsp.2012.09.015_br0240
  article-title: Noise reduction for Doppler ultrasound signal based on the adapted local cosine transform and the garrote thresholding method
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2006.1621500
– year: 2008
  ident: 10.1016/j.dsp.2012.09.015_br0170
– year: 2002
  ident: 10.1016/j.dsp.2012.09.015_br0060
– ident: 10.1016/j.dsp.2012.09.015_br0150
  doi: 10.1109/ICNN.1995.488968
– year: 2008
  ident: 10.1016/j.dsp.2012.09.015_br0020
– volume: 21
  start-page: 183
  issue: 3
  year: 1974
  ident: 10.1016/j.dsp.2012.09.015_br0030
  article-title: Theoretical analysis of the CW Doppler ultrasonic flowmeter
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1974.324381
– ident: 10.1016/j.dsp.2012.09.015_br0180
– volume: 25
  start-page: 839
  year: 1999
  ident: 10.1016/j.dsp.2012.09.015_br0090
  article-title: Spectrogram enhancement algorithm: A soft thresholding-based approach
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(99)00024-1
– volume: 346
  start-page: 328
  year: 2009
  ident: 10.1016/j.dsp.2012.09.015_br0140
  article-title: A new design method based on artificial bee colony algorithm for digital IIR filters
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2008.11.003
– year: 2005
  ident: 10.1016/j.dsp.2012.09.015_br0220
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.dsp.2012.09.015_br0210
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.05.007
– volume: 75
  start-page: 1265
  year: 1984
  ident: 10.1016/j.dsp.2012.09.015_br0040
  article-title: Effect of flow disturbance on ultrasonic back-scatter from blood
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.390733
– year: 2001
  ident: 10.1016/j.dsp.2012.09.015_br0100
– volume: 3
  start-page: 71
  issue: 1
  year: 1996
  ident: 10.1016/j.dsp.2012.09.015_br0230
  article-title: Arterial Doppler signal simulation by time domain processing
  publication-title: Eur. J. Ultrasound
  doi: 10.1016/0929-8266(95)00135-2
– volume: 13
  start-page: 38
  year: 1996
  ident: 10.1016/j.dsp.2012.09.015_br0110
  article-title: The genetic search approach: A new learning algorithm for adaptive IIR filtering
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543974
– ident: 10.1016/j.dsp.2012.09.015_br0190
  doi: 10.1007/s10462-012-9328-0
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.dsp.2012.09.015_br0200
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 19
  start-page: 175
  issue: 1
  year: 2011
  ident: 10.1016/j.dsp.2012.09.015_br0130
  article-title: A novel and efficient algorithm for adaptive filtering: Artificial bee colony algorithm
  publication-title: Turkish J. Electr. Eng. Comput. Sci.
– volume: 17
  start-page: 9
  issue: 1
  year: 1997
  ident: 10.1016/j.dsp.2012.09.015_br0080
  article-title: Extracting the spectrogram envelop using the improved percentile method
  publication-title: Tech. Acoust.
– volume: 5
  start-page: 8
  year: 2005
  ident: 10.1016/j.dsp.2012.09.015_br0070
  article-title: Design and performance of adaptive systems based on structured stochastic optimization strategies
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2005.1405897
– year: 1989
  ident: 10.1016/j.dsp.2012.09.015_br0010
– volume: 8
  start-page: 252
  issue: 4
  year: 1986
  ident: 10.1016/j.dsp.2012.09.015_br0050
  article-title: Simulation of real-time frequency estimators for pulsed Doppler systems
  publication-title: Ultrason. Imag.
  doi: 10.1177/016173468600800403
– start-page: 608
  year: 2009
  ident: 10.1016/j.dsp.2012.09.015_br0250
  article-title: Parameter tuning to the artificial bee colony algorithm
SSID ssj0007426
Score 2.1452076
Snippet Biomedical signals are usually contaminated by noise generated from sources such as power line interference and disturbances produced by the movement of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1051
SubjectTerms Algorithms
Artificial bee colony algorithm
Digital
Doppler
Doppler effect
IIR filter
IIR filters
Impulse response
Interference
Noise
Noise elimination
Particle swarm optimization
Swarm intelligence
Transcranial Doppler signal
Title Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony – ABC-algorithm
URI https://dx.doi.org/10.1016/j.dsp.2012.09.015
https://www.proquest.com/docview/1349433896
https://www.proquest.com/docview/1513424334
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-4333
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007426
  issn: 1051-2004
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-4333
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007426
  issn: 1051-2004
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-4333
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007426
  issn: 1051-2004
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-4333
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007426
  issn: 1051-2004
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-4333
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007426
  issn: 1051-2004
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_hmBU9CbB67m-6x1pZW0YMP8LYkm12p1KS09SCC-B_8h_4SZ7aJL6QHLyEJExJmJvPYnfmGkIMEguS69bkXmlh4TPDYSyAV8nyrtWSRkCzBRuHzC9G5Yae3_HaGNKteGCyrLG3_xKY7a13eqZXcrA16vdoVRAZB6PCi0PEwbDRnLMYpBkcvX2UekPq5DiMgdhpR7Wy6Gq9shJCVuBwoj3ycjPu3b_plpZ3raS-RxTJmpI3JZy2TGZOvkIVvSIKr5LnVd-O5kM20sDQveiND4XyMvkjDAfSMnhQQc5ohxaINuMSa9zva7V5S28NN8xHNXD2HySguz1LkwwRggqbGUMS3zp_o--sbbRw3vaR_VwyB7GGN3LRb182OV85V8HQkorGX2iAWGdeBiSwkpYbJVPK6TsMwsQbhcKTlQmMqkZrYcg0plMs76sxwYUU9WiezeZGbDUKzMIkSK1ONGDxxwNPIWs20FRIyJR5km8SvOKp0CTqOsy_6qqouu1cgBIVCUL5UIIRNcvj5yGCCuDGNmFViUj_URoFHmPbYfiVSBb8T7pEkuSkeRwrRGhmk7VJMoeFAFQIV2_rf67fJfOimamDd5A6ZHQ8fzS7ENuN0zynvHplrdM86Fx8Qq_lD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsABsYodI3FCCs1iO_URCqhlO7BI3KzEsVFRSVBbDggJ8Q_8IV_CjJuwCfXAJUqiiRJ5JjPz7PEbQrYTSJLr1udeaGLhMcFjLwEo5PlWa8kiIVmCG4XPzkXzmh3f8JsR0qj2wmBZZen7Bz7deevyTq0czdpDu127hMwgCB1fFAYexkfJOONhjAhs9-WrzgOwn9tiBNLOJKqlTVfklfWQsxLnA-Wuj61x_w5Ov9y0iz1HM2S6TBrp3uC7ZsmIyefI1DcqwXnyfNhx_blwnGlhaV60e4bCeR-DkYYDGBo9KCDpNF2KVRtwiUXvt7TVuqC2javmPZq5gg6TUZyfpTgQA4YJmhpDkeA6f6Lvr290b7_hJZ3bogti9wvk-ujwqtH0ysYKno5E1PdSG8Qi4zowkQVUaphMJa_rNAwTa5APR1ouNGKJ1MSWa8BQDnjUmeHCinq0SMbyIjdLhGZhEiVWphpJeOKAp5G1mmkrJEAlHmTLxK9GVOmSdRybX3RUVV52p0AJCpWgfKlACctk5_ORhwHlxjBhVqlJ_bAbBSFh2GNblUoV_E-4SJLkpnjsKaRrZIDbpRgiw0EqBCm28r_Xb5KJ5tXZqTptnZ-sksnQtdjAIso1MtbvPpp1SHT66YYz5A_PJvrY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elimination+of+noise+on+transcranial+Doppler+signal+using+IIR+filters+designed+with+artificial+bee+colony+%E2%80%93+ABC-algorithm&rft.jtitle=Digital+signal+processing&rft.au=Karaboga%2C+Nurhan&rft.au=Latifoglu%2C+Fatma&rft.date=2013-05-01&rft.issn=1051-2004&rft.volume=23&rft.issue=3&rft.spage=1051&rft.epage=1058&rft_id=info:doi/10.1016%2Fj.dsp.2012.09.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsp_2012_09_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon