An RBF-FD Method for Numerical Solutions of 2D Diffusion-Wave and Diffusion Equations of Distributed Fractional Order

The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional derivatives. Such equations arise in modelling complex systems and have many important applications. Existence of integral term over the order of fracti...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonlinear mathematical physics Vol. 30; no. 4; pp. 1357 - 1374
Main Authors Taghipour, Fatemeh, Shirzadi, Ahmad, Safarpoor, Mansour
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1776-0852
1402-9251
1776-0852
DOI10.1007/s44198-023-00153-1

Cover

Abstract The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional derivatives. Such equations arise in modelling complex systems and have many important applications. Existence of integral term over the order of fractional derivative causes the high complexity of these equations and so their numerical solutions needs special cares. Using Gauss quadrature approach for discretizing the integral term of fractional derivative converts the distributed equation into a multi-term fractional differential equation. Then, the time variable is discretized with a suitable finite difference approach. The resultant semi-discretized equations are fully discretized by a radial basis function-generated finite difference based method. Convergence of the method are studied numerically. Various kind of test problems are considered for a comprehensive numerical study and the results confirm the efficiency of the method.
AbstractList The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional derivatives. Such equations arise in modelling complex systems and have many important applications. Existence of integral term over the order of fractional derivative causes the high complexity of these equations and so their numerical solutions needs special cares. Using Gauss quadrature approach for discretizing the integral term of fractional derivative converts the distributed equation into a multi-term fractional differential equation. Then, the time variable is discretized with a suitable finite difference approach. The resultant semi-discretized equations are fully discretized by a radial basis function-generated finite difference based method. Convergence of the method are studied numerically. Various kind of test problems are considered for a comprehensive numerical study and the results confirm the efficiency of the method.
Author Safarpoor, Mansour
Taghipour, Fatemeh
Shirzadi, Ahmad
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Taghipour
  fullname: Taghipour, Fatemeh
  organization: Department of Mathematics, Persian Gulf University
– sequence: 2
  givenname: Ahmad
  orcidid: 0000-0001-9842-0270
  surname: Shirzadi
  fullname: Shirzadi, Ahmad
  email: shirzadi@pgu.ac.ir
  organization: Department of Mathematics, Persian Gulf University
– sequence: 3
  givenname: Mansour
  surname: Safarpoor
  fullname: Safarpoor, Mansour
  organization: Department of Mathematics, Persian Gulf University
BookMark eNqNkEtPAyEUhYmpiVr9A65IXKM8ZgZY1taqiY_ER1wSyoBOMx1aGDT9906tscZF4wpyON-5l3MAeo1vLADHBJ8SjPlZzDIiBcKUIYxJzhDZAfuE8wJhkdPer_seOIhxijHjhRD7IA0a-HA-RuMRvLXtmy-h8wHepZkNldE1fPR1aivfROgdpCM4qpxLsRPQi363UDflRoIXi6R_zKMqtqGapNaWcBy0WT10gfehtOEQ7DpdR3v0ffbB8_jiaXiFbu4vr4eDG2RYwVo0sSTDE2EKIjLGuZU5No7mZckopc5wUmomc-EKK3iWa6k72XCZSWdkZoRlfcDWuamZ6-WHrms1D9VMh6UiWK2aU-vmVNec-mpOkY46WVPz4BfJxlZNfQrd8lFRiSXLc1GwzkXXLhN8jMG6_0WLP5Cp2q_O2qCrejv6_ZfYzWlebdhstYX6BJZwoEI
CitedBy_id crossref_primary_10_1016_j_camwa_2024_05_018
Cites_doi 10.3934/dcdss.2023022
10.1016/j.chaos.2022.112919
10.1016/j.jcp.2013.11.013
10.1109/JSEN.2022.3201015
10.1142/p614
10.3934/dcdsb.2013.18.2597
10.1016/S0304-0208(06)80001-0
10.1007/s12190-020-01330-x
10.1016/j.enganabound.2018.09.016
10.1007/s11075-012-9631-5
10.3390/e23010110
10.1142/6437
10.1088/0951-7715/19/12/010
10.1007/s11075-016-0201-0
10.1109/IWCSN.2017.8276526
10.3390/math11040906
10.1016/j.jmaa.2007.08.024
10.1137/1.9781611974041
10.1002/mma.6144
10.1016/j.matcom.2023.06.006
10.1007/s44198-022-00080-7
10.1007/s12190-018-1182-z
10.1103/PhysRevE.92.042117
10.1017/CBO9780511617539
10.1002/mma.3707
10.1016/j.amc.2022.127188
10.1142/S0219876219500233
10.1016/j.apnum.2023.08.007
10.1016/j.camwa.2015.02.023
10.1016/j.aml.2020.106598
10.3934/dcds.2020027
10.1016/j.aml.2019.04.030
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.1007/s44198-023-00153-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1776-0852
EndPage 1374
ExternalDocumentID 10.1007/s44198-023-00153-1
10_1007_s44198_023_00153_1
GroupedDBID 0R~
29L
2WC
30N
4.4
AAIKQ
AAJMT
AAJSJ
AAKKN
AAYZJ
ABCCY
ABEEZ
ABFIM
ABPEM
ABTAI
ACACY
ACGFO
ACGFS
ACIPV
ACTIO
ACULB
ADCVX
ADIYS
AENEX
AEYOC
AFGXO
AFKRA
AGROQ
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AMATQ
AMXXU
AQRUH
ARAPS
AVBZW
BCCOT
BENPR
BGLVJ
BLEHA
BPLKW
C1A
C24
C6C
CAG
CCCUG
CCPQU
COF
CRFIH
DGEBU
DKSSO
DMQIW
DU5
E3Z
EBLON
EBS
EJD
E~A
E~B
GTTXZ
H13
HCIFZ
HZ~
H~P
IPNFZ
IVXBP
K7-
KYCEM
LJTGL
M4Z
M~E
O9-
OK1
P2P
P71
PIMPY
QCRFL
RIG
RSV
RWJ
S-T
SNACF
SOJ
TDBHL
TFL
TFMCV
TFT
TFW
TOXWX
TR2
TTHFI
TUS
UT5
XSB
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-be140b8c6184377e950cf25dd3222fc71da3958f6e8745a9a222c7949fc94c8e3
IEDL.DBID C6C
ISSN 1776-0852
1402-9251
IngestDate Tue Aug 19 21:27:26 EDT 2025
Sat Oct 18 23:09:48 EDT 2025
Thu Apr 24 23:02:05 EDT 2025
Wed Oct 01 03:30:21 EDT 2025
Fri Feb 21 02:40:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Local meshless methods
65D12
Finite differences
35R11
Distributed-order fractional differential equations
RBF-FD
65N99
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-be140b8c6184377e950cf25dd3222fc71da3958f6e8745a9a222c7949fc94c8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9842-0270
OpenAccessLink https://doi.org/10.1007/s44198-023-00153-1
PQID 2909355863
PQPubID 5642909
PageCount 18
ParticipantIDs unpaywall_primary_10_1007_s44198_023_00153_1
proquest_journals_2909355863
crossref_primary_10_1007_s44198_023_00153_1
crossref_citationtrail_10_1007_s44198_023_00153_1
springer_journals_10_1007_s44198_023_00153_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Singapore
PublicationTitle Journal of nonlinear mathematical physics
PublicationTitleAbbrev J Nonlinear Math Phys
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Guerngar, N., McCormick, J.: Distributed-order space-time fractional diffusions in bounded domains. Discrete Contin. Dyn. Syst. S 16(10), 2783–2799 (2023). https://doi.org/10.3934/dcdss.2023022. https://www.aimsciences.org/article/id/63e9d0e45f0ada7459792f75
KatsikadelisJTNumerical solution of distributed order fractional differential equationsJ. Comput. Phys.20142591122314855610.1016/j.jcp.2013.11.013
SafarpoorMShirzadiAA localized RBF-MLPG method for numerical study of heat and mass transfer equations in elliptic finsEng. Anal. Bound. Elem.2019983545387264910.1016/j.enganabound.2018.09.016
EscuderoCThe fractional Keller–Segel modelNonlinearity200619122909227376510.1088/0951-7715/19/12/010
Jin, H.-Y., Wang, Z.-A.: Global stabilization of the full attraction-repulsion Keller–Segel system. Discrete Contin. Dyn. Syst. 40(6), 3509–3527 (2020). https://doi.org/10.3934/dcds.2020027. https://www.aimsciences.org/article/id/2ded8560-83bf-43a5-800e-db6a0330137e
PodlubnyISkovranekTJaraBMVPetrasIVerbitskyVChenYMatrix approach to discrete fractional calculus iii: non-equidistant grids, variable step length and distributed orders, Philosophical Transactions of the Royal Society A: MathematicalPhys. Eng. Sci.20133711990201201533044228
WeiLLiuLSunHStability and convergence of a local discontinuous galerkin method for the fractional diffusion equation with distributed orderJ. Appl. Math. Comput.201959323341393522810.1007/s12190-018-1182-z
GhehsarehHRZaghianAMajlesiAThe method of approximate particular solutions to simulate an anomalous mobile-immobile transport processMath. Methods Appl. Sci.202043636373649408550110.1002/mma.6144
ShirzadiMRostamiMDehghanMLiXAmerican options pricing under regime-switching jump-diffusion models with meshfree finite point methodChaos Solitons Fract.2023166451737610.1016/j.chaos.2022.112919
AbbaszadehMDehghanMAn improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimateNumer. Algorithms2017751173211363600910.1007/s11075-016-0201-0
KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006North-HollandElsevier10.1016/S0304-0208(06)80001-0
Ding, W., Patnaik, S., Sidhardh, S., Semperlotti, F.: Applications of distributed-order fractional operators: a review. Entropy. https://doi.org/10.3390/e23010110. https://www.mdpi.com/1099-4300/23/1/110
Hua GaoGZhong SunZTwo alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equationsComput. Math. Appl.2015699926948333180810.1016/j.camwa.2015.02.023
ShivanianEPseudospectral meshless radial point hermit interpolation versus pseudospectral meshless radial point interpolationInt. J. Comput. Methods202017071950023413573010.1142/S0219876219500233
MohebbiAAbbaszadehMCompact finite difference scheme for the solution of time fractional advection-dispersion equationNumer. Algorithms2013633431452307118510.1007/s11075-012-9631-5
MainardiFFractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models2010SingaporeWorld Scientific10.1142/p614
YuQTurnerILiuFVeghVThe application of the distributed-order time fractional Bloch model to magnetic resonance imagingAppl. Math. Comput.2022427441268210.1016/j.amc.2022.127188
HosseinzadehHShirzadiAOn optimal radius of sub-domains in meshless LBIE methodMath. Comput. Simul.2023213145160460301610.1016/j.matcom.2023.06.006
Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46(2)
WendlandHScattered Data Approximation2004CambridgeCambridge University Press10.1017/CBO9780511617539
AliIHaqSUllahRArifeenSUApproximate solution of second order singular perturbed and obstacle boundary value problems using meshless method based on radial basis functionsJ. Nonlinear Math. Phys.202330215234455741710.1007/s44198-022-00080-7
DehghanMSafarpoorMThe dual reciprocity boundary integral equation technique to solve a class of the linear and nonlinear fractional partial differential equationsMath. Methods Appl. Sci.2016391024612476351276110.1002/mma.3707
RenJChenHA numerical method for distributed order time fractional diffusion equation with weakly singular solutionsAppl. Math. Lett.201996159165395062210.1016/j.aml.2019.04.030
Liu, P., Shi, J., Wang, Z.-A.: Pattern formation of the attraction-repulsion Keller-Segel system. Discrete Contin. Dyn. Syst. B 18(10), 2597–2625 (2013). https://doi.org/10.3934/dcdsb.2013.18.2597. https://www.aimsciences.org/article/id/07a4507d-9ffb-4e2c-9c13-ef57dbd913c4
SandevTChechkinAVKorabelNKantzHSokolovIMMetzlerRDistributed-order diffusion equations and multifractality: models and solutionsPhys. Rev. E201592355586310.1103/PhysRevE.92.042117
WangFWangHZhouXFuRA driving fatigue feature detection method based on multifractal theoryIEEE Sens. J.20222219190461905910.1109/JSEN.2022.3201015
FasshauerGEMeshfree Approximation Methods with MATLAB2007SingaporeWorld Scientific
ShirzadiMDehghanMGeneralized regularized least-squares approximation of noisy data with application to stochastic PDEsAppl. Math. Lett.2021111414209510.1016/j.aml.2020.106598
KochubeiANDistributed order calculus and equations of ultraslow diffusionJ. Math. Anal. Appl.20083401252281237615210.1016/j.jmaa.2007.08.024
AslefallahMAbbasbandySShivanianEMeshless singular boundary method for two-dimensional pseudo-parabolic equation: analysis of stability and convergenceJ. Appl. Math. Comput.202063585606410099310.1007/s12190-020-01330-x
Luo, R., Peng, Z., Hu, J.: On model identification based optimal control and its applications to multi-agent learning and control. Mathematics. https://doi.org/10.3390/math11040906. https://www.mdpi.com/2227-7390/11/4/906
HosseinzadehHShirzadiAA new meshless local integral equation methodAppl. Numer. Math.20231944458463550610.1016/j.apnum.2023.08.007
FornbergBFlyerNA Primer on Radial Basis Functions with Applications to the Geosciences2015PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611974041
Nava-Antonio, G., Fernandez-Anaya, G., Hernandez-Martinez, E.G., Jamous-Galante, J., Ferreira-Vazquez, E., Flores-Godoy, J.: Consensus of multi-agent systems with distributed fractional order dynamics. In: International workshop on complex systems and networks (IWCSN) vol. 2017, pp. 190–197 (2017). https://doi.org/10.1109/IWCSN.2017.8276526
GE Fasshauer (153_CR32) 2007
M Dehghan (153_CR29) 2016; 39
153_CR7
M Shirzadi (153_CR25) 2021; 111
AN Kochubei (153_CR8) 2008; 340
153_CR4
G Hua Gao (153_CR17) 2015; 69
B Fornberg (153_CR28) 2015
153_CR3
153_CR6
H Hosseinzadeh (153_CR23) 2023; 213
Q Yu (153_CR9) 2022; 427
A Mohebbi (153_CR30) 2013; 63
M Safarpoor (153_CR24) 2019; 98
H Hosseinzadeh (153_CR27) 2023; 194
T Sandev (153_CR16) 2015; 92
H Wendland (153_CR31) 2004
I Ali (153_CR21) 2023; 30
153_CR11
153_CR10
F Wang (153_CR15) 2022; 22
F Mainardi (153_CR2) 2010
153_CR12
M Abbaszadeh (153_CR33) 2017; 75
HR Ghehsareh (153_CR20) 2020; 43
E Shivanian (153_CR22) 2020; 17
J Ren (153_CR34) 2019; 96
AA Kilbas (153_CR1) 2006
I Podlubny (153_CR13) 2013; 371
L Wei (153_CR18) 2019; 59
M Aslefallah (153_CR19) 2020; 63
JT Katsikadelis (153_CR14) 2014; 259
C Escudero (153_CR5) 2006; 19
M Shirzadi (153_CR26) 2023; 166
References_xml – reference: Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46(2)
– reference: ShivanianEPseudospectral meshless radial point hermit interpolation versus pseudospectral meshless radial point interpolationInt. J. Comput. Methods202017071950023413573010.1142/S0219876219500233
– reference: EscuderoCThe fractional Keller–Segel modelNonlinearity200619122909227376510.1088/0951-7715/19/12/010
– reference: Nava-Antonio, G., Fernandez-Anaya, G., Hernandez-Martinez, E.G., Jamous-Galante, J., Ferreira-Vazquez, E., Flores-Godoy, J.: Consensus of multi-agent systems with distributed fractional order dynamics. In: International workshop on complex systems and networks (IWCSN) vol. 2017, pp. 190–197 (2017). https://doi.org/10.1109/IWCSN.2017.8276526
– reference: ShirzadiMRostamiMDehghanMLiXAmerican options pricing under regime-switching jump-diffusion models with meshfree finite point methodChaos Solitons Fract.2023166451737610.1016/j.chaos.2022.112919
– reference: Ding, W., Patnaik, S., Sidhardh, S., Semperlotti, F.: Applications of distributed-order fractional operators: a review. Entropy. https://doi.org/10.3390/e23010110. https://www.mdpi.com/1099-4300/23/1/110
– reference: FasshauerGEMeshfree Approximation Methods with MATLAB2007SingaporeWorld Scientific
– reference: SandevTChechkinAVKorabelNKantzHSokolovIMMetzlerRDistributed-order diffusion equations and multifractality: models and solutionsPhys. Rev. E201592355586310.1103/PhysRevE.92.042117
– reference: MainardiFFractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models2010SingaporeWorld Scientific10.1142/p614
– reference: KochubeiANDistributed order calculus and equations of ultraslow diffusionJ. Math. Anal. Appl.20083401252281237615210.1016/j.jmaa.2007.08.024
– reference: PodlubnyISkovranekTJaraBMVPetrasIVerbitskyVChenYMatrix approach to discrete fractional calculus iii: non-equidistant grids, variable step length and distributed orders, Philosophical Transactions of the Royal Society A: MathematicalPhys. Eng. Sci.20133711990201201533044228
– reference: RenJChenHA numerical method for distributed order time fractional diffusion equation with weakly singular solutionsAppl. Math. Lett.201996159165395062210.1016/j.aml.2019.04.030
– reference: WendlandHScattered Data Approximation2004CambridgeCambridge University Press10.1017/CBO9780511617539
– reference: Guerngar, N., McCormick, J.: Distributed-order space-time fractional diffusions in bounded domains. Discrete Contin. Dyn. Syst. S 16(10), 2783–2799 (2023). https://doi.org/10.3934/dcdss.2023022. https://www.aimsciences.org/article/id/63e9d0e45f0ada7459792f75
– reference: WeiLLiuLSunHStability and convergence of a local discontinuous galerkin method for the fractional diffusion equation with distributed orderJ. Appl. Math. Comput.201959323341393522810.1007/s12190-018-1182-z
– reference: Hua GaoGZhong SunZTwo alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equationsComput. Math. Appl.2015699926948333180810.1016/j.camwa.2015.02.023
– reference: MohebbiAAbbaszadehMCompact finite difference scheme for the solution of time fractional advection-dispersion equationNumer. Algorithms2013633431452307118510.1007/s11075-012-9631-5
– reference: YuQTurnerILiuFVeghVThe application of the distributed-order time fractional Bloch model to magnetic resonance imagingAppl. Math. Comput.2022427441268210.1016/j.amc.2022.127188
– reference: Luo, R., Peng, Z., Hu, J.: On model identification based optimal control and its applications to multi-agent learning and control. Mathematics. https://doi.org/10.3390/math11040906. https://www.mdpi.com/2227-7390/11/4/906
– reference: AslefallahMAbbasbandySShivanianEMeshless singular boundary method for two-dimensional pseudo-parabolic equation: analysis of stability and convergenceJ. Appl. Math. Comput.202063585606410099310.1007/s12190-020-01330-x
– reference: AbbaszadehMDehghanMAn improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimateNumer. Algorithms2017751173211363600910.1007/s11075-016-0201-0
– reference: SafarpoorMShirzadiAA localized RBF-MLPG method for numerical study of heat and mass transfer equations in elliptic finsEng. Anal. Bound. Elem.2019983545387264910.1016/j.enganabound.2018.09.016
– reference: WangFWangHZhouXFuRA driving fatigue feature detection method based on multifractal theoryIEEE Sens. J.20222219190461905910.1109/JSEN.2022.3201015
– reference: AliIHaqSUllahRArifeenSUApproximate solution of second order singular perturbed and obstacle boundary value problems using meshless method based on radial basis functionsJ. Nonlinear Math. Phys.202330215234455741710.1007/s44198-022-00080-7
– reference: Liu, P., Shi, J., Wang, Z.-A.: Pattern formation of the attraction-repulsion Keller-Segel system. Discrete Contin. Dyn. Syst. B 18(10), 2597–2625 (2013). https://doi.org/10.3934/dcdsb.2013.18.2597. https://www.aimsciences.org/article/id/07a4507d-9ffb-4e2c-9c13-ef57dbd913c4
– reference: GhehsarehHRZaghianAMajlesiAThe method of approximate particular solutions to simulate an anomalous mobile-immobile transport processMath. Methods Appl. Sci.202043636373649408550110.1002/mma.6144
– reference: FornbergBFlyerNA Primer on Radial Basis Functions with Applications to the Geosciences2015PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611974041
– reference: KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006North-HollandElsevier10.1016/S0304-0208(06)80001-0
– reference: HosseinzadehHShirzadiAA new meshless local integral equation methodAppl. Numer. Math.20231944458463550610.1016/j.apnum.2023.08.007
– reference: Jin, H.-Y., Wang, Z.-A.: Global stabilization of the full attraction-repulsion Keller–Segel system. Discrete Contin. Dyn. Syst. 40(6), 3509–3527 (2020). https://doi.org/10.3934/dcds.2020027. https://www.aimsciences.org/article/id/2ded8560-83bf-43a5-800e-db6a0330137e
– reference: KatsikadelisJTNumerical solution of distributed order fractional differential equationsJ. Comput. Phys.20142591122314855610.1016/j.jcp.2013.11.013
– reference: HosseinzadehHShirzadiAOn optimal radius of sub-domains in meshless LBIE methodMath. Comput. Simul.2023213145160460301610.1016/j.matcom.2023.06.006
– reference: DehghanMSafarpoorMThe dual reciprocity boundary integral equation technique to solve a class of the linear and nonlinear fractional partial differential equationsMath. Methods Appl. Sci.2016391024612476351276110.1002/mma.3707
– reference: ShirzadiMDehghanMGeneralized regularized least-squares approximation of noisy data with application to stochastic PDEsAppl. Math. Lett.2021111414209510.1016/j.aml.2020.106598
– ident: 153_CR12
  doi: 10.3934/dcdss.2023022
– volume: 166
  year: 2023
  ident: 153_CR26
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2022.112919
– volume: 259
  start-page: 11
  year: 2014
  ident: 153_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.11.013
– volume: 22
  start-page: 19046
  issue: 19
  year: 2022
  ident: 153_CR15
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3201015
– volume-title: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
  year: 2010
  ident: 153_CR2
  doi: 10.1142/p614
– ident: 153_CR4
  doi: 10.3934/dcdsb.2013.18.2597
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 153_CR1
  doi: 10.1016/S0304-0208(06)80001-0
– volume: 63
  start-page: 585
  year: 2020
  ident: 153_CR19
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-020-01330-x
– volume: 98
  start-page: 35
  year: 2019
  ident: 153_CR24
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2018.09.016
– volume: 63
  start-page: 431
  issue: 3
  year: 2013
  ident: 153_CR30
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-012-9631-5
– ident: 153_CR10
  doi: 10.3390/e23010110
– volume-title: Meshfree Approximation Methods with MATLAB
  year: 2007
  ident: 153_CR32
  doi: 10.1142/6437
– volume: 19
  start-page: 2909
  issue: 12
  year: 2006
  ident: 153_CR5
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/19/12/010
– volume: 75
  start-page: 173
  issue: 1
  year: 2017
  ident: 153_CR33
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-016-0201-0
– ident: 153_CR6
  doi: 10.1109/IWCSN.2017.8276526
– ident: 153_CR7
  doi: 10.3390/math11040906
– volume: 340
  start-page: 252
  issue: 1
  year: 2008
  ident: 153_CR8
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.08.024
– volume-title: A Primer on Radial Basis Functions with Applications to the Geosciences
  year: 2015
  ident: 153_CR28
  doi: 10.1137/1.9781611974041
– volume: 43
  start-page: 3637
  issue: 6
  year: 2020
  ident: 153_CR20
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6144
– volume: 213
  start-page: 145
  year: 2023
  ident: 153_CR23
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2023.06.006
– volume: 30
  start-page: 215
  year: 2023
  ident: 153_CR21
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.1007/s44198-022-00080-7
– volume: 59
  start-page: 323
  year: 2019
  ident: 153_CR18
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-018-1182-z
– volume: 92
  year: 2015
  ident: 153_CR16
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.042117
– ident: 153_CR11
– volume: 371
  start-page: 20120153
  issue: 1990
  year: 2013
  ident: 153_CR13
  publication-title: Phys. Eng. Sci.
– volume-title: Scattered Data Approximation
  year: 2004
  ident: 153_CR31
  doi: 10.1017/CBO9780511617539
– volume: 39
  start-page: 2461
  issue: 10
  year: 2016
  ident: 153_CR29
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3707
– volume: 427
  year: 2022
  ident: 153_CR9
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2022.127188
– volume: 17
  start-page: 1950023
  issue: 07
  year: 2020
  ident: 153_CR22
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876219500233
– volume: 194
  start-page: 44
  year: 2023
  ident: 153_CR27
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2023.08.007
– volume: 69
  start-page: 926
  issue: 9
  year: 2015
  ident: 153_CR17
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.02.023
– volume: 111
  year: 2021
  ident: 153_CR25
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106598
– ident: 153_CR3
  doi: 10.3934/dcds.2020027
– volume: 96
  start-page: 159
  year: 2019
  ident: 153_CR34
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.04.030
SSID ssj0037688
Score 2.3252156
Snippet The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1357
SubjectTerms Accuracy
Algorithms
Approximation
Boundary conditions
Complex systems
Complexity
Derivatives
Differential equations
Discretization
Finite difference method
Fractional calculus
Integrals
Mathematical Physics
Mathematics
Mathematics and Statistics
Methods
Numerical analysis
Quadratures
Radial basis function
Research Article
Wave equations
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB1BEWI58LWgLV_ygRtY28RuYh8QAtoIIbUgBIJb5NiOhFSlhTa74t9jO04Kl4pjHMeJPB77xeN5D-BEZVqRjDJMdNzBlCuKmYgjzAWJYhEEPHOJtINhdPNEb1-6L0swrHNh7LHKek50E7UaS7tH_jfkFRV4RC4mb9iqRtnoai2hIby0gjp3FGPLsBJaZqwWrFz1h_cP9dxsvMkpUZq_ihBzs7T7NBqXTGeAgU03Cwm2QILg4PtSNcefTch0HdbKYiI-_ovR6MuqlGzBhoeT6LKy_zYs6WIHNj20RN5xpzuwPmjoWc3Vqjv3Kae_obws0MNVgpMeGjgtaWRALBqWVRxnhJpdMzTOUdhDvdc8L-0GG34W_zQShZoXof5bxRvuKvcsI68V0zLfkbxX6ROmwTtL9bkLT0n_8foGeyUGLElEZjjTpscyJp06TBxr3u3IPOwqZeM0uYwDJQjvsjzSlj1fcGGKpfF0nktOJdNkD1rFuNB_AGktKDO1WZ4p2mFCaB1ySqlS1LJFsjYEdaen0tOUW7WMUdoQLDtDpcZQqTNUGrThtHlmUpF0LKx9WNsy9Q47TefDqw1ntX3ntxe1dtaMgR-8fH_xyw_gl9Wzr87LHEJr9l7qI4N6ZtmxH8qf_Rv6Mg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gESM8gCLEEzT74JssXLvbdvfxoDTE5E5jvIhPzXY_EsKlnFyrgb_e3e3HKSFE42O30-1-zM5MdmZ-A_BOFVqRgjJMdDLClCuKmUhizAWJExEEvPCJtJNpfD6jHy6iizVIu1wYH-3euSSbnAaH0lRWxwtljvvEN6vEXWpYSLBT-gRbeaPME1iPI2uRD2B9Nv00_uYTi-yB56GvwhgkdgzWwgjb3JmHO_pTP62Mzt5PugnP6nIhbn-K-fw3VZRtg-4m0USgXB3VVXEk7-7hO_7vLJ_DVmuronHDXC9gTZc7sN3araiVCssd2Jz02K_26akPKpXLl1CPS_T5JMNZiia-UDWyFjKa1o2TaI76Kzl0bVCYovTSmNrd3uGv4odGolSrJnT2vQEl98Spg_t1lbrsOLKbJjfDdvjR4Yjuwiw7-3J6jtsyD1iSmFS40HaXCiZ96Zkk0TwaSRNGSjknkJFJoAThETOxdtD8ggvbLK0Y4UZyKpkmezAor0v9CpDWgjJLzUyh6IgJoXXIKaVKUQdFyYYQdJubyxYD3ZXimOc9erNf89yuee7XPA-G8L7_ZtEggDxKfdDxTN5Kg2Ue8gbGPiZDOOy2ffX6sd4Oe177i5-__jfyfdgIHXP54JwDGFQ3tX5jTayqeNueoF-Qghjv
  priority: 102
  providerName: Unpaywall
Title An RBF-FD Method for Numerical Solutions of 2D Diffusion-Wave and Diffusion Equations of Distributed Fractional Order
URI https://link.springer.com/article/10.1007/s44198-023-00153-1
https://www.proquest.com/docview/2909355863
https://link.springer.com/content/pdf/10.1007/s44198-023-00153-1.pdf
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1776-0852
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037688
  issn: 1402-9251
  databaseCode: AMVHM
  dateStart: 20220301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1776-0852
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037688
  issn: 1402-9251
  databaseCode: BENPR
  dateStart: 20210301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1776-0852
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037688
  issn: 1402-9251
  databaseCode: AAJSJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1776-0852
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037688
  issn: 1402-9251
  databaseCode: C6C
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1776-0852
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037688
  issn: 1402-9251
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1776-0852
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037688
  issn: 1402-9251
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8x0DR4GBsbohtUftjbsNbEbmI_lrZZNSkdQuvGniLHdqRJVfhoA-K_5-yk6ZgQGk9RLmc7yvlyZ5_vdwCfTG4Ny7mgzMY9yqXhVKg4olKxKFZBIHOfSJtOo8mMfzvvnzcwOS4X5p_4_ZcFmmuXBBYy6sw7o7jS2UIjFfnAbDRc_XVRT4RokmIeb_fQ8Ky9yTYAugOvqvJS3d2q-fwvG5O8gdeNc0gGtTTfwoYt92C3cRRJo4aLPdhJW7BVvHvpT3HqxTuoBiU5O0loMiKprwxN0CUl06qOysxJuwdGLgoSjsjoT1FUbruM_lI3lqjSrElkfFWjgHvmkcPXdaWx8D2S6zoZAjv87oA738MsGf8YTmhTV4FqFrElzS2uqnKhfa2XOLay39NF2DfGRV0KHQdGMdkXRWQdFr6SCska9VYWWnItLNuHzfKitAdArFVcILcocsN7QilrQ8k5N4Y77EfRgWD10TPdgI672hfzrIVL9oLKUFCZF1QWdOBz2-ayhtx4kvtwJcusUb9FFsoaNz5iHTheyXf9-Knejts58B-Df3he7x9h21Wrr0_DHMLm8rqyR-jTLPMuvBDJ1y5sDdKfkxSvJ-Pp6RlShyHv-omOtNn0dPD7HooT8Rw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4am9DYgR8DRGGAD3BiFo3tJvZhQhtp1LG1oGkTuwXHdiSkKu3Whmn_HH8btuOkcKm47BjHsaO8F_uzn9_3AbzThdG0YBxTk_QxE5phLpMYC0njREaRKHwi7XgSjy7Yl8vB5Qb8bnNh3LHKdkz0A7WeKbdH_pGIhgo8pp_mV9ipRrnoaiuhIYO0gj7wFGMhsePE3N7YJdzi4Di19n5PSDY8_zzCQWUAKxrTJS6MXWMUXHnlkyQxYtBXJRlo7WIQpUoiLakY8DI2jhleCmmLlfViUSrBFDfUtnsPthhlwi7-to6Gk29n7Vxg_16vfGl7IFhYKBHSdnzyngUiLr2NUOyAC8XRv1PjCu92Idod2K6ruby9kdPpX7Ng9hgeBviKDht_ewIbptqFRwHKojBQLHZhZ9zRwdqr-_6cqVo8hfqwQmdHGc5SNPba1ciCZjSpm7jRFHW7dGhWIpKi9GdZ1m5DD3-XvwySlV4VoeFVw1PuK6eOAdiJd9n3yK6bdA3b4FdHLfoMLu7EJs9hs5pV5gUgYyTjtjYvC836XEpjiGCMac0cOyXvQdR-9FwFWnSnzjHNO0Jnb6jcGir3hsqjHnzonpk3pCBra--1tszDALHIV-7cg_3Wvqvb61rb73zgPzp_ub7zt7A9Oh-f5qfHk5NX8IA4b_RndfZgc3ldm9cWcS2LN8GtEfy46z_pDyZuNnU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh498CggFgr4ACdqdRN7E_uAUCENLWUXhKjoLTh-SEir7La7oepf49cxdh4LlxWXHuM4kygztseeme8DeGlKa1jJBWU2HVIuDadCpQmViiWpiiJZhkLa8SQ5POEfT0enG_C7q4XxaZXdnBgmajPT_ox8L5YNFHjC9lybFvEly9_Oz6hnkPKR1o5OozGRY3t5gdu3xZujDHX9Ko7zg2_vD2nLMEA1S9iSlhb3F6XQgfUkTa0cDbWLR8b4-IPTaWQUkyPhEutR4ZVU2KzRgqXTkmthGcq9BtdTj-Luq9TzD90qgOM2cF6i_JhKdCLagp1QtocuiC9sixn1Lguj0b-L4srT7YOzW3Crrubq8kJNp3-tf_k9uNM6rmS_sbT7sGGrbbjbOrGknSIW27A17oFg8epGyDDViwdQ71fk67uc5hkZB9Zqgu4ymdRNxGhK-vM5MnMkzkj207naH-XR7-qXJaoyqyZycNYglIfOmcf-9bRd-B35eVOogQI_e1DRh3ByJRp5BJvVrLKPgViruMDewpWGD4VS1saSc24M97iUYgBR99ML3QKie16OadFDOQdFFaioIiiqiAbwun9m3sCBrO290-myaKeGRbEy5AHsdvpd3V4nbbe3gf94-ZP1L38BN3H8FJ-OJsdP4XbsjTEk6ezA5vK8ts_Q1VqWz4NNE_hx1YPoD4u4NA8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gESM8gCLEEzT74JssXLvbdvfxoDTE5E5jvIhPzXY_EsKlnFyrgb_e3e3HKSFE42O30-1-zM5MdmZ-A_BOFVqRgjJMdDLClCuKmUhizAWJExEEvPCJtJNpfD6jHy6iizVIu1wYH-3euSSbnAaH0lRWxwtljvvEN6vEXWpYSLBT-gRbeaPME1iPI2uRD2B9Nv00_uYTi-yB56GvwhgkdgzWwgjb3JmHO_pTP62Mzt5PugnP6nIhbn-K-fw3VZRtg-4m0USgXB3VVXEk7-7hO_7vLJ_DVmuronHDXC9gTZc7sN3araiVCssd2Jz02K_26akPKpXLl1CPS_T5JMNZiia-UDWyFjKa1o2TaI76Kzl0bVCYovTSmNrd3uGv4odGolSrJnT2vQEl98Spg_t1lbrsOLKbJjfDdvjR4Yjuwiw7-3J6jtsyD1iSmFS40HaXCiZ96Zkk0TwaSRNGSjknkJFJoAThETOxdtD8ggvbLK0Y4UZyKpkmezAor0v9CpDWgjJLzUyh6IgJoXXIKaVKUQdFyYYQdJubyxYD3ZXimOc9erNf89yuee7XPA-G8L7_ZtEggDxKfdDxTN5Kg2Ue8gbGPiZDOOy2ffX6sd4Oe177i5-__jfyfdgIHXP54JwDGFQ3tX5jTayqeNueoF-Qghjv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+RBF-FD+Method+for+Numerical+Solutions+of+2D+Diffusion-Wave+and+Diffusion+Equations+of+Distributed+Fractional+Order&rft.jtitle=Journal+of+nonlinear+mathematical+physics&rft.au=Taghipour%2C+Fatemeh&rft.au=Shirzadi%2C+Ahmad&rft.au=Safarpoor%2C+Mansour&rft.date=2023-12-01&rft.pub=Springer+Netherlands&rft.eissn=1776-0852&rft.volume=30&rft.issue=4&rft.spage=1357&rft.epage=1374&rft_id=info:doi/10.1007%2Fs44198-023-00153-1&rft.externalDocID=10_1007_s44198_023_00153_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1776-0852&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1776-0852&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1776-0852&client=summon