An RBF-FD Method for Numerical Solutions of 2D Diffusion-Wave and Diffusion Equations of Distributed Fractional Order
The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional derivatives. Such equations arise in modelling complex systems and have many important applications. Existence of integral term over the order of fracti...
        Saved in:
      
    
          | Published in | Journal of nonlinear mathematical physics Vol. 30; no. 4; pp. 1357 - 1374 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.12.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1776-0852 1402-9251 1776-0852  | 
| DOI | 10.1007/s44198-023-00153-1 | 
Cover
| Abstract | The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional derivatives. Such equations arise in modelling complex systems and have many important applications. Existence of integral term over the order of fractional derivative causes the high complexity of these equations and so their numerical solutions needs special cares. Using Gauss quadrature approach for discretizing the integral term of fractional derivative converts the distributed equation into a multi-term fractional differential equation. Then, the time variable is discretized with a suitable finite difference approach. The resultant semi-discretized equations are fully discretized by a radial basis function-generated finite difference based method. Convergence of the method are studied numerically. Various kind of test problems are considered for a comprehensive numerical study and the results confirm the efficiency of the method. | 
    
|---|---|
| AbstractList | The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional derivatives. Such equations arise in modelling complex systems and have many important applications. Existence of integral term over the order of fractional derivative causes the high complexity of these equations and so their numerical solutions needs special cares. Using Gauss quadrature approach for discretizing the integral term of fractional derivative converts the distributed equation into a multi-term fractional differential equation. Then, the time variable is discretized with a suitable finite difference approach. The resultant semi-discretized equations are fully discretized by a radial basis function-generated finite difference based method. Convergence of the method are studied numerically. Various kind of test problems are considered for a comprehensive numerical study and the results confirm the efficiency of the method. | 
    
| Author | Safarpoor, Mansour Taghipour, Fatemeh Shirzadi, Ahmad  | 
    
| Author_xml | – sequence: 1 givenname: Fatemeh surname: Taghipour fullname: Taghipour, Fatemeh organization: Department of Mathematics, Persian Gulf University – sequence: 2 givenname: Ahmad orcidid: 0000-0001-9842-0270 surname: Shirzadi fullname: Shirzadi, Ahmad email: shirzadi@pgu.ac.ir organization: Department of Mathematics, Persian Gulf University – sequence: 3 givenname: Mansour surname: Safarpoor fullname: Safarpoor, Mansour organization: Department of Mathematics, Persian Gulf University  | 
    
| BookMark | eNqNkEtPAyEUhYmpiVr9A65IXKM8ZgZY1taqiY_ER1wSyoBOMx1aGDT9906tscZF4wpyON-5l3MAeo1vLADHBJ8SjPlZzDIiBcKUIYxJzhDZAfuE8wJhkdPer_seOIhxijHjhRD7IA0a-HA-RuMRvLXtmy-h8wHepZkNldE1fPR1aivfROgdpCM4qpxLsRPQi363UDflRoIXi6R_zKMqtqGapNaWcBy0WT10gfehtOEQ7DpdR3v0ffbB8_jiaXiFbu4vr4eDG2RYwVo0sSTDE2EKIjLGuZU5No7mZckopc5wUmomc-EKK3iWa6k72XCZSWdkZoRlfcDWuamZ6-WHrms1D9VMh6UiWK2aU-vmVNec-mpOkY46WVPz4BfJxlZNfQrd8lFRiSXLc1GwzkXXLhN8jMG6_0WLP5Cp2q_O2qCrejv6_ZfYzWlebdhstYX6BJZwoEI | 
    
| CitedBy_id | crossref_primary_10_1016_j_camwa_2024_05_018 | 
    
| Cites_doi | 10.3934/dcdss.2023022 10.1016/j.chaos.2022.112919 10.1016/j.jcp.2013.11.013 10.1109/JSEN.2022.3201015 10.1142/p614 10.3934/dcdsb.2013.18.2597 10.1016/S0304-0208(06)80001-0 10.1007/s12190-020-01330-x 10.1016/j.enganabound.2018.09.016 10.1007/s11075-012-9631-5 10.3390/e23010110 10.1142/6437 10.1088/0951-7715/19/12/010 10.1007/s11075-016-0201-0 10.1109/IWCSN.2017.8276526 10.3390/math11040906 10.1016/j.jmaa.2007.08.024 10.1137/1.9781611974041 10.1002/mma.6144 10.1016/j.matcom.2023.06.006 10.1007/s44198-022-00080-7 10.1007/s12190-018-1182-z 10.1103/PhysRevE.92.042117 10.1017/CBO9780511617539 10.1002/mma.3707 10.1016/j.amc.2022.127188 10.1142/S0219876219500233 10.1016/j.apnum.2023.08.007 10.1016/j.camwa.2015.02.023 10.1016/j.aml.2020.106598 10.3934/dcds.2020027 10.1016/j.aml.2019.04.030  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY  | 
    
| DOI | 10.1007/s44198-023-00153-1 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Mathematics Physics  | 
    
| EISSN | 1776-0852 | 
    
| EndPage | 1374 | 
    
| ExternalDocumentID | 10.1007/s44198-023-00153-1 10_1007_s44198_023_00153_1  | 
    
| GroupedDBID | 0R~ 29L 2WC 30N 4.4 AAIKQ AAJMT AAJSJ AAKKN AAYZJ ABCCY ABEEZ ABFIM ABPEM ABTAI ACACY ACGFO ACGFS ACIPV ACTIO ACULB ADCVX ADIYS AENEX AEYOC AFGXO AFKRA AGROQ AIJEM ALMA_UNASSIGNED_HOLDINGS AMATQ AMXXU AQRUH ARAPS AVBZW BCCOT BENPR BGLVJ BLEHA BPLKW C1A C24 C6C CAG CCCUG CCPQU COF CRFIH DGEBU DKSSO DMQIW DU5 E3Z EBLON EBS EJD E~A E~B GTTXZ H13 HCIFZ HZ~ H~P IPNFZ IVXBP K7- KYCEM LJTGL M4Z M~E O9- OK1 P2P P71 PIMPY QCRFL RIG RSV RWJ S-T SNACF SOJ TDBHL TFL TFMCV TFT TFW TOXWX TR2 TTHFI TUS UT5 XSB AASML AAYXX AMVHM CITATION OVT PHGZM PHGZT PQGLB PUEGO 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c363t-be140b8c6184377e950cf25dd3222fc71da3958f6e8745a9a222c7949fc94c8e3 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 1776-0852 1402-9251  | 
    
| IngestDate | Tue Aug 19 21:27:26 EDT 2025 Sat Oct 18 23:09:48 EDT 2025 Thu Apr 24 23:02:05 EDT 2025 Wed Oct 01 03:30:21 EDT 2025 Fri Feb 21 02:40:51 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Local meshless methods 65D12 Finite differences 35R11 Distributed-order fractional differential equations RBF-FD 65N99  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-be140b8c6184377e950cf25dd3222fc71da3958f6e8745a9a222c7949fc94c8e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-9842-0270 | 
    
| OpenAccessLink | https://doi.org/10.1007/s44198-023-00153-1 | 
    
| PQID | 2909355863 | 
    
| PQPubID | 5642909 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s44198_023_00153_1 proquest_journals_2909355863 crossref_primary_10_1007_s44198_023_00153_1 crossref_citationtrail_10_1007_s44198_023_00153_1 springer_journals_10_1007_s44198_023_00153_1  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-12-01 | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht – name: Singapore  | 
    
| PublicationTitle | Journal of nonlinear mathematical physics | 
    
| PublicationTitleAbbrev | J Nonlinear Math Phys | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | Guerngar, N., McCormick, J.: Distributed-order space-time fractional diffusions in bounded domains. Discrete Contin. Dyn. Syst. S 16(10), 2783–2799 (2023). https://doi.org/10.3934/dcdss.2023022. https://www.aimsciences.org/article/id/63e9d0e45f0ada7459792f75 KatsikadelisJTNumerical solution of distributed order fractional differential equationsJ. Comput. Phys.20142591122314855610.1016/j.jcp.2013.11.013 SafarpoorMShirzadiAA localized RBF-MLPG method for numerical study of heat and mass transfer equations in elliptic finsEng. Anal. Bound. Elem.2019983545387264910.1016/j.enganabound.2018.09.016 EscuderoCThe fractional Keller–Segel modelNonlinearity200619122909227376510.1088/0951-7715/19/12/010 Jin, H.-Y., Wang, Z.-A.: Global stabilization of the full attraction-repulsion Keller–Segel system. Discrete Contin. Dyn. Syst. 40(6), 3509–3527 (2020). https://doi.org/10.3934/dcds.2020027. https://www.aimsciences.org/article/id/2ded8560-83bf-43a5-800e-db6a0330137e PodlubnyISkovranekTJaraBMVPetrasIVerbitskyVChenYMatrix approach to discrete fractional calculus iii: non-equidistant grids, variable step length and distributed orders, Philosophical Transactions of the Royal Society A: MathematicalPhys. Eng. Sci.20133711990201201533044228 WeiLLiuLSunHStability and convergence of a local discontinuous galerkin method for the fractional diffusion equation with distributed orderJ. Appl. Math. Comput.201959323341393522810.1007/s12190-018-1182-z GhehsarehHRZaghianAMajlesiAThe method of approximate particular solutions to simulate an anomalous mobile-immobile transport processMath. Methods Appl. Sci.202043636373649408550110.1002/mma.6144 ShirzadiMRostamiMDehghanMLiXAmerican options pricing under regime-switching jump-diffusion models with meshfree finite point methodChaos Solitons Fract.2023166451737610.1016/j.chaos.2022.112919 AbbaszadehMDehghanMAn improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimateNumer. Algorithms2017751173211363600910.1007/s11075-016-0201-0 KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006North-HollandElsevier10.1016/S0304-0208(06)80001-0 Ding, W., Patnaik, S., Sidhardh, S., Semperlotti, F.: Applications of distributed-order fractional operators: a review. Entropy. https://doi.org/10.3390/e23010110. https://www.mdpi.com/1099-4300/23/1/110 Hua GaoGZhong SunZTwo alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equationsComput. Math. Appl.2015699926948333180810.1016/j.camwa.2015.02.023 ShivanianEPseudospectral meshless radial point hermit interpolation versus pseudospectral meshless radial point interpolationInt. J. Comput. Methods202017071950023413573010.1142/S0219876219500233 MohebbiAAbbaszadehMCompact finite difference scheme for the solution of time fractional advection-dispersion equationNumer. Algorithms2013633431452307118510.1007/s11075-012-9631-5 MainardiFFractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models2010SingaporeWorld Scientific10.1142/p614 YuQTurnerILiuFVeghVThe application of the distributed-order time fractional Bloch model to magnetic resonance imagingAppl. Math. Comput.2022427441268210.1016/j.amc.2022.127188 HosseinzadehHShirzadiAOn optimal radius of sub-domains in meshless LBIE methodMath. Comput. Simul.2023213145160460301610.1016/j.matcom.2023.06.006 Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46(2) WendlandHScattered Data Approximation2004CambridgeCambridge University Press10.1017/CBO9780511617539 AliIHaqSUllahRArifeenSUApproximate solution of second order singular perturbed and obstacle boundary value problems using meshless method based on radial basis functionsJ. Nonlinear Math. Phys.202330215234455741710.1007/s44198-022-00080-7 DehghanMSafarpoorMThe dual reciprocity boundary integral equation technique to solve a class of the linear and nonlinear fractional partial differential equationsMath. Methods Appl. Sci.2016391024612476351276110.1002/mma.3707 RenJChenHA numerical method for distributed order time fractional diffusion equation with weakly singular solutionsAppl. Math. Lett.201996159165395062210.1016/j.aml.2019.04.030 Liu, P., Shi, J., Wang, Z.-A.: Pattern formation of the attraction-repulsion Keller-Segel system. Discrete Contin. Dyn. Syst. B 18(10), 2597–2625 (2013). https://doi.org/10.3934/dcdsb.2013.18.2597. https://www.aimsciences.org/article/id/07a4507d-9ffb-4e2c-9c13-ef57dbd913c4 SandevTChechkinAVKorabelNKantzHSokolovIMMetzlerRDistributed-order diffusion equations and multifractality: models and solutionsPhys. Rev. E201592355586310.1103/PhysRevE.92.042117 WangFWangHZhouXFuRA driving fatigue feature detection method based on multifractal theoryIEEE Sens. J.20222219190461905910.1109/JSEN.2022.3201015 FasshauerGEMeshfree Approximation Methods with MATLAB2007SingaporeWorld Scientific ShirzadiMDehghanMGeneralized regularized least-squares approximation of noisy data with application to stochastic PDEsAppl. Math. Lett.2021111414209510.1016/j.aml.2020.106598 KochubeiANDistributed order calculus and equations of ultraslow diffusionJ. Math. Anal. Appl.20083401252281237615210.1016/j.jmaa.2007.08.024 AslefallahMAbbasbandySShivanianEMeshless singular boundary method for two-dimensional pseudo-parabolic equation: analysis of stability and convergenceJ. Appl. Math. Comput.202063585606410099310.1007/s12190-020-01330-x Luo, R., Peng, Z., Hu, J.: On model identification based optimal control and its applications to multi-agent learning and control. Mathematics. https://doi.org/10.3390/math11040906. https://www.mdpi.com/2227-7390/11/4/906 HosseinzadehHShirzadiAA new meshless local integral equation methodAppl. Numer. Math.20231944458463550610.1016/j.apnum.2023.08.007 FornbergBFlyerNA Primer on Radial Basis Functions with Applications to the Geosciences2015PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611974041 Nava-Antonio, G., Fernandez-Anaya, G., Hernandez-Martinez, E.G., Jamous-Galante, J., Ferreira-Vazquez, E., Flores-Godoy, J.: Consensus of multi-agent systems with distributed fractional order dynamics. In: International workshop on complex systems and networks (IWCSN) vol. 2017, pp. 190–197 (2017). https://doi.org/10.1109/IWCSN.2017.8276526 GE Fasshauer (153_CR32) 2007 M Dehghan (153_CR29) 2016; 39 153_CR7 M Shirzadi (153_CR25) 2021; 111 AN Kochubei (153_CR8) 2008; 340 153_CR4 G Hua Gao (153_CR17) 2015; 69 B Fornberg (153_CR28) 2015 153_CR3 153_CR6 H Hosseinzadeh (153_CR23) 2023; 213 Q Yu (153_CR9) 2022; 427 A Mohebbi (153_CR30) 2013; 63 M Safarpoor (153_CR24) 2019; 98 H Hosseinzadeh (153_CR27) 2023; 194 T Sandev (153_CR16) 2015; 92 H Wendland (153_CR31) 2004 I Ali (153_CR21) 2023; 30 153_CR11 153_CR10 F Wang (153_CR15) 2022; 22 F Mainardi (153_CR2) 2010 153_CR12 M Abbaszadeh (153_CR33) 2017; 75 HR Ghehsareh (153_CR20) 2020; 43 E Shivanian (153_CR22) 2020; 17 J Ren (153_CR34) 2019; 96 AA Kilbas (153_CR1) 2006 I Podlubny (153_CR13) 2013; 371 L Wei (153_CR18) 2019; 59 M Aslefallah (153_CR19) 2020; 63 JT Katsikadelis (153_CR14) 2014; 259 C Escudero (153_CR5) 2006; 19 M Shirzadi (153_CR26) 2023; 166  | 
    
| References_xml | – reference: Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46(2) – reference: ShivanianEPseudospectral meshless radial point hermit interpolation versus pseudospectral meshless radial point interpolationInt. J. Comput. Methods202017071950023413573010.1142/S0219876219500233 – reference: EscuderoCThe fractional Keller–Segel modelNonlinearity200619122909227376510.1088/0951-7715/19/12/010 – reference: Nava-Antonio, G., Fernandez-Anaya, G., Hernandez-Martinez, E.G., Jamous-Galante, J., Ferreira-Vazquez, E., Flores-Godoy, J.: Consensus of multi-agent systems with distributed fractional order dynamics. In: International workshop on complex systems and networks (IWCSN) vol. 2017, pp. 190–197 (2017). https://doi.org/10.1109/IWCSN.2017.8276526 – reference: ShirzadiMRostamiMDehghanMLiXAmerican options pricing under regime-switching jump-diffusion models with meshfree finite point methodChaos Solitons Fract.2023166451737610.1016/j.chaos.2022.112919 – reference: Ding, W., Patnaik, S., Sidhardh, S., Semperlotti, F.: Applications of distributed-order fractional operators: a review. Entropy. https://doi.org/10.3390/e23010110. https://www.mdpi.com/1099-4300/23/1/110 – reference: FasshauerGEMeshfree Approximation Methods with MATLAB2007SingaporeWorld Scientific – reference: SandevTChechkinAVKorabelNKantzHSokolovIMMetzlerRDistributed-order diffusion equations and multifractality: models and solutionsPhys. Rev. E201592355586310.1103/PhysRevE.92.042117 – reference: MainardiFFractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models2010SingaporeWorld Scientific10.1142/p614 – reference: KochubeiANDistributed order calculus and equations of ultraslow diffusionJ. Math. Anal. Appl.20083401252281237615210.1016/j.jmaa.2007.08.024 – reference: PodlubnyISkovranekTJaraBMVPetrasIVerbitskyVChenYMatrix approach to discrete fractional calculus iii: non-equidistant grids, variable step length and distributed orders, Philosophical Transactions of the Royal Society A: MathematicalPhys. Eng. Sci.20133711990201201533044228 – reference: RenJChenHA numerical method for distributed order time fractional diffusion equation with weakly singular solutionsAppl. Math. Lett.201996159165395062210.1016/j.aml.2019.04.030 – reference: WendlandHScattered Data Approximation2004CambridgeCambridge University Press10.1017/CBO9780511617539 – reference: Guerngar, N., McCormick, J.: Distributed-order space-time fractional diffusions in bounded domains. Discrete Contin. Dyn. Syst. S 16(10), 2783–2799 (2023). https://doi.org/10.3934/dcdss.2023022. https://www.aimsciences.org/article/id/63e9d0e45f0ada7459792f75 – reference: WeiLLiuLSunHStability and convergence of a local discontinuous galerkin method for the fractional diffusion equation with distributed orderJ. Appl. Math. Comput.201959323341393522810.1007/s12190-018-1182-z – reference: Hua GaoGZhong SunZTwo alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equationsComput. Math. Appl.2015699926948333180810.1016/j.camwa.2015.02.023 – reference: MohebbiAAbbaszadehMCompact finite difference scheme for the solution of time fractional advection-dispersion equationNumer. Algorithms2013633431452307118510.1007/s11075-012-9631-5 – reference: YuQTurnerILiuFVeghVThe application of the distributed-order time fractional Bloch model to magnetic resonance imagingAppl. Math. Comput.2022427441268210.1016/j.amc.2022.127188 – reference: Luo, R., Peng, Z., Hu, J.: On model identification based optimal control and its applications to multi-agent learning and control. Mathematics. https://doi.org/10.3390/math11040906. https://www.mdpi.com/2227-7390/11/4/906 – reference: AslefallahMAbbasbandySShivanianEMeshless singular boundary method for two-dimensional pseudo-parabolic equation: analysis of stability and convergenceJ. Appl. Math. Comput.202063585606410099310.1007/s12190-020-01330-x – reference: AbbaszadehMDehghanMAn improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimateNumer. Algorithms2017751173211363600910.1007/s11075-016-0201-0 – reference: SafarpoorMShirzadiAA localized RBF-MLPG method for numerical study of heat and mass transfer equations in elliptic finsEng. Anal. Bound. Elem.2019983545387264910.1016/j.enganabound.2018.09.016 – reference: WangFWangHZhouXFuRA driving fatigue feature detection method based on multifractal theoryIEEE Sens. J.20222219190461905910.1109/JSEN.2022.3201015 – reference: AliIHaqSUllahRArifeenSUApproximate solution of second order singular perturbed and obstacle boundary value problems using meshless method based on radial basis functionsJ. Nonlinear Math. Phys.202330215234455741710.1007/s44198-022-00080-7 – reference: Liu, P., Shi, J., Wang, Z.-A.: Pattern formation of the attraction-repulsion Keller-Segel system. Discrete Contin. Dyn. Syst. B 18(10), 2597–2625 (2013). https://doi.org/10.3934/dcdsb.2013.18.2597. https://www.aimsciences.org/article/id/07a4507d-9ffb-4e2c-9c13-ef57dbd913c4 – reference: GhehsarehHRZaghianAMajlesiAThe method of approximate particular solutions to simulate an anomalous mobile-immobile transport processMath. Methods Appl. Sci.202043636373649408550110.1002/mma.6144 – reference: FornbergBFlyerNA Primer on Radial Basis Functions with Applications to the Geosciences2015PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611974041 – reference: KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006North-HollandElsevier10.1016/S0304-0208(06)80001-0 – reference: HosseinzadehHShirzadiAA new meshless local integral equation methodAppl. Numer. Math.20231944458463550610.1016/j.apnum.2023.08.007 – reference: Jin, H.-Y., Wang, Z.-A.: Global stabilization of the full attraction-repulsion Keller–Segel system. Discrete Contin. Dyn. Syst. 40(6), 3509–3527 (2020). https://doi.org/10.3934/dcds.2020027. https://www.aimsciences.org/article/id/2ded8560-83bf-43a5-800e-db6a0330137e – reference: KatsikadelisJTNumerical solution of distributed order fractional differential equationsJ. Comput. Phys.20142591122314855610.1016/j.jcp.2013.11.013 – reference: HosseinzadehHShirzadiAOn optimal radius of sub-domains in meshless LBIE methodMath. Comput. Simul.2023213145160460301610.1016/j.matcom.2023.06.006 – reference: DehghanMSafarpoorMThe dual reciprocity boundary integral equation technique to solve a class of the linear and nonlinear fractional partial differential equationsMath. Methods Appl. Sci.2016391024612476351276110.1002/mma.3707 – reference: ShirzadiMDehghanMGeneralized regularized least-squares approximation of noisy data with application to stochastic PDEsAppl. Math. Lett.2021111414209510.1016/j.aml.2020.106598 – ident: 153_CR12 doi: 10.3934/dcdss.2023022 – volume: 166 year: 2023 ident: 153_CR26 publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2022.112919 – volume: 259 start-page: 11 year: 2014 ident: 153_CR14 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.11.013 – volume: 22 start-page: 19046 issue: 19 year: 2022 ident: 153_CR15 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3201015 – volume-title: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models year: 2010 ident: 153_CR2 doi: 10.1142/p614 – ident: 153_CR4 doi: 10.3934/dcdsb.2013.18.2597 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 153_CR1 doi: 10.1016/S0304-0208(06)80001-0 – volume: 63 start-page: 585 year: 2020 ident: 153_CR19 publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-020-01330-x – volume: 98 start-page: 35 year: 2019 ident: 153_CR24 publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2018.09.016 – volume: 63 start-page: 431 issue: 3 year: 2013 ident: 153_CR30 publication-title: Numer. Algorithms doi: 10.1007/s11075-012-9631-5 – ident: 153_CR10 doi: 10.3390/e23010110 – volume-title: Meshfree Approximation Methods with MATLAB year: 2007 ident: 153_CR32 doi: 10.1142/6437 – volume: 19 start-page: 2909 issue: 12 year: 2006 ident: 153_CR5 publication-title: Nonlinearity doi: 10.1088/0951-7715/19/12/010 – volume: 75 start-page: 173 issue: 1 year: 2017 ident: 153_CR33 publication-title: Numer. Algorithms doi: 10.1007/s11075-016-0201-0 – ident: 153_CR6 doi: 10.1109/IWCSN.2017.8276526 – ident: 153_CR7 doi: 10.3390/math11040906 – volume: 340 start-page: 252 issue: 1 year: 2008 ident: 153_CR8 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.08.024 – volume-title: A Primer on Radial Basis Functions with Applications to the Geosciences year: 2015 ident: 153_CR28 doi: 10.1137/1.9781611974041 – volume: 43 start-page: 3637 issue: 6 year: 2020 ident: 153_CR20 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6144 – volume: 213 start-page: 145 year: 2023 ident: 153_CR23 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2023.06.006 – volume: 30 start-page: 215 year: 2023 ident: 153_CR21 publication-title: J. Nonlinear Math. Phys. doi: 10.1007/s44198-022-00080-7 – volume: 59 start-page: 323 year: 2019 ident: 153_CR18 publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-018-1182-z – volume: 92 year: 2015 ident: 153_CR16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.92.042117 – ident: 153_CR11 – volume: 371 start-page: 20120153 issue: 1990 year: 2013 ident: 153_CR13 publication-title: Phys. Eng. Sci. – volume-title: Scattered Data Approximation year: 2004 ident: 153_CR31 doi: 10.1017/CBO9780511617539 – volume: 39 start-page: 2461 issue: 10 year: 2016 ident: 153_CR29 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3707 – volume: 427 year: 2022 ident: 153_CR9 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2022.127188 – volume: 17 start-page: 1950023 issue: 07 year: 2020 ident: 153_CR22 publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876219500233 – volume: 194 start-page: 44 year: 2023 ident: 153_CR27 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2023.08.007 – volume: 69 start-page: 926 issue: 9 year: 2015 ident: 153_CR17 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2015.02.023 – volume: 111 year: 2021 ident: 153_CR25 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106598 – ident: 153_CR3 doi: 10.3934/dcds.2020027 – volume: 96 start-page: 159 year: 2019 ident: 153_CR34 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.04.030  | 
    
| SSID | ssj0037688 | 
    
| Score | 2.3252156 | 
    
| Snippet | The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1357 | 
    
| SubjectTerms | Accuracy Algorithms Approximation Boundary conditions Complex systems Complexity Derivatives Differential equations Discretization Finite difference method Fractional calculus Integrals Mathematical Physics Mathematics Mathematics and Statistics Methods Numerical analysis Quadratures Radial basis function Research Article Wave equations  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB1BEWI58LWgLV_ygRtY28RuYh8QAtoIIbUgBIJb5NiOhFSlhTa74t9jO04Kl4pjHMeJPB77xeN5D-BEZVqRjDJMdNzBlCuKmYgjzAWJYhEEPHOJtINhdPNEb1-6L0swrHNh7LHKek50E7UaS7tH_jfkFRV4RC4mb9iqRtnoai2hIby0gjp3FGPLsBJaZqwWrFz1h_cP9dxsvMkpUZq_ihBzs7T7NBqXTGeAgU03Cwm2QILg4PtSNcefTch0HdbKYiI-_ovR6MuqlGzBhoeT6LKy_zYs6WIHNj20RN5xpzuwPmjoWc3Vqjv3Kae_obws0MNVgpMeGjgtaWRALBqWVRxnhJpdMzTOUdhDvdc8L-0GG34W_zQShZoXof5bxRvuKvcsI68V0zLfkbxX6ROmwTtL9bkLT0n_8foGeyUGLElEZjjTpscyJp06TBxr3u3IPOwqZeM0uYwDJQjvsjzSlj1fcGGKpfF0nktOJdNkD1rFuNB_AGktKDO1WZ4p2mFCaB1ySqlS1LJFsjYEdaen0tOUW7WMUdoQLDtDpcZQqTNUGrThtHlmUpF0LKx9WNsy9Q47TefDqw1ntX3ntxe1dtaMgR-8fH_xyw_gl9Wzr87LHEJr9l7qI4N6ZtmxH8qf_Rv6Mg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gESM8gCLEEzT74JssXLvbdvfxoDTE5E5jvIhPzXY_EsKlnFyrgb_e3e3HKSFE42O30-1-zM5MdmZ-A_BOFVqRgjJMdDLClCuKmUhizAWJExEEvPCJtJNpfD6jHy6iizVIu1wYH-3euSSbnAaH0lRWxwtljvvEN6vEXWpYSLBT-gRbeaPME1iPI2uRD2B9Nv00_uYTi-yB56GvwhgkdgzWwgjb3JmHO_pTP62Mzt5PugnP6nIhbn-K-fw3VZRtg-4m0USgXB3VVXEk7-7hO_7vLJ_DVmuronHDXC9gTZc7sN3araiVCssd2Jz02K_26akPKpXLl1CPS_T5JMNZiia-UDWyFjKa1o2TaI76Kzl0bVCYovTSmNrd3uGv4odGolSrJnT2vQEl98Spg_t1lbrsOLKbJjfDdvjR4Yjuwiw7-3J6jtsyD1iSmFS40HaXCiZ96Zkk0TwaSRNGSjknkJFJoAThETOxdtD8ggvbLK0Y4UZyKpkmezAor0v9CpDWgjJLzUyh6IgJoXXIKaVKUQdFyYYQdJubyxYD3ZXimOc9erNf89yuee7XPA-G8L7_ZtEggDxKfdDxTN5Kg2Ue8gbGPiZDOOy2ffX6sd4Oe177i5-__jfyfdgIHXP54JwDGFQ3tX5jTayqeNueoF-Qghjv priority: 102 providerName: Unpaywall  | 
    
| Title | An RBF-FD Method for Numerical Solutions of 2D Diffusion-Wave and Diffusion Equations of Distributed Fractional Order | 
    
| URI | https://link.springer.com/article/10.1007/s44198-023-00153-1 https://www.proquest.com/docview/2909355863 https://link.springer.com/content/pdf/10.1007/s44198-023-00153-1.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1776-0852 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037688 issn: 1402-9251 databaseCode: AMVHM dateStart: 20220301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1776-0852 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037688 issn: 1402-9251 databaseCode: BENPR dateStart: 20210301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1776-0852 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037688 issn: 1402-9251 databaseCode: AAJSJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1776-0852 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037688 issn: 1402-9251 databaseCode: C6C dateStart: 20211201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1776-0852 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037688 issn: 1402-9251 databaseCode: C24 dateStart: 20211201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1776-0852 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037688 issn: 1402-9251 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8x0DR4GBsbohtUftjbsNbEbmI_lrZZNSkdQuvGniLHdqRJVfhoA-K_5-yk6ZgQGk9RLmc7yvlyZ5_vdwCfTG4Ny7mgzMY9yqXhVKg4olKxKFZBIHOfSJtOo8mMfzvvnzcwOS4X5p_4_ZcFmmuXBBYy6sw7o7jS2UIjFfnAbDRc_XVRT4RokmIeb_fQ8Ky9yTYAugOvqvJS3d2q-fwvG5O8gdeNc0gGtTTfwoYt92C3cRRJo4aLPdhJW7BVvHvpT3HqxTuoBiU5O0loMiKprwxN0CUl06qOysxJuwdGLgoSjsjoT1FUbruM_lI3lqjSrElkfFWjgHvmkcPXdaWx8D2S6zoZAjv87oA738MsGf8YTmhTV4FqFrElzS2uqnKhfa2XOLay39NF2DfGRV0KHQdGMdkXRWQdFr6SCska9VYWWnItLNuHzfKitAdArFVcILcocsN7QilrQ8k5N4Y77EfRgWD10TPdgI672hfzrIVL9oLKUFCZF1QWdOBz2-ayhtx4kvtwJcusUb9FFsoaNz5iHTheyXf9-Knejts58B-Df3he7x9h21Wrr0_DHMLm8rqyR-jTLPMuvBDJ1y5sDdKfkxSvJ-Pp6RlShyHv-omOtNn0dPD7HooT8Rw | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4am9DYgR8DRGGAD3BiFo3tJvZhQhtp1LG1oGkTuwXHdiSkKu3Whmn_HH8btuOkcKm47BjHsaO8F_uzn9_3AbzThdG0YBxTk_QxE5phLpMYC0njREaRKHwi7XgSjy7Yl8vB5Qb8bnNh3LHKdkz0A7WeKbdH_pGIhgo8pp_mV9ipRrnoaiuhIYO0gj7wFGMhsePE3N7YJdzi4Di19n5PSDY8_zzCQWUAKxrTJS6MXWMUXHnlkyQxYtBXJRlo7WIQpUoiLakY8DI2jhleCmmLlfViUSrBFDfUtnsPthhlwi7-to6Gk29n7Vxg_16vfGl7IFhYKBHSdnzyngUiLr2NUOyAC8XRv1PjCu92Idod2K6ruby9kdPpX7Ng9hgeBviKDht_ewIbptqFRwHKojBQLHZhZ9zRwdqr-_6cqVo8hfqwQmdHGc5SNPba1ciCZjSpm7jRFHW7dGhWIpKi9GdZ1m5DD3-XvwySlV4VoeFVw1PuK6eOAdiJd9n3yK6bdA3b4FdHLfoMLu7EJs9hs5pV5gUgYyTjtjYvC836XEpjiGCMac0cOyXvQdR-9FwFWnSnzjHNO0Jnb6jcGir3hsqjHnzonpk3pCBra--1tszDALHIV-7cg_3Wvqvb61rb73zgPzp_ub7zt7A9Oh-f5qfHk5NX8IA4b_RndfZgc3ldm9cWcS2LN8GtEfy46z_pDyZuNnU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh498CggFgr4ACdqdRN7E_uAUCENLWUXhKjoLTh-SEir7La7oepf49cxdh4LlxWXHuM4kygztseeme8DeGlKa1jJBWU2HVIuDadCpQmViiWpiiJZhkLa8SQ5POEfT0enG_C7q4XxaZXdnBgmajPT_ox8L5YNFHjC9lybFvEly9_Oz6hnkPKR1o5OozGRY3t5gdu3xZujDHX9Ko7zg2_vD2nLMEA1S9iSlhb3F6XQgfUkTa0cDbWLR8b4-IPTaWQUkyPhEutR4ZVU2KzRgqXTkmthGcq9BtdTj-Luq9TzD90qgOM2cF6i_JhKdCLagp1QtocuiC9sixn1Lguj0b-L4srT7YOzW3Crrubq8kJNp3-tf_k9uNM6rmS_sbT7sGGrbbjbOrGknSIW27A17oFg8epGyDDViwdQ71fk67uc5hkZB9Zqgu4ymdRNxGhK-vM5MnMkzkj207naH-XR7-qXJaoyqyZycNYglIfOmcf-9bRd-B35eVOogQI_e1DRh3ByJRp5BJvVrLKPgViruMDewpWGD4VS1saSc24M97iUYgBR99ML3QKie16OadFDOQdFFaioIiiqiAbwun9m3sCBrO290-myaKeGRbEy5AHsdvpd3V4nbbe3gf94-ZP1L38BN3H8FJ-OJsdP4XbsjTEk6ezA5vK8ts_Q1VqWz4NNE_hx1YPoD4u4NA8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gESM8gCLEEzT74JssXLvbdvfxoDTE5E5jvIhPzXY_EsKlnFyrgb_e3e3HKSFE42O30-1-zM5MdmZ-A_BOFVqRgjJMdDLClCuKmUhizAWJExEEvPCJtJNpfD6jHy6iizVIu1wYH-3euSSbnAaH0lRWxwtljvvEN6vEXWpYSLBT-gRbeaPME1iPI2uRD2B9Nv00_uYTi-yB56GvwhgkdgzWwgjb3JmHO_pTP62Mzt5PugnP6nIhbn-K-fw3VZRtg-4m0USgXB3VVXEk7-7hO_7vLJ_DVmuronHDXC9gTZc7sN3araiVCssd2Jz02K_26akPKpXLl1CPS_T5JMNZiia-UDWyFjKa1o2TaI76Kzl0bVCYovTSmNrd3uGv4odGolSrJnT2vQEl98Spg_t1lbrsOLKbJjfDdvjR4Yjuwiw7-3J6jtsyD1iSmFS40HaXCiZ96Zkk0TwaSRNGSjknkJFJoAThETOxdtD8ggvbLK0Y4UZyKpkmezAor0v9CpDWgjJLzUyh6IgJoXXIKaVKUQdFyYYQdJubyxYD3ZXimOc9erNf89yuee7XPA-G8L7_ZtEggDxKfdDxTN5Kg2Ue8gbGPiZDOOy2ffX6sd4Oe177i5-__jfyfdgIHXP54JwDGFQ3tX5jTayqeNueoF-Qghjv | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+RBF-FD+Method+for+Numerical+Solutions+of+2D+Diffusion-Wave+and+Diffusion+Equations+of+Distributed+Fractional+Order&rft.jtitle=Journal+of+nonlinear+mathematical+physics&rft.au=Taghipour%2C+Fatemeh&rft.au=Shirzadi%2C+Ahmad&rft.au=Safarpoor%2C+Mansour&rft.date=2023-12-01&rft.pub=Springer+Netherlands&rft.eissn=1776-0852&rft.volume=30&rft.issue=4&rft.spage=1357&rft.epage=1374&rft_id=info:doi/10.1007%2Fs44198-023-00153-1&rft.externalDocID=10_1007_s44198_023_00153_1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1776-0852&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1776-0852&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1776-0852&client=summon |